
Towards Strengthening Formal Specifications with Mutation
Model Checking

Maxime Cordy
SnT, University of Luxembourg

Luxembourg

Sami Lazreg
SnT, University of Luxembourg

Luxembourg

Axel Legay
Université Catholique de Louvain

Belgium

Pierre Yves Schobbens
University of Namur

Belgium

ABSTRACT
We propose mutation model checking as an approach to strengthen
formal specifications used for model checking. Inspired by mutation
testing, our approach concludes that specifications are not strong
enough if they fail to detect faults in purposely mutated models. Our
preliminary experiments on two case studies confirm the relevance
of the problem: their specification can only detect 40% and 60% of
randomly generated mutants. As a result, we propose a framework
to strengthen the original specification, such that the original model
satisfies the strengthened specification but the mutants do not.

CCS CONCEPTS
• Software and its engineering→Model checking; • Theory
of computation → Logic and verification.
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1 CONTEXT, MOTIVATIONS AND AIMS
Model checking [9] exhaustively assesses whether the behaviour
of a given system (captured in a formal model) satisfies its formal
specification (expressed, e.g., in temporal logic like Linear Temporal
Logic (LTL) [32]). The guarantees that model checking offers are
bound to i) the adequacy of the model to the real system and ii)
the soundness and strength of the specification. Soundness refers
to whether the specification captures only properties that the real
system should satisfy, whereas its strength refers to the extent to
which the specification forbids undesired behaviour. While past
research has approached the problems of building an adequate
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system model [4, 10] and synthesizing sound specifications [14, 18],
the problem of specifying strong specifications remains open and
challenging to address. This gap constitutes a serious pitfall for
model checking: weak specifications will fail to detect undesired
behaviour and, in turn, reduce the trust engineers can have in
model-checking results.

In this vision paper, we present a new endeavour toward auto-
matically strengthening specification in model checking. Our idea
takes inspiration from mutation testing, a software testing tech-
nique used to evaluate the strength of test suites and generate new
test cases for uncovered behaviour. The principled hypothesis of
mutation testing is that, given an executable piece of software code,
strong test suites should detect (fails on) any modification of the
software code that is not semantic-preserving. Hence, mutation
testing operates multiple alterations of the original source code
to produce so-called “mutants”, and evaluates test suite strength
as the ratio of mutants that the test suite “kills” (i.e., mutants that
make the test suite fail). Then, the test suite can be augmented with
new test cases that fail on the “surviving” mutants.

Our approach – which we name ”mutation model checking“ –
applies the principles of mutation testing to assess and improve
the strength of formal specifications. Starting from a (supposedly
correct) model and its specification, we generate multiple mutants
of themodel. If somemutant satisfies the specification, our approach
synthesizes a novel logic formula that can distinguish the mutant
from the original model, i.e., which is violated by themutant but still
satisfied by the original model. This new formula can be added to
(i.e., strengthen) the specification. The process can then be repeated
until no surviving mutant can be generated.

We demonstrate that existing academic exemplars and industrial
cases of model checking suffer from weak specifications. We ran-
domly mutate Promela[17] models and reveal that a large portion
(38% and 60%) of syntactically correct mutants (non-equivalent to
the original model) satisfy the companion LTL specification. In
an attempt to solve this issue, we outline the “mutation model
checking” approach and present the first sketches of a solution
framework. We describe the framework component and highlight
the research challenges that have to be solved for this framework
to be fully operational.

2 RELATEDWORK
Mutation testing has been applied to various contexts and for-
malisms [28]. Mutation testing has already been combined with
model checking for guiding test-case generation [1–3, 6, 20, 30, 33].
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Mutants of the formal model are used to generate traces that are
not producible by the original (so-called negative traces) model
to generate new test cases for the source program. Consequently,
it can also be used to assess the quality of a program test suite.
Similarly, when mutants represent potential system vulnerabilities,
negative traces that do not satisfy the properties can be used to
demonstrate system defects [33]. Mutation testing in a formal ver-
ification context has also been used to validate the specification
[30] rather than generate tests. However, none of these approaches
proposes to strengthen the specification automatically.

3 PRELIMINARY EXPERIMENTS
3.1 Case Studies
3.1.1 Minepump. Minepump [11, 12, 19] is a well-known academic
exemplar that mimics the behaviour of a minepump software con-
troller. This software implements the control logic of the minepump
according to sensors (e.g. methane and water) and pump actuator
states. We have retrieved a model of the minepump written in the
Promela language [17], which contains about 300,000 states and its
companion LTL specification includes 12 properties.

3.1.2 ADAPRO. ADAPRO stands for “ALICE” Data Point Process-
ing Framework. ALICE is one of the four major experiments at
the Large Hadron Collider (LHC) of the European Organisation
for Nuclear Research (CERN). The main focus of the framework
(about 6000 lines of codes written in C++) is on producing multi-
threaded applications with optional support for configuration files
and remote control and monitoring1.

The highly concurrent nature of ADAPRO makes its validation
challenging by conventional testing. Although the framework and
its applications [21] have been subject to hundreds of hours of unit
testing, integration testing, and acceptance testing, ADAPRO is
too complex for all its behaviours to be anticipated by tests. LTL
model checking has been applied to model ADAPRO in Promela
and verify 17 critical properties [22].2 Model checking managed
to reveal important issues not previously found by testing. The
findings necessitated changes in the design and implementation of
ADAPRO [22].

3.2 Objectives and Experimental Protocol
Our preliminary experiments aim to identify weaknesses in the
LTL specifications of the two case studies. To achieve this, we take
inspiration from mutation testing and randomly apply predefined
mutation operators to alter the Promela models. We, then, assess
the models against the existing specifications and compute the
mutation score, i.e. the percentage of mutants that do not satisfy the
specification. This percentage is a proxy that we use to measure
the strength of the specification.

3.2.1 Mutant generation. Wegeneratemutants from original Promela
models by applying syntactic mutations of the Promela code (just
like code statements are altered in classical mutation testing). More
precisely, we have developed a tool that mutates the abstract syntax
tree (AST) representation of the Promela code. Any Promela literal
and operator can be changed into another terminal/operator of the
1https://gitlab.cern.ch/adapos/adapro
2https://gitlab.com/jllang/adapro/tree/5.0.0-RC3/models/promela

same type. For example, a ”+“ arithmetic node has {”-“, ”/“, ”*“, ”%“}
as possible mutations. Mutants are generated uniformly by mutat-
ing each relevant AST node once, except those found in statements
that have, by design, no impact on behaviour (e.g. print statements)
– this, however, does not entirely prevents the equivalent mutant
problem (read more in Section 4.3). This results in 88 mutants for
the Minepump case study and 406 for ADAPRO, as this corresponds
to the number of terminal AST nodes.

3.2.2 Mutant analysis. We, then, run the SPIN model checker [17]
to check every generated mutant against the specification. We
record the mutation score for each LTL formula that composes the
specification, and the mutation score of the full specification (i.e.
the conjunction of all formulae).

3.3 Results
Table 1 presents the results for each case study. The total mutation
score of Minepump is close to 60%, and that of ADAPRO barely
reaches 40%. These results demonstrate that, surprisingly, existing
specifications may fail to capture a significant number of faults
introduced in the models.

3.3.1 Minepump. Interestingly, the formulae that kill the most mu-
tants (#1, #7 and #8) have a mutation score (around 30%) that is still
far from the total mutation score (60%). This indicates a certain lack
of redundancy within the set of formulae, and the absence of one-
size-fits-all solutions to kill all mutants. Other formulae (#4 and #5)
kill no mutant, indicating that they model either trivial properties
(and should therefore be reconsidered) or intricate properties that
only much different models could violate. Nevertheless, the fact
that a significant number of mutants survive indicates that the need
for strengthening the specification.

3.3.2 ADAPRO. Compared to Minepump, there is a smaller dif-
ference in mutation scores between the full specification and the
individual formulae. This shows that not only the specification is
insufficient, but also the individual formulae cover redundant faults
in the model. Thus, there is a large part of the model behaviour that
none of the formulae covers. These results confirm that available
model-checking case studies actually rely on specifications with
apparent weaknesses.

4 MUTATION MODEL CHECKING
4.1 Problem Formulation
Let Φ = 𝜙1 ∧ · · · ∧ 𝜙𝑛 be a formal specification expressed in LTL
andM be a system model such thatM |= Φ, or equivalently that
L(M) ⊆ L(Φ) where L(.) denotes the trace language executable
by a model or accepted by a specification.

LetM′ be a model mutant, such that L(M′) \ L(M) ≠ ∅ (i.e.
M does not subsumes M′).3 We look for surviving mutants, i.e.
M′ |= Φ.

Mutation model checking is the problem of generating such mu-
tantsM′ and synthesizing a specification Φ′ such that (i) L(Φ′) ⊂
L(Φ) (or equivalently, Φ′ =⇒ Φ), that is, Φ′ strengthens Φ; (ii)
M |= Φ′; (iii) M′ ̸ |= Φ′. This definition can be trivially generalized

3Otherwise, M′ has no trace that𝑀 does not have, which implies that no LTL formula
that M satisfies can kill M′ .
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Table 1: Models and LTL formulae used in our experiments.

Minepump, Total Mutation Score = 61.458% (88 mutants)
#1 □(𝑝𝑢𝑚𝑝𝑂𝑛 =⇒ 𝑠𝑡𝑎𝑡𝑒𝑅𝑢𝑛𝑛𝑖𝑛𝑔) 34.375%
#2 □(𝑟𝑒𝑎𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑 ∨ 𝑟𝑒𝑎𝑑𝐴𝑙𝑎𝑟𝑚 ∨ 𝑟𝑒𝑎𝑑𝐿𝑒𝑣𝑒𝑙) 15.625%
#3 □(𝑠𝑡𝑎𝑡𝑒𝑅𝑒𝑎𝑑𝑦 ∨ 𝑠𝑡𝑎𝑡𝑒𝑅𝑢𝑛𝑛𝑖𝑛𝑔 ∨ 𝑠𝑡𝑎𝑡𝑒𝑆𝑡𝑜𝑝𝑝𝑒𝑑 ∨ 𝑠𝑡𝑎𝑡𝑒𝑀𝑒𝑡ℎ𝑎𝑛𝑒𝑠𝑡𝑜𝑝 ∨ 𝑠𝑡𝑎𝑡𝑒𝐿𝑜𝑤𝑠𝑡𝑜𝑝) 20.833%
#4 ((□♢𝑟𝑒𝑎𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑) ∧ (□♢𝑟𝑒𝑎𝑑𝐴𝑙𝑎𝑟𝑚) ∧ (□♢𝑟𝑒𝑎𝑑𝐿𝑒𝑣𝑒𝑙)) ⇒ □((𝑝𝑢𝑚𝑝𝑂𝑛 ∧𝑚𝑒𝑡ℎ𝑎𝑛𝑒) ⇒ ♢¬𝑝𝑢𝑚𝑝𝑂𝑛) 0%
#5 ((□♢𝑟𝑒𝑎𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑) ∧ (□♢𝑟𝑒𝑎𝑑𝐴𝑙𝑎𝑟𝑚) ∧ (□♢𝑟𝑒𝑎𝑑𝐿𝑒𝑣𝑒𝑙)) ⇒ ¬♢□(𝑝𝑢𝑚𝑝𝑂𝑛 ∧𝑚𝑒𝑡ℎ𝑎𝑛𝑒) 0%
#6 □((¬𝑝𝑢𝑚𝑝𝑂𝑛 ∧𝑚𝑒𝑡ℎ𝑎𝑛𝑒 ∧ ♢¬𝑚𝑒𝑡ℎ𝑎𝑛𝑒) ⇒ ((¬𝑝𝑢𝑚𝑝𝑂𝑛) ∪ ¬𝑚𝑒𝑡ℎ𝑎𝑛𝑒)) 13.541%
#7 ((□♢𝑟𝑒𝑎𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑) ∧ (□♢𝑟𝑒𝑎𝑑𝐴𝑙𝑎𝑟𝑚) ∧ (□♢𝑟𝑒𝑎𝑑𝐿𝑒𝑣𝑒𝑙)) ⇒ (□(𝑙𝑜𝑤𝑊𝑎𝑡𝑒𝑟 ⇒ (♢¬𝑝𝑢𝑚𝑝𝑂𝑛))) 31.250%
#8 ((□♢𝑟𝑒𝑎𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑) ∧ (□♢𝑟𝑒𝑎𝑑𝐴𝑙𝑎𝑟𝑚) ∧ (□♢𝑟𝑒𝑎𝑑𝐿𝑒𝑣𝑒𝑙)) ⇒ (¬□♢(𝑝𝑢𝑚𝑝𝑂𝑛 ∧ 𝑙𝑜𝑤𝑊𝑎𝑡𝑒𝑟 )) 31.250%
#9 ((□♢𝑟𝑒𝑎𝑑𝐶𝑜𝑚𝑚𝑎𝑛𝑑) ∧ (□♢𝑟𝑒𝑎𝑑𝐴𝑙𝑎𝑟𝑚) ∧ (□♢𝑟𝑒𝑎𝑑𝐿𝑒𝑣𝑒𝑙)) ⇒ (¬♢□(¬𝑝𝑢𝑚𝑝𝑂𝑛 ∧ ¬𝑚𝑒𝑡ℎ𝑎𝑛𝑒 ∧ ℎ𝑖𝑔ℎ𝑊𝑎𝑡𝑒𝑟 )) 11.458%
#10 □((¬𝑝𝑢𝑚𝑝𝑂𝑛 ∧ 𝑙𝑜𝑤𝑊𝑎𝑡𝑒𝑟 ∧ ♢ℎ𝑖𝑔ℎ𝑊𝑎𝑡𝑒𝑟 ) ⇒ ((¬𝑝𝑢𝑚𝑝𝑂𝑛) ∪ ℎ𝑖𝑔ℎ𝑊𝑎𝑡𝑒𝑟 )) 11.458%
#11 □(𝑙𝑜𝑤𝑊𝑎𝑡𝑒𝑟 ∨𝑚𝑒𝑑𝑖𝑢𝑚𝑊𝑎𝑡𝑒𝑟 ∨ ℎ𝑖𝑔ℎ𝑊𝑎𝑡𝑒𝑟 ) 22.916%
#12 □(𝑢𝑠𝑒𝑟𝑆𝑡𝑎𝑟𝑡 ∨ 𝑢𝑠𝑒𝑟𝑆𝑡𝑜𝑝) 11.458%

ADAPRO, Total Mutation Score = 39.803%, (406 mutants)
#1 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑, 𝑛𝑢𝑙𝑙 (𝑡) ∪ (𝑟𝑒𝑎𝑑𝑦 (𝑡) W 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔(𝑡)) 7.371%
#2 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑, 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔(𝑡) =⇒ (𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔(𝑡) ∪ (𝑟𝑢𝑛𝑛𝑖𝑛𝑔(𝑡) ∨ 𝑝𝑎𝑢𝑠𝑒𝑑 (𝑡) ∨ ℎ𝑎𝑙𝑡𝑖𝑛𝑔(𝑡))) 31.203%
#3 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑, 𝑟𝑢𝑛𝑛𝑖𝑛𝑔(𝑡) =⇒ (𝑟𝑢𝑛𝑛𝑖𝑛𝑔(𝑡) W (𝑝𝑎𝑢𝑠𝑒𝑑 (𝑡) ∨ ℎ𝑎𝑙𝑡𝑖𝑛𝑔(𝑡))) 21.867%
#4 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑, 𝑝𝑎𝑢𝑠𝑒𝑑 (𝑡) =⇒ (𝑝𝑎𝑢𝑠𝑒𝑑 (𝑡) W (𝑟𝑢𝑛𝑛𝑖𝑛𝑔(𝑡) ∨ 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔(𝑡))) 21.867%
#5 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑, 𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔(𝑡) =⇒ (𝑠𝑡𝑜𝑝𝑝𝑖𝑛𝑔(𝑡) ∪ (𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (𝑡) ∨ 𝑎𝑏𝑜𝑟𝑡𝑖𝑛𝑔(𝑡))) 24.815%
#6 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑, 𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (𝑡) =⇒ 𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (𝑡) 21.867%
#7 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑, 𝑎𝑏𝑜𝑟𝑡𝑖𝑛𝑔(𝑡) =⇒ (𝑎𝑏𝑜𝑟𝑡𝑖𝑛𝑔(𝑡) ∪ 𝑎𝑏𝑜𝑟𝑡𝑒𝑑 (𝑡)) 21.867%
#8 □(∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑, 𝑎𝑏𝑜𝑟𝑡𝑒𝑑 (𝑡) =⇒ □𝑎𝑏𝑜𝑟𝑡𝑒𝑑 (𝑡)) 21.867%
#9 □(𝑟𝑒𝑎𝑑𝑦 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ) =⇒ ∀𝑣 ∈ {𝑇ℎ𝑟𝑒𝑎𝑑 \ 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 }, 𝑛𝑢𝑙𝑙 (𝑣)) 21.867%
#10 □(ℎ𝑎𝑙𝑡𝑒𝑑 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ) =⇒ ∀𝑣 ∈ {𝑇ℎ𝑟𝑒𝑎𝑑 \ 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 }, 𝑛𝑢𝑙𝑙 (𝑣)) 21.867%
#11 □(∃𝑣 ∈ {𝑇ℎ𝑟𝑒𝑎𝑑 \ 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 }, 𝑟𝑒𝑎𝑑𝑦 (𝑣) =⇒ 𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 )) 21.867%
#12 □(∀𝑣 ∈ {𝑇ℎ𝑟𝑒𝑎𝑑 \ 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 }, 𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (𝑣) =⇒ (𝑝𝑎𝑢𝑠𝑒𝑑 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ) ∨ 𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ))) 29.238%
#13 □(∃𝑣 ∈ {𝑇ℎ𝑟𝑒𝑎𝑑 \ 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 }, 𝑎𝑏𝑜𝑟𝑡𝑒𝑑 (𝑣) =⇒ (𝑝𝑎𝑢𝑠𝑒𝑑 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ) ∨ 𝑠𝑡𝑜𝑝𝑝𝑒𝑑 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ))) 36.363%
#14 □(ℎ𝑎𝑙𝑡𝑖𝑛𝑔(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ) =⇒ ♢∀𝑣 ∈ {𝑇ℎ𝑟𝑒𝑎𝑑 \ 𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 }, ℎ𝑎𝑙𝑡𝑒𝑑 (𝑣)) 22.113%
#15 ¬♢𝑎𝑏𝑜𝑟𝑡𝑒𝑑 (𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ) 24.324%
#16 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑,♢□(𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 (𝑡) =⇒ ♢𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔(𝑡)) 25.552%
#17 ∀𝑡 ∈ 𝑇ℎ𝑟𝑒𝑎𝑑,□♢(𝑒𝑥𝑒𝑐𝑢𝑡𝑎𝑏𝑙𝑒 (𝑡) =⇒ 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑛𝑔(𝑡)) W ℎ𝑎𝑙𝑡𝑖𝑛𝑔(𝑠𝑢𝑝𝑒𝑟𝑣𝑖𝑠𝑜𝑟 ) 24.570%

to any number of mutants. One can also express the problem in
additive form, meaning that Φ′ ≡ Φ ∧ 𝜙 ′. It then boils down to
generate a single LTL formula 𝜙 ′ such that M |= 𝜙 ′ and M′ ̸ |= 𝜙 ′.

4.2 Framework
Figure 1 shows the four steps and components of the mutation
model checking process. Starting from M and Φ, our framework
1) generates model mutants. These mutations occur by applying
predefined mutation operators either on the modelling language
(Promela here) or directly on the underlying automaton. Then, 2)
eachmutantM′ is assessed againstΦ using a standardmodel check-
ing tool (here SPIN). Mutants that do not satisfy Φ are labelled as
“killed” and the remaining ones as “surviving”. If there are surviving
mutants, 3) the framework generates positive traces (which the new
specification should accept, i.e. traces of the original model) and
negative traces (which the new specification should reject, i.e. traces
of the mutant(s) that the original model cannot execute). Finally,
based on these traces the framework 4) synthesizes a novel specifi-
cation that can distinguish the mutant from the original model –
either by updating Φ into Φ′ or more simply by generating a new
formula 𝜙 ′ to conjunct with Φ. The process can then be repeated
until no surviving mutant can be generated.

4.3 Future Plans
To turn our work into a full research contribution, our future plans
involve the implementation of our framework and its thorough eval-
uation based on model and specifications available in the literature,
which exhibit varying characteristics (including size). We plan to
focus firstly on Promela model and LTL specifications. We will later
consider extending the framework to other modelling languages
and logic (e.g. NuSMV [29] and CTL). To make our framework fully
operational, however, we have to solve fundamental research chal-
lenges that are either inherent to any mutation analysis approach
or are due to the specific settings of model checking.

4.3.1 Quality in mutant generation. The fact that a large num-
ber of mutants can be generated from a single model constitutes
a challenge for any mutation analysis approach – and mutation
model checking is no exception. We, therefore, have to revisit past
heuristics proposed to reduce the number of generated mutants to
“quality” (i.e. useful) mutants [31].

One challenge lies in the large number of equivalent mutants,
i.e. mutants that have the same semantic behaviour as the original
model. In our preliminary experiments, we have approached this
issue partially, by mutating only nodes that may affect the model
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Figure 1: Framework solution for mutation model checking

execution traces (e.g. we have ignored print statements). Although
this was enough to demonstrate the existence of the problem, a
full-fledged solution should address the pernicious form that the
equivalent mutant problem takes in mutation model checking.

Since we target LTL specifications (which universally quantifies
properties over sets of traces), the concept of equivalent mutant is
generalized to that of subsumed mutant: the original model cannot
subsume a mutant. Otherwise, no LTL formula can kill this mutant.
Model subsumption can be assessed through simulation relation
[5], which we plan to complement with syntactic heuristics.

In general, two models may have non-equivalent sets of traces
but still both implement the desired high-level behaviour. This can
happen if the models differ in implementation details. This raises
the need for project mutant assessment onto properties that reflect
only high-level functional behaviour. Concretely, this means that
two mutants should be considered equivalent/subsumed if they
differ only in details that the specification should not consider.

4.3.2 Scalability in mutant assessment. Model-checking each mu-
tant against every formula of the specification becomes expensive
as the number of mutants and formulae grow.Moreover, the number
of mutants may also affect the number of negative traces to get be-
fore formula synthesis. There is, therefore, room for exploring how
to factorize our framework’s execution across several mutants and
formulae. To do so, we plan to develop a mutant analysis approach
based on variability and statistical model checking [13, 24].

4.3.3 Formula synthesis. Synthesizing formulas from sets of so-
lutions is a hot topic in the non-temporal case [8, 16, 23]. In the
temporal case, most of the work has been dedicated to learning
automata representing sets of solutions [7, 26].

Synthesizing LTL formulae is a more challenging problem. We
are interested in finding a temporal formula that is satisfied by
the positive traces but not by the negative ones. However, existing
approaches [15, 25, 27] consider positive traces only and need a pre-
determined formula template, which requires a-priori knowledge
of the formula to synthesize. Because we consider many mutants,
we do not have this knowledge at our disposal.

4.3.4 Process Utility. To be useful, our mutation model checking
process has to provide engineers with actionable results. One key

challenge in this regard is the need to focus the strengthening
process of the specification to the model behaviour that matters. We
aim at a refinement of the specification, which should not capture all
implementation details of the model. The mutation model checking
process should preserve the delicate balance between specification
strength and the abstraction that the specification offers over the
model implementation.

Another challenge is to support useful interactions with engi-
neers to improve their understanding and enable their participa-
tion in the refinement of the specification. Because the process
inherently produces a significant number of faults (mutants) and
candidate specification, we believe this opens a dual opportunity to
(i) empower engineers with a better understanding of the system’s
specification, model and later implementation and (ii) use them as
an additional guidance during specification synthesis. This requires
producing intelligible representations of specifications and their
semantics (expressed in authorized/forbidden system traces). This
perspective can bring significant benefit at a later stage of our re-
search and we will properly study it once our implementation of
the mutation model checking process is complete.

5 CONCLUSION
In this vision paper, we have demonstrated – on two well-known
case studies from the scientific literature – that existing specifi-
cations are often not strong enough, as they are also satisfied by
faulty models. As a result, we formalized mutation model checking
as the problem of strengthening a specification helped by mutation
analysis. We have proposed a framework solution that we plan
to implement in the future. Instantiating the framework, however,
raises important research challenges that we have to overcome.
These challenges concern the need for dedicated formula synthesis
algorithms and the general scalability of the framework (due to the
number of mutants, the growing size of the specification, and the
number of iterations).
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