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Abstract—Mutation Testing (MT) is a test quality assessment
technique that creates mutants by injecting artificial faults into
the system and evaluating the ability of tests to distinguish these
mutants. We focus on MT for safety-critical Timed Automata
(TA). MT is prone to equivalent and duplicate mutants, the
former having the same behaviour as the original system and the
latter other mutants. Such mutants bring no value and induce
useless test case executions. We propose MUPPAAL, a tool that:
(1) offers a new operator reducing the occurrence of mutant
duplicates; (2) an efficient bisimulation algorithm removing
remaining duplicates; (3) leverages existing equivalence-avoiding
mutation operators. Our experiments on four UPPAAL case
studies indicate that duplicates represent up to 32% of all
mutants and that the MUPPAAL bisimulation algorithm can
identify them more than 99% of the time.

Index Terms—Model-Based Testing, Timed Automata, Muta-
tion Testing, UPPAAL

I. INTRODUCTION

Timed systems (TS) are systems in which strict time
constraints are essential for reliability and correctness. They
appear in planes, trains, and a variety of safety-critical systems.
Ensuring Quality Assurance (QA) of TS is essential. Model-
Based Testing (MBT) [41], [44] exploits (timed) specifications
to generate test cases assessing the system’s behaviour and
avoids scalability issues induced by exhaustive verification.
Yet, one must ensure its ability to find bugs. Mutation Testing
(MT) [24] creates mutants of the system by injecting artificial
defects via predefined mutation operators. Tests can then
distinguish (or kill) mutants if they behave differently on the
mutant than on the original system. The mutation score is the
ratio of killed mutants to the total number of mutants. Though
MT has long focused on code [38], [16], [34], Model-Based
Mutation Testing (MBMT) helps in the automatic identification
of defects related to missing functionality and misinterpreted
specifications [9] that are difficult to identify via code-based
testing [22], [43]. Yet, not all mutants are relevant. Some
may be equivalent, i.e., they exhibit the same behaviour as
the original system despite their syntactic difference [37].
Therefore, no test case can distinguish such mutants. Similarly,

duplicate mutants exhibit the same behaviour as other mutants
[36], [37]. Preventing and removing such useless mutants
reduces the computation costs of (MB)MT and builds more
trust in mutation scores. Recently, Basile et al. tackled the
equivalent mutant problem for Timed Automata with Input
and Output (TAIO): they defined mutation operators preventing
mutants from refining the original system [6], [5]. However,
this technique does not address duplicate mutants: in our ex-
periments, up to 32% of all generated mutants were duplicates.
We propose MUPPAAL, a mutation approach that addresses
this challenge for Timed Automata (TA) specified in UPPAAL
[7]. The contributions of this paper are the following:

1) We introduce a novel timed mutation operator, SMI-NR,
that we proved to prevent duplicate mutants by design;

2) We detect duplicate mutants using a timed bisimulation
algorithm [35] to assess behavioural equivalence between
two mutants. When duplicate mutants are detected, we
keep only one of them;

3) We provide a random simulation baseline to compare
to timed bisimulation: If, for a mutant, we can find
a trace that the other mutant cannot execute, then we
can conclude that the two mutants are not duplicates.
The heuristic suggests a pair of mutants as duplicates
otherwise;

4) We implemented MUPPAAL using the UPPAAL execu-
tion engine for TAs and UPPAAL-TRON [30] for timed
trace generation and checking. In addition to the above
contributions, MUPPAAL supports mutation operators for
TA from [1], [6], [35] avoiding equivalent mutants using
refinement prevention [5], [6];

5) We assessed MUPPAAL1. Our results on four cases
indicate that timed bisimulation offers the best trade-
off between performance and accuracy of detection. In
contrast, the random baseline suggests many false du-
plicates (up to 10 times compared to bisimulation). Our

1MUPPAAL implementation and full results of its evaluation are available:
https://anonymous.4open.science/r/Muppaal-91A7



novel mutation operator effectively reduces the number
of mutants while perfectly capturing the initial mutation
operator behaviour.

The remainder of this paper is as follows. Section II
introduces the formalisms we use and the equivalent and
duplicate mutant problem. Section III presents our new mu-
tation operator and duplicate removal algorithms. Section IV
describes MUPPAAL and reports on our experiments. Section
V presents related work, and Section VI wraps up with
concluding remarks and future work.

II. BACKGROUND

A. Clocks and Timed Automata

To model the continuous time domain, we use non-negative
real-valued variables: clocks. Clocks are variables that in-
crease at the same rate (i.e., synchronously). TA are one of
the most studied formalisms for modelling TS [3]. Several
model checkers such as UPPAAL [7], KRONOS [8], and
HYTECH [19] rely on TA. TA are an extension of Finite
State Automata (FSA) with a set of clocks increasing at the
same rate. Resetting TA clock means updating the clock value
to zero. TA allows enabling or disabling transitions using
clock constraints, and we take transition actions if all other
conditions are satisfied. We use an extension of TA called
Timed Automata with Inputs and Outputs (TAIO) [2]. TAIO
partition the actions into two disjoint sets for inputs and
outputs [12][2]. Here, we use the extension of TAIO proposed
by Aichernig et al. [2]

B. Timed Automata with Inputs and Outputs

A TAIO is a refined TA where we model the interaction
between a system and its environment by using output and
input actions [2]. The clock constraints are defined below.

Definition 1 (Clock constraints). Let X be a finite set of clock
variables ranging over R≥0 (non-negative real numbers). Let
Φ(X) be a set of clock constraints over X. A clock constraint
φ ∈ Φ(X) can be defined by the following grammar:

φ ::= true | x ∼ c | φ1 ∧ φ2

where x ∈ X, c ∈ N, and ∼∈ {<,>,≤,≥,=}.

Definition 2 (Clock Invariants). Let X be a finite set of clock
variables ranging over R≥0. Let ∆(X) be a set of clock
invariants over X. Clocks invariants are clock constraints of
the following form:

δ ::= true | x < c | x ≤ c | φ1 ∧ φ2

where x ∈ X, c ∈ N.

Definition 3 (Clock valuations). Given a finite set of clocks
X, a clock valuation function, ν : X→ R≥0 assigning to each
clock x ∈ X a non-negative value ν(x). We denote RX≥0 the set
of all valuations. For a clock valuation ν ∈ RX≥0 and a time
value d ∈ R≥0, ν+d is the valuation satisfied by (ν+d)(x) =
ν(x) + d for each x ∈ X. Given a clock subset Y ⊆ X , we

denote ν[Y ← 0] the valuation defined as follows: ν[Y ←
0](x) = 0 if x ∈ Y and ν[Y← 0](x) = ν(x) otherwise.

In TAIO, the transitions can have a guard that will allow the
transitions to be taken or not, performing actions and resetting
clocks. In TAIO, one classifies actions (or alphabet) into two
disjoint subsets: input actions (suffixed with ?) and output
actions (suffixed with !) [2]. The output actions of a TAIO A
can be input actions of a TAIO B. We adapt the definition of
[26], where the initial location is unique, and discrete variables
and internal actions are not allowed. We formally define TAIO
as:

Definition 4 (TAIO). A TAIO is a tuple
(L, l0, X,ΣI ,ΣO,Σ, T, I), where:
• L is a finite set of locations,
• l0 ∈ L is an initial location,
• X is a finite set of clocks,
• ΣI is a finite set of input actions (? ),
• ΣO is a finite set of output actions (! ),
• Σ = ΣI ∪ ΣO, is a finite set of input and output actions,

such that ΣI ∩ ΣO = ∅,
• T ⊆ L×Σ×Φ(X)× 2X × L is a finite set of transitions,
• I : L→ ∆(X) is a function that associates to each location

a clock invariant.

For a transition (l, a, φ, Y, l′) ∈ T , we classically write
l
a,φ,Y−−−→ l′ and call l and l′ the source and target location, φ

is the guard, a the action (or alphabet), Y the set of clocks to
reset. The semantics of a TAIO is a Timed Input/Output Transi-
tion System (TIOTS) where a state is a pair (l, ν) ∈ L×RX≥0,
where l denotes the current location with its accompanying
clock valuation ν, starting at (l0, ν0) where ν0 maps each
clock to 0. The transitions can be of types: Delay transitions
only let time pass without changing location. We only consider
legal states, i.e. states satisfying the current state invariant ν
|= Discrete transitions occur instead between a source and
a target location. The transition can only occur if the current
clock values satisfy both the guard of the transition and the
invariant of the target location.

Definition 5 (Semantics of TAIO). Let A =
(L, l0, X,ΣI ,ΣO,Σ, T, I) be a TAIO. The semantics of
TAIO A is given by a TIOTS(A) = (S, s0,ΣI ,ΣO,→)
where:
• S ⊆ L × RX

≥0 is a set of states,
• s0 = (l0, ν0) with ν0(x) = 0 for all x ∈ X and ν0 |= I(l0),
• Σ∆ = Σ ] R≥0,
• →⊆ S × Σ∆ × S is a transition relation defined by the

following two rules:
– Discrete transition: (l, ν)

a−→ (l′, ν′), for a ∈ Σ iff

l
a,φ,Y−−−→ l′, ν |= φ, ν′ = ν[Y ← 0] and ν′ |= I(l′) and,

– Delay transition: (l, ν)
d−→ (l, ν + d), for some d ∈ R≥0

iff ν + d |= I(l).

A path in TIOTS(A) is a finite sequence of consecu-
tive delays and discrete transitions. A finite execution frag-
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ment of A is a path in TIOTS(A) starting from the ini-
tial state s0 = (l0, ν0), with delay and discrete transitions
alternating along the path: ρ = (l0, ν0)

d0−→ (l0, ν
′
0)

a0−→
(l1, ν1) . . . (ln−2, ν

′
n−2)

an−1−−−→ (ln−1, νn−1
dn−→ (ln, νn) where

ν0(x) = 0 for every x ∈ X . A path of TIOTS(A) is initial if
s0 = (l0, ν0) ∈ S, where l0 ∈ L, ν0 assign 0 to each clock,
and maximal if it ends in a location without outgoing edges.

A timed trace [3] over Σ is a finite sequence θ =
((σ1, t1), (σ2, t2) . . . (σn, tn)) of actions paired with non-
negative real numbers (i.e., (σi, ti) ∈ Σ × R≥0) such that
the timestamped sequence t = t1 · t2 · · · tn is non-decreasing
(i.e., ti ≤ ti+1).

Example 1. Let A be the TAIO depicted in Fig 1. A contains
two locations: l0 (initial) and l1. We denote input actions (? )
and output actions (! ). In particular, l0 is the only location
to define an invariant not trivially true: I(l0) = (x < 7),
forcing the TAIO to exit l0 before x becomes 7. Location l1
has a true invariant (thus not drawn), allowing it to stay in
l1 forever. Suppose the current location is l1. The transition
l1

b?,(y=9),{x:=0;y:=0}−−−−−−−−−−−−−−→ l0 specifies that when the input action
b? occurs and the guard y = 9 holds, this enables the
transition, leading to a new current location l0, while resetting
clock variables x and y. Note that using a location invariant
(which specifies the time limit to stay in a given location)
differs from using a guard (specifying when the transition is
enabled). The automaton in Fig 1 is nondeterministic because
location l1 has two outgoing transitions on the same input
action (b?).

a!, x > 3,  x:= 0 

x < 7 b?, y = 9, {x:= 0, y:=0} 

b?, x < 10, ∅ 

l0 l1

Fig. 1: A nondeterministic TAIO with two clocks x and y.

Definition 6 (Deterministic TAIO). A deterministic TAIO is a
tuple A = (L, l0, X, ΣI , ΣO,Σ, T, I) such that: for every l ∈
L, for all actions a ∈ Σ, for every pair of different edges of
the form (l, a, φ1, Y1, l

′
1) ∈ T and (l, a, φ2, Y2, l

′
2) ∈ T , imply

φ1 ∩ φ2 = ∅ and l′1 = l′2. (2) For every l ∈ L, for all actions
a ∈ Σ, and every valuation ν there is an edge (l, a, φ, Y1, l

′)
such that ν |= φ.

C. Timed Bisimulation and Trace Simulation

1) Traces: Simulation is a widely used technique to test
software systems. However, simulation is insufficient to prove
the absence of errors in safety-critical systems because of its
non-exhaustiveness.

A simulation trace is a timed trace collected during the
simulation execution.

2) Timed Bisimulation: To reason about the behavioural
equivalence of mutants, we use the classical notion of timed
bisimulation [10].

Definition 7 (Timed Bisimulation [10]). Let D1 and D2 be
two TIOTS over the set of actions Σ = (ΣI ∪ ΣO). Let SD1

(resp., SD2 ) be the set of states of D1 (resp., D2). A timed
bisimulation over TIOTS D1, D2 is a binary relationR ⊆ SD1

× SD2
such that, for all sD1

R sD2
, the following holds:

1) For every discrete transition sD1

a−→D1 s′D1
with a ∈ Σ,

there exists a matching transition sD2

a−→D2
s′D2

such that
s′D1
Rs′D2

and symmetrically.

2) For every delay transition sD1

d−→D1
s′D1

with d ∈ R≥0,

there exists a matching transition sD2

d−→D2
s′D2

such that
s′D1
Rs′D2

and symmetrically.
D1 and D2 are timed bisimilar, written D1 ∼ D2, if there exists
a timed bisimulation relation R over D1 and D2 containing
the pair of initial states.

D. Mutation Operators and Equivalence Problem

1) TA and Mutation Operators.: Nilsson et al. [33] were
among the first to extend TA with a task model. A task
model consists of a set of n (real-time) tasks, and they
give each task a period Ti, a worst-case execution time Ci,
and a relative deadline Di and mutation operators. Nilsson
et al. proposed six mutation operators: execution time (ET)
affects the execution time of a task; hold time shift (HTS)
and lock/unlock time (LUT) operators either shift the whole
lock/unlock time interval for a resource or only one of
its bounds; precedence constraints (PC) operators change
precedence relations between pairs of tasks. The authors also
define automata operators that affect both invariant and guard
constraints either for a given location (inter-arrival time (IAT))
or for the initial location (pattern offset (PO)). Aboutrab et
al. [21] and Aichernig et al. [2] also proposed some mutation
operators for UPPAAL to test the behaviour of TS. Three of
them are not time-related: change action (CA), change source
(CS)/target (CT), and sink location (SL). The time-related
operators are: change guard (CG) alters the inequality within
the guard constraint, negate guard (NG) operator replaces a
transition’s Boolean guard by its logical negation, invert reset
(IR) selects one clock variable and either adds it to the list
of clocks to be reset during the transition if it is absent or
removes it from the list if it is present, change invariant (CI)
adds one time-unit to the invariant constraint in an automaton
location. Basile et al. [6] proposed six mutation operators on
TAIO, designed to avoid the generation of mutants subsumed
by construction. Three of six mutation operators in [6] are
time-independent: Transition MIssing (TMI) removes a tran-
sition; Transition Add (TAD) adds a transition between two
locations; State MIssing (SMI) removes an arbitrary location
(also called state) other than the initial location and all its
incoming/outgoing transitions. The other three time-related
operators are: Constant eXchange Larger (CXL) increases the
constant of a clock constraint, Constant eXchange Smaller
(CXS) decreases the constant of a clock constraint and Clock
Constraint Negation (CCN) negates a clock constraint. The
main idea in [6] is to perform a refinement check between
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Nilsson et al. [33] Aichernig et al. [2] Basile et al. [6]
Op Description Op Description Op Description
ET Execution time CA Change action TMI Transition missing
IAT Inter-arrival time CT Change target TAD Transition ADd
PO Pattern offset CS Change source SMI State missing
LT Lock time CG Change guard CXL Constant exchange L

UT Unlock time NG Negate guard CXS Constant exchange S
HTS Hold time shift CI Change invariant CCN Constraint negation
PC Precedence constraints SL Sink location - -
- - IR Invert reset - -

TABLE I: Mutation operators for TA.

the mutant and the system model, using ECDAR [29]. Table
I shows the mutation operators retrieved from the considered
contributions.

2) Equivalent/Duplicate mutation problem.: MT is one of
the most effective coverage criteria to evaluate test suite quality
[24], [37]. In addition, several recent empirical studies have
evaluated the effectiveness and efficiency of MT [36], [25],
[37]. However, MT has a high cost. Equivalent and duplicate
mutants (i.e., useless mutants [36]) contribute to increasing
costs [37]: between 30% - 40% of equivalent mutants [32]
and between 20% - 30% of duplicate mutants [37]. MUPPAAL
decrease MBMT costs by eliminating useless mutants from the
analysis.

E. UPPAAL and UPPAAL-TRON
UPPAAL is a tool for the modelling, simulation, and

verification of networks of TA extended with data types, user
functions, clocks, and synchronous communication channels
[7]. UPPAAL-TRON [17] is a testing tool, based on UP-
PAAL, suited for online black-box conformance testing of TS.
UPPAAL-TRON is used for testing the Implementation Under
Test (IUT). UPPAAL-TRON can use a randomized online
testing algorithm, an extension of the UPPAAL model checker
[7]. UPPAAL-TRON can generate and execute tests event by
event in real-time by stimulating and monitoring the IUT.
UPPAAL-TRON performs these two operations, computing
the possible set of symbolic states based on the timed trace
observed so far. A timed trace in UPPAAL-TRON consists of
a sequence of input or output actions and time delays [30].

III. OVERCOMING EQUIVALENT AND DUPLICATE
MUTANTS PROBLEM

Three strategies target the equivalent (and duplicate) mutant
problem [32] : (1) avoid (2) detect, and (3) suggest equivalent
(and duplicate) mutants. We describe in this section how
MUPPAAL implements them.

A. Avoiding Equivalent and Duplicate Mutants
Mutation operator design is essential for an effective MBMT

tool. It must generate as few mutants as possible without
losing efficiency, i.e., avoiding useless mutants. However, most
MBMT tools [33], [21], [1] do not avoid the generation of
useless mutants. Basile et al. [6] avoid equivalent mutants
by proposing operators guaranteeing mutants do not refine
the original system’s behaviour. We have implemented them
for UPPAAL. In addition, we offer a new duplicate-avoiding
mutation operator.

1) Mutation Operators and Non-Equivalent Mutants.:
Here, we use the guidelines and the six mutation operators of
[6] (see Table I). We rely on them to avoid equivalent mutants.

2) A new duplicate-avoiding Mutation Operator.: A dupli-
cate mutant has the same behaviour as another mutant and is
thus useless. Basile et al. refinement technique ensures non-
equivalence [6], [5] but does not avoid mutant duplicates.
Hence, we introduce a new mutation operator (SMI-NR),
avoiding first-order duplicate mutants between SMI and TMI.

Example 2. Fig. 2 illustrates a base system modelled as a
non-duplicate TAIO. Applying TMI, i.e. removing the second
transition (l1, a? , true, ∅, l2) gives Fig. 3, while applying SMI,
i.e. removing location l2, gives Fig. 4. Both have the same
behaviour: they are thus mutant duplicates.

true

b!, true, ∅ 
l0 l1 l2

a?, true, ∅ 

c!, true, ∅ 

b!, true, ∅  b!, true, ∅ 

true true

true

l3

Fig. 2: An original model (TAIO).

true

b!, true, ∅ 
l0 l1 l2

c!, true, ∅ 

b!, true, ∅  b!, true, ∅ 

true true

true

l3

Fig. 3: A mutant generated by TMI operator from Figure 2.

true

b!, true, ∅ 
l0 l1

true true

l3

Fig. 4: A mutant generated by SMI operator from Figure 2.
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To formally specify SMI-NR, we first note that a mutation
operator is a functionMµ that generates a set of mutants from
a TAIO. We use µ to refer to each specific operator presented in
[6]. The following theorem and proposition consider the case
of a TMI mutant and a SMI mutant being timed bisimilar.

Theorem 1 (TMI and SMI duplicate mutants). Let A be a
TAIO and the mutants Atmi and Asmi where:

Atmi ∈Mtmi(A) such that Atmi = (L, l0, X,ΣI ,ΣO,Σ,

T \{ttmi}, I), ttmi = (l1, atmi, φ, Y, l2) ∈ T and atmi ∈ ΣI ,

and Asmi ∈Msmi(A) such that Asmi = (L\{lsmi}, l0, X,

ΣI ,ΣO,Σ, Tsmi, I), lsmi ∈ L, lsmi 6= l0, Tsmi = {(l1, a, φ,

Y, l2) ∈ T | lsmi 6= l1 and lsmi 6= l2}

Then, Atmi ∼ Asmi iff every initial and finite execution
fragment of A ending in the location lsmi ∈ L, takes the
same discrete transition, with the same transition ttmi =
(l, a, φ, Y, lsmi) ∈ T for some occurrence of the location lsmi.

Verifying the condition in Theorem 1 to prevent that TMI
and SMI induce duplicates is costly. Therefore, we define a
relaxed condition in Proposition 1 (see proofs in companion
website) permitting to avoid some duplicate mutants using a
breadth-first search algorithm in polynomial time.

Proposition 1 (Duplicate mutants). Let A be a TAIO and the
mutants Atmi and Asmi where:

Atmi ∈Mtmi(A) such that Atmi = (L, l0, X,ΣI ,ΣO,

T \{ttmi}, I), ttmi = (l1, atmi, φ, Y, l2) ∈ T and atmi ∈ ΣI ,

and Asmi ∈Msmi(A) such that Asmi = (L\{lsmi}, l0, X,

ΣI ,ΣO, Tsmi, I), lsmi ∈ L, lsmi 6= l0, Tsmi = {(l1, a, φ,

Y, l2) ∈ T | lsmi 6= l1 and lsmi 6= l2}

If every possible initial finite execution fragment of A
ending in location lsmi has the same previous location l′smi
6= lsmi for some lsmi occurrence and l′smi only has one edge
ttmi = (l′smi, a, φ, Y, lsmi) to lsmi, then Atmi and Asmi are
duplicates.

Since Proposition 1 is not a sufficient condition, we cannot
prevent some duplicates with this condition. We depict in Fig 5
and 6 examples where Proposition 1 cannot prevent duplicates.

B. Detecting Duplicate Mutants

Mutant duplicates are a well-known issue in mutation test-
ing: empirical studies report that between 20% and 30% of
all generated mutants are duplicates [36], [32], which affects
mutation testing effectiveness [28]. In addition, to be compu-
tationally tractable, the SMI-NR is incomplete. Therefore, we
present an approach to detect and remove duplicate mutants af-
ter mutant generation by using a timed bisimulation algorithm
[10], [35]. MUPPAAL uses Ortiz et al.’ timed bisimulation
algorithm [35]. Because timed bisimulation’s complexity is

true

b!, true, x:=0  l0 l_smi
a_{smi}?, x>=1 

c!, true, ∅ 

 b!, x <= 0, ∅ b!, true, x:=0  

true true

true

l3

l_prev

c!, true, ∅ 
b!, x>=1, ∅ 

Fig. 5: Removes transition (lprev, b! , x ≥ 1, ∅, l3).

true

b!, true, x:=0l0 l_smi
b!, x<=0,∅ 

c!,true,∅ 

true true

l_prev

b!, true,x:=0 

a_{smi}?, x>=1,∅ 
Fig. 6: Removes location l3 from Fig 5.

EXPTIME [10], if the bisimulation process takes longer than
the specified time to analyse a pair of mutants, our algorithm
will stop the bisimulation process.

Algorithm 1 describes how MUPPAAL detects duplicates
using timed bisimulation [35]. It works as follows. At the
first iteration, it checks if there is no timeout involved when
comparing the pair of two mutants and if these mutants are
bisimilar using the BisimilarAlgo (line 9). Then, it updates
MUb with one of the two bisimilar mutants (line 11). For each
pair of mutants in LM, it assesses whether the two mutants are
bisimilar and updates MUb accordingly. Otherwise, if there
is a timeout involved in the comparison of the pair of two
mutants (line 19), then it updates MU tm (line 14). At the
second iteration, it checks if the pair of the two following
mutants are bisimilar, up to the nth iteration. Finally, algorithm
1 returns a pair with two sets, where MU is a set of non-
duplicate mutants and MU tm is a set of mutants whose
analysis ended with a timeout.

C. Suggesting Duplicate Mutants

As stated before, timed bisimulation is computationally
costly (EXPTIME [10]). To assess this complexity in practice,
we present a baseline approach based on a simulation that
suggests (it is not exact) mutants as potential duplicates.
MUPPAAL uses the tools UPPAAL and UPPAAL-TRON to
automatically suggest duplicate mutants.

1) Random Simulation.: To suggest duplicates, we take a
pair of mutants, generate a random set of traces from one of
the two mutants and run them on the other mutant model and
reciprocally [13]. We check whether the mutants accept these
traces (i.e., whether the mutants can simulate the actions and
delays). If a simulation trace fails to run on one of the models,
we deduce that the mutants cannot be bisimilar. However, if
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1 Input: A l i s t o f m u t a n t s LM and a s e t o f
m u t a n t s MU

2 Output: A p a i r w i th two s e t s ( no d u p l i c a t e and
t i m e o u t m u t a n t s ended ) .

3 MUb ={} ; A s e t o f b i s i m i l a r m u t a n t s
4 MUtm ={} ; A s e t o f m u t a n t s ended wi th t i m e o u t
5 for ( i =0 ; i<LM . s i z e ( ) - 1 ; i ++){
6 for ( j = i +1 ; j<LM . s i z e ( ) ; j ++){
7 //Execute timed bisimulation algorithm
8 if ( ( ! t i m e o u t ( ) ) && ( B i s i m i l a r A l g o (LM[i] ,

LM[j] ) ) ) {
9 // Add any of the two bisimilar mutants

10 MUb . add(LM[i] ) ;
11 }else if ( t i m e o u t ( ) ) {
12 // Add the i− th mutant ended with timeout
13 MUtm . add(LM[i],LM[j] ) ;
14 }else{
15 s k i p ; }
16 }
17 }
18 MU =MU −MUb −MUtm ;
19 return pair(MU ,MUtm) ;

Algorithm 1: Bisimulation Process.

all simulation traces are accepted, we consider mutants as
probably bisimilar (i.e., we cannot guarantee the existence of
the bisimilarity relation).

We use the query simulate [<=k; N] 1 using UPPAAL
to get traces which simulate k units of time and getting N
traces. Then, we use UPPAAL-TRON to check the validity
of the traces of one mutant into the other [17]. To perform
trace simulations on UPPAAL-TRON, our translator tool uses
ANTLR [39] to parse and translate the traces from UPPAAL
into a preamble file and a trace file. UPPAAL-TRON needs
these two files to monitor an execution: (1) the preamble
file provides the required definitions to configure and prepare
UPPAAL-TRON for test execution of the trace, and (2) the
trace file, which is a sequence of actions and delays to check
if the model can execute. Given two mutants, Automaton A
and Automaton B, our tool proceeds as follows (for N random
traces): (1) it takes the Automaton A to generate traces using
UPPAAL. Then the tool reads them and parses trace ti, builds
the preamble, and per each ti it makes a t′i file with the
UPPAAL-TRON format. (2) once traces are created, the tool
uses UPPAAL-TRON to check if the Automaton B can execute
the trace, returning as output Passed or Failed. Hence, all
pairs not accepting random traces are not bisimilar.

2) Random Simulation Algorithms.: Algorithm 2 describes
the random trace generation process of MUPPAAL. The
algorithm works as follows: at the first iteration, it computes
the N random traces for the first mutant present inMtm (line
7) with a simulation time k and a random number generator r
(line 9). In addition, we translate the random traces generated
from UPPAAL format to UPPAAL-TRON format (lines 13-
14). The algorithm repeats until it produces N random traces
for all mutants inMtm with a simulation time k and a random
number generator r.

Algorithm 3 describes the random trace simulation process

1 Input: A mutan t M1 ∈ MUtm , number o f t r a c e s t o
g e n e r a t e N , and a s i m u l a t i o n t ime k

2 Output: An a r r a y wi th UPPAAL-TRON t r a c e s
3 T =[N ] ; // The set of N UPPAAL traces
4 T ′ =[N ] ; // The set of N UPPAAL-TRON traces
5 for ( i =0 ; i<N ; i ++){
6 //The seed for the pseudo-random generator
7 r = random ( ) ;
8 //Get random trace from UPPAAL
9 T [i] =VerifyTA (M1 , k , r ) ;

10 //Translate trace to UPPAAL-TRON format
11 tree= p a r s e r ( l e x e r (T [i] ) ) ;
12 T ′[i] = tree.format() ;
13 }
14 return T ′ ;

Algorithm 2: Trace generation.

1 Input: A s e t o f m u t a n t s MUtm , a number o f t r a c e s
t o g e n e r a t e N and a s i m u l a t i o n t ime k

2 Output: A s e t o f not - b i s i m i l a r m u t a n t s
3 // The set of N UPPAAL-TRON traces per mutant
4 T ′ =[MUtm . s i z e ( ) ] [N ] ;
5 for ( i =0 ; i<MUtm.size() ; i ++){
6 T ′ [ i ]= T r a c e G e n e r a t i o n (MUtm[i] , N , k ) ;
7 }
8 NBM = [()] // List of no bisimilar mutants
9 for ( i =0 ; i<MUtm.size() - 1 ; i ++){

10 for ( j = i +1 ; j<MUtm.size() ; j ++){
11 for ( k =0; k<N ; k ++){
12 Pass1 =Tron . check (MUtm[i] , T ′[j, k] ) ;
13 Pass2 =Tron . check (MUtm[j] , T ′[i, k] ) ;
14 if ( ! ( Pass1∧Pass2 ) )
15 NBM=NBM . add ( (MUtm[i]) ) ;
16 }
17 }
18 }
19 return NBM ;

Algorithm 3: Random Trace Simulation Algorithm.

and uses Algorithm 2 to compute their UPPAAL-TRON
traces. The algorithm works as follows. At the first iteration, it
checks the N random traces generated by the second mutant
MU tm[j] on the first mutant MU tm[i] (lines 10-12). In
addition, if a pair of mutants are not bisimilar, PBM is
updated with the ith mutants (line 16). At the second iteration,
it checks the N random traces generated by the other two
mutants in MU tm and so on up to the nth iteration.

IV. EVALUATION

A. MUPPAAL Tool

MUPPAAL automates the whole mutation testing process
on top of the UPPAAL verification tools. The tool is written
in Java 8 and supports all the operators proposed by Basile
et al. [6] plus the SMI-NR operator and is easily extendable
to new ones. It uses the ANTLR library to parse the model
and generate syntactically correct and non-equivalent mutants
(thanks to the operators). It then proceeds to duplicate mutants
analysis. MUPPAAL is available on our companion website.
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B. Case Studies

Our studies stem from UPPAAL specifications of these
cases and are available at https://github.com/farkasrebus/
XtaBenchmarkSuite. For each case study, we consider the
biggest and principal automaton (or process in UPPAAL) from
the automata network.

Gear Control (GC). The GC models a simple gear con-
troller for vehicles [31]. The GC model contains 24 states,
of which 10 have invariants. All invariants are of the form x
≤ c for a clock x and constant c. There are 30 transitions,
of which two have guards of the form x < c and two have
guards of the form x ≥ c, for some clock x and constant c.

Collision Avoidance (CA). The CA case models a protocol
where different agents want to get access to Ethernet through
a shared channel [23]. The CA model has six states and 12
transitions, of which nine have guards of the form x == c
and four have guards of the form x < c, for some clock x and
constant c.

Train Gate Controller (TGC). The TGC models a railway
system that controls access to a bridge for several trains [4].
The bridge is a shared resource accessible by only one train
at a time. The TGC model has 14 states, all of which have
invariants. All invariants are of the form x < c for a clock x
and constant c. There are 18 transitions, of which four have
guards of the form x < c, and four have guards of the form
x > c, for a clock x and constant c.

A combined Gear control (CGC). The CGC models a
(manually) combined gear controller for vehicles [31]. The
CGC model contains 85 states, of which 20 have invariants.
All invariants are of the form x ≤ c for a clock x and constant
c. There are 120 transitions, of which ten have guards of the
form x < c, and 10 have guards of the form x ≥ c, for some
clock x and constant c.

GC CA TGC CGC
TMI 13 9 14 36
TAD 501 26 179 1,625
SMI 12 2 12 27

SMI-NR 3 0 2 5
CXL 0 1 4 4
CXS 2 1 4 6
CCN 2 2 8 10
Total 533 41 222 1713

TABLE II: Number of generated mutants per operator

C. Research Questions

To evaluate the MUPPAAL workflow depicted in Fig 7, we
consider the following research questions:
• RQ1: How does random trace simulation compare to timed

bisimulation to identify duplicates?
• RQ2: What is the scalability and performance of timed

bisimulation compared to random trace simulation?
• RQ3: How does our novel SMI-NR operator compare to

the original SMI operator?
In Fig 7 on our four cases (see Section IV-B). For each

case, we first generate (step 1) a set of non-equivalent mutants

?=

?≈ }UPPAAL Original 
Model

1.  Non-equivalent 
Mutant Generation

2.  Bisimulation 
Analysis

2bis.  Random 
Simulation 
Analysis

Mutants

Non-bisimilar 
Mutants

4.  Non-equivalent 
and Unique Final 

Mutant Set

3. Performance and Accuracy Metrics

Non-bisimilar 
Mutants

Fig. 7: Experimentation Workflow

(MU) using the operators presented in Table I (Basile et al.
[6]) and our novel operator SMI-NR. This results in 2509
mutants as presented in Table II. Then, we independently
apply our timed bisimulation and random trace simulation
algorithms on this set (steps 2, 2bis). For both cases: we fix
the maximum computation budget to 2100 seconds per pair
of mutants or 12GB of RAM, whichever limit the analysis
reached first. Regarding random trace simulation, we have
three settings: 1) two traces per model and 100-time units;
2) 10 traces per model and 1000 time units; 3) 100 traces per
model and 10000-time units. We run each setting ten times to
mitigate randomness effects. In step 3, we collect the execution
times and the number of duplicates and likely duplicates for
analysis (RQ1 & RQ2). We use timed bisimulation to compare
SMI-NR and SMI mutants (RQ3). We ran our experiments
on a UBUNTU 21.10 × 86 64 GNU/Linux machine with 16
cores, 2.2 GHz, 32GB RAM.

D. Results and Discussion

Case GC CA TGC CGC
ratio Bisimulation 41/533 12/41 71/222 373/1,713

ratio Trace
(N=2,k=100,E=10)

432/533
(st=32.2)

38/41
(st=9.2)

152/222
(st=14.7)

1327/1,713
(st=38.3)

ratio Trace
(N=10, k=1000)

247/533
(st=18.1)

38/41)
(st=3.8)

119/222
(st=20.7)

774/1,713
(st=32.8)

ratio Trace
(N=100, k=10000)

206/533
(st=37.4)

27/41)
(st=10.0)

108/222
(st=13.1)

664/1,713
(st=57.0)

TABLE III: Proportion of mutant duplicates. For random trace
simulation, we report the average with standard deviation (st)

1) Answering RQ1.: Table III reveals that mutant duplicates
represent up to 32% of the total number of mutants, justifying
the need for duplicate prevention and removal techniques. In
general, random trace simulation overestimates the number of
duplicates up to an order of magnitude. Drastically increasing
the number of traces and time units yield only limited improve-
ments. We conclude that random trace simulation suggests too
many duplicates.

2) Answering RQ2.: Timed bisimulation is EXPTIME-
complete, implying that some comparisons could exceed our
computation budget. Table IV reports that only 34 mutant
comparisons (amongst more than 1.5 million) timed out for
CGC when running bisimulation. All settings of the random
baseline scaled up. Yet, the largest one is up to 19 times
slower for 3 out of the 4 cases. Timed bisimulation has
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Case TT TB TR (s) BI (s)

GC 0 0
0.153 (N=2, k=100, E=10, st=0.007)
0.548 (N=10, k=1000, E=10, st=0.07)
6.38 (N=100, k=10000, E=10, st=0.08)

3.94
(st=0.54)

CA 0 0
0.040 (N=2, k=100, E=10, st=0.006)
1.16 (N=10, k=1000, E=10, st=0.07)

10.5 (N=100, k=10000, E=10, st=0.23

2.31
(st=0.71)

TGC 0 0
0.018 (N=2, k=100, E=10, st=0.002)
0.13 (N=10, k=1000, E=10, st=0.014)
1.69 (N=100, k=10000, E=10, st=0.20

2.83
(st=1.05)

CGC 0 34
0.803 (N=2, k=100, E=10, st=0.10 )
1.91 (N=10, k=1000, E=10, st=0.17)

337.2 (N=100, k=10000, E=10, st=10)

17.58
(st=3.9)

TABLE IV: The total number of pairs of mutants ended by
timeout of traces (TT), ended by timeout of bisimulation
(TB), the average execution time(s) using traces (TR), using
bisimulation (BI), the number of traces (N), of runs (E), the
units of time (k), and the standard deviation (st).

GC CA TGC CGC
# SMI mutants 12 2 12 27

# SMI duplicates 9 2 10 22
# SMI-NR mutants 3 0 2 5

# Bisimilar pairs SMI-NR-SMI 3 0 2 5

TABLE V: SMI-NR and SMI Operators Comparison

good scalability overall. Considering RQ1, it offers the best
compromise between accuracy and performance.

3) Answering RQ3.: Table V compares the SMI and SMI-
NR mutants. SMI can generate a large proportion of duplicates
(up to 83%) while SMI-NR by design does not produce any
duplicate. The two last rows of Table V allow observing
that SMI-NR produce unique mutants while preserving the
behaviour of the SMI operator. We conclude that the SMI-NR
operator offers a viable alternative to SMI, introducing the
same faults while preventing duplicates.

E. Threats to Validity

Internal validity. We selected four cases of different na-
tures: a gear controller, a network communication model
avoiding collisions, and a train gate controller. These models
have different sizes and numbers of clock constraints. They
enabled us to observe differences in detecting and removing
duplicate mutants. Construct validity. We chose our baseline
settings to expose diverse tradeoffs between performance and
accuracy concerning timed bisimulation. We did not explore
larger values of N and k since accuracy only marginally
improved for even higher execution times. We ran each
comparison ten times to mitigate randomness effects.
External validity. We cannot guarantee that our results extend
to all timed systems expressed in UPPAAL. Our cases were
enough to assess diversity regarding mutants types and their
analysis times.

V. RELATED WORK

Several works cover the long-standing equivalent mutant
problem [34], [13], [32], [36], [24]. Interest in the mutant
duplicate problem is more recent [36], mostly at the code
level [28]. MBMT gained traction more recently [14], [13],

[15], [1]. Researchers applied MBMT for timed specifications
[33], [21], [2], [6], [29], [42]. In [33], the authors present
six mutation operators for TA, but do not guarantee the
absence of equivalent or duplicate mutants. Aichernig et al.
[2] design eight mutation operators for TA based on [21].
Again, these operators do not prevent generating equivalent
or duplicate mutants. Basile et al. introduced six mutation
operators for TS [6]. These mutation operators follow the same
construction as those defined in [2], [21]. However, Basile et
al. use a timed refinement technique to avoid the generation
of equivalent mutants but do not address mutant duplicates
[5], [6]. Larsen et al. defined an MBMT technique [29] on top
of the UPPAAL-ECDAR verification tool [11]. It also uses
refinement checking to eliminate equivalent mutants but does
not address duplicates. Aichernig et al. designed an MBMT
tool called MoMuT::TA [1]. MoMuT::TA maps TA to formal
semantics and performs a conformance check between mutants
and the original model to generate test cases automatically.
The tool UPPAL-TRON [17] is an addition to the UPPAAL
environment. One can also use it to handle conformance tests
on TS. UPPAL-TRON simulates the IUT with input deemed
relevant by the model, monitors the outputs, and checks the
conformance of these against the behaviour specified in the
model. Hessel and Pettersson proposed an MBMT tool called
Cover [20]. Cover generates test-cases based on TA and
Timed Computation Tree Logic (TCTL). One uses properties
written in TCTL to verify the test model. Similar approaches
exist [27], [18]. µUTA introduces a test generation method to
derive mutants from the specification and executes them via
online testing. It focuses on robustness testing of web services
[40].

VI. CONCLUSION

In this paper, we proposed MUPPAAL, a mutation tool
suite for model-based timed systems. It integrates equivalence-
avoiding operators and focuses on alleviating the mutant
duplicate problem (up to 32% of all mutants). MUPPAAL
implements a novel duplicate reduction operator and a timed
bisimulation algorithm. Our tool offers the best compromise
between performance and accuracy compared to a random
baseline. In the future, we will design more duplicate-avoiding
operators and extend mutations to networks of timed au-
tomata.
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[1] B. K. Aichernig, J. Auer, E. Jöbstl, R. Korosec, W. Krenn, R. Schlick,
and B. V. Schmidt. Model-based mutation testing of an industrial
measurement device. In Tests and Proofs, volume 8570 of LNCS, pages
1–19. Springer, 2014.

8



[2] B. K. Aichernig, F. Lorber, and D. Nickovic. Time for mutants -
model-based mutation testing with timed automata. In M. Veanes and
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