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We introduce a local spectroscopic method in real space to probe the topological properties of a
circuit quantum electrodynamics (cQED) array generalizing previous approaches from one to two
dimensions in the plane. As an application, we develop the theory of microwave light propagating
in the local probe capacitively coupled to the cQED array associated to a bosonic Haldane model.
Interestingly, we show that the measured reflection coefficient, resolved in frequency through the
resonance, reveals the model’s geometrical properties and topological phase transition. We discuss
the role of physical parameters such as the lifetime of the light modes and stability towards local
disorder related to further realizations.

Introduction.— Topological systems find various in-
teresting applications in physics, in particular related to
the protected mesoscopic transport at the edges. In two
dimensions, the quantum Hall effect, induced by a per-
pendicular uniform magnetic field, has been generalized
to situations with no net flux in a unit cell, referring to
the Haldane honeycomb lattice model [1], and then gen-
erally to the quantum anomalous Hall effect and Chern
insulators. The latter are realized in solid-state systems,
in cold atom gases and in photonic systems (coupled
waveguides) [2–4]. One elegant way to realize Haldane’s
seminal model for artificial systems is through Floquet
engineering [3–8].

The most common way to probe the topological prop-
erties in condensed matter systems is to determine the
Hall conductance [9, 10]. The topological responses of
artificial systems are accessible in several ways [11–14].
In cold atom gases, topological properties are revealed
through transport or Hall drift [4, 15], interferometry
[16–18], the physics of chiral edge states [19, 20] or via a
measurement of the Berry curvature [21]. For condensed
matter systems and cold atom gases, a circular drive on
the system also enables to probe the topological informa-
tion [22–26], even with a local resolution within the Bril-
louin zone [27, 28]. Light systems with topological prop-
erties, including gyromagnetic photonic crystals [29–32],
arrays of coupled waveguides [3, 33, 34], optomechanical
systems [35, 36], cavity and circuit quantum electrody-
namics (cQED) [37–42], have also garnered significant
interest.

In Ref. [43], a protocol to probe the topological proper-
ties of a one-dimensional LC circuit system is proposed.
This system is closely connected to the SSH model which
has been implemented recently [44–47]. In Ref. [43], the
authors considered a transmission line (capacitively) cou-
pled to a single cell within the chain. From the reflection
of an input triggered in the probe, they reconstructed
the Zak phase, which is the topological invariant charac-
terizing the studied one-dimensional system. Our quest
is to generalize this local probe approach on the lattice
in two dimensions, which is à priori not so apparent.
Previous proposals for light-matter topological probes in

two-dimensional systems have used the transverse polar-
ization of light to detect the chirality associated with
the system’s topological nature [22, 24]. In striking con-
trast to these approaches, our study focuses on a local
probe in real space, specifically a long transmission line
capacitively coupled to a Haldane bosonic model in cir-
cuit quantum electrodynamics (cQED). We demonstrate
how the Chern number can be measured by analyzing the
reflection coefficient, which relates the input and output
voltage signals.

Bosonic Haldane model.— We introduce a cQED sys-
tem made of an array of resonators coupled together in
such a way [8] that the system is described by a usual

Haldane Hamiltonian H =
∑

k Ψ
†
khkΨk [1–7], with

hk = h0(k)+Re [h1(k)]σx−Im [h1(k)]σy+h2(k)σz, (1)

and h0(k) = ℏΩ0 + 2t2 cosϕ
∑3

i=1 cos(k · bi),

h1(k) = t1
∑3

i=1 exp(−ik · ai), h2(k) = M −
2t2 sinϕ

∑3
i=1 sin(k · bi) and Ψ†

k =
(
a†1,k, a

†
2,k

)
, where

a†j,k is the creation operator for a boson with momentum
k on sublattice j (j = 1(2) corresponds to the sublattice
A(B) appearing in Fig. 1(a)). ai and bi (i ∈ {1, 2, 3})
are defined in Fig. 1(a), the hopping amplitudes t1 and
t2 and the Semenoff mass M [48] are real numbers
and σx, σy, σz are Pauli matrices acting in sub-lattice
space. Hereafter, we study the case where t2 is small
compared to t1, as it is often the situation in physical
systems. In Ref. [8], a Haldane Hamiltonian for bosonic
systems is derived from Floquet engineering with a
high-frequency approximation. For a photonic system,
a permanent drive is necessary to compensate for the
photon decay processes that happen [14]. In typical
photonic systems the on-site energy ℏΩ0 is large (usually
∼ GHz order of magnitude) compared to the effective
hopping amplitudes on the lattice (e.g. can be ∼ 10
MHz to ∼ 100 MHz) [37, 42, 49, 50].

The Haldane model shows two energy bands in mo-
mentum space Ei,k = h0(k) + (−1)iϵ(k), where i = 1

or 2 and ϵ(k) =
√

|h1(k)|2 + h2(k)2 (see Fig. 1(c)).
h1(k) = 0 is reached at both nonequivalent Dirac points
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K = (g3 − g2) /3 and K′ = (g2 − g3) /3 (see Fig. 1(b)).
Moreover, we have h2(K) = 0 if M = +3

√
3t2 sinϕ and

h2(K
′) = 0 if M = −3

√
3t2 sinϕ. When the bands cross,

the dispersion relation around K and K′ is linear.
Topological properties.— Here, we describe the ge-

ometrical properties of the system through Bloch eigen-
vectors and through a definition of the topological num-
ber resolved at the Dirac points in Eq. (2). This def-
inition is generally valid for a model that can be writ-
ten as a spin- 12 particle in momentum space [51]. We
introduce |ui,k⟩ as the Bloch eigenvectors of the Hal-
dane Hamiltonian, i.e. e−ik·r̂Heik·r̂ |ui,k⟩ = Ei,k |ui,k⟩
and we define the coefficients α1

i (k) and α
2
i (k) such that

|ui,k⟩ =
[
α1
i (k)a

†
1,k + α2

i (k)a
†
2,k

]
|0⟩. These coefficients

may vanish only at the Dirac points. If the sign of h2
is opposite at the non-equivalent Dirac points (|M | <
3
√
3t2| sinϕ|, see Table I), then α1

i (k) vanish at one Dirac
point and α2

i (k) vanish at the other Dirac point. It fol-
lows that it is impossible to find a unique and smooth
phase over all the BZ for the Bloch state |ui,k⟩. This
characteristic feature of Chern insulators [52] forms the
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FIG. 1. (a) Definition of the sublattices, real space vec-
tors and hopping amplitudes for the Haldane model on the
honeycomb lattice. (b) Sketch of the Brillouin zone for the
honeycomb lattice. (c) Haldane model energies, in units of
t1, as a function of the momentum q3 = ak · g3 (a is the
lattice spacing), with parameters ϕ = π/2, t2 = 0.15t1 and
M = 3

√
3t2/2. Both lowest band energies at the Dirac points,

E1,K and E1,K′ , are shown. (d) The quantity 1−
∫
dωSout(ω),

computed for a disordered 21× 20 unit cells Haldane system
with open boundary conditions. The color scale of the figure
is logarithmic. The precise information on definitions and pa-
rameters can be found page 4.

basis of the probe proposed in this letter, rendering it à
priori relevant for Chern insulators with non-degenerate
Dirac points in the energy spectrum (for the Haldane
system we consider this imposes t2 ≲ 0.15t1). In this
phase, the Chern number Ci (i is the band index) reads
Ci = (−1)i+1 sgn(sinϕ). In the Supplemental Material,
for completeness, we present a derivation of this formula
[53]. Now, we build an alternative definition of the topo-
logical number from the Dirac points. If the sign of h2 is
the same at both Dirac points (|M | > 3

√
3t2| sinϕ|, see

Table I), then α1
i (k) or α

2
i (k) can be chosen non-zero over

all the BZ. In this case, the Chern numbers Ci are vanish-
ing. From this analysis, for |M | ̸= 3

√
3t2| sinϕ|, we have

Ci = (−1)i+1 sgn(sinϕ) [1− sgn(h2(K)h2(K
′)] /2, i.e.

Ci =
(−1)i

2
[sgnh2(K)− sgnh2(K

′)] . (2)

This formula has indeed a simple physical understand-
ing for a Hamiltonian hk written as a 2 × 2 matrix.
From the Ehrenfest theorem and a Bloch sphere corre-
spondence the topological number is equivalent to Ci =
(−1)i [⟨σz(0)⟩ − ⟨σz(π)⟩] /2 with ⟨σz⟩ = (−1)i cos θ =
(−1)isgnh2(θ) [51]. In the following, we namely rely
on Eq. (2) to show how Ci can be probed from the re-
flected light in a local probe capacitively coupled to a
Haldane photonic system. The simple idea behind our
proposal is that the topological properties manifest as
discernible sublattice weight variations of the wave func-
tion, enabling to reveal the topological transition through
the coupling of a probe to one of the sublattice sites.
We emphasize here that in Ref. [43], we proposed a

capacitively coupled topological probe for a 1D system.
It gives access to a phase whose winding around the BZ
is the topological invariant (Zak phase). The probe pro-
posed in the following is substantially different since it
measures the information in Eq. (2).

Spectroscopic probe.— Here, we introduce the local
spectroscopic approach, i.e. a local light probe with weak
capacitive coupling to a Haldane boson system at posi-
tion R0, on the sublattice j0. The probe is a resonator
with a certain number of (relevant) modes, described by
the Hamiltonian Hprb =

∑
q ℏωqb

†
qbq, with b

†
q, bq the cre-

ation, annihilation operators for the mode q character-
ized by the frequency ωq. The coupling is described by

Hcpl =
(
aR0

+ a†R0

)∑
q gq

(
bq + b†q

)
, where a†R0

is the

Fourier transform of a†j,k at position R0. For simplicity,
we initially disregard the dissipation effects induced by

TABLE I. Sign of h2 at the Dirac points, as a function of M
and sgn(sinϕ).

|M | < 3
√
3t2| sinϕ| |M | > 3

√
3t2| sinϕ|

sgnh2(K) −sgn(sinϕ) sgnM
sgnh2(K

′) sgn(sinϕ) sgnM
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TABLE II. Coefficients αj0
i which, at the Dirac points, are

directly related to the Chern number, as a function of sgnM
and sgn(sinϕ).

sgnM = sgn (sinϕ) sgnM = −sgn (sinϕ)
sgn (sinϕ)

(−1)i
= 1 α2

i (K) = −Ci α1
i (K

′) = (−1)i+1Ci

sgn (sinϕ)

(−1)i+1
= 1 α1

i (K) = (−1)iCi α2
i (K

′) = Ci

TABLE III. Choice of the probe’s input frequency ℏωq0 =
Ei,k, given by the indices i and k, as a function of sgnM
and sgn (sinϕ), such that the transition rate depends on the
Chern number: Γ = J [Ei,k] |Ci|/ℏ.

sgnM = sgn (sinϕ) sgnM = −sgn (sinϕ)

sgn (sinϕ) = 1 i = j0, k = K i = j0, k = K′

sgn (sinϕ) = −1 i = j0, k = K i = j0, k = K′

the probe in the Haldane system and assume infinitely
long lifetimes for the light modes |ui,k⟩.

To acquire some intuition, let us show that the
transition rate Γ from a state |ψ(t)⟩ which, at initial
time ti, is a probe’s mode with frequency ωq0 , i.e.
|ψ(ti)⟩ = |bq0⟩, to the eigenstates |ui,k⟩ of the Hal-
dane Hamiltonian’s bears information about the topo-
logical character of the system. At sufficiently long times

t, Γ [ℏωq0 ] =
2π

ℏ
∑

i,k | ⟨bq0 |Hcpl |ui,k⟩ |2δ (ℏωq0 − Ei,k).

⟨bq0 |Hcpl |ui,k⟩ involves the components of the Bloch

state in the basis
(
a†1,k, a

†
2,k

)
and a factor eik·R0 (trans-

formation to the real space representation), such that
we obtain ⟨bq0 |Hcpl |ui,k⟩ = gq0α

j0
i (k)eik·R0 . As one can

see from Table II, which is constructed using Eq. (2)

and the related analysis of the coefficients αj0
i (k), de-

pending on sgnM and sgn (sinϕ), it is possible to ex-
press the Chern number as a function of the coefficients
αj0
i (k). If sgnM = sgn (sinϕ) (sgnM = −sgn (sinϕ))

we notice that the Chern number is directly related
to the coefficients αj0

i (k) evaluated at K (K ′) and
Ei,K (Ei,K′), i ∈ {1, 2}, is non-degenerate. There-
fore, choosing ℏωq0 = Ei,k with i and k according
to Table III, we find a simple relation between Γ and
the topological invariant: Γ (Ei,k) = J (Ei,k) |Ci|2 =
J (Ei,k) |Ci|, where the spectral function J is: J(ω) =
(2π/ℏ)

∑
q g

2
q [δ(ω − ωq)− δ(ω + ωq)]. In other words,

Γ (Ei,k) = J (Ei,k) |Ci|, (3)

where the indices i and k are functions of sgnM and
sgn (sinϕ) as indicated in Table III. The relation appear-
ing in Eq. (3) has been established from Table II and
Table III. Therefore, it relies on a fundamental prop-
erty characterizing a Chern insulator: the impossibility of
defining smooth Bloch states over the BZ, which trans-
lates here into the vanishing of the Bloch eigenvectors’
components α1

i and α2
i at the opposite Dirac points.

Motivated by this, we now investigate the relation be-
tween an input voltage ⟨V in

R0
(ω)⟩ and the resulting output

voltage ⟨V out
R0

(ω)⟩, both at frequency ω in the probe at
R0. For ω resolved around one Dirac point, this rela-
tion between ⟨V in

R0
(ω)⟩ and ⟨V out

R0
(ω)⟩ enables to rebuild

the Haldane topological phase diagram. More details on
the derivation of Eq. (6) are given in the Supplemental
Material [53]. We indeed find

⟨V out
R0

(ω)⟩ = R(ω)⟨V in
R0

(ω)⟩, (4)

with R(ω) = 1 + iJ(ω)χR0,R0
, and

χR0,R0
=

1

N

2∑
i=1

∑
k

γij0,k

[
1

−ℏω − Ei,k + i0+
− 1

−ℏω + Ei,k + i0+

]
, (5)

where N is the number of lattice sites and

γij0,k =
1

2
+

(−1)j0+i+1h2(k)

2ϵ(k)
∈ R. (6)

The key point within our present approach is to observe
that γij0,k evaluated at the Dirac points, where h1 = 0,
depends only on the sign of the function h2: we have
2γij0,k = 1 − (−1)j0+isgnh2(k) for k = {K,K′}. The
response function is then directly related to the topo-
logical invariant via Eq. (2) and Table I. As we show in
Table IV, depending on the sign of sinϕ and on the sign
of the Semenoff mass, the ith band topological invariant
is given by the coefficient γij0,k, evaluated at j0 = i or

j0 = i and at k = K or k = K′, with i = 2(1) if i = 1(2).
Again, this outcome arises from a fundamental charac-
teristic associated to the topological phase: the vanishing
of the Bloch eigenvectors’ components α1

i and α2
i at the

opposite Dirac points.

We can now understand how measuring the reflected
light signal in the probe reveals the topological phase
transition of the two-dimensional lattice model. We write
Sin(ω) =

∣∣⟨V in
R0

(ω)⟩
∣∣2 and Sout(ω) =

∣∣⟨V out
R0

(ω)⟩
∣∣2 the en-

ergy spectral density respectively associated to the input
and output voltages. To leading order in the coupling
amplitudes, we have Sout(ω) = |R(ω)|2Sin(ω) and for
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ω > 0,

|R(±ω)|2 = 1∓ 2πJ(±ω)
N

2∑
i=1

∑
k

γij0,kδ(ℏω −Ei,k). (7)

For sgnM = sgn (sinϕ), the energies Ei,K , i ∈ {1, 2} are
non-degenerate, therefore, choosing ℏω = Ei,K selects
only the k = K point in the integral appearing in the
Eq. (7). Moreover, as indicated in Table IV, γij0,K is re-
lated to the topological invariant if we choose a probe at
j0 = i (i) for sgn (sinϕ) = 1 (sgn (sinϕ) = −1). There-
fore, for a well-chosen frequency ω, |R(ω)|2 clearly de-
pends on the topological invariant. This is also true for
sgnM = −sgn (sinϕ), if, in the previous analysis, we re-
place K by K′ and j0 by j0.

Finite lifetimes for the light modes.— Eventually, we
address the more realistic scenario in which we incorpo-
rate finite lifetimes for both the modes in the probe |bq⟩
and the Chern insulator’s modes |ui,k⟩. For simplicity,
we consider the same bandwidth amplitude ∆CI (∆P)
for all the modes |ui,k⟩ (|bq⟩). We assume the follow-
ing ordering of the energies maxq(gq) ≪ {∆CI,∆P} ≪
{t1, ℏminq,q′(|ωq − ωq′ |)}. We replace the Dirac Delta
functions appearing in Eq. (7) by normalized Gaus-
sian spectral distributions denoted G (ω;ω,∆) with mean
value ω and standard deviation ∆: δ(ℏω − Ei,k) is re-
placed by G (ω;Ei,k/ℏ,∆CI) and J(ω) is replaced by

J̃ [ω] = 2π
∑

q (gq/ℏ)
2
[G (ω, ωq,∆P)−G (ω,−ωq,∆P)].

We also consider an input energy spectral density with
Gaussian distribution: Sin(ω) = G (ω;ωq0 ,∆P). For a
well chosen ωq0 (Ei,K or Ei,K), |R(ω)|2 still depends on
the topological invariant because γij0,k is directly related
to the Chern number. It leads to a decrease of the output
peak’s weight

∫
dωSout(ω) compared to the normalized

weight of the input peak. This decrease is given by

1−
∫
dωSout(ω) =

2π

N

2∑
i=1

∑
k

γij0,kIi,k, (8)

with Ii,k =
∫
dωJ̃(ω)G (ω;Ei,k/ℏ,∆CI)G (ω;ωq0 ,∆P),

which is (gq0/ℏ)
2
/
(√

2π∆CI∆
2
P

)
times the overlap area∫

dω exp− (ω − ωq0)
2

∆2
P

exp− (ω − Ei,k/ℏ)2

2∆2
CI

.

Disorder.— We expect the general structure of the
wave function over space, which is related to the bulk

TABLE IV. Value of γi
j0,k

, evaluated at j0 = i or j0 = i and
at k = K or k = K′, as a function of sgn (sinϕ) and sgnM .
We remind that i = 2(1) if i = 1(2).

sgnM = sgn (sinϕ) sgnM = −sgn (sinϕ)

sgn (sinϕ) = 1 γi
i,K = (−1)iCi γi

i,K′ = (−1)iCi

sgn (sinϕ) = −1 γi
i,K

= (−1)iCi γi
i,K′ = (−1)iCi

invariant, to be robust against weak disorder. This cen-
tral feature gives robustness to the probe proposed in
this letter. To illustrate this point, we consider a finite
size system with local disorder on the parameters. We
do not have translational symmetry but the expression
of 1−

∫
dωSout(ω) in Eq. (8) is easily adapted: the sum

over i and k is replaced by a sum over the lattice sites and
a numerical diagonalization gives the energies and the de-
composition of the eigenvectors over the lattice sites from
which we get the analogues of the coefficient γij0,k and the
integral Ii,k.
For one disorder configuration, we choose to sample

each of the values of t1, t2, M and ϕ over the lattice
from a Gaussian distribution law with respectively mean
value t1, t2, M and ϕ and standard deviation being
five percent of the associated mean value. We choose
the experimentally relevant energy scales Ω0 = 10 GHz,
t1/ℏ = 100 MHz, t2/ℏ = 15 MHz, ∆CI = ∆P = 10MHz
and gq0/ℏ = 1MHz. These scales correspond to a rela-
tively low quality factor Q = Ω0/∆CI = 103 (here the
same for both the cQED Chern insulator and the probe)
and a low coupling amplitude and should be reachable
in a cQED experiment. In Fig. 1(d), we show a numeri-
cal evaluation of 1 −

∫
dωSout(ω) as a function of M/t2

and ϕ. For this figure, we consider M > 0, the probe
is coupled to a sublattice A site (j0 = 1) and sinϕ > 0.
Note that if the latter inequality is arbitrarily imposed
then our measure can not access the sign of the Chern
number, but it still discriminates between a topological
and a trivial phase. Moreover, we chose ℏωq0 = Ẽ1,K

and we expect 1−
∫
dωSout(ω) depends on C1 (because

γ11,K = C1). Ẽ1,K is the highest energy of the lowest
band and it can be determined through the energy den-
sity of states before the measure of the Chern number.
From Eqs. (6) and (7), we observe that the energy den-
sity of states is obtained by summing the local responses
to an input measured in two distinct probes on sublat-
tices A and B. In our protocol, sgnM also needs to be
determined before the measure of the Chern number.

Remarks.— Two observations are in order.
(i) The probe is able to measure the topological num-

ber based on a real space local coupling to the system and
with a resolution in reciprocal space thanks to the energy
conservation, similarly to circularly polarized light [28].
(ii) If the input is triggered at a site identified by (r, j0)

and the output is measured at (r′, j′0), the expression in
the summation of Eq. (5) becomes[
βi
j0
(k)α

j′0
i (k)

]∗
eik(r−r′)

−ℏω − Ei,k + i0+
−
βi
j0
(k)α

j′0
i (k)e−ik(r−r′)

−ℏω + Ei,k + i0+
, (9)

with βi
j0
(k)αj0

i (k) = γij0,k and for j′0 = j0 ̸= j0,

βi
j0
(k)αj0

i (k) ∝ h1(k)/2ϵ(k). At the Dirac points, h1
is vanishing, therefore, in the case j′0 = j0, the simple
protocol we sketched above does not help to rebuild the
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topological phase diagram. This outcome can be antici-
pated based on the fact that, at one given Dirac point,
one of both Bloch eigenvectors’ components vanish, in
the topological regime. In the scenario j′0 = j0, because
the coefficients in the numerator of Eq. (9) are complex-
valued, the Chern number dependency of 1−

∫
dωSout(ω)

is mitigated. Indeed, the latter contains principal values
of integrals over frequency involving [1/ (−ℏω ± Ei,k)]
terms.

Conclusion.— We have introduced a local
microwave-light probe with capacitive coupling to
a cQED array described by a Haldane bosonic system,
in the regime of small coupling amplitudes. We have
explained how this probe is relevant for the detection
of the topological character of Chern insulators. Using
Fermi golden rule, we established a connection between
the Chern number and the transition rate from a probe’s
eigenstate (with frequency corresponding to one of the
Dirac points energy) to the eigenstates of the Haldane
Hamiltonian. Secondly, we developed the input-output
theory for the probe, enabling us to compute the
reflection coefficient which relates an input voltage
and an output voltage. We showed that for an input
with frequency resolved at one of the Dirac points, this
reflection coefficient is directly related to the system’s
topological invariant. The fundamental working princi-
ple of this probe makes it inherently relevant for Chern
insulators with non-degenerate Dirac points in the
energy spectrum (for the Haldane system we consider
this imposes t2 ≲ 0.15t1). As a future prospect, it
appears intriguing to adapt this probe to other systems
that may exhibit different particle statistics, such as
cold atoms or various material platforms.
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Supplemental Material

In this Supplemental Material, in Sec. S1, we derive
the formula Cj = (−1)j+1 sgn(sinϕ) for the topological
phase using standard geometrical definitions. In Sec. S2,
we give additional information on the local probe and on
the derivation of Eq. (6) in the Letter.

S1. CHERN NUMBER AND BERRY GAUGE
FIELDS

In this section we show a detailed analytical calculation
of the Chern number, based on an approach introduced
by Kohmoto [52], for the Haldane Hamiltonian. This
computation relies on the definition of two distinct gauge
choices GI and GII for the Bloch eigenvectors |ui,k⟩ =[
α1
i (k)a

†
1,k + α2

i (k)a
†
2,k

]
|0⟩ , that we respectively write

|ui,k,I⟩ and |ui,k,II⟩.
(i) Gauge choice GI : the coefficient α1

i (k) is real. More
precisely, we choose

α1
i (k) = ρi(k) , (S1)

with

ρi(k) =
h2(k) + (−1)iϵ(k)

2 [ϵ(k)2 + (−1)ih2(k)ϵ(k)]
1/2

, (S2)

and we have

α2
i (k) = λi(k)e

−iφ(k) , (S3)

with

λi(k) =
|h1(k)|

2 [ϵ(k)2 + (−1)ih2(k)ϵ(k)]
1/2

, (S4)

and

e−iφ(k) =
eik·a3h1(k)

∗

|h1(k)|
. (S5)

(ii) Gauge choice GII : the coefficient α2
i (k) is real. We

choose |uj,k,II⟩ = eiφ(k) |uj,k,I⟩, i.e.

α2
i (k) = λi(k), (S6)

and we have

α1
i (k) = ρi(k)e

iφ(k). (S7)

The phase of the wavefunction is chosen by requiring
that either the coefficient α1

i (k) or the coefficient α2
i (k)

is real (and non-zero). ρi(k) and λi(k) may vanish only
at the Dirac points and it depends on the sign of h2. For
|M | < 3

√
3t2| sinϕ| (|M | > 3

√
3t2| sinϕ|), the values of

ρi(k) and λi(k) at the Dirac points are given in Table SI
(Table SII).

(i) In the case |M | < 3
√
3t2| sinϕ|, we notice that

(see Table SI), for all the values of ϕ, none of both
gauge choices GI and GII is well-defined in the entire
BZ. Indeed, ρi(k) and λi(k) each vanish at one of the
Dirac points. We then define two non-overlapping do-
mains DI and DII in the BZ, each containing a different
Dirac point, and we use a different gauge choice for the
Bloch states in each domain [52]. To be more specific,
for (−1)i sgn(sinϕ) = +1, we apply GI for the points
contained in DII and GII for the points contained in
DI while for (−1)i sgn(sinϕ) = −1, we apply GI for
the points contained in DI and GII for the points con-
tained in DII . Then the phase of |ui,k,I⟩ (the eigen-
state in DI) and |ui,k,II⟩ (the eigenstate in DII) and
the Berry gauge fields Ai,k,I = ⟨ui,k,I | ∇k |ui,k,I⟩ and
Ai,k,II = ⟨ui,k,II | ∇k |ui,k,II⟩ are uniquely and smoothly
defined respectively on DI and DII . The Chern number
associated to the jth band (remind that j = 1 or j = 2)
reads

Cj =
1

2iπ

[ ∫
DI

d2k · (∇k ×Aj,k,I)

+

∫
DII

d2k · (∇k ×Aj,k,II)

]
,

(S8)

where d2k is an oriented infinitesimal surface element
and ∇k × Aj,k,I and ∇k × Aj,k,II are the Berry curva-
tures respectively associated to Aj,k,I and Aj,k,II. Let
us define a closed path P along the boundary between
DI and DII , surrounding once the Dirac points. Using
Stokes’ theorem leads to

Cj =
1

2iπ

(∮
P

dk ·Aj,k,I −
∮
P

dk ·Aj,k,II

)
. (S9)

∮
P
dk is a line integral along P, where we have |uj,k,I⟩ =

ei(−1)j sgn(sinϕ)φ(k) |uj,k,II⟩. We choose φ(k) so that it is
smooth along the whole P path and we obtain

Cj =
(−1)j sgn(sinϕ)

2π

∮
P

dk · ∇kφ(k). (S10)

Ci is found by studying how φ(k) evolves when moving
along P. Generally speaking, when the P path surround
a φ(k)’s divergence (here at the K or K′ point), the
accumulated phase increases or decreases by ±2πz, z ∈

TABLE SI. Table giving the values of of ρi(k) and λi(k) at
the Dirac points in the case |M | < 3

√
3t2| sinϕ| , as a function

of the sign of the Semenoff mass M and of the index of the
energy band i.

sgn(sinϕ) = (−1)i sgn(sinϕ) = (−1)i+1

ρi(k → K) 0 (−1)i

ρi(k → K′) (−1)i 0
λi(k → K) 1 0
λi(k → K′) 0 1
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Z, which gives a quantized value of C, as expected. Here,
we find that φ(k) changes by −2π when moving along the
entire closed path P. This gives

Cj = (−1)j+1 sgn(sinϕ). (S11)

One can build intuition from small displacement δk
around K, in which case we have h1(K + δk) =
3t1(−δkx + iδky)/2 where δkx = δk · ex, δky = δk · ey,
ex = − (b2 + b3) /

√
3 and ey = (b2 − b3) /3. In this

case, we easily see that φ, which is defined by e−iφ(k) =
eik·a3h1(k)

∗/|h1(k)|, varies by −2π, for one entire closed
path P around K (oriented anticlockwise). As mentioned
in the letter, this form is equivalent to the one in Eq. (2)
which is local at the Dirac points.

(iii) In the case |M | > 3
√
3t2| sinϕ|, we gathered the

values of ρi(k) and λi(k) at the Dirac points in Table SII.
At both Dirac points, either ρi(k) or λi(k) are non-
vanishing, therefore it is possible to find a unique and
smooth phase for the ket |ui,k⟩ everywhere in the BZ
which leads to a unique and smooth Berry gauge field
Ak. Depending on the value of (−1)i sgn(M), we ap-
ply gauge choice GI or GII for all the points of the BZ,
and then we can show that the associated wave func-
tion |ui,k,I⟩ or |ui,k,II⟩ (and its phase) is uniquely and
smoothly defined, as is the Berry gauge field. Because
the BZ is a torus, the Chern numbers Cj are vanishing.

S2. LOCAL RESPONSE TO CAPACITIVELY
COUPLED PROBES IN A TWO-DIMENSIONAL

LATTICE BOSONIC SYSTEM

In this Section, we consider a set of bosonic probes
(typically microwave light resonators) capacitively cou-
pled to a bosonic lattice model. We derive the relation
between the output voltage operator in a probe at a cer-
tain position on the lattice and the input voltage opera-
tors associated to the ensemble of probes on the lattice.
We consider a 2-dimensional lattice system with periodic
boundary conditions.

TABLE SII. Table giving the values of of ρi(k) and λi(k) at
the Dirac points in the case |M | > 3

√
3t2| sinϕ|, as a function

of the sign of the Semenoff mass M and of the index of the
energy band i.

sgnM = (−1)i sgnM = (−1)i+1

ρi(k → K) (−1)i 0
ρi(k → K′) (−1)i 0
λi(k → K) 0 1
λi(k → K′) 0 1

S2.1. Hamiltonian

The Hamiltonian describing the lattice model with ca-
pacitively coupled probes reads

H = Hlat +Hprb +Hcpl, (S12)

where Hlat is the (topological) lattice Hamiltonian, Hprb

is the Hamiltonian associated to the probe(s) and Hcpl is
the Hamiltonian associated to the coupling between the
lattice and the probe(s).
Let us call NC the number of sites per unit cell in

the lattice we consider and N the total number of unit
cells. We label each site within a unit cell with differ-
ent colors, and two different sites belonging to the same
Bravais lattice are labeled by the same color. We define
the Fourier transform of the annihilation operator of a
(bosonic) particle at position r and the inverse relation

aj,k =
∑
r∈Rj

e−ik.rar and ar =
1

N

∑
k

eik.raj(r),k,

(S13)
with Rj the ensemble containing all the lattice positions
of the color-j sites and the function j(r) returns the color
index at the r site. We formally write

Hlat =
∑
k

Ψ†
khkΨk, (S14)

with Ψ†
k =

(
a†1,k, . . . a

†
N,k

)
. We write hk’s associated

eigenvalues Ei,k, where i ∈ {1, . . . , NC}, and we write
the associated eigenvectors

|Φi,k⟩ = Φ†
i,k |0⟩ =

NC∑
j=1

αj
i (k)a

†
j,k |0⟩ , (S15)

with αj
i (k) ∈ C. We have

Hlat =
∑
k

NC∑
i=1

Ei,kΦ
†
i,kΦi,k. (S16)

Each probe are resonators with a certain number of rel-
evant modes, each mode q being characterized by the
frequency ωq. Therefore we write

Hprb =
∑
r∈Rp

∑
q

ℏωqb
†
r,qbr,q, (S17)

with br,q the annihilation operators for the mode q of the
probe at r ∈ Rp, Rp being the ensemble of the positions
of the nodes coupled to a probe. We assume a capacitive
coupling between each probe and a node of the lattice.
The Hamiltonian reads

Hcpl =
∑
r∈Rp

(
ar + a†r

)∑
q

gq
(
br,q + b†r,q

)
. (S18)

The coupling amplitude gq is assumed not to depend on
the position of the probe.
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S2.2. Input-output analysis

Here we use the input-output formalism as reviewed in
Ref. [54].

Let us define the input voltage in the probe at r

V in
r (t) =

∑
q

gq

[
e−iωq(t−ti)br,q(ti) + h.c.

]
, (S19)

where ti < t is an initial time in the distant past, and
the output voltage in the probe at r

V out
r (t) =

∑
q

gq

[
e−iωq(t−tf )br,q(tf ) + h.c.

]
, (S20)

where tf > t is a final time in the distant future. Let
us call xr = ar + a†r. The Heisenberg equation of motion
(EOM) for the bjq operator reads

ḃr,q =
i

ℏ
[H, br,q] = −iωqbr,q −

igq
ℏ
xr. (S21)

The solution of this equation of motion is

br,q(t) = e−iωq(t−ti)br,q(ti)−
igq
ℏ

∫ t

ti

dτe−iωq(t−τ)xr(τ),

(S22)
or equivalently

br,q(t) = e−iωq(t−tf )br,q(tf ) +
igq
ℏ

∫ tf

t

dτe−iωq(t−τ)xr(τ).

(S23)
Combining the previous equations and their complex con-
jugate counterparts we get

V in
r (t)− 2

∑
q

g2q
ℏ

∫ tf

ti

dτ sin [ωq(t− τ)]xr(τ) = V out
r (t).

(S24)
We Fourier transform the previous equation with respect

to the time variable t, we define J(t) = 2i
∑

q

g2q
ℏ

sin (ωqt)

[55] and we get

V out
r (ω) = V in

r (ω) + iJ(ω)xr(ω). (S25)

Notice that J(ω) ∈ R. Its explicit expression is

J(ω) = 2π
∑
q

g2q
ℏ

[δ(ω − ωq)− δ(ω + ωq)] , (S26)

where δ is the Dirac delta function.
Now we express xr(ω) as a function of V in

r (ω). The
Heisenberg EOM for the Φi,k modes reads

ℏΦ̇i,k =− iEi,kΦi,k

− i
∑
r∈Rp

[
αj
i (k)e

ik·r
]∗ ∑

q

gq
(
br,q + b†r,q

)
,

(S27)

where j is a function of r; it returns the color index at
the r site. Using equation S22 we have, up to second
order in the coupling amplitudes,

iℏΦ̇i,k(t) = Ei,kΦi,k(t) +
∑
r∈Rp

[
αj
i (k)e

ik·r
]∗
V in
r (t).

(S28)
Now we use the Fourier transformation with respect to
the time variable to write, still up to second order in the
coupling amplitudes,

Φi,k(ω) =
1

−ℏω − Ei,k + i0+

∑
r∈Rp

[
αj
i (k)e

ik·r
]∗
V in
r (ω),

(S29)
and

Φ†
i,k(ω) = − 1

−ℏω + Ei,k + i0+

∑
r∈Rp

αj
i (k)e

ik·rV in
r (ω).

(S30)
Note that Φi,k(ω) = T.F. (Φi,k) (ω), T.F. denoting the

Fourier transform and Φ†
i,k(ω) = T.F.

(
Φ†

i,k

)
(ω) so

Φi,k(ω) ̸=
(
Φ†

i,k(ω)
)†

.

We introduce the βj
i (k) coefficients such that

a†j,k |0⟩ =
NC∑
i=1

βj
i (k)Φ

†
i,k |0⟩ . (S31)

Then we have

xr =
1

N

∑
k

NC∑
i=1

eik·r
[
βi
j(r)(k)

]∗
Φi,k + h.c., (S32)

and we obtain, up to second order in the coupling ampli-
tudes

xr(ω) =
∑

r0∈Rp

χr,r0V
in
r0 (ω), (S33)

with

χr,r0 =
1

N

NC∑
i=1
k

(
C∗

i,k,r,r0

−ℏω − Ei,k + i0+
− Ci,k,r,r0

−ℏω + Ei,k + i0+

)
,

(S34)

and

Ci,k,r,r0 = βi
j(r)(k)α

j(r0)
i (k)e−ik·(r−r0). (S35)

Let us notice from the last equation that adding a probe
with no input does not influence the response at the other
probes (with or without input). This is because we re-
stricted the response to first order in g.
Finally, Eq. (S25) gives, up to fourth order in the cou-

pling amplitudes {gq},

V out
r (ω) = V in

r (ω) + iJ(ω])
∑

r0∈Rp

χr,r0V
in
r0 (ω). (S36)
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In the simple case r = r0 = R0 we consider in the
main text, for simplicity, we define γij0,k such that γij0,k =

Ci,k,R0,R0
= βi

j0
(k)αj0

i (k). Moreover, for the Haldane
system we consider the Bloch eigenvectors

|ui,k⟩ = u†i,k |0⟩ =
[
α1
i (k)a

†
1,k + α2

i (k)a
†
2,k

]
|0⟩ , (S37)

which are defined through the components α1
i (k) and

α2
i (k)

α2
i (k) =

h1(k)
∗

h2(k)− h0(k) + Ei,k
α1
i (k). (S38)

We have introduced Ei,k = h0(k) + (−1)iϵ(k), ϵ(k) =√
|h1(k)|2 + h2(k)2 and the coefficients βj

i (k) satisfy

a†j,k |0⟩ =
2∑

i=1

βj
i (k)Φ

†
i,k |0⟩ , j = {A,B}. (S39)

Using Eqs. (S37), (S38) and (S39), we obtain

γij0,k =
1

2
+

(−1)j0+i+1h2(k)

2ϵ(k)
. (S40)
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