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Motivation

Disease-associated molecular perturbations are often localized in biological networks. 
Finding these network clusters may help us to develop more robust biomarker models.

Question: How can we find clustered gene/protein groups efficiently, accounting for
their predictivity and connectedness in the network?

Example sub-network for
Parkinson‘s disease (PD):

Over-expressed in PD

Under-expressed in PD
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GenePEN - Workflow

Input:
• Gene/protein expression dataset X (p rows = genes, n columns = samples)
• Class labels y (e.g., “patient vs. control”, “disease subtype 1 vs. disease subtype 2”)
• Table A of interactions/similarities between rows in X (e.g., protein-protein interactions)

Output:
• A subset of discriminative genes (rows in X) representing a connected component in A
(à an altered sub-network) to predict the class labels for new samples
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GenePEN - Approach

Idea: Cast the gene selection as an optimization problem, maximizing two quantities:

- the diagnostic prediction accuracy of the classifier
- connectedness of selected genes in the network

à use a mathematical programming formulation (details on next slide):

loss-function (minimize error)       trade-off parameter penalty-function (gene grouping)

à Output: an optimized vector of feature weights w:
wi » 0 ® gene i not selected
abs(wi) large ® gene is relevant for the prediction and well-grouped with other selected 

genes in the network
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GenePEN – The loss and penalty functions

GenePEN objective function:

• (1) the loss function is the expected logistic loss (smooth and convex à can be minimized 
efficiently):

• (2) the new convex penalty function penalizes the differences of absolute values (= 
measure of relevance) between the weights of neighboring genes/proteins:

(1) (2)

predicted labelsreal labelsoffset parametergene weights

maximum network degreeadjacency matrix
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Previous penalty functions proposed
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• Parkinson’s disease test dataset: Microarray gene expression data from post mortem
brain samples (substantia nigra) of 43 PD patients and 50 controls (Zhang et al., 2005)

• Network data: Human genome-scale protein-protein interaction network constructed from 
80,543 public, direct physical interactions between 10,042 proteins. 

• Comparison against other penalty functions: The GenePEN penalty was compared
against alternative penalty functions (Lasso, Elastic Net, Pairwise Elastic Net)

• Evaluation criteria:

à cross-validated prediction performance: 
avg. area under the receiver operating characteristic curve (AUROC) for different 
numbers of selected features

à cross-validated grouping of selected genes in the network:
avg. relative size of the largest connected component among selected features in the 
network

GenePEN – Application to Parkinson‘ disease data
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Comparison of AUROC performance
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Relative size of largest connected component in network
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Comparison: Largest cluster for ~50 selected genes

Lasso Elastic Net PEN (2010)

PEN (2013) GenePEN à cluster of 34 genes
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Biological results: PD-associated sub-network

Largest connected graph component 
identified on PD transcriptomics data:

• red = over-expressed in PD
blue = under-expressed in PD
node borders = individual statistical 
significance (from gray to blue with 
increasing significance)

• individually significant genes are  
significantly over-represented in the 
sub-network (p = 0.01)

• Pointwise mutual information (PMI) 
co-occurrence scoring of gene 
names and MeSH disease term 
“Parkinson‘s disease” in PubMed 
reveals enrichment of positive scores
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Summary & Acknowledgements

• Integrating prior knowledge from molecular networks and pathways into omics
data analysis can provide benefits in terms of model robustness and biological
interpretability

• GenePEN discovers discriminative sub-networks for diagnostic sample 
classification and enables an interpretation of disease-associated molecular
alterations at the network level

• On Parkinson‘s disease transcriptomics data GenePEN identifies predictive
alterations in sub-networks which are enriched in individually significant genes 
and known PD-associated genes with positive PMI scores

•
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