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Abstract
Active learning helps software developers reduce the labeling cost when building high-quality machine learning models. A

core component of active learning is the acquisition function that determines which data should be selected to anno-

tate.State-of-the-art (SOTA) acquisition functions focus on clean performance (e.g. accuracy) but disregard robustness (an

important quality property), leading to fragile models with negligible robustness (less than 0.20%). In this paper, we first

propose to integrate adversarial training into active learning (adversarial-robust active learning, ARAL) to produce robust

models. Our empirical study on 11 acquisition functions and 15105 trained deep neural networks (DNNs) shows that

ARAL can produce models with robustness ranging from 2.35% to 63.85%. Our study also reveals, however, that the

acquisition functions that perform well on accuracy are worse than random sampling when it comes to robustness. Via

examining the reasons behind this, we devise the density-based robust sampling with entropy (DRE) to target both clean

performance and robustness. The core idea of DRE is to maintain a balance between selected data and the entire set based

on the entropy density distribution. DRE outperforms SOTA functions in terms of robustness by up to 24.40%, while

remaining competitive on accuracy. Additionally, the in-depth evaluation shows that DRE is applicable as a test selection

metric for model retraining and stands out from all compared functions by up to 8.21% robustness.

Keywords Active learning � Adversarial robustness � Image classification � Deep learning testing

1 Introduction

Aware of the great potential of deep learning (DL) systems,

big companies such as Google, Microsoft, and Facebook

take huge engineering efforts to build and maintain DL-

based tools and contribute to the development of the DL

field. DL techniques are also useful to support software

engineering tasks, e.g. image recognition for software

security [1, 2] and image classification for bugs detection

in mobile apps [3].

However, one of the most important hurdles in devel-

oping a DL model (i.e. a deep neural network (DNN) with

competitive performance is the demand of a large amount

of labeled data required for training. Although massive data

can come at little to no cost, labeling all of them is time-

consuming and almost impossible, especially when expert

knowledge is indispensable. To overcome this problem,

researchers have proposed approaches to maximize learn-

ing capabilities in situations where unlabeled data are

abundant while labeling capacities are limited.

Active learning is such an approach and has been widely

applied in various domains, such as image classification

[4], information extraction [5], software defect prediction

[6], and acoustical signal classification [7]. Active learning

aims to train a DL model using a small number of but

carefully selected labeled data given a limited budget. This

model can achieve a similar performance compared to the
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model that would be trained on all (labeled) data. This

process is usually iterative: at each iteration (stage), a so-

called acquisition function determines the set of unlabeled

data to use and an oracle (for instance, a human annotator)

is queried to provide the labels of these data. Past studies

have shown that active learning has the potential to reach

the same performance as a model trained with all data

labeled using only 20% of these data (for the street view

house numbers(SVHN) dataset) [8].

An important limitation of active learning so far is that it

focuses only on clean performance (most often, test

accuracy [4, 8, 9]) and ignores other important quality

indicators. In particular, active learning does not produce

models that are robust to adversarial examples, therefore,

raises major security concerns [10, 11]. These examples are

produced by introducing a small perturbation to benign

inputs in a way that it changes the decision of the model

although it should not [12]. It is challenging to address that

successive methods improve models’ robustness merely by

a small percentage [13].

In this paper, we bootstrap an endeavor towards

improving the adversarial robustness of DNNs trained

through active learning. We propose the adversarial-robust

active learning, ARAL, training process that merges active

learning with adversarial training [14], the most effective

defense against adversarial examples. The key idea of

ARAL is to iteratively select the data to label (just like in

‘‘standard active learning’’) and, then, to train the model

not on the original data but on their adversarial counter-

parts. An essential question is whether existing acquisition

functions remain effective in ARAL. We, therefore, con-

duct the first comprehensive study that evaluates whether

these acquisition functions can produce models that are

both accurate and robust. The study undertakes experi-

ments on four datasets, six DNN architectures, eleven

acquisition functions, and dozens of labeling budgets. Our

investigations reveal that while state-of-the-art (SOTA)

acquisition functions remain effective when it comes to

clean performance, when it comes to robustness, all of

them are outperformed by random sampling.

Following our findings, we explore what key factors

explain the lack of robustness of models trained using

existing acquisition functions. We empirically demonstrate

that, while acquisition functions are inherently biased

towards selecting data with specific characteristics (e.g.

data with the highest entropy), this bias strongly negatively

correlates with robustness. This implies that, in ARAL,

effective acquisition functions should select a subset of

representative data of the whole dataset, with respect to the

aforementioned characteristics) of the whole dataset. To

this end, we propose a new acquisition function—named

density-based robust sampling with entropy (DRE)—that

selects data while minimizing the difference between the

entropy distributions of the selected set and full dataset.

Compared with all existing acquisition functions, the

results demonstrate that DRE is the sole acquisition func-

tion that achieves higher robustness than random while

being competitive in terms of accuracy.

While ARAL aims at training robust models from

scratch, an adjacent problem is DL testing, i.e. the problem

of finding (adversarial) examples that a trained (high

accuracy) DL model misclassifies. Such examples can then

be used to retrain the model, thereby improving its

adversarial robustness. A crucial part of DL testing is the

selection of data from which to generate the adversarial

examples. The same acquisition functions that are used in

active learning can also serve this purpose. We, therefore,

investigate the effectiveness of the acquisition functions in

driving the DL testing and retraining. Our evaluation

demonstrates that DRE achieves the highest gains in

robustness.

To sum up, the main contributions of this paper are:

1. We are the first to formulate and investigate ARAL to

solve the problem of training accurate and robust DL

models given a limited budget of labeled data.

2. We conduct the first empirical study on the effective-

ness of existing acquisition functions in terms of

accuracy and robustness. Our results demonstrate that,

though some acquisition functions yield higher accu-

racy than random sampling (by up to 8.08%), none of

the functions outperforms random sampling in terms of

robustness (by up to 22.50%).

3. We demonstrate that the inherent bias of acquisition

functions towards the ‘‘informative data’’ is the cause

for their lower robustness (compared to random).

Accordingly, we propose DRE, a new acquisition

function that yields better robustness (by up to 24.40%)

than existing functions while achieving competitive

accuracy. DRE, therefore, forms a new baseline for

future research on ARAL.

4. We investigate the use of DRE in the adjacent problem

of test selection for model retraining. Experimental

results show that DRE achieves competitive accuracy

and outperforms other acquisition functions by up to

8.21% robustness.

The rest of this paper is organized as follows. Section 2

introduces the background and related work. Section 3

describes the ARAL. Section 4 presents the experimental

design. Sections 5 shows the preliminary results of our

empirical study. Section 6 describes DRE and its evalua-

tion. The last section concludes this paper.
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2 Background and related work

As the focus of this paper is considering adversarial

robustness in active learning, this section introduces the

relevant related work on active learning, adversarial

robustness, and test selection. Readers can refer to several

surveys [15–17] for comprehensive surveys of these topics.

2.1 Active learning

Active learning is a set of techniques that aims at building

high-performing models using only a small set of labeled

data. The main hypothesis is that if a model learns from the

most informative data, it can obtain a similar performance

using substantially fewer data than using the entire training

set.

2.1.1 Problem scenario and active learning in deep
learning

Typically, in active learning, there are three types of

problem scenario [15, 17], membership query synthesis,

selective sampling, and pool-based sampling. In the case of

membership query synthesis, the model generates data to

query for the labels instead of choosing data from the

available unlabeled set [18]. Selective sampling also refers

to stream-based or sequential active learning [19]. In this

scenario, the model receives unlabeled data one at a time

and decides whether or not to request the label based on the

informativeness. Compared with selective sampling, in

pool-based sampling, the model requests labels for a col-

lection of unlabeled data at once in each query [20]. Since

in deep learning, data are divided into batches to train

DNNs and a single data would not impart significant

change in the model [12], the pool-based sampling is the

most widely applied active learning scenario.

2.1.2 Empirical study

As many approaches (acquisition functions) exist for active

learning, several empirical studies have compared their

effectiveness. Arguing that most previous empirical studies

were limited to a single model and performance metric,

Ramirez-Loaiza et al. [21] rather employ two models and

five measures in their study. However, all the used metrics

(i.e. precision, recall, F1, accuracy, and under the curve-

AUC) evaluate the correctness of the model on clean data

only. [22] studies more datasets, classification models, and

selection approaches, but the comparison is still based on

correctness only. On the other hand, some studies focus on

specific applications, such as segmenting Japanese word

segmentation [23], text classification [24], learning English

verb senses [25], labeling sequence [26], and locating

temporal activation in video data [27].

In this paper, we overcome the two main limitations of

existing studies. First, we go beyond prediction correctness

and consider adversarial robustness as an important success

metric of active learning. Second, we compare 11 com-

petitive active learning approaches on common ground

configuration.

2.1.3 Active learning for SE

Many tasks in software engineering (SE) benefit from

active learning. For instance, Bowring et al. [28] apply

active learning in the automatic classification of program

behavior. The model is incrementally trained using selec-

ted executions that represent unknown behaviors for the

model. When performing on the software effort estimation

data, active learning is proved to largely prune the training

data and quickly find the essential content [29]. Yu et al.

[30] show that active learning can help with conducting

literature reviews. Recently, Cambronero et al. [31] pro-

posed the use of active learning to automatically infer

programs, which can significantly alleviate the difficulty of

manual annotations. Based on the Mozilla Firefox vulner-

ability data, Yu et al. [32] prove that active learning is

useful in building a prediction model which learns from the

historical source code data and predicts the candidates to

inspect. Similarly, Yang et al. [33] study active learning for

static code analysis. Active learning also facilitates build-

ing defect prediction models [6, 34, 35]. For instance, Tu

et al. [35] developed an active learning tool, EMBLEM, to

label the most problematic commits and they claim the first

use of active learning in commit defect prediction.

2.2 Adversarial robustness

The adversarial robustness of DNNs relates to the ability of

the model to distinguish adversarial examples. In other

words, similar to the accuracy on clean data, the robustness

of a DNN is measured by its accuracy on adversarial

examples crafted from the clean data.

2.2.1 Adversarial example

Considering the image classification task, given an input

image, the corresponding adversarial example is crafted by

adding a carefully calculated perturbation into this image to

mislead DNNs [12]. Since this perturbation is hardly per-

ceptible for human beings, an adversarial example is

regarded as following the same data distribution and hav-

ing the same label as the original input. The cause of

adversarial examples is still under exploration. Some

speculative explanations are the extreme nonlinearity of
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DNNs [12], the high-dimensional linearity of DNNs [36],

the presence of non-robust features [37], insufficient reg-

ularisation [38], and insufficient model averaging [36].

2.2.2 Adversarial attack

The approaches towards crafting adversarial examples are

called adversarial attacks (also known as adversaries, threat

models). In general, adversarial attacks are divided into

three types: black-box, gray-box, and white-box. The

black-box attacks have no access to the model, and the

perturbation is calculated by using the predicted probabil-

ities or logits (score-based), e.g. square attack [39], by

simply relying on the max class label (decision-based) [40],

or by transferring from another DNN model trained with

the same training data (transfer-based) [41]. The gray-box

attacks only have knowledge of DNN architectures. In

contrast, the white-box attacks have full access to the data,

parameters, and DNN architectures. The gradient of train-

ing loss is mostly utilized in various white-box methods,

e.g. projected gradient descent (PGD) [14]. Besides, there

is the Auto attack [42], which combines the black-box and

white-box attacks and is commonly used as a strong

baseline in robustness evaluation. In this paper, we com-

prehensively consider the square attack (black-box), PGD

(white-box) attack, and Auto attack (adaptive).

2.2.3 Adversarial defense

Mitigating the threat of adversarial examples and improv-

ing the robustness of DNNs is of great importance and has

attracted considerable attention [15]. Adversarial defense

refers to a defense mechanism that secures DNNs against

adversarial attacks. Many defense approaches have been

proposed, such as adversarial training [14], input denoising

[43], input transformation [44], randomization [45], and

defensive distillation [46, 47]. Among all, adversarial

training with a PGD adversary [14] has been proven to be

one of the most effective methods. The difference is that, in

standard training, the original training data are fed into the

DNN models to tune all the parameters. However, in each

epoch of adversarial training, a new set of data is generated

by applying the PGD attack to the original training data and

then is used to train the model.

2.3 Test selection for retraining

Software engineering researchers have devoted substantial

effort towards evaluating and improving the quality of DL

models. DL testing techniques aim to expose flaws in DL

models by selecting test data (from an existing data pool)

or the generation of new test data (i.e. adversarial exam-

ples). DL engineers can then use those data to retrain the

model and improve it. Multiple test selection metrics have

been proposed to solve various DL testing problem,

including test accuracy estimation [48, 49], test data pri-

oritization [50–52], DNN comparison [53], and DNN

retraining [3, 51, 54].

In particular, past research on DNN retraining [51, 54]

have shown that, given a trained DNN and a set of unla-

beled test data, test selection metrics can select data to

retrain the DNN (either on the selected data or on adver-

sarial examples produced from the data) and improve its

quality (clean performance or robustness). This testing and

retraining process shares the similarity with ARAL as

defined in this paper. Indeed, both processes aim to

improve the quality of DNNs through the selection of the

most appropriate data. The difference is that active learning

applies during training and targets the training data,

whereas DL testing applies after training and on a set of

data not used during training. Therefore, the retraining

process can be seen as one-stage active learning after

training and on a new set of data. The acquisition functions

used in active learning—including the one proposed in this

paper—can thus be used for retraining.

3 ARAL: adversarial-robust active learning

Consider a C-class classification problem over a sample

space Z ¼ X � Y ! R, and a collection of data

D ¼ xi; yif gi2½n� � pZ , where C, xi 2 X , and yi 2 Y are the

number of classes, the data, and label, respectively. pZ is

the data distribution of D. Let H be the hypothesis space

and fh be a neural network architecture parameterized by a

parameter vector h 2 H. The loss function is

J : H� Z ! R. In deep learning, the object of training fh
is to minimize the expected loss (also called as the

expected risk):

Ex;y� pZ J hD; x; yð Þ½ � ð1Þ

where hD indicates that the parameters are tuned using D.

Note that the value of h depends on the data used to train;

thus, to put this in evidence, we use the notation hD indi-

cating that this parameter vector corresponds to the data D.

Figure 1 illustrates our proposed process of ARAL and

its difference to standard active learning. The data are

initially unlabeled and stored in an unlabeled pool,

U ¼ xif gi2 n½ � � pZ . Given a labeling budget b, an acquisi-

tion function calculates the priority of each data to be

labeled and the process requests some oracle to label the

highest priority data. These newly labeled data are then

moved to a labeled pool L ¼ xi; yif gi2 m½ � � pZ (m� b). In

standard active learning, at each stage, the set of model

parameters h is updated using all data from the labeled
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pool—so as to minimize the average model loss on these

labeled data, that is,

Ex;y� pZ J hL; x; yð Þ½ � ð2Þ

Just like DNNs trained on clean data are well known to

be vulnerable to adversarial examples [12, 36–38], DNNs

trained with standard active learning should have low

robustness as well. To confirm this, we conducted experi-

ments on six subjects to measure the robustness of models

that result from standard active learning using different

acquisition functions (following the experimental protocol

described in Sect. 4). Table 1 summarizes the results. In all

cases, the achieved robustness is extremely low (below

0.20%), while the highest accuracy approaches 100%.

To facilitate the trained DNN to be resilient to adver-

sarial examples, we propose to incorporate the adversarial

training into active learning. Compared to standard active

learning, for each labeled data we craft an adversarial

example—using the PGD attack [14]—and train the DNN

with the produced examples (instead of the original labeled

data). Hence, the clean labeled data fðxi; yiÞg are replaced

by perturbed examples Ladv ¼ xi þ d; yif gi2 m½ � (m� b)

during training and the training objective becomes to

minimize the risk concerning the adversarial examples:

Ex;y� pZ J hLadv
; xþ d; yð Þ½ � ð3Þ

where d is the upper bound of the perturbation. Remark

that in adversarial training, the perturbed data produced are

Fig. 1 Overview of pool-based active learning

Table 1 Standard active learning: result of accuracy (Acc, %) and adversarial robustness (Rob, %) against the Auto attack by 11 acquisition

functions

Acquisition function MNIST Lenet-

5

Fashion-MNIST

Lenet-5

SVHN

VGG8

CIFAR-10

VGG16

CIFAR-10

ResNet18

CIFAR-10

PreActResNet18

Acc Rob Acc Rob Acc Rob Acc Rob Acc Rob Acc Rob

BALD 99.61 0.00 87.65 0.00 90.85 0.08 93.04 0.11 94.81 0.16 94.29 0.19

DFAL 99.45 0.00 87.73 0.00 90.61 0.07 93.25 0.08 94.36 0.20 94.38 0.09

EGL 99.61 0.00 84.73 0.00 88.69 0.05 92.65 0.08 94.19 0.15 94.40 0.11

MaxEntropy 99.69 0.00 87.57 0.00 91.05 0.05 93.21 0.08 94.53 0.11 94.63 0.09

DropOut-Entropy 99.59 0.00 87.28 0.00 91.03 0.05 93.27 0.07 94.60 0.11 94.45 0.13

DeepGini 99.63 0.00 87.87 0.00 90.77 0.04 93.45 0.11 94.51 0.19 94.65 0.14

Core-set 99.67 0.00 87.64 0.00 90.81 0.06 93.17 0.08 94.29 0.17 94.55 0.20

LC 99.59 0.00 87.98 0.00 90.91 0.06 93.20 0.16 94.57 0.17 94.47 0.12

Margin 99.63 0.00 87.86 0.00 90.95 0.08 93.09 0.10 94.51 0.15 94.53 0.17

MCP 99.54 0.00 87.55 0.00 90.45 0.07 92.76 0.08 94.33 0.16 94.05 0.14

Random 98.84 0.00 85.73 0.00 87.53 0.11 91.09 0.16 92.23 0.19 92.27 0.14

Maximum 99.69 0.00 87.98 0.00 91.05 0.08 93.45 0.20 94.81 0.20 94.65 0.20

Maximum the maximum (in bold) accuracy/robustness in a dataset over all functions
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used even if the DNN correctly classifies them (i.e. even if

the adversarial attack ‘‘fails’’).

The main research question that we study in this paper is

given a few labeled data, whether ARAL can produce

robust models. We, therefore, conduct a comprehensive

empirical study involving a large set of acquisition

functions.

4 Experimental design

4.1 Implementation

All experiments were conducted on a high-performance

computer cluster consisting of GPU nodes. To reduce the

influence of randomness, each experiment is repeated three

times and, in total, 15105 DNNs are trained in this study.

The whole results corroborate our findings are also avail-

able on our companion project website [55].

4.2 Datasets and models

Four popular publicly available datasets, modified national

institute of standards and technology (MNIST) [56],

Fashion-MNIST [57], SVHN [58], and Canadian institute

for advanced research (CIFAR)-10 [59] are selected for

evaluation. These datasets have previously been used for

robustness assessment in the context of DL testing [3].

Both MNIST and Fashion-MNIST include a collection of

28 x 28 grayscale images. MNIST comprises handwritten

digits 0� 9 and Fashion-MNIST presents fashion products.

SVHN and CIFAR-10 consist of 32 x 32 RGB images.

SVHN shows street view house numbers and CIFAR-10

contains more complex entities, such as vehicles and ani-

mals. Table 2 summarizes the detailed information of the

datasets and DNN models. In all our experiments, we use

the training set to craft the adversarial examples during the

adversarial training. The test data are evenly split into a

validation and test sets. The validation set is used in the

training process to tune the parameters of DNNs, and the

test set is independent of training for evaluating the accu-

racy (directly on the test data) and the robustness (by

crafting adversarial examples from the test data).

4.3 ARAL process and test selection

Table 3 summarizes the active learning setups. Concretely,

we follow [60] to initialize the labeled pool with a small

amount of data uniformly sampled from the unlabeled pool.

The initial DNN is tuned using these initial sets via stan-

dard training for all the acquisition functions. In test

selection for model retraining, 20 epochs are used for

SVHN and 10 for the others to ensure the training process

converges.

4.4 Evaluation measures

We measure the accuracy and adversarial robustness of

each DNN. Given a test set and a DNN, the accuracy is the

percentage of correctly classified data over the entire test

set. Adversarial robustness is calculated by the percentage

of correctly classified adversarial examples over the entire

adversarial test set. The adversarial test set consists of

adversarial examples crafted on the clean test set by a

specific adversarial attack. Table 4 lists the parameters of

adversarial attacks for ARAL. Both white-box and black-

box attacks are employed for robustness evaluation. The

white-box attack PGD is commonly used to evaluate

DNNs’ robustness. Considering that in this case, the

defense DNN knows this attack in advance, the SOTA

black-box attack named square attack [39] is also applied.

Finally, we use the Auto attack [42], an adaptive attack that

is widely utilized as a strong baseline thanks to its ability to

overcome common defense mechanisms such as gradient

masking [61]. All these attacks are implemented using a

public library, Torchattacks [62]. The default setting in the

library for other related parameters is applied for each

attack.

4.5 Acquisition functions

Given a DNN fh where h is randomly initialized, unlabeled

pool U , an acquisition function helps the AL system in each

step to query the most informative and useful data to solve

the optimization object in Eq. (2). Various acquisition

functions have been proposed for data selection. This

section reviews 11 widely used acquisition functions.

As Wald showed [63], a solution to solve the opti-

mization object in Eq. (2) is to minimize the maximum of

the risk. Based on this, several acquisition functions have

been proposed to select the most informative data by

assigning and ranking the importance of data. Let

Table 2 Summary of datasets and DNNs

Dataset DNN #Train #Test Acc

MNIST Lenet-5 60k 10k 99.47

Fashion-MNIST Lenet-5 60k 10k 90.78

SVHN VGG8 50k 10k 92.69

CIFAR-10 VGG16 50k 10k 89.75

ResNet18 50k 10k 90.65

PreActResNet18 50k 10k 90.68

Acc test accuracy (%) of DNNs by standard training using the entire

set
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p y ¼ i j x; hð Þf gi2½C� be the softmax output of fh (recall that

C is the number of classes).

4.5.1 MaxEntropy

In information theory, the entropy (also known as Shannon

entropy) quantifies the uncertainty of prediction [64]:

H y j x; hð Þ ¼ �
X

i2 C½ �
p y ¼ i j x; hð Þ log p y ¼ i j x; hð Þð Þ

ð4Þ

MaxEntropy ranks the uncertainty of data based on the

predictive entropy and selects the most uncertain ones.

4.5.2 DeepGini*

The Gini impurity is a loss metric in decision tree learning

to decide the optimal split from a root node and subsequent

splits. It measures the likelihood of misclassification of a

new instance, which reflects the uncertainty of a model to

this instance. Borrowing the idea of Gini impurity to deep

learning, DeepGini [51] is proposed to select the most

informative data:

argmax
x2U

1�
X

i2 C½ �
p2 y ¼ i j x; hð Þ

0
@

1
A ð5Þ

Similar to MaxEntropy, DeepGini utilizes the output of fh
to assign the informativeness to data. However, as men-

tioned by the authors of DeepGini, computing the quadratic

sum is easier and simpler than performing the logarithmic

computation, which is supposed to give better

performance.

4.5.3 BALD

Taking the concept of Bayesian neural network where a

DNN is defined by a set of parameters drawn from a pos-

terior distribution, the Bayesian active learning by dis-

agreement (BALD) [65] seeks data for which the

parameters under the posterior disagree about the predic-

tion the most.

argmax
x2U

H y j x;Uð Þ � Eh� ph;U H y j x; hð Þ½ �
� �

ð6Þ

In other words, BALD can be explained as identifying on

which the DNN is on average most uncertain about the

prediction (big H y j x;Uð Þ) but existing model parameters

are confident (small Eh� ph;U H y j x; hð Þ½ �). In practice, to

Table 3 Configuration setting of ARAL

Dataset DNN Budget Initial New Stage Initial

accuracy

Initial robustness Full

accuracy

Full robustness

PGD Square Auto PGD Square Auto

MNIST Lenet-5 5k 200 200 24 29.65 0.00 0.04 0.00 98.69 89.52 76.27 76.17

Fashion-

MNIST

Lenet-5 6k 200 200 29 74.22 0.00 0.04 0.00 72.55 64.18 34.01 34.06

SVHN VGG8 10k 1k 500 18 51.21 0.34 1.92 0.25 83.95 40.77 37.50 35.94

CIFAR-10 VGG16 25k 1k 500 48 37.01 1.71 4.27 1.54 69.54 42.52 43.41 40.71

ResNet18 25k 1k 500 48 31.69 1.40 3.73 1.21 73.11 42.52 43.41 42.65

PreActResNet18 25k 1k 500 48 33.88 2.51 4.76 2.23 73.24 44.29 45.59 42.65

Budget maximum number of data to label; Initial number of labeled data when launching active learning; New number of data to annotate in each

stage; Stage number of stages in active learning; Initial accuracy/robustness (%) performance of the initial model. Full accuracy/robustness (%)

performance of the model adversarially trained using the entire set

Table 4 Configurations of

adversarial training and

evaluation

Operation Attack MNIST Fashion-MNIST SVHN CIFAR-10

Adversarial Training PGD � = 0.3, a = 0.01, I = 40 � = 0.3, a = 0.01, I = 40

Robustness Evaluation PGD � = 0.3, a = 0.01, I = 50 � ¼ 8=255, a = 2/255, I = 50

Square � = 0.3 � = 8/255

Auto � = 0.3 � = 8/255

�, a, and I denote the perturbation size, step size of perturbation, and the number of iterative steps,

respectively
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approximate the inferences, the Monte Carlo dropout is

widely applied due to its great capacity and low cost. We

set T ¼ 10 with probability 0.1 at test time to sample dif-

ferent DNNs as [4].

4.5.4 DropOut-Entropy

Instead of computing the entropy over one DNN with fixed

parameters, this acquisition [66] function calculates the

uncertainty over multiple Bayesian DNNs inferred by the

Monte Carlo dropout. Thus, the object changes to find data

that maximize the uncertainty as follows:

H y j x;Hð Þ ¼ �
X

i2 C½ �
p y ¼ i j x;Hð Þ log p y ¼ i j x;Hð Þ

ð7Þ

where p y ¼ i j x;Hð Þ ¼ 1
T

P
t2 T½ � p y ¼ i j x; htð Þ is the

average predicted output over T times of applying dropout

to the model. ht denotes the parameters of the t-th dropout.

We set T ¼ 10 with probability 0.1 at test time to sample

different DNNs as [4].

4.5.5 LC

Least confidence uses the most probable label of an

instance to capture the uncertainty. It ranks data based on

the highest posterior probability and selects data with the

least confidence on the prediction:

argmax
x2U

1� p y ¼ y0 j x; hð Þð Þ ð8Þ

where y0 ¼ argmaxi2 C½ � p y ¼ ijx; hð Þð Þ indicating the pre-

dicted class label by fh.

4.5.6 Margin

Since LC only utilizes the most confident class label, the

information about the remaining labels is discarded but can

also be useful. To solve this issue, the margin sampling

[67] ranks data based on the difference between the most

confident and second most confident labels and chooses the

data with a small difference:

argmin
x2U

argmax
i2 C½ �

p y ¼ i j x; hð Þð Þ � argmax
i2 C½ �=y0

p y ¼ i j x; hð Þð Þ
 !

ð9Þ

The hypothesis is that if a DNN predicts a similar proba-

bility on the top two labels for an instance, then this

instance is not well learned and remains close to the

decision boundary.

4.5.7 MCP*

Noticing that the data selected by margin sampling might

be unbalanced distributed concerning the decision bound-

ary areas, the Multiple-Boundary Clustering and Prioriti-

zation (MCP) [54] improves the margin sampling by

uniformly selecting data from different areas. Besides, it

computes the priority by the ratio of probabilities of the top

two labels instead of using difference. Each decision

boundary area is a cluster defined by the top two classes.

Data are selected from each cluster with high priorities.

4.5.8 DFAL

To approximate how close an instance is to the decision

boundary, the DeepFool active learning (DFAL) [4] uti-

lizes the magnitude of the minimum perturbation to suc-

cessfully craft an adversarial example of this instance by

the DeepFool attack. Indeed, adversarial attacks are

designed to push the clean data to cross the decision

boundary. The object of DFAL is

argmin
x2U

DeepFool x; fh; Lp
� �� �

ð10Þ

where DeepFool x; fh; Lp
� �

is a function that attacks fh
given x using the Lp norm (p ¼ 2) and outputs the pertur-

bation between x and its adversarial example.

4.5.9 EGL

Given that the DNN training generally uses gradient-based

optimizations, the expected gradient length (EGL) [9]

ranks an instance with high importance if it would induce

the greatest change in the gradient. A challenge is that in

active learning, the true labels are not available, thus, EGL

assumes all the possible labels to data and computes the

expected gradient. The data are selected by

argmax
x2U

X

i2 C½ �
p y ¼ i j x; hð Þ k OJ h; x; y ¼ ið Þ k

0
@

1
A ð11Þ

where k � k is the L2 norm (Euclidean distance),

OJ h; x; y ¼ i�ð Þ denotes the gradient of the loss function at

x given h, and y ¼ i.

Different from focusing on minimizing the maximum of

the risk, some acquisition functions solve the optimization

object in Eq. (2) via adding data that are far from the

labeled data, such as Core-set.

4.5.10 Core-set

The Core-set selection [8] converts the optimization object

in Eq. (2) to the k-center problem by setting an upper
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bound. It solves the k-center problem by selecting the data

that are far from data in the labeled pool L. Given that the

selection of data is time-consuming, the k-Center-Greedy is

utilized instead of robust k-Center since they exhibit sim-

ilar behavior [8].

4.5.11 Random

Random sampling is the simplest and model-free method

that each data has an equal probability of selection. This

method, strictly speaking, belongs to passive learning but is

commonly taken as a baseline in active learning.

Note that the functions with � are originally designed for
test selection, but they all select the most informative data.

Thus, they are suitable for active learning.

5 Preliminary results of the empirical study

5.1 Effectiveness of ARAL

The effectiveness of ARAL is investigated in creating

models that are both accurate and robust.

Results Figures 2 and 3 visualize the accuracy and

robustness curves of 11 acquisition functions, respectively,

for each dataset and model architecture. For brevity, the

results of CIFAR-10 are plotted by every 5 stages. First, we

observe that most of the acquisition functions keep the

ability to achieve the same level of test accuracy as the

model adversarially trained with the full dataset. In general,

3%, 2%, 14%, and 22% of the labeled data are enough to

reach this level of accuracy for MNIST, Fashion-MNIST,

SVHN, and CIFAR-10, respectively. However, some

functions (e.g. MaxEntropy, Entropy, DeepGini, LC, and

EGL) perform worse than the others, including random

sampling. MCP, Core-set, BALD, and (occasionally)

DFAL are the best performing metrics and outperform

random sampling.

Second, all acquisition functions allow a substantial

increase of robustness compared to models trained with

original data only. However, the obtained models are less

robust than the model adversarially trained with all data

(between 2% and 10% robustness difference compared to

the best performing acquisition function). Interestingly,

random sampling stands out in all the datasets and DNNs,

and often by a significant margin. Just like for accuracy,

MaxEntropy, Entropy, DeepGini, LC, and EGL, achieve

the lowest levels of robustness. The other acquisition

functions perform irregularly across different datasets and

DNNs, yet remain inferior to random sampling. This

indicates that the criteria used by existing acquisition

functions have a negative effect on robustness, to the extent

that random sampling—a simple, random, model-free, and

data-free method—performs much better.

To confirm this conclusion, we conduct statistical

analysis and assess whether the difference of robustness

between random sampling and the other acquisition func-

tions is statistically significant. The analysis is based on the

Wilcoxon signed-rank test [68], which is a nonparametric

statistical hypothesis test commonly used for comparing

two independent paired samples. In our case, each sample

is the robustness obtained based on a given acquisition

function. Random sampling is compared with each of the

other 10 functions on all datasets/models and three attacks.

This yields 180 (10� 6� 3) statistical tests. The signifi-

cance level a is set to 5:00E � 02. All these tests have

rejected the null hypothesis that there is no difference

between random sampling and the other acquisition func-

tion, with a p-value ranging from 8.15E-10 to 9.49E-03.

Hence, we conclude that random sampling significantly

outperforms the other functions in terms of robustness.

Conclusions Using only a limited set of labeled data,

ARAL can produce models as accurate as the model

adversarially trained with all data. When it comes to

robustness, random sampling performs consistently better

than the other acquisition functions, though there remains a

substantial margin for improvement compared to using all

data.

5.2 Data selection biases

As an attempt to explain the better effectiveness of random

sampling and devise an improved acquisition function, we

investigate the characteristics of the data selected by each

acquisition function at all stages of the active learning

process. We hypothesize that random sampling performs

better than existing acquisition functions because the latter

are biased towards the ‘‘most’’ informative data—infor-

mative being defined by each function in terms of the

metric it uses to prioritize the data. By contrast, random

sampling is naturally unbiased as it associates each data

with the same probability to be selected. Therefore, on

average it selects a set of data that are representative of the

whole unlabeled pool.

We aim at establishing a relationship between the biases

that the acquisition functions introduce and their inability

to produce robust models. From the corresponding acqui-

sition functions, we study four data characteristics, entropy,

Gini impurity, least confidence (lc), and margin. The

characteristics of the others are not applicable due to the

use of dropouts (BALD, DropOut-Entropy) and model

independence (MCP, DFAL, EGL, Core-set). Additionally,

we measure the bias in the true class label, which is

available at first hand and has been studied in the literature

[24].
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First, we measure the bias of each acquisition function

towards each of these characteristics. Given a dataset and

DNN, let U i;j be the unlabeled pool in the i-th stage of

active learning using the j-th acquisition function and

Si;j 	 U i;j be the set of data selected by j at this i-th stage.

Given a characteristic function / that, given an input data x

returns the value of the characteristic under study for x, we

generate two sets of variables / Si;j

� �
and / U i;j

� �
that

Fig. 2 Test accuracy (%) of 11 acquisition functions over different stages of ARAL. Baseline is the model adversarially trained using the entire

data
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contain the characteristic value of all data in Si;j and U i;j,

respectively. We, then, estimate the probability density

functions (PDFs) of / Si;j

� �
and / U i;j

� �
using the his-

togram method with 50 bins [69], yielding PDF/ Si;jð Þ and

PDF/ U i;jð Þ, respectively. We calculate the difference

between two PDFs based on the Jensen-Shannon diver-

gence (JSD)—an established method to measure the

divergence between two distributions [70]. This difference

is, therefore, given by

Fig. 3 Robustness (%) against Auto attack of 11 acquisition functions over different stages of ARAL. Baseline is the model adversarially trained

using the entire data
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di;j ¼ JSD PDF/ Si;jð Þ k PDF/ U i;jð Þ
� �

ð12Þ

Second, we measure the correlation at each stage for every

characteristic between (a) the robustness of models pro-

duced by different acquisition functions and (b) the char-

acteristic bias of data selected by corresponding functions.

The Pearson correlation is used to measure this correlation,

which captures linear relationships between two variables.

Hence, for each stage i and each characteristic, a correla-

tion coefficient ri is calculated by [71]:

ri ¼ Pearson di; aið Þ; di ¼ di;j
� �

j� 11
; ai ¼ ai;j

� �
j� 11

ð13Þ

where ai;j denotes the robustness of the model produced at

the i-th stage by the j-th acquisition function.

Results Figure 4 shows a heat map of the Pearson cor-

relation coefficients rif g obtained from SVHN/VGG8, and

the Auto attack. All correlations are negative as the colors

are always red, which supports our hypothesis that char-

acteristic biases have a negative effect on robustness. In

other words, selecting data that are more representative of

the entire unlabeled pool is more likely to produce a robust

DNN. Among all the characteristics, entropy exhibits the

strongest negative correlations. Over the 18 stages, the

maximum and average correlations obtained by entropy are

-0.84 and -0.65 (strong negative correlations), whereas the

lowest correlations are achieved by margin (maximum -

0.76 and -0.56 on average). Entropy, therefore, seems the

most capable metric to drive the selection of a represen-

tative set of data that will be used to produce robust

models.

Conclusions The inherent bias of acquisition functions

towards the ‘‘most informative’’ data has strong negative

correlations with robustness. To improve robustness, an

ideal function should rather select data that have a repre-

sentative level of informativeness. Among the informative

characteristics, entropy bias has the strongest negative

correlations.

6 Density-based robust sampling
with entropy

6.1 Definition and algorithm

Inspired by our previous results, we propose a new

acquisition function for ARAL: the density-based robust

sampling with entropy (DRE). The key principle of DRE is

to maintain a balance between selected data and unlabeled

pool in terms of entropy distribution (represented by

entropy PDF as defined in the previous section).

Concretely, in the i-th stage, let Li and U i be the labeled

pool and unlabeled pool, respectively. A DNN parameter-

ized by hLi
is trained on Li. First, for each data x 2 U i, we

calculate the entropy (by Eq. (4)) of the prediction by this

DNN and obtain a set of entropy scores:

Ai ¼ H y; x; hLi
ð Þ; x 2 U if g ð14Þ

Afterwards, we estimate the entropy distribution, PDFAi
,

of U i via the histogram method [69]. Correspondingly,

each data is divided into a certain density interval based on

its entropy score. Finally, we randomly select data from

each density interval and add to Li. The number of data to

be selected from the j-th density interval is determined by:

nj ¼ n � PDFAi
jð Þ ð15Þ

n is the number of labeling in each query (see New in

Table 3). In this stage, hi will be updated by adversarial

training on Li and the selected data.

6.2 Effectiveness of DRE in active learning

DRE is evaluated using the same datasets, DNNs, and

experimental protocol that are previously used in Section 5.

Results Figure 5 shows the box plots of accuracy and

adversarial robustness by each acquisition of SHVN.

Table 5 shows the accuracy and the robustness of the

models produced by each acquisition function at one-third

(1/3) and at the end (‘‘last stage’’) of the ARAL process of

all datasets and DNNs. DRE is competitive in terms of

accuracy. At the end of the process, our acquisition func-

tion achieves the best accuracy for Fashion-MNIST and

CIFAR-10/PreActResNet18, which is close to the best for

MNIST and CIFAR-10/ResNet18, and ranks at about the

middle for SVHN and CIFAR-10/VGG16. When it comes

to robustness, DRE stands out and outperforms all the other

acquisition functions for all models and datasets except

CIFAR-10/VGG16 where it yields the robustness slightly

lower than random sampling (- 0.39%). On the other

datasets and models, DRE improves the robustness over

random sampling on the other datasets and models by

0.75% up to 3.84%.

Fig. 4 Heat map of Pearson correlation between bias of character-

istics adversarial robustness against the Auto attack. x-axis: stages in
active learning; y-axis: characteristics. The size of each square

corresponds to the magnitude of the correlation it represents. Dataset:

SVHN; DNN: VGG8
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We performed statistical tests to assess the statistical

significance of the robustness improvement that DRE

brings on all datasets, models, and learning stages. A Wil-

coxon signed-rank test rejects the null hypothesis at the

significance level of 5.00E-02 that there is no difference

between DRE and any other acquisition function, with a

p-value ranging from 8.15E-10 to 2.25E-03.

Conclusions DRE succeeds in consistently achieving

better robustness than SOTA acquisition functions—and

does so while remaining competitive in terms of accuracy.

DRE, therefore, forms the baseline for ARAL.

6.3 DRE for test selection

While we previously showed that ARAL can train robust

models from scratch, we study the adjacent problem of DL

testing and retraining (DL T &R). DL T &R starts from a

trained model and attempts to generate new test data that

the model misclassifies. In turn, it uses these data to

improve the model (through retraining) [3]. Test generation

methods generally proceed in two steps: 1) selecting clean

data to start from and 2) generating test data from the clean

data. For the second step, one can rely on dedicated

methods that research has proposed [72] or simply on

adversarial attacks as [51].

The acquisition functions in active learning can also

serve for test data selection (the first step mentioned above)

and combine adversarial attacks to generate data for

retraining. Hence, we investigate the capability of these

functions to select data with which the robustness of the

model will improve after retraining.

We utilize the same datasets and DNNs as previously.

We pre-train the DNNs using standard training on the

entire training set. Then, following established experi-

mental protocols [3], we use a given acquisition function to

select a budget test data (1% to 10% of the test set). We

then generate adversarial examples from the selected data

and retrain the DNNs using both the training data and the

generated adversarial examples. Finally, we evaluate both

the test accuracy and robustness of retrained DNNs.

Results Table 6 presents the accuracy and robustness of

each model, before and after retraining, against the Auto

attack. We draw the first conclusion that all acquisition

functions are applicable as metrics in test selection. Com-

pared with the baseline where no test data are added for

training, they all manage to improve the robustness against

(a)

(b)

Fig. 5 Box plots of test accuracy (%) and robustness (%) against Auto attack of 12 acquisition functions in ARAL. The higher, the better.

Dataset: SVHN. DNN: VGG8
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the Auto attack by up to 3.23% for SVHN and the three

CIFAR-10 models. However, for MNIST and Fashion-

MNIST, only DRE can increase the robustness of retrained

DNNs by up to 2.58%. Under different sizes of budget,

DRE achieves competitive accuracy (the difference is less

than 2.03%) compared with the other 11 acquisition

functions. Besides, concerning the robustness, DRE out-

performs the others in most (116 of 144) cases by up to

8.21%.

Conclusions Although all acquisition functions are

viable for DL testing and retraining, DRE yields higher

robustness (by up to 8.21%) than any of the other

functions.

7 Threats to validity

The internal threat of our work mainly comes from the

implementation of compared acquisition functions and

evaluation metrics. Regarding the 10 functions (except

random sampling), we searched for the original imple-

mentations provided by the corresponding authors or the

implementation by the other researchers, then carefully

modified them into our framework based on PyTorch. We

follow the suggestions in their implementations or publi-

cations for the involved parameters. In the robustness

evaluation and statistical analysis, we adopt popular

libraries, such as Torchattacks and SciPy.

The external threats to validity are related to the selec-

tion of datasets, DNNs, and compared acquisition func-

tions. For the datasets and DNNs, we employ four publicly

available datasets and six DNN architectures that are

widely studied in the experiments of different works about

active learning. Regarding the compared acquisition func-

tions, we include random sampling and ten well-designed

functions in the literature, which cover the basic and

recently proposed ones. Besides, these ten functions exist

in both the machine learning and software engineering (e.g.

MCP and DeepGini) communities.

Table 5 Comparison of accuracy (Acc, %) and robustness (Rob, %) against the Auto attack between DRE and 11 acquisition functions

Acquisition
Function

MNIST
Lenet-5

Fashion-MNIST
Lenet-5

SVHN
VGG8

CIFAR-10
VGG16

CIFAR-10
ResNet18

CIFAR-10
PreActResNet18

Acc Rob Acc Rob Acc Rob Acc Rob Acc Rob Acc Rob
1/3 stage

BALD 97.15 50.13 73.09 24.15 65.51 24.06 60.68 28.17 60.61 29.02 64.79 29.29
DFAL 97.88 43.71 71.71 21.99 73.07 23.37 60.37 27.33 62.72 28.88 63.89 28.28
EGL 94.08 31.60 61.85 21.37 56.84 22.45 58.93 29.62 62.43 29.28 61.31 28.32
MaxEntropy 95.34 35.18 67.85 18.48 57.55 20.61 58.67 25.81 60.82 27.84 62.11 27.77
DropOut-Entropy 94.52 34.56 65.92 16.73 54.41 18.79 58.63 26.41 59.74 27.09 61.79 27.93
DeepGini 95.25 35.83 66.61 16.10 58.55 21.11 60.19 27.21 59.55 26.71 61.41 26.63
Core-set 97.46 42.77 72.33 23.51 71.10 23.34 61.21 26.99 64.30 28.24 63.59 29.49
LC 96.17 36.49 66.07 19.61 65.31 21.78 59.81 26.55 60.42 26.89 62.31 26.39
Margin 97.29 45.19 72.57 23.43 71.42 24.51 58.99 25.69 63.47 27.75 63.93 27.97
MCP 97.73 40.42 72.85 21.03 73.19 23.42 63.85 28.20 63.04 28.04 64.16 28.25
Random 97.51 54.10 71.84 32.07 65.48 26.19 59.24 29.47 63.33 30.32 63.90 31.01
DRE 97.61 56.00 72.51 31.75 68.27 25.95 61.35 30.83 63.43 31.38 65.17 31.76

Last stage
BALD 98.56 56.55 73.19 28.51 82.31 25.32 71.02 33.17 74.55 35.27 74.28 34.83
DFAL 98.43 52.45 72.37 18.11 81.79 23.15 78.11 35.48 81.07 36.91 74.47 33.74
EGL 98.75 52.92 63.71 25.64 79.95 22.00 70.81 33.19 73.99 35.86 73.57 34.81
MaxEntropy 98.47 51.88 64.41 18.71 70.98 21.57 66.71 29.37 71.74 32.01 71.82 32.18
DropOut-Entropy 98.62 52.29 63.07 18.59 68.70 20.98 64.67 30.15 70.08 31.65 70.69 31.47
DeepGini 98.41 51.23 65.93 18.08 72.27 23.25 65.89 28.19 72.50 32.67 73.22 31.83
Core-set 98.63 53.82 72.99 22.76 84.01 23.70 70.09 32.20 72.74 34.09 74.53 34.49
LC 98.48 50.89 70.29 18.11 72.17 22.68 66.39 29.91 72.60 32.21 73.57 31.64
Margin 98.65 53.80 73.43 18.36 77.55 21.37 68.85 31.40 70.91 33.65 73.22 33.24
MCP 98.71 51.71 73.41 19.02 81.59 22.31 68.25 30.73 74.19 33.35 74.39 34.14
Random 98.30 63.85 72.61 31.90 81.28 28.17 70.03 35.70 75.29 37.38 73.28 36.75
DRE 98.59 67.69 73.79 33.79 81.41 29.81 69.35 35.31 74.99 38.66 74.69 37.86

1/3 stage: the 8th, 9th, 6th, 16th stages for MNIST, Fashion-MNIST, SVHN, and CIFAR-10, respectively. Last: the last stage. Highlight in gray:

DRE is better than a function
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The construct threats might be from the randomness and

the robustness evaluation measures. To reduce the threat by

randomness, each experiment is repeated three times and

we present the average. To gauge the adversarial robust-

ness, we adopt two commonly used attacks (PGD and Auto

attack, which are the current standard for robustness

evaluation in the literature) and added the black-box gra-

dient-free square attack. Though we show the results for

the Auto attack only, the results for the other attacks

(available on our companion website) corroborate our

findings. Indeed, as the Auto attack is stronger than both

the PGD attack and square attack, the robustness obtained

by an acquisition function is lower when using the Auto

attack to evaluate. Correspondingly, the relative difference

will be slightly larger. For example, DRE achieves better

robustness than random sampling by up to 6.89% against

the PGD attack (versus better by up to 3.84% robustness

against the Auto attack). All detailed results are provided

on our companion website [55]. Using other adversarial

attacks, such as the fast gradient sign method (FGSM) [36]

and iterative FGSM (i-FGSM) [73], will give the same

conclusion.

8 Conclusion

We investigated the use of active learning for building

robust deep learning systems. We conducted a compre-

hensive study with 11 existing acquisition functions and

15105 trained DNNs and revealed that, in adversarial-ro-

bust active learning (ARAL), random sampling achieves

better robustness than existing functions but fails on

accuracy. Via our analyses, we demonstrated that the

selected data for training a robust model should be repre-

sentative of the entire set and proposed DRE, the first

acquisition function dedicated to RAL. Extensive experi-

ments have demonstrated that DRE achieves better

robustness than the 11 acquisition functions and achieves

competitive accuracy. Besides, the DL testing and

retraining experiments have demonstrated that DRE is

suitable for this task and still outperforms the other

acquisition functions. We hope that our formulation of the

ARAL process, the experimental protocol we put in place,

and the baseline we propose (DRE) will altogether inspire

future research on developing robust DL models.

The main limitation of this work is the selection of

datasets and DNNs and we mainly focused on the image

domain. In the future work, we will investigate DRE for

other domains, such as text classification and source code

analysis. In addition, DRE is developed based on our

experimental observations. We would like to seek theo-

retical strategies to perform adversarial-robust active

learning.

9 Supplementary information

We release all our source code publicly available at https://

github.com/testing-cs/robustAL.git. The full results are

available at our project site https://sites.google.com/view/

robust-al/.
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Table 6 Comparison of accuracy (Acc, %)and robustness (Rob, %) against the Auto attack with different budgets (1%, 4%) in test selection

Acquisition
Function

MNIST
Lenet-5

Fashion-MNIST
Lenet-5

SVHN
VGG8

CIFAR-10
VGG16

CIFAR-10
ResNet18

CIFAR-10
PreActResNet18

Acc Rob Acc Rob Acc Rob Acc Rob Acc Rob Acc Rob
1% 4% 1% 4% 1% 4% 1% 4% 1% 4% 1% 4% 1% 4% 1% 4% 1% 4% 1% 4% 1% 4% 1% 4%

Baseline 98.69 76.17 72.55 34.06 83.95 35.94 69.54 40.71 73.11 42.65 73.24 42.65
BALD 98.38 98.42 74.80 75.17 66.79 66.02 32.12 33.77 86.23 87.49 37.25 37.69 76.04 76.01 43.11 43.39 79.97 79.92 45.42 45.49 79.97 78.91 45.42 45.49
DFAL 98.23 98.53 74.22 75.73 65.64 65.53 32.28 33.61 86.34 86.64 36.61 35.78 75.27 75.73 43.01 42.88 80.39 80.31 44.86 45.01 80.39 78.89 44.86 45.01
EGL 98.26 98.30 73.96 73.60 64.93 65.16 30.54 31.91 86.13 88.43 35.51 35.12 75.77 76.47 42.81 42.60 80.37 79.09 44.53 44.49 80.37 79.12 44.53 44.49
MaxEntropy 98.25 98.42 74.99 75.68 63.77 64.07 32.11 30.76 86.35 87.42 36.34 35.96 76.14 76.27 42.67 42.87 80.53 80.29 45.09 44.79 80.53 79.01 45.09 44.79
DropOut-Entropy 98.39 98.40 75.49 75.37 65.33 66.19 31.17 32.05 85.64 87.69 36.65 36.36 75.69 76.03 43.28 42.87 80.15 80.17 45.13 45.11 80.15 79.29 45.13 45.11
DeepGini 98.32 98.19 74.65 74.43 67.48 63.65 31.37 33.43 86.71 87.01 35.60 36.14 76.09 75.77 42.97 43.07 80.32 80.09 45.04 44.78 80.32 79.01 45.04 44.78
Core-set 98.31 98.13 75.27 74.59 64.53 65.77 30.53 31.51 85.59 86.65 36.83 37.15 75.71 75.70 43.19 43.51 78.83 78.94 45.53 45.58 78.83 78.75 45.53 45.58
LC 98.21 98.33 74.03 75.29 64.86 65.71 31.83 32.03 86.71 87.67 35.78 35.99 75.64 75.57 42.91 42.89 79.97 79.99 45.17 45.00 79.97 78.85 45.17 45.00
Margin 98.31 98.40 75.07 75.15 65.27 65.19 32.17 31.35 86.71 86.45 36.27 36.38 75.74 75.84 42.87 43.19 80.06 78.68 45.01 44.98 80.06 78.89 45.01 44.98
MCP 98.35 98.50 75.35 75.79 67.71 67.37 32.71 32.03 87.09 87.69 35.77 36.00 75.19 76.55 43.13 43.13 79.97 80.29 45.20 45.15 79.97 78.90 45.20 45.15
Random 98.21 98.18 74.28 75.08 65.72 68.14 29.55 28.43 85.37 85.93 37.29 37.09 75.65 75.61 43.45 43.30 80.29 80.03 45.03 45.29 80.29 78.69 45.03 45.29
DRE 98.32 98.54 76.52 76.88 69.46 69.64 34.56 36.64 86.58 86.40 37.36 38.46 76.34 75.76 43.62 43.94 82.54 82.60 45.58 45.40 82.54 78.72 45.58 45.40

Baseline adversarially trained DNN using all training data. Highlight in gray: DRE is better than a function
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dnn testing efficiency through conditioning, pp 499– 509. Assoc

Comput Mach, New York, USA

50. Wang Z, You H, Chen J, Zhang Y, Dong X, Zhang W (2021)

Prioritizing test inputs for deep neural networks via mutation

analysis. In: 43rd International Conference on Software Engi-

neering, pp 397– 409

51. Feng Y, Shi Q, Gao X, Wan J, Fang C, Chen Z (2020) Deepgini:

prioritizing massive tests to enhance the robustness of deep neural

networks. In: 29th ACM SIGSOFT International Symposium on

Software Testing and Analysis, pp 177– 188. Association for

Computing Machinery, New York, USA

52. Ma W, Papadakis M, Tsakmalis A, Cordy M, Traon YL (2021)

Test selection for deep learning systems. ACM Trans Softw Eng

Method 30(2):13–11322

53. Meng L, Li Y, Chen L, Wang Z, Wu D, Zhou Y, Xu B (2021)

Measuring discrimination to boost comparative testing for mul-

tiple deep learning models. In: 43rd International Conference on

Software Engineering, pp 385– 396

54. Shen W, Li Y, Chen L, Han Y, Zhou Y, Xu B (2020) Multiple-

boundary clustering and prioritization to promote neural network

retraining. In: International Conference on Automated Software

Engineering, pp 410– 422. Association for Computing Machin-

ery, New York, United States

55. Guo Y (2021) Project website of robust active learning. https://

sites.google.com/view/robust-al/

56. Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based

learning applied to document recognition. Proc IEEE

86(11):2278–2324

57. Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: a novel

image dataset for benchmarking machine learning algorithms

58. Netzer Y, Wang T, Coates A, Bissacco A, Wu B, Ng A (2011)

Reading digits in natural images with unsupervised feature

learning. In: NIPS Workshop on Deep Learning and Unsuper-

vised Feature Learning

59. Krizhevsky A (2009) Learning multiple layers of features from

tiny images. Technical report, University of Toronto, Toronto

60. Mayer C, Timofte R (2020) Adversarial sampling for active

learning. In: IEEE Winter Conference on Applications of Com-

puter Vision, pp 3060– 3068

61. Athalye A, Carlini N, Wagner D (2018) Obfuscated gradients

give a false sense of security: circumventing defenses to adver-

sarial examples. ICML 80:274–283

62. Kim H (2020) Torchattacks: a pytorch repository for adversarial

attacks

63. Wald A (1945) Statistical decision functions which minimize the

maximum risk. Ann Math 46:265–280

64. Shannon CE (1948) A mathematical theory of communication.

Bell Syst Tech J 27(3):379–423

65. Houlsby N, Huszár F, Ghahramani Z, Lengyel M (2011) Baye-

sian active learning for classification and preference learning

66. Gal Y, Islam R, Ghahramani Z (2017) Deep bayesian active

learning with image data. In: 34th International Conference on

Machine Learning, pp 1183– 1192. JMLR.org, Sydney, NSW,

Australia

67. Scheffer T, Decomain C, Wrobel S (2001) Active hidden markov

models for information extraction. Adv Intell Data Anal, pp 309–

318. Springer, Berlin, Heidelberg

Neural Computing and Applications (2023) 35:4009–4026 4025

123



68. Wilcoxon F (1945) Individual comparisons by ranking methods.

Biom Bull 1(6):80–83

69. Silverman BW (1998) Density estimation for statistics and data

analysis, 1st edn. Routledge, New York

70. Lin J (1991) Divergence measures based on the Shannon entropy.

IEEE Trans Inf Theory 37(1):145–151

71. Student (1908) Probable error of a correlation coefficient. Bio-

metrika 6(2/3):302–310

72. Pei K, Cao Y, Yang J, Jana S (2017) Deepxplore: automated

whitebox testing of deep learning systems. In: 26th Symposium

on Operating Systems Principles, pp 1– 18. Association for

Computing Machinery, New York, USA

73. Ren H, Huang T (2020) Adversarial example attacks in the

physical world. In: International Conference on Machine Learn-

ing for Cyber Security, pp 572– 582. Springer, Cham

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

4026 Neural Computing and Applications (2023) 35:4009–4026

123


	DRE: density-based data selection with entropy for adversarial-robust deep learning models
	Abstract
	Introduction
	Background and related work
	Active learning
	Problem scenario and active learning in deep learning
	Empirical study
	Active learning for SE

	Adversarial robustness
	Adversarial example
	Adversarial attack
	Adversarial defense

	Test selection for retraining

	ARAL: adversarial-robust active learning
	Experimental design
	Implementation
	Datasets and models
	ARAL process and test selection
	Evaluation measures
	Acquisition functions
	MaxEntropy
	DeepGini^\star 
	BALD
	DropOut-Entropy
	LC
	Margin
	MCP^\star 
	DFAL
	EGL
	Core-set
	Random


	Preliminary results of the empirical study
	Effectiveness of ARAL
	Data selection biases

	Density-based robust sampling with entropy
	Definition and algorithm
	Effectiveness of DRE in active learning
	DRE for test selection

	Threats to validity
	Conclusion
	Supplementary information
	Author Contributions
	Open Access
	References




