
IoTDisco: Strong yet Lightweight End-to-End
Security for the Internet of Constrained Things

Hao Cheng, Georgios Fotiadis, Johann Großschädl, and Peter Y. A. Ryan

DCS and SnT, University of Luxembourg,
6, Avenue de la Fonte, L–4364 Esch-sur-Alzette, Luxembourg

{hao.cheng,georgios.fotiadis,johann.groszschaedl,peter.ryan}@uni.lu

Abstract. Most widely-used protocols for end-to-end security, such as
TLS and its datagram variant DTLS, are highly computation-intensive
and introduce significant communication overheads, which makes them
impractical for resource-restricted IoT devices. The recently-introduced
Disco protocol framework provides a clean and well-documented basis
for the design of strong end-to-end security with lower complexity than
the (D)TLS protocol and no legacy baggage. Disco consists of two sub-
protocols, namely Noise (known from e.g., WhatsApp) and Strobe, and
is rather minimalist in terms of cryptography since it requires only an
elliptic curve in Montgomery form and a cryptographic permutation as
basic building blocks. In this paper, we present IoTDisco, an optimized
implementation of the Disco protocol for 16-bit TI MSP430 microcon-
trollers. IoTDisco is based on David Wong’s EmbeddedDisco software
and contains hand-written Assembly code for the prime-field arithmetic
of Curve25519. However, we decided to replace the Keccak permutation
of EmbeddedDisco by Xoodoo to reduce both the binary code size and
RAM footprint. The experiments we conducted on a Zolertia Z1 device
(equipped with a MSP430F2617 microcontroller) show that IoTDisco is
able to perform the computational part of a full Noise NK handshake in
26.2 million clock cycles, i.e., 1.64 seconds when the MSP430 is clocked
at 16 MHz. IoTDisco’s RAM footprint amounts to 1.4 kB, which is less
than 17% of the overall RAM capacity (8 kB) of the Zolertia Z1.

Keywords: Internet of Things (IoT) · Security protocol · Elliptic curve
cryptography · Cryptographic permutation · Efficient implementation

1 Introduction

The concept of End-to-End (E2E) security refers to the protection of data in
transit, i.e., while being transmitted from a source to the intended destination
(usually over an insecure network like the Internet) [29]. Strong E2E security is
crucial for a wide spectrum of Internet applications and services, ranging from
various kinds of e-commerce over personal communication to Web-based leisure
and entertainment, e.g., social networks. In general, E2E security involves E2E
authentication, E2E key agreement, and E2E encryption and integrity protec-
tion, all of which has to be implemented in a way that no third party, not even



2 H. Cheng et al.

the Internet Service Provider (ISP), can learn anything about the transmitted
data (except of communication meta-data), which is far from trivial to achieve
in practice [22]. The de-facto standard for E2E-secure communication over the
Internet is the Transport Layer Security (TLS) protocol [26], previously known
as Secure Sockets Layer (SSL) protocol. Originally developed in the 1990s, the
TLS/SSL protocol has undergone various revisions since then to strengthen its
security, e.g., by adding new ciphers to replace broken ones like RC4 [1]. TLS
is a modular protocol comprising a few sub-protocols, of which the handshake
protocol and the record protocol are particularly important [26]. The former is
responsible for authentication and key establishment and uses classical public-
key cryptosystems (e.g., RSA and Diffie-Hellman) or more recent elliptic-curve
schemes (ECDSA, ECDH [15]). On the other hand, the record protocol ensures
data encryption and integrity through symmetric algorithms, e.g., AES.

TLS is a highly complex protocol and challenging to implement for a couple
of reasons. First, as stated above, achieving E2E security in general, and E2E
authentication in particular, is a difficult problem for which no easy or simple
solution exists (and likely never will exist [22]). In addition, also certain design
decisions like algorithm agility have added to the complexity of TLS. Algorithm
agility means that the TLS protocol supports various combinations of crypto-
graphic algorithms, called cipher suites, and the client and server agree on one
of them dynamically during the handshake phase. For example, in version 1.3
of the TLS protocol, a server can authenticate itself to a client via certificates
based on three different signature algorithms (RSA, ECDSA, EdDSA [4]), and
each of them comes with at least two levels of security. Another reason for the
complexity of TLS implementations is that old(er) versions of the protocol, in
particular TLS v1.2, are still widely used and have to be supported to ensure
backwards compatibility. Furthermore, in the course of approximately 30 years
of development (i.e., bug fixing) and evolution, the protocol became overloaded
with niche features and extensions for very specific purposes with questionable
relevance in real-world settings. The enormous complexity of TLS has been the
root cause for a multitude of problems. First, it has been key enabler of various
security flaws and vulnerabilities in the protocol itself (e.g., the re-negotiation
attack analyzed in [12]), the underlying cryptography (e.g., the attacks known
as BEAST and Lucky13 [13]), and different implementations of TLS (e.g., the
“Heartbleed” bug found in OpenSSL [11]). Second, the high complexity of the
protocol translates directly to high resource consumption, i.e., large code size
and memory (RAM) footprint, which makes TLS relatively unattractive for the
Internet of Things (IoT) and its billions of constrained devices.

The Internet Engineering Task Force (IETF) describes in RFC 7228 [7] three
classes of constrained devices, depending on the code complexity (i.e., the size
of ROM or flash) and the size of state/buffers (i.e., RAM) they can handle, see
Table 1. Class 0 devices (C0 for short) are so limited in terms of memory and
processing capabilities that they will “not have the resources required to com-
municate directly with the Internet in a secure manner.” Class-1 (C1) devices
are also constrained and can not easily communicate with other Internet nodes



IoTDisco: Strong yet Lightweight End-to-End Security for the IoT 3

Table 1. Classes of constrained devices according to RFC 7228 [7].

Name Data size (e.g., RAM) Code size (e.g., flash)

Class 0, C0 � 10 kB � 100 kB

Class 1, C1 ∼ 10 kB ∼ 100 kB

Class 2, C2 50 kB 250 kB

through a complex protocol like TLS. However, they are capable enough to use
protocols specifically designed for such devices and participate in conversations
without the help of a gateway node. Indeed, a full-fledged TLS implementation
like OpenSSL [31] contains over 500,000 lines of code and has a (binary) code
size of several 100 kB, which is even beyond the resources of C2 devices. There
exist a few optimized (D)TLS libraries for embedded systems, such as ARM’s
mbedTLS, but they nonetheless need a code space of around 50 kB as reported
in [27]. Such code size is theoretically feasible for C1 devices, but not practical
since it leaves only about half of the total ROM (resp., flash) capacity for the
operating system and application(s). Two examples of E2E security protocols
that have been specifically developed to be suitable for limited devices are the
so-called Diet EXchange (DEX) variant [23] of IETF’s Host Identity Protocol
(HIP) and the Ephemeral Diffie-Hellman Over COSE (EDHOC) [28] protocol
(which is still in development). While both protocols can be optimized to have
a binary code size of less than 20 kB, they are still (unnecessarily) complex due
to algorithm agility. Some EDHOC cipher suites are (unnecessarily) slow since
they use cryptosystems that are nowadays considered dated and efficiency-wise
not state-of-the-art anymore (e.g., ECDH with NIST curves or AES-GCM).

Disco is a protocol framework developed by David Wong [34] with the goal
of simplifying the design and implementation of lightweight security protocols
with high efficiency, but without making compromises regarding security. The
Disco framework is specified as an extension of the well-known Noise protocol
framework of Trevor Perrin [25]. Disco can be seen as a clean-slate approach to
achieve end-to-end secure communication with much lower complexity and less
legacy overheads than TLS. It has the potential to become a viable alternative
to (D)TLS in the IoT, especially in settings where all communication endpoints
are managed or controlled by one single entity. Disco supports a subset of the
Noise handshakes for key exchange and (optionally) authentication. Noise has
been widely adopted in the past couple of years; for example, it is used by the
instant messenger WhatsApp [32] and the WireGuard VPN tunnel (part of the
Linux kernel since version 5.6). WhatsApp is estimated to have more than two
billion users worldwide, who send each other tens of billions of text messages
per day [22]. Every Noise protocol starts with a handshake phase in which two
parties exchange their Diffie-Hellman (DH) public keys and perform a sequence
of DH operations, hashing the DH results into a shared secret key. The Noise
framework comes with a collection of common “handshake patterns” with well-
defined security properties (i.e., various kinds of confidentiality, integrity, and
authenticity guarantees). Besides Noise, Disco also uses Strobe, a framework to



4 H. Cheng et al.

build symmetric cryptosystems and protocols [14]. Strobe goes beyond modes
of operation (or modes of use) and supports the design of secure bi-directional
communication channels. Disco is rather minimalist in terms of cryptosystems
since the full protocol, including both Noise and Strobe, requires just two basic
low-level components: Curve25519 [2] and the Keccak permutation [6].

EmbeddedDisco is a prototype implementation of Disco developed by David
Wong that targets embedded environments [35]. The protocol itself (i.e., Noise
and Strobe) consists of just about 1000 lines of C code, excluding the low-level
cryptographic functions. EmbeddedDisco uses the Curve25519 implementation
of TweetNaCl [5], a compact cryptographic library that supports variable-base
scalar multiplication and fits into just 100 tweets. The Keccak implementation
of EmbeddedDisco is also very compact (i.e., “tweetable”) and fits in only nine
tweets. Unfortunately, these tweetable implementations are extremely slow on
microcontrollers, which makes EmbeddedDisco rather inefficient. We present in
this paper IoTDisco, the first optimized implementation of the Disco protocol
for C1 devices equipped with an ultra-low-power 16-bit MSP430(X) microcon-
troller [30]. IoTDisco replaces the Keccak permutation by Xoodoo [9], a modern
permutation (designed by largely the same team as Keccak) with a state of 48
bytes instead of 200 bytes, thereby reducing the RAM consumption. Both the
prime-field arithmetic for Curve25519 and the Xoodoo permutation are written
in MSP430 Assembly to achieve high speed and small code size. The IoTDisco
prototype we benchmarked performs a Noise NK handshake, which means the
server gets authenticated to the client via a static public key that is known in
advance (e.g., pre-deployed on the device), but the client is not authenticated
to the server. Our experimental results show that Disco-based E2E security is
not only feasible for C1-class IoT devices, but actually practical for real-world
applications since the computational part of the handshake can be executed in
just 1.64 seconds when our target device (an MSP430F2617 microcontroller) is
clocked at 16 MHz. IoTDisco consumes 1.4 kB RAM and has a binary code size
of 11.6 kB, which is less than 15% of the RAM/flash capacity of a C1 device.

2 Preliminaries

Wong’s Disco specification [33] is written as an extension of Noise (and not as
a self-contained protocol specification), which makes sense since the handshake
phase of Disco is largely based on the Noise protocol framework. However, the
subsequent transport phase, in which symmetric cryptosystems are utilized, is
based on Hamburg’s Strobe protocol framework. In this section, we first give an
overview of both Noise and Strobe, and thereafter explain how Disco combines
them into a single protocol framework.

2.1 Noise Protocol Framework

Noise, as specified in [25], is not a protocol but rather a framework to facilitate
the creation of custom E2E security protocols that are tailored for certain use



IoTDisco: Strong yet Lightweight End-to-End Security for the IoT 5

cases. This protocol framework has shown to be especially beneficial in settings
where a single entity controls/manages all communication endpoints, as is the
case for a range of Internet applications, e.g., WhatsApp (the first widespread
adoption of a Noise-based protocol) and also for many IoT applications. There
are different reasons why designing a custom E2E security protocol can make
sense; for example, the target application may need a special feature that none
of the existing protocols (e.g., TLS, SSH, IKE/IPSec) offers and extending one
of them turns out to be a non-trivial task. Likely more common is the situation
where an application only needs a subset of the features of, e.g., TLS and the
application developers would prefer a simpler and “lighter” solution. The Noise
framework facilitates the design and security analysis of custom E2E protocols
through the definition of a small set of basic elements called tokens (in essence
DH keys or DH operations) along with well-documented rules for combing and
processing them. A Noise-based protocol is composed of three layers: (i) a thin
negotiation layer, (ii) a DH-based handshake layer (which, in fact, uses ECDH
as underlying primitive), and (iii) a transport layer for the secure transmission
of application data. Apart from ECDH, Noise-based protocols also employ two
symmetric cryptosystems, namely an algorithm for Authenticated Encryption
with Associated Data (AEAD) and a hash function, the latter of which serves
to compute protocol transcripts and to derive AEAD keys.

One of the distinguishing features of Noise is a clear separation between the
negotiation phase, in which initiator and responder agree on a common hand-
shake pattern (including whether/how the parties are authenticated), and the
actual execution of the handshake. This contrasts with TLS, where negotiation
and handshake are “intertwined” and, therefore, the sequence of cryptographic
operations performed by the client and server depends on negotiation decisions
(e.g., protocol version, cipher suite, client authentication, etc) made during the
handshake [26]. When using Noise, many of such run-time decisions become, in
fact, design-time decisions within a framework, i.e., the protocol designer has
to decide which handshake structure fits best for the target application; this
includes decisions like who is authenticated to whom and which cryptosystems
are employed. Remaining run-time decisions, if any, are separated out from the
rest of the protocol and combined together, thereby enabling the handshake to
become a straight (linear) sequence of messages and cryptographic operations
without any branches apart from error handling. Such a linear execution profile
reduces the run-time complexity of the handshake (compared to TLS) and also
simplifies the implementation and testing of Noise-based protocols.

The core component of every Noise handshake is an Authenticated Key Ex-
change (AKE) protocol based on DH (in fact ECDH) that can be instantiated
with two different elliptic curves: Curve25519 and Curve448. Depending on the
concrete handshake pattern, either none, one, or both involved parties become
authenticated. Each party has an ephemeral key pair, which is used to generate
a fresh shared secret, and, optionally, a long-term (i.e., static) key pair for the
purpose of authentication. Many classical AKE protocols in the literature have
in common that the static keys are signature keys, i.e., authentication is done



6 H. Cheng et al.

through the generation and verification of digital signatures. Examples for this
kind of AKE range from basic “Signed DH,” where each party simply signs its
own ephemeral DH key using the static private key, to advanced protocols like
SIGMA [18], which requires each side to generate a signature over both public
DH keys and compute a Message Authentication Code (MAC) of the signer’s
identity with a secret key derived from the shared DH secret. Alternatively, an
AKE protocol can use DH for both key exchange and authentication (i.e., the
static key-pairs are DH key-pairs); well-known examples are NAXOS [19] and
MQV [20]. Also Noise follows this approach, which has two advantages: (i) an
implementation only needs DH but no signature scheme1 and (ii) the messages
can be significantly shorter (see, e.g., Fig. 1 in [28]). The basic idea is to derive
the shared secret not solely from the result of ephemeral-ephemeral DH, but to
also include DH values combining ephemeral with static keys. For example, in
order to authenticate the responder to the initiator, the latter has to perform
a DH operation using its own ephemeral private key and the responder’s static
public key, whereas the responder uses its static private key and the initiator’s
ephemeral public key. The only responding party that is able to compute the
correct shared secret is the party in possession of the static private key.

Another common feature of Noise-based handshakes is that the handshake
messages are not limited to (public) DH keys but may also contain application
data as “handshake payloads.” These early payloads can be AEAD-encrypted
as soon as at least one DH operation has been carried out; in certain cases it is
even possible to encrypt the payload of the very first message of the handshake
(e.g., if the responder’s static public key was pre-distributed). The AEAD keys
and nonces are derived from a so-called chaining key, which gets updated (and
gradually evolves) with the output of each DH operation. Thus, the handshake
payloads have normally weaker security guarantees than the transport payloads
that follow after the handshake. Besides the chaining key, the two parties also
maintain a handshake hash (essentially a transcript of handshake messages) to
ensure they have a consistent view of the handshake.

2.2 Strobe Protocol Framework

The transport layer of Noise corresponds to the record layer of TLS; both pro-
tect the exchange of application data with the help of symmetric cryptographic

1 Depending on the application, signatures (e.g., in the form of certificates) may still
be necessary to confirm a cryptographically-secure binding between a static public
key and the identity of an entity. However, in such case, a Noise-based protocol has
to support only signature verification, but not the signing operation. Note that the
provision of evidence for the binding of an identity to a static public key is outside
the scope of the Noise specification. More concretely, [25, Sect. 14] states that “it is
up to the application to determine whether the remote party’s static public key is
acceptable.” Section 14 of [25] also outlines some methods to ensure a static public
key is genuine and trustworthy: certificates (which may be passed in a handshake
payload), pre-configured lists of public keys, or pinning/key-continuity approaches
where parties remember the public keys they encounter.



IoTDisco: Strong yet Lightweight End-to-End Security for the IoT 7

algorithms. Transport payloads in Noise are secured through an AEAD scheme
and a hash function; the latter is also the main component of a Key-Derivation
Function (KDF). Strobe is based on the idea that all symmetric cryptographic
operations needed for a secure transport protocol can be efficiently designed on
top of a single low-level primitive, namely an un-keyed permutation. Similar to
Noise, Strobe is not a protocol but a protocol framework; more concretely, it is
framework for building secure transport protocols [14]. Strobe-based protocols
operate on a “wrapper” around the duplex construction [9], which elevates the
duplex into a stateful object, i.e., an object that maintains its state across an
arbitrary sequence of absorb and squeeze phases. The specification [14] defines
a simple API for a Strobe object to perform authenticated encryption, pseudo-
random number generation, hashing, and key derivation. Strobe’s main design
principle is that the cryptographic output from any step shall not only depend
on the directly-provided input (e.g., plaintext, nonce, and key if the operation
is encryption), but also all preceding inputs processed in the session. The state
of the permutation holds a “running hash” of the protocol transcript, which is
the sequence of all operations and data as seen by the application layer. Strobe
maintains such a running hash on both sides, making it easy to find out when
one side diverged from the protocol, e.g., due to a corrupted or lost message.

Besides the messages that are sent back and forth, the running hash of the
protocol transcript also includes metadata to ensure the sematic integrity of the
cryptographic operations. The behavior of any operation is determined by five
flags (one indicating metadata operations) for which Strobe reserves a byte in
the rate-part of the permutation. A further rate-byte is used for tracking the
start-position of an operation within the rate-part, i.e., the number of bytes in
a Strobe block is always two bytes less than the rate of the permutation.

2.3 Disco Protocol Framework

Disco merges Noise and Strobe into one single protocol framework that aims to
facilitate the design (and implementation) of custom security protocols. Disco
improves Noise in two main aspects: it simplifies the symmetric cryptographic
operations performed in the handshake phase and reduces the number of low-
level primitives. A Noise handshake as described in [25] requires each party to
maintain three objects, two of which contain hashes, keys, and nonces that are
inputs or outputs of symmetric cryptographic operations. Disco replaces these
two objects by a single StrobeState object, acting as an opaque cryptographic
scheme based on the Keccak-f [1600] permutation. Using a permutation allows
for simpler transcript hashing (because all the data from previous operations is
naturally absorbed) and simpler encryption/decryption of handshake payloads
(since no dedicated key derivation has to be carried out).

Disco also replaces the original transport layer of Noise by a Strobe-based
transport mechanism. After completion of the handshake, the final StrobeState
object is split up into two objects if full-duplex communication is desired, one
for each direction. Each channel operates individually in half-duplex mode.



8 H. Cheng et al.

3 Implementation Details

Our target platform to assess the computational cost of IoTDisco is a Zolertia
Z1 IoT device housing a low-power 16-bit MSP430F2617 microcontroller from
Texas Instruments. The MSP430(X) architecture is based on the von-Neuman
memory model, which means code and data share a unified address space, and
there is a single address bus and a single data bus that connects the CPU core
with RAM, ROM/flash memory, and peripheral modules. Its instruction set is
rather minimalist, consisting of merely 27 core instructions, and supports seven
addressing modes, including modes for direct memory-to-memory operations
without an intermediate register holding (similar to CISC architectures). Some
MSP430 models, such as the MSP430F2617, have a memory-mapped hardware
multiplier capable to carry out (16 × 16)-bit multiply and multiply-accumulate
operations [30]. The MSP430F2617 is equipped with 8 kB SRAM and features
92 kB flash memory, i.e., it can be seen as a typical C1 device.

Our IoTDisco prototype is largely based on David Wong’s EmbeddedDisco
software, but we modified its Noise and Strobe component in order to improve
efficiency on 16-bit MSP430(X) microcontrollers. First, we replaced the plain C
implementation of Curve25519, which is based on TweetNaCl, by an optimized
C implementation with hand-written Assembly code for the underlying prime-
field arithmetic. Furthermore, we replaced the Keccak permutation by Xoodoo
and also modified Strobe to become Strobe Lite as described in Appendix B.2
of [14]. In this section, we first describe our optimized Curve25519 and Xoodoo
implementations, and then explain how a Noise-NK handshake is executed.

3.1 Curve25519

Our implementation of Curve25519 is a modified and improved version of the
ECC software for MSP430(X) microcontrollers presented in [21]. This library is
not purely optimized for speed but aims for a trade-off between execution time
and binary code size. The elements of the underlying 255-bit prime field Fp are
stored in arrays of unsigned 16-bit integers, i.e., arrays of type uint16 t. All
low-level field-arithmetic functions are written in MSP430 Assembly language
to reduce the execution time. Apart from inversion, the arithmetic functions do
not execute operand-dependent conditional statements like jumps or branches
(i.e., their execution time is constant), which contributes to achieve resistance
against timing attacks. The Fp-inversion is based on the Extended Euclidean
Algorithm (EEA), but uses a “multiplicative masking” technique to randomize
its execution time and thwart timing attacks (see [21] for details).

A scalar multiplication on Curve25519 can be implemented using either the
Montgomery form or the birationally-equivalent Twisted Edwards (TE) model
of the curve [3]. The former is beneficial for variable-base scalar multiplication
(e.g., to derive a shared secret in ECDH key exchange) thanks to the so-called
Montgomery ladder [8], which is not only fast but also provides some intrinsic
resistance against timing attacks due to its highly regular execution profile. On
the other hand, when a fixed-base scalar multiplication needs to be performed



IoTDisco: Strong yet Lightweight End-to-End Security for the IoT 9

(e.g., to generate an ephemeral key pair), our ECC software uses the TE form
and takes advantage of Hişil et al’s fast and complete addition formulae based
on extended coordinates [16]. To be more concrete, the scalar multiplication is
carried out via a so-called fixed-base comb method [15] with a radix-24 signed-
digit representation of the scalar and uses a lookup table of eight pre-computed
points. Similar to the Montgomery ladder, our fixed-base comb method is able
to resist timing attacks. The pre-computed points are given in extended affine
coordinates and occupy 768 bytes altogether in flash memory.

3.2 Xoodoo

Xoodyak [9] is a versatile cryptographic scheme that was developed by a team
of cryptographers led by Joan Daemen, who is also one of the designers of the
two NIST standards AES and SHA-3. At the heart of Xoodyak is Xoodoo, an
extremely lightweight permutation that shares some similarities with Keccak’s
permutation and can potentially serve as “drop-in replacement.” However, the
state of Xoodoo is much smaller (384 versus 1600 bits), making it more IoT-
friendly since it can be optimized to occupy less space in RAM and flash than
Keccak. IoTDisco instantiates Xoodoo with a capacity of 256 bits (to achieve
128-bit security), which means the rate is 128 bits (16 bytes). As mentioned in
Subsect. 2.2, Strobe dedicates two bytes in the rate-portion of the permutation
to special purposes; one byte holds five flags and the other is used to track the
beginning of a Strobe operation, see [14, Sect. 4.1] for further details. Since the
operations for metadata are small in Strobe, it is normally not very efficient to
execute the permutation for each operation, especially when the rate is large as
in Keccak-f [1600]. To reduce overheads, Strobe packs multiple operations into
one block when possible, which explains why keeping track of the start-position
of an operation is necessary. However, when using a small permutation, such as
Xoodoo, it makes sense to always begin a new block for every new operation
(the resulting Strobe variant is called Strobe Lite in [14, Sect. B.2]). IoTDisco
follows this approach and, therefore, a Strobe block is 15 bytes long (i.e., one
byte less than the nominal rate of Xoodoo with a capacity of 256 bits).

We implemented Xoodoo from scratch in MSP430 Assembly language. One
of the main challenges was to find a good register allocation strategy so as to
reduce the number of load/store operations. Another challenge was to perform
multi-bit shift and rotations of 32-bit words efficiently, which is important since
MSP430 microcontrollers can only shift or rotate a register one bit at a time.

3.3 Noise NK Handshake

Noise-NK is one of 12 so-called fundamental handshake patterns for interactive
protocols that are described in the Noise specification [25] and implemented in
EmbeddedDisco and also IoTDisco. This handshake pattern authenticates the
responder through a long-term, i.e., static, public DH key, which is known (and
trusted) by the initiator. On the other hand, the initiator is not authenticated
and does, therefore, not have a static public key. A real-world example for this



10 H. Cheng et al.

Client Server

server’s static public key spks server’s static key pair ssks, spks

client’s ephemeral key pair eskc, epkc

epkc, DH(eskc, spks)

server’s ephemeral key pair esks, epks

epks, DH(esks, epkc)

shared session keysshared session keys

encrypted messages

Fig. 1. Simplified Noise-NK handshake pattern.

kind of authentication scenario is a mobile-device application that connects to
a webserver using certificate (i.e., public-key) pinning. An example with more
relevance for the IoT is secure software update, i.e., a device regularly connects
to a server to check whether software updates are available and, if this is the
case, downloads and installs them. While it is obvious that authenticating the
server to the client is an important security requirement, there is normally no
need to authenticate the client because most software vendors provide patches
for free. A minimalist implementation of such a secure software update service
could pre-distribute the server’s static public key, e.g., by “hard-coding” it in
the IoTDisco software before the device gets deployed.

Figure 1 illustrates the main operations and messages when performing an
NK handshake with IoTDisco/EmbeddedDisco. The handshake layer operates
on a HandshakeState object that contains, among some other things, the local
ephemeral and static key pair (if such keys exists) as well as the other party’s
ephemeral and static public key. At first, the client and the server initialize the
HandshakeState by calling the function Disco Initialize() with the server’s
static key and a token representing the NK pattern. Then, the client assembles
its handshake message through the function Disco WriteMessage(), using the
HandshakeState object as input. This function generates the client’s ephemeral
key pair eskc, epkc, performs a DH computation on eskc and spks, and absorbs
the results of all these operations into the client’s StrobeState object, which is
contained in the HandshakeState object. The client sends this first handshake
message, consisting of the key epkc and the DH result of eskc and spks, to the
server. Having received the message, the server uses Disco ReadMessage() to
(i) extract epkc, (ii) compute the DH result of ssks and epkc, and (iii) update
the StrobeState object in the server’s HandshakeState. The server produces its
handshake message by invoking Disco WriteMessage() as well. In addition to
generating the server’s ephemeral key pair and computing the DH of esks and
epkc, the Disco WriteMessage() function also outputs shared session keys in
two new StrobeState objects. The first object is named s write and can be used



IoTDisco: Strong yet Lightweight End-to-End Security for the IoT 11

to encrypt all messages that the server sends to the client, whereas the second
object, s read, enables the server to decrypt messages of the client. Finally, the
server sends the generated (second) handshake message to the client, who upon
reception invokes Disco ReadMessage() to retrieve the shared session keys in
two new StrobeState objects, called c read and c write, which can be used in
the same way as on the server side.

4 Experimental Results

We compiled the source code and evaluated the performance of both IoTDisco
and EmbeddedDisco using version 7.21.1 of IAR Embedded Workbench for the
MSP430 architecture. This development environment includes a cycle-accurate
Instruction Set Simulator (ISS) and also provides some utilities for tracking the
stack usage during debugging, enabling developers to easily measure execution
time and RAM footprint. The binary code size of all modules of an application
is reported in a map file after compilation of the source code. In this section, we
present, analyze, and compare implementation results of different components
of IoTDisco and EmbeddedDisco, which we determined with IAR Embedded
Workbench using the TI MSP430F2617 [30] as target device. From a software-
architectural point of view, the Disco framework can be (roughly) divided into
three layers; the bottom layer includes the main functions of the cryptographic
primitives, i.e., fixed/variable-base scalar multiplication on Curve25519 and the
function to permute the state of Keccak or Xoodoo. The medium layer covers
all Disco functions for the different handshakes (i.e., Noise) and for the secure
transport of application data (i.e., Strobe). Finally, the top layer consists of the
full handshakes supported by Disco, but we limit our attention to Noise-NK in
this paper. We compare IoTDisco and EmbeddedDisco layer-wise from bottom
to top and, thereafter, we also compare IoTDisco with implementations of two
other E2E security protocols for the IoT.

Table 2. Execution time (in clock cycles on a MSP430F2617), throughput (in cycles
per rate-byte), RAM usage, and code size of Keccak-f [1600] and Xoodoo.

Permutation Lang.
Exec. time Throughput RAM Size

(cycles) (c/rb) (bytes) (bytes)

Keccak (24 rounds) C 577,808 3481 536 2174

Xoodoo (12 rounds) Asm 10,378 692 262 1312

Table 2 shows the results of the Keccak permutation used in the Embedded-
Disco software (written in C) and our Assembly implementation of the Xoodoo
permutation. Since the permutations use different rates, it makes more sense to
compare the throughputs (e.g., in cycles per rate-byte) than the raw execution
times. As already mentioned in previous sections, the original Strobe protocol
of EmbeddedDisco dedicates two rate-bytes for a special purpose, which means



12 H. Cheng et al.

Table 3. Execution time (in clock cycles on a MSP430F2617), RAM usage, and code
size of some implementations of scalar multiplication on Curve25519.

Implementation Lang.
Exec. time RAM Size

(cycles) (bytes) (bytes)

TweetNaCl [5] C 221,219,800 2014 2510

Düll et al. [10] Asm 7,933,296 384 13,112

This work (fixed-base) Asm 4,428,920 588 5260

This work (variable-base) Asm 10,843,907 562 4717

the actual rate (i.e., the length of a Strobe block) is (1600 − 256)/8 − 2 = 166
bytes. On the other hand, IoTDisco uses Strobe Lite and, hence, only one byte
in the rate-part is reserved, i.e., the rate is (384 − 256)/8 − 1 = 15 bytes. The
throughput figures obtained on basis of these rate values indicate that Xoodoo
outperforms Keccak by a factor of five. In addition, the RAM usage and code
size of Xoodoo is much smaller.

Table 3 shows the results of some implementations of scalar multiplication
on Curve25519 executed on a MSP430(X) microcontroller. Besides TweetNaCl
(used by EmbeddedDisco) and our implementation, we also list the currently-
fastest software of Curve25519 for MSP430(X), which was introduced by Düll
et al. [10]. However, their field-arithmetic operations are aggressively optimized
for speed (e.g., by fully unrolling inner loops), thereby inflating the binary code
size. For example, the field-arithmetic library alone occupies some 10 kB of the
flash memory, which is quite a lot for typical C1 devices. Our ECC software is
optimized to achieve a trade-off between speed and code size instead of speed
alone; therefore, we we did not unroll the inner loop(s) of performance-critical
operations. This makes our implementation slower, but also much smaller than
that of Düll et al. More concretely, when compared to Düll et al., our variable-
base scalar multiplication is requires 2.9 million cycles more, but the fixed-base
scalar multiplication 3.6 million cycles less than their software, which supports
only variable-base scalar multiplication. However, when comparing binary code
size, our implementation is around 2.6 times smaller. Note that our fixed-base
and variable-base scalar multiplication share a lot of the low-level components
(e.g., the field arithmetic); thus, the overall size of both is only 6650 bytes.

We summarize in Table 4 the execution time of some of the Disco functions
needed for a Noise-NK handshake and for the secure transport of application
data. The disco WriteMessage() function performs a fixed-base scalar multi-
plication (to generate an ephemeral key-pair) and, thereafter, a variable-base
scalar multiplication. On the other hand, the disco WriteMessage() function
includes just the latter. IotDisco outperforms EmbeddedDisco by more than an
order of magnitude (up to a factor of almost 30), which is not surprising since
TweetNaCl is not optimized at all for MSP430 and, therefore, quite slow. The
disco EncryptInPlace() function executes an authenticated encryption of 65
bytes of application data. Its execution time can be seen as benchmark for the
efficiency of the Strobe implementation and its permutation.



IoTDisco: Strong yet Lightweight End-to-End Security for the IoT 13

Table 4. Execution time (in clock cycles on a MSP430F2617) of EmbeddedDisco and
IoTDisco when executing the Disco functions for a Noise-NK handshake and for the
secure transport of 65 bytes of application data using Strobe (resp., Strobe Lite).

Disco function
EmbeddedDisco IoTDisco

(C impl.) (Asm impl.)

Initialization

disco Initialize() 583,052 55,699

client → server handshake (Noise)

disco WriteMessage() 443,604,514 15,218,721

disco ReadMessage() 222,379,982 10,825,192

server → client handshake (Noise)

disco WriteMessage() 444,768,307 15,299,704

disco ReadMessage() 223,543,472 10,903,793

client ↔ server secure transport (Strobe)

disco EncryptInPlace() 1,158,706 75,774

disco DecryptInPlace() 1,158,677 75,745

Table 5. Execution time (in clock cycles on a MSP430F2617) of EmbeddedDisco and
IoTDisco when executing the a full Noise-NK handshake.

Implementation Lang. Side
Exec. time RAM Size

(cycles) (bytes) (bytes)

EmbeddedDisco C
client 667,731,038 3366 8911
server 667,731,341 3366 8911

IoTDisco Asm
client 26,178,213 1382 11,602
server 26,180,595 1382 11,602

The running time, RAM consumption, and binary code size of a full Noise-
NK handshake computation performed by EmbeddedDisco and IoTDisco are
shown in Table 5. On each side (i.e., client and server), a Noise-NK handshake
invokes the three functions disco Initialize(), disco WriteMessage(), and
disco ReadMessage() to obtain a shared secret. IoTDisco requires 26.2 million
cycles for a full NK handshake on each the client and the server side, which is
more than 25 times faster than EmbeddedDisco. Furthermore, IoTDisco is also
much more efficient than EmbeddedDisco in terms of RAM footprint (1383 vs
3366 bytes). A part of this saving comes from the smaller state of the Xoodoo
permutation. The RAM footprint given in Table 5 also includes two 128-byte
buffers (for sending and receiving messages) on each side. Note that the 1.4 kB
of RAM consumed by IoTDisco represents only about 14% of the overall RAM
available on a typical C1 device, which leaves about 86% of the RAM for the
operating system and the actual target application. The code size of IoTDisco
amounts to 11.6 kB, which is 2.7 kB higher than that of EmbeddedDisco. This
means IoTDisco occupies less than 12% of the total flash memory available on
a typical C1 device.



14 H. Cheng et al.

Table 6. Handshake computation time (in clock cycles) of implementations of E2E
security protocols for the IoT.

Protocol
Sec.

Device Side
Exec. time RAM Size

(bits) (cycles) (bytes) (bytes)

HIP DEX
112

32-bit ARM9 client 192,960,000 n/a n/a
[24] @180 MHz server 192,960,000 n/a n/a

µEDHOC
128

32-bit Cortex-M0 client 274,816,000 2381 18,950
[17] @16 MHz server 274,832,000 2624 18,950

IoTDisco
128

16-bit MSP430X client 26,178,213 1382 11,602
(This work) @8 MHz server 26,180,595 1382 11,602

Finally, in Table 6 we compare IoTDisco with implementations of the two
other E2E protocols mentioned in Sect. 1, i.e., the HIP DEX protocol by Nie
et al. [24] and µEDHOC by Hristozov et al. [17]. Even though a 32-bit ARM9
microcontroller has more computing power than a 16-bit MSP430, IoTDisco is
about 7.4 times faster than HIP DEX. It should also be noted that DEX was
designed to offer only up to 112-bit security. When compared to µEDHOC on
an ARM Cortex-M0, IoTDisco is more than an order of magnitude faster and
also consumes 1.0 kB less RAM and 7.3 kB less flash memory.

5 Summary and Conclusion

Although E2E-secure communication is nowadays omnipresent in the classical
Internet, it still represents a massive challenge for the IoT due to the resource
constraints of the connected devices. We presented in this paper an optimized
implementation and practical evaluation of Disco, a modern E2E security pro-
tocol combining Noise (a DH-based two-party handshake protocol) and Strobe
(a permutation-based secure transport protocol). Disco is a “clean-slate” design
and, therefore, unencumbered by most of the problems and issues that plague
legacy protocols such as TLS, in particular backwards compatibility, algorithm
agility, and/or inefficient cryptographic primitives. The IoTDisco prototype we
introduced is optimized for MSP430-based C1 devices and contains carefully-
tuned Assembly functions for the prime-field arithmetic of Curve25519 and the
Xoodoo permutation, which serves as lightweight replacement for Keccak. Due
to these optimizations, IoTDisco is capable to complete the full computational
part of a Noise NK handshake in only 26.2 million cycles on our target device
(a TI MSP430F2617 microcontroller), which compares very favorably with the
implementations of other E2E protocols described in the literature. IoTDisco
occupies only about 11.6 kB flash memory and roughly 1.4 kB RAM, which is
less than 14% of the total flash capacity and less than 17% of the RAM of the
MSP430F2617. All these results make IoTDisco an important milestone on the
road towards strong E2E security in the Internet of constrained things, i.e., the
Internet of C1 devices.



IoTDisco: Strong yet Lightweight End-to-End Security for the IoT 15

References

1. AlFardan, N.J., Bernstein, D.J., Paterson, K.G., Poettering, B., Schuldt, J.C.: On
the security of RC4 in TLS. In: King, S.T. (ed.) Proceedings of the 22th USENIX
Security Symposium (USS 2013). pp. 305–320. USENIX Association (2013)

2. Bernstein, D.J.: Curve25519: New Diffie-Hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T. (eds.) Public Key Cryptography — PKC 2006.
Lecture Notes in Computer Science, vol. 3958, pp. 207–228. Springer (2006)

3. Bernstein, D.J., Birkner, P., Joye, M., Lange, T., Peters, C.: Twisted Edwards
curves. In: Vaudenay, S. (ed.) Progress in Cryptology — AFRICACRYPT 2008.
Lecture Notes in Computer Science, vol. 5023, pp. 389–405. Springer (2008)

4. Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-
security signatures. Journal of Cryptographic Engineering 2(2), 77–89 (Sep 2012)

5. Bernstein, D.J., van Gastel, B., Janssen, W., Lange, T., Schwabe, P., Smetsers,
S.: TweetNaCl: A crypto library in 100 tweets. In: Aranha, D.F., Menezes, A.
(eds.) Progress in Cryptology — LATINCRYPT 2014. Lecture Notes in Computer
Science, vol. 8895, pp. 320–337. Springer (2015)

6. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: The Keccak reference,
version 3.0. Available for download at http://keccak.team/files/Keccak-

reference-3.0.pdf (2011)
7. Bormann, C., Ersue, M., Keranen, A.: Terminology for Constrained-Node Net-

works. IETF, Light-Weight Implementation Guidance Working Group, RFC 7228
(May 2014)

8. Costello, C., Smith, B.: Montgomery curves and their arithmetic. Journal of Cryp-
tographic Engineering 8(3), 227–240 (Sep 2018)

9. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a
lightweight cryptographic scheme. IACR Transactions on Symmetric Cryptology
2020(S1), 60–87 (Jun 2020)

10. Düll, M., Haase, B., Hinterwälder, G., Hutter, M., Paar, C., Sánchez, A.H.,
Schwabe, P.: High-speed Curve25519 on 8-bit, 16-bit and 32-bit microcontrollers.
Designs, Codes and Cryptography 77(2–3), 493–514 (Dec 2015)

11. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., Paxson, V.: The matter of Heartbleed.
In: Williamson, C., Akella, A., Taft, N. (eds.) Proceedings of the 14th Internet
Measurement Conference (IMC 2014). pp. 475–488. ACM (2014)

12. Giesen, F., Kohlar, F., Stebila, D.: On the security of TLS renegotiation. In:
Sadeghi, A., Gligor, V.D., Yung, M. (eds.) Proceedings of the 20th ACM Confer-
ence on Computer and Communications Security (CCS 2013). pp. 387–398. ACM
(2013)

13. Guha Sarkar, P., Fitzgerald, S.: Attacks on SSL: A comprehensive study of BEAST,
CRIME, TIME, BREACH, Lucky 13 & RC4 biases. Tech. rep., iSEC Partners Inc.
(Part of NCC Group) (2013), available for download at http://www.nccgroup.

com/globalassets/our-research/us/whitepapers/ssl_attacks_survey.pdf

14. Hamburg, M.: The STROBE protocol framework. Cryptology ePrint Archive, Re-
port 2017/003 (2017), available for download at http://eprint.iacr.org

15. Hankerson, D.R., Menezes, A.J., Vanstone, S.A.: Guide to Elliptic Curve Cryptog-
raphy. Springer (2004)

16. Hişil, H., Wong, K.K.H., Carter, G., Dawson, E.: Twisted Edwards curves revisited.
In: Pieprzyk, J. (ed.) Advances in Cryptology — ASIACRYPT 2008. Lecture Notes
in Computer Science, vol. 5350, pp. 326–343. Springer (2008)



16 H. Cheng et al.

17. Hristozov, S., Huber, M., Xu, L., Fietz, J., Liess, M., Sigl, G.: The cost of OSCORE
and EDHOC for constrained devices. In: Joshi, A., Carminati, B., Verma, R.M.
(eds.) Proceedings of the 11th ACM Conference on Data and Application Security
and Privacy (CODASPY 2021). pp. 245–250. ACM (2021)

18. Krawczyk, H.: SIGMA: The ’SIGn-and-MAc’ approach to authenticated Diffie-
Hellman and its use in the IKE-protocols. In: Boneh, D. (ed.) Advances in Cryptol-
ogy — CRYPTO 2003. Lecture Notes in Computer Science, vol. 2729, pp. 400–425.
Springer (2003)

19. LaMacchia, B.A., Lauter, K.E., Mityagin, A.: Stronger security of authenticated
key exchange. In: Susilo, W., Liu, J.K., Mu, Y. (eds.) Provable Security — ProvSec
2007. Lecture Notes in Computer Science, vol. 4784, pp. 1–16. Springer (2007)

20. Law, L., Menezes, A., Qu, M., Solinas, J.A., Vanstone, S.A.: An efficient protocol
for authenticated key agreement. Designs, Codes and Cryptography 28(2), 119–134
(Mar 2003)

21. Liu, Z., Großschädl, J., Li, L., Xu, Q.: Energy-efficient elliptic curve cryptography
for MSP430-based wireless sensor nodes. In: Liu, J.K., Steinfeld, R. (eds.) Infor-
mation Security and Privacy — ACISP 2016. Lecture Notes in Computer Science,
vol. 9722, pp. 94–112. Springer (2016)

22. Menezes, A.J., Stebila, D.: End-to-end security: When do we have it? IEEE Secu-
rity & Privacy 19(4), 60–64 (Jul 2021)

23. Moskowitz, R., Hummen, R., Komu, M.: HIP Diet EXchange (DEX). IETF, In-
ternet draft draft-ietf-hip-dex-24 (Jan 2021)

24. Nie, P., Vähä-Herttua, J., Aura, T., Gurtov, A.V.: Performance analysis of HIP
Diet Exchange for WSN security establishment. In: Chen, H., Ben-Othman, J.,
Cesana, M. (eds.) Proceedings of the 7th ACM Symposium on QoS and Security
for Wireless and Mobile Networks (Q2SWinet 2011). pp. 51–56. ACM (2011)

25. Perrin, T.: The Noise protocol framework (revision 34). Specification, available for
download at http://noiseprotocol.org/noise.pdf (2018)

26. Rescorla, E.K.: The Transport Layer Security (TLS) Protocol Version 1.3. IETF,
Network Working Group, RFC 8446 (Aug 2018)

27. Restuccia, G., Tschofenig, H., Baccelli, E.: Low-power IoT communication secu-
rity: On the performance of DTLS and TLS 1.3. In: Proceedings of the 9th IFIP
International Conference on Performance Evaluation and Modeling in Wireless
Networks (PEMWN 2020). pp. 1–6. IEEE (2020)

28. Selander, G., Preuß Mattsson, J., Palombini, F.: Ephemeral Diffie-Hellman Over
COSE (EDHOC). IETF, Internet draft draft-ietf-lake-edhoc-22 (Aug 2023)

29. Stallings, W.: Cryptography and Network Security: Principles and Practice. Pear-
son, 7th edn. (2016)

30. Texas Instruments, Inc.: MSP430x2xx Family User’s Guide (Rev. J). Manual, avail-
able for download at http://www.ti.com/lit/ug/slau144j/slau144j.pdf (2013)

31. The OpenSSL Project: OpenSSL: Cryptography and SSL/TLS Toolkit. Available
online at http://www.openssl.org (2021)

32. WhatsApp LLC: WhatsApp encryption overview. Technical white paper, avail-
able for download at http://www.whatsapp.com/security/WhatsApp-Security-

Whitepaper.pdf (2020)
33. Wong, D.: Noise extension: Disco (Revision 6). Specification, available for down-

load at http://www.discocrypto.com/disco.pdf (2018)
34. Wong, D.: Disco: Modern session encryption. Cryptology ePrint Archive, Report

2019/180 (2019), available for download at http://eprint.iacr.org
35. Wong, D.: EmbeddedDisco (2020), available online at http://embeddeddisco.com


