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Abstract

The fifth generation (5G) and beyond wireless networks mark a pivotal shift in the realm
of telecommunications. These advanced networks aim to provide an array of different ser-
vices, fulfilling the diverse needs of modern-day connectivity. They are expected to provide
services with high data rates, large connection density, ultra-low latency, and extraordi-
nary reliability. To achieve these goals, there are three primary service categories in 5G and
beyond networks: enhanced mobile broadband (eMBB), massive machine-type communi-
cations (mMTC), and ultra-reliable low-latency communications (URLLC). With eMBB,
users can communicate with a substantial increase in data rates, enabling swift and high-
bandwidth content consumption. On the other hand, mMTC sets the stage for the seamless
integration of billions of devices into the network. However, it’s URLLC that stands out
as the linchpin of these networks, providing unprecedented levels of reliability and ultra-
low latency, considering mission-critical applications and real-time responsiveness as the
norm. This service is expected to open groundbreaking changes in fields such as healthcare,
autonomous vehicles, industrial automation, and beyond. Given the above context, this
dissertation focuses on designing effective communication protocols for different URLLC-
related systems. In particular, the study delves into three key aspects: (1) Average block
error rate (BLER) and minimum blocklength analysis for short-packet communications, a
promising transmission method for URLLC; (2) Deep reinforcement learning (DRL)-based
resource management strategy for uplink URLLC within the context of grant-free access,
an advanced access technology for latency-sensitive dense networks; and (3) Joint opti-
mization and DRL-based resource allocation for harmonious coexistence of diverse services
such as eMBB, mMTC, and URLLC.

Firstly, we study a promising transmission method for URLLC, namely short packet
communications (SPC), to fulfill its stringent requirements. Specifically, we investigate
SPC in downlink non-orthogonal multiple access (NOMA) systems using multiple-input
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multiple-output (MIMO) schemes. The main focus of this work is a comprehensive evalu-
ation of system performance by analyzing the average block error rate (BLER) and min-
imizing the blocklength to reduce transmission latency. Our findings reveal that MIMO
NOMA exhibits the capability to efficiently serve multiple users in a concurrent fashion
while employing a lower blocklength in comparison with MIMO Orthogonal Multiple Ac-
cess (OMA). These results effectively highlight the advantages of MIMO NOMA-based
SPC, primarily in its ability to significantly reduce transmission latency.

Secondly, we investigate the application of DRL techniques for designing highly effi-
cient resource management solutions in grant-free NOMA (GF-NOMA) systems tailored
to meet the stringent demands of URLLC. Our focus centers on maximizing network en-
ergy efficiency (EE) and ensuring the fulfillment of URLLC users’ specific requirements.
The outcomes of our simulations demonstrate that the methods we propose achieve bet-
ter convergence properties, smaller signaling overhead, and larger network EE than other
benchmark methods.

Finally, our focus turns to the seamless combination of diverse services including eMBB,
mMTC, and URLLC in NOMA-based systems. In this context, we develop an innovative
resource management solution applying a joint optimization and cooperative multi-agent
DRL approach. The primary goal of this strategy is to maximize network EE for the
considered system while adhering to users’ diverse demands. Our extensive simulations
indicate that our proposed method provides superior performance regarding convergence
property and system EE over other considered benchmark methods.
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the literature review, limitations of existing works, and contributions of this thesis are
described. Chapter 2 provides common knowledge about different techniques applied to
URLLC-related scenarios in this thesis such as short-packet communications (SPC), grant-
free access, machine learning, and non-orthogonal multiple access (NOMA). Chapter 3
presents the analysis of block error rate and minimum blocklength of the SPC in low-
latency multiple-input multiple-output NOMA systems under Nakagami-m fading condi-
tions. Chapter 4 focuses on resource management strategy based on multi-agent deep
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Chapter 1
Introduction

The fifth generation (5G) and beyond wireless networks mark a pivotal shift in the realm
of telecommunications. These advanced networks aim to provide an array of different ser-
vices, fulfilling the diverse needs of modern-day connectivity. They are expected to provide
services with high data rates, large connection density, ultra-low latency, and extraordi-
nary reliability [1]. To achieve these goals, there are three primary service categories in 5G
and beyond: enhanced mobile broadband (eMBB), massive machine-type communications
(mMTC), and ultra-reliable low-latency communications (URLLC). With eMBB, users can
communicate with a substantial increase in data rates, enabling swift and high-bandwidth
content consumption. On the other hand, mMTC sets the stage for the seamless integration
of billions of devices into the network. However, it’s URLLC that stands out as the linch-
pin of these networks, providing unprecedented levels of reliability and ultra-low latency,
considering mission-critical applications and real-time responsiveness as the norm [2].

URLLC services are designed to meet the most stringent demands of applications where
reliability and ultra-low latency are mission-critical. These services are expected to open
groundbreaking changes in fields such as healthcare, autonomous vehicles, industrial au-
tomation, and beyond [3]. In a URLLC environment, data is transmitted with an almost
imperceptible delay, ensuring real-time interactions and precise control in scenarios where
split-second decisions are imperative. In particular, a general URLLC requirements has
been defined by the Third Generation Partnership Project (3GPP) standard [4, 5], speci-
fying the need for a reliability level of 1− 10−5 within 1 ms user plane latency for a data
payload of 32 bytes. Despite its immense benefits, URLLC still face several challenges
that must be addressed for their successful implementation. Within this chapter, we offer
a comprehensive examination of recent advancements in URLLC and its related technolo-
gies in recent years. Subsequently, we highlight the constraints encountered in these prior
studies and clarify our contributions to this field.
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1.1 Related Works

1.1 Related Works

In this section, we show an insight into the closest studies relevant to the primary contribu-
tions made in this dissertation. Specifically, we present the related works on short packet
communications (SPC) for URLLC-related systems, optimization for resource management
in URLLC-related systems, and the coexistence of diverse services such as eMBB, mMTC,
and URLLC.

1.1.1 Short Packet Communications for URLLC-Related Systems

URLLC has emerged as a highly potential candidate for 5G and future networks, catering
to the demands of novel applications with unparalleled requirements in terms of both
reliability and latency [6, 7]. In this regard, a novel communication method, known as
SPC, is gaining significant traction to meet these strict criteria. This approach arises due
to the demand for advanced transmission techniques tailored to latency-sensitive networks,
a context where conventional analytical methods relying on longer packet communications
prove inadequate [8]. The assessment of SPC performance has prompted the introduction
of new evaluation metrics in the research domain [9, 10], such as the ratio of pilots to the
information payload, namely overhead ratio, and block error rate (BLER).

Recently, there have been many studies on SPC under different scenarios such as per-
formance analysis regarding average achievable rate and BLER [11–18], SPC optimiza-
tion [19–21], and application of machine learning to SPC [22]. Specifically, considering
performance analysis, the work in [11] considered SPC based on a single-input single-
output (SISO) NOMA scheme over Rayleigh fading, where base station (BS) communi-
cates with two users. The network performance is characterized by deriving the average
BLER. In [12], a NOMA scenario in stochastic geometry was investigated and average
BLER was analyzed to investigate system performance. In [13], Lai et al. evaluated the
performance of a cooperative NOMA SPC system, where average BLER is derived. In [14],
a space diversity technique, namely multiple-input single-output (MISO), was applied for
NOMA-based SPC systems using wireless power transfer (WPT) scheme with the aim of
evaluating the outage probability of the considered systems. The study conducted in ref-
erence [15] explored the application of a multiple-input multiple-output (MIMO) scheme
to NOMA-based SPC. This investigation involved the derivation of an upper bound for
the probability of violating the delay target utilized for optimizing the transmission power.
The scenario considered in [15] involved each pair of NOMA users being served by an indi-
vidual transmit antenna. Additionally, the work described in [16] explored the marriage of
transmit antennas based on maximum ratio transmission (MRT) for serving NOMA users
with the aim of reducing BLER for SPC in MISO NOMA systems. In [17], Hashemi et
al. carried out the performance analysis based on BLER and average rate for SPC as-
sisted by reconfigurable intelligent surface (RIS). In [18], the application of RIS to SPC in
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NOMA systems was examined by deriving the average BLER expression for performance
evaluation.

For SPC optimization, the work in [19,20] investigated the problem of optimizing trans-
mission energy for SPC-assisted NOMA systems subject to heterogeneous delay conditions.
The work in [21] designed an optimal transmission strategy aimed at optimizing the av-
erage rate for SPC in a MISO network. In addition, another study in [22] explored the
application of machine learning to SPC in WPT-enabled multi-hop systems. The authors
in this work first derived a closed-form expression of BLER and performed the asymptotic
analysis to evaluate system performance. They then formulated a problem of optimizing
throughput and designed an effective deep learning framework toward real-time settings
using deep convolutional neural network (CNN) to address effectively this problem.

1.1.2 Resource Allocation Optimization for URLLC Systems

There have been several different optimization problems considered in the literature to
design URLLC protocols [23–31]. Specifically, the work in [23] investigated joint communi-
cation and computation offloading for hierarchical edge-cloud systems with URLLC, where
a latency minimization problem of computational tasks among multiple industrial Internet
of Things (IIoT) devices was examined. In [24,25], the authors studied the minimization of
decoding error probability while adhering to latency conditions for URLLC-enabled UAV
relay and factory automation systems. In [26], Sun et al. optimized resource management
for URLLC, where the network energy efficiency (EE) is maximized by optimizing antenna
configuration, bandwidth allocation, and power control under the constraints on reliability
and latency.

Taking intelligent features into account, the application of reinforcement learning (RL)
to resource management in URLLC-enabled systems has been conducted in [27–31]. In
particular, the work in [32] studied the dynamic channel allocation for URLLC traffic in
a multi-user multi-channel wireless network, guaranteeing that urgent packets have to be
successfully received in a timely manner. A Q-learning algorithm where the controller
learns the optimal policy under the absence of channel state information (CSI) and the
channel statistics was proposed for channel allocation problem. However, Q-learning al-
gorithm needs to build a Q-table for all network space (state-action space), hence it has
low convergence speed and is only applicable to small network, making it difficult to apply
for complicated issues in ultra-dense networks. To mitigate this challenge, Yang el al. [28]
applied decentralized actor-critic RL model to resolve the resource management problem
in URLLC internet of vehicles communication networks with the purpose of maximizing
the sum capacity while ensuring the URLLC requirements. In [29], the authors investi-
gated a power consumption minimization issue under reliability and latency conditions in
an orthogonal frequency division multiple access (OFDMA) system. They then proposed a
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DRL-based solution to resolve the problem by using generative adversarial networks. Con-
sidering grant-free transmissions as a promising method to guarantee URLLC requirements
in uplink massive access scenarios, the works in [30, 31] proposed methods based on deep
RL (DRL) techniques to attain optimal average throughput (i.e., number of users served
successfully) in massive URLLC (mURLLC) scenarios using grant-free NOMA.

1.1.3 Coexistence of eMBB, mMTC, and URLLC Heterogeneous Ser-
vices

Multiplexing eMBB, mMTC, and URLLC enables the coexistence of these services on
the same network. This is a major problem to be tackled in future wireless networks to
support diverse applications satisfying the high demands from these services. However,
they are considered as heterogeneous services due to their diverse requirements. This leads
to a crucial challenge in terms of resource management to ensure the coexistence of these
different services. To overcome this issue, network slicing can be utilized to accommodate
these services on the same network architecture [33–36]. In particular, Alsenwi et al. [33]
investigated a scenario of risk-sensitive eMBB-URLLC network slicing in downlink OFDMA
transmissions. In [34], a radio access network (RAN) eMBB-URLLC resource slicing within
OFDMA-based 5G networks was examined, where a sum-rate optimization subject to data
rate and URLLC requirements are considered. In [35], a coexistence between eMBB and
URLLC based on puncturing technique in downlink 5G networks was examined, where an
optimization problem of the minimum expected achieved rate according to eMBB service
while maintaining the provisions of the URLLC traffic is investigated. In addition, the
coexistence of different services in downlink OFDMA systems was considered in [36].

Network slicing is usually conducted based on OMA scenario. However, the exponen-
tial growth of the number of users leads to a demand for a more flexible and efficient
multiplexing method. In this regard, NOMA-based multiplexing scheme is demonstrated
as a potential method for enhancing network efficiency in uplink transmissions, as dis-
cussed in [37–40]. Specifically, in [37], a NOMA-based network slicing scheme for eMBB,
URLLC, and mMTC services was investigated and indicated that NOMA-based slicing
can outperform OMA-based one in guaranteeing heterogeneous requirements under some
considered scenarios. In [38], the authors examined NOMA-based slicing for eMBB and
URLLC, where the power minimization problem was considered. In [39], the coexistence of
eMBB and URLLC in MIMO NOMA scenarios was investigated. In [40], a network slicing
method for multiplexing eMBB, URLLC, and mMTC using rate-splitting-based NOMA
scheme was proposed.

In addition, machine learning-based multiplexing has been explored in [41–44] to de-
velop intelligently dynamic resource allocation mechanisms fulfilling the various QoS re-
quirements from different services and adapting to the wireless channel varying unpre-
dictably over the time. Given this context, the works [41–44] studied the coexistence
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scheme based on DRL techniques for different services in OFDMA-based [41, 42] and
NOMA-based [43,44] systems.

1.2 Limitations of Existing Works

In this section, we delve into the drawbacks and unaddressed challenges in the existing
literature that serve as direct motivators for this dissertation. To provide a brief overview,
we outline the principal limitations of the existing URLLC-related studies as follows:

• Although there have been many studies on SPC for URLLC-enabled systems, further
investigation is still necessary to attain a comprehensive insights for SPC. In particu-
lar, the analysis of BLER and blocklength minimization for NOMA-based SPC con-
sidering MIMO schemes and Nakagami-m fading - a general channel model, is miss-
ing in the related literature [11–16]. The missing scenario can achieve a significant
improvement in network performance related to BLER and minimum blocklength
aspects while providing more general understanding of the manners of SPC-enabled
NOMA systems based on space diversity.

• Taking intelligent features into account, the works [27–31] considered different RL al-
gorithms for resource allocation in URLLC systems under various optimization prob-
lems. However, energy-efficient maximization for URLLC-enabled grant-free NOMA
systems has not been exploited in these works.

• Despite the coexistence of eMMB, mMTC, and URLLC services has been investi-
gated under different scenarios in the existing literature, there are only a few works
investigating intelligent multiplexing methods for different services based on uplink
NOMA communications [43,44]. Therefore, it is still an open research direction and
needs more studies in future research.

Given the aforementioned constraints of URLLC-related scenarios, this dissertation
aims to address these challenges. The following section provides a concise summary of the
contributions made in this thesis.

1.3 Thesis Contributions

In the following, the objective of each chapter is provided with the purpose of highlighting
the primary contributions achieved within this dissertation.

Chapter 3 investigates the SPC in MIMO NOMA systems over Nakagami-m fading.
Our objective is to analyze the average BLER parameter to evaluate the SPC performance
in the considered system, based on which the blocklength minimization problem subject

20



1.3 Thesis Contributions

to reliability (BLER) constraint is considered. The main contributions of this chapter are
summarized as follows:

• Firstly, we introduce an innovative framework for analyzing the efficiency of SPC in
NOMA-based MIMO systems under Nakagami-m fading. This framework explores
various MIMO strategies, including transmit antenna selection (TAS), maximal ratio
combining (MRC), selection combining (SC).

• Secondly, we analyze the system performance by deriving the average BLER expres-
sions for users. We then perform the analysis of its asymptotic behavior in the high
signal-to-noise ratio (SNR), based on which we formulate and solve the blocklength
minimization problem under reliability (BLER) constraint.

• Finally, we provide numerical results to evaluate BLER and blocklength performance
of the considered system. Furthermore, we compare MIMO NOMA and MIMO OMA
in terms of blocklength performance with the aim of highlighting the advantages of
MIMO NOMA for low-latency communications.

The outputs of this chapter are published in:
[J1] D. D. Tran, S. K. Sharma, S. Chatzinotas, I. Woungang and B. Ottersten, “Short-

Packet Communications for MIMO NOMA Systems Over Nakagami-m Fading: BLER
and Minimum Blocklength Analysis,” in IEEE Transactions on Vehicular Technology,
vol. 70, no. 4, pp. 3583-3598, April 2021, doi: 10.1109/TVT.2021.3066367.

In chapter 4, we investigate grant-free NOMA scheme for uplink URLLC, where energy-
efficient (EE) resource management method is considered by formulating the EE maximiza-
tion problem subject to users’ URLLC requirements. We then design an efficient solution
based on multi-agent (MA) DRL to solve the examined problem. The summary of the
main contributions achieved in this chapter is outlined as follows:

• We investigate a URLLC-enabled grant-free NOMA system and formulate an average
EE maximization problem under users’ URLLC requirements. This requires the
development of a swift and effective communication protocol.

• We design a decentralized resource management strategy based on MADRL to solve
the considered issue by applying three different DRL techniques: Deep Q Network
(DQN), Double DQN (DDQN), and Dueling DDQN (3DQN).

• We then carry out the performance evaluation, comparing the proposed methods and
established benchmark approaches. This analysis aims to show the superiority of our
methods with respect to convergence characteristics and network EE gain. The ob-
tained simulation results highlight the superior performance achieved by our methods
as compared to investigated benchmark approaches under network EE, convergence
property, and signaling overhead aspects.
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The achievements of this chapter are published in the following venues:

[J2] D. D. Tran, S. K. Sharma, V. N. Ha, S. Chatzinotas and I. Woungang, “Multi-
Agent DRL Approach for Energy-Efficient Resource Allocation in URLLC-Enabled
Grant-Free NOMA Systems,” in IEEE Open Journal of the Communications Society,
vol. 4, pp. 1470-1486, 2023, doi: 10.1109/OJCOMS.2023.3291689.

[C1] D. D. Tran, S. K. Sharma and S. Chatzinotas, “BLER-based Adaptive Q-learning
for Efficient Random Access in NOMA-based mMTC Networks,” IEEE Vehicular
Technology Conference (VTC2021-Spring), Helsinki, Finland, 2021, pp. 1-5, doi:
10.1109/VTC2021-Spring51267.2021.9448787.

[C2] D. D. Tran, S. K. Sharma, S. Chatzinotas and I. Woungang, “Q-Learning-Based
SCMA for Efficient Random Access in mMTC Networks With Short Packets,” IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Finland, 2021, pp. 1334-1338, doi: 10.1109/PIMRC50174.2021.9569713.

[C3] D. D. Tran, V. N. Ha and S. Chatzinotas, “Novel Reinforcement Learning based
Power Control and Subchannel Selection Mechanism for Grant-Free NOMA URLLC-
Enabled Systems,” IEEE Vehicular Technology Conference: (VTC2022-Spring), Helsinki,
Finland, 2022, pp. 1-5, doi: 10.1109/VTC2022-Spring54318.2022.9860574.

In chapter 5, we consider the coexistence of heterogeneous services such as eMBB,
mMTC, and URLLC based on NOMA scheme. In this regard, we develop a novel resource
allocation strategy based on a joint optimization and cooperative MADRL approach to
maximize the network EE under heterogeneous QoS requirements from different users.
The main contributions of this chapter are given as follows:

• We investigate the coexistence of diverse services in a NOMA-based uplink network,
where eMBB and URLLC users are assigned orthogonally to a number of sub-channels
(SCs) to fulfill their stringent QoS requirements on high reliability, low latency, and
high data rate. Meanwhile, mMTC users can access any SCs freely and quickly
without any admission approval from BS to improve the spectrum access efficiency
and connectivity density.

• We formulate an EE maximization problem for the considered network under con-
straints on various QoS requirements of users.

• We design a novel learning-based resource allocation strategy to address the proposed
problem. In particular, a cooperative MADDQN (CMADDQN) scheme centralized
at the BS is utilized for SC assignment based on which a dynamic power allocation
solution is developed to obtain optimal transmission power for users.
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• We compare algorithm convergence and network EE of our proposed methods with
other benchmark approaches to clarify the advantages of our innovative solutions.

The achievements of this chapter are published in the following venues:

[J3] D. D. Tran, V. N. Ha, S. K. Sharma, T. T. Nguyen, S. Chatzinotas, and P. Popovski,
“Energy-Efficient NOMA for 5G Heterogeneous Services: A Joint Optimization and
Deep Reinforcement Learning Approach”, submitted to IEEE Transactions on Com-
munications.

[C4] D. D. Tran, S. K. Sharma, S. Chatzinotas and I. Woungang, “Learning-Based Mul-
tiplexing of Grant-Based and Grant-Free Heterogeneous Services with Short Packets,”
IEEE Global Communications Conference (GLOBECOM), Madrid, Spain, 2021, pp.
01-06, doi: 10.1109/GLOBECOM46510.2021.9685321.

[C5] D.D. Tran, V. N. Ha, S. Chatzinotas, and T. T. Nguyen, “A hybrid optimization
and deep RL approach for resource allocation in semi-GF NOMA networks,” IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Toronto, ON, Canada, 2023.

Finally, chapter 6 provides the conclusions of this dissertation and a discussion about
the potential avenues for future research.

1.4 Other contributions beyond the scope of the thesis

Throughout my doctoral studies, I have made contributions to several publications that
are not included in this thesis. The specifics of these contributions are outlined below:

Journal Papers

[J4] V. L. Nguyen, D. B. Ha, T. V. Truong, D. D. Tran, and S. Chatzinotas, “Secure
Communication for RF Energy Harvesting NOMA Relaying Networks with Relay-
User Selection Scheme and Optimization,” in Mobile Networks and Applications, pp.
1719-1733, Apr. 2022.

[J5] V. H. Dang, T. D. Ho, H. Tran, D. D. Tran, H. L. Quoc, C. So-In, S. Chatzino-
tas, and V. N. Vo, “Performance Optimization for Hybrid TS/PS SWIPT UAV in
Cooperative NOMA IoT Networks,” submitted to IEEE Transactions on Green Com-
munications and Networking.
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Conference Papers

[C6] T. M. Kebedew, V. N. Ha, E. Lagunas, D. D. Tran, J. Grotz, and S. Chatzino-
tas, “Reinforcement Learning for QoE-Oriented Flexible Bandwidth Allocation in
Satellite Communication Networks,” 2023 IEEE Global Communications Conference
(GLOBECOM), accepted.
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Chapter 2
Background

In this chapter, we provide fundamental knowledge about different techniques utilized in
this dissertation, such as short packet communications (SPC), grant-free access method,
machine learning for wireless communications, and non-orthogonal multiple access (NOMA).
Specifically, we present the basic concepts related to the above techniques to give a general
insights about the scenarios considered in this thesis. The specific problems under investi-
gation and the corresponding proposed solutions are presented in detail in the forthcoming
chapters.

URLLC is expected to support innovative applications characterized by unparalleled
demands for both reliability and latency [2]. Fig. 2.1 shows the potential URLLC appli-
cations. Historically, many applications such as industrial control systems are designed
based on wired systems to guarantee the required reliability due to the limitations of exist-
ing wireless networks. The integration of URLLC leverages robust wireless links, bringing
transformative advantages such as enhanced flexibility and reduced installation and main-
tenance expenses. Nevertheless, diverse application domains impose unique prerequisites
concerning both reliability and latency levels. Each sector demands a tailored approach to
ensure that URLLC’s capabilities align precisely with their specific operational demands.
Table 2.1 provides the general scenarios concerning the requirements of different applica-
tions in terms of reliability and latency [2].

Given the above context, there have been several key enablers considered promising
technologies to fulfill different URLLC requirements from heterogeneous applications [45,
46], as shown in Fig. 2.2. In the following, we present an overview of some key enablers
for URLLC applied in this dissertation, such as SPC, grant-free access, machine learning,
and NOMA.
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Figure 2.1: Potential URLLC applications

2.1 Short Packet Communications

SPC represent a crucial component within the realm of URLLC. Unlike traditional data
transmission designed to target Shannon’s channel capacity, which often involves larger
packets of information, SPC is tailored to meet the requirements of mission-critical appli-
cations that rely on the rapid and reliable exchange of small, time-sensitive data packets.
Let N , C, and ε as blocklength, Shannon capacity, and block error rate (BLER), respec-
tively. The achievable rate of SPC in finite blocklength (FBL) regime for a quasi-static flat
fading channel can be expressed as [8, 9]

R = C −
√
v

N
Q−1(ε) +O

( log2N

N

)
, (2.1)

where C = log2(1+γ), v = 1−1/(1+γ)2 represents the channel dispersion, γ is the signal-
to-interference-plus-noise ratio (SINR), Q−1(x) is the inverse of the Gaussian Q-function,
Q(x) =

∞∫
x

1√
2πe

− t2
2 dt, and O

(
log2 N
N

)
is the remainder terms of order log2 N

N . In SPC, an
important performance metric is BLER, which is determined approximately based on (2.1)
as follows:

ε ≈ Q
(
C − n/N√

v/N

)
, (2.2)
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Table 2.1: Reliability and latency requirements for different applications
Applications Latency (ms) Reliability (%) Data Size (bytes) Communication

Range (m)
Smart grid 3 - 20 99.999 80 - 1000 10 - 1000

Self-driving car 1 99 144 400
ITS 10 - 100 99.999 50 - 200 300 - 1000

Industrial automation 0.25 - 10 99.9999999 10 - 300 50 - 100
Augmented reality 0.4 - 2 99.999 12k - 16k 100 - 400

Tactile internet 1 99.99999 250 100000
V2V 5 99.999 1600 300

E-health 30 99.999 28 - 1400 300 - 500

Reliability

(10x)

Latency (ms)
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Figure 2.2: Key enablers for URLLC scenarios.

where R = n/N , n is the number of information bits. It is noteworthy that the approxi-
mation in (2.2) is attained by omitting the term O

(
log2 N
N

)
when N ≤ 100 [9]. From (2.2),
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the average BLER can be derived as

ε̄ =
∞∫

0

εfγ(x)dx, (2.3)

where fX(x) denotes the probability density function (PDF) of a random variable X.
However, direct derivation of ε̄ in (2.3) is challenging due to the Gaussian Q-function of
the instantaneous BLER ε. Therefore, an approximation method of ε can be applied, which
is given by [47]

ε ≈


1, γ ≤ ν
A, ν < γ < µ

0, γ ≥ µ
, (2.4)

where A = 0.5−χ
√
N(γ−β), χ =

√
1

2π(22n/N −1) , ν = β−1/2χ
√
N , µ = β+1/2χ

√
N , and

β = 2n/N − 1. The average BLER in (2.3) then can be derived more easily by substituting
(2.4) into (2.3) which is represented as

ε̄ ≈ χ
√
N

µ∫
ν

Fγ(x)dx, (2.5)

where FX(x) denotes the cumulative distribution function (CDF) of a random variable X.

2.2 Grant-Free Access

Grant-free (GF) access is a promising transmission method to reduce latency for URLLC,
especially in massive access scenarios [48, 49]. It holds the promise of transforming the
way critical communications are established in 5G and beyond networks. Specifically,
unlike grant-based (GB) traditional access methods that rely on a central authority to
grant access to users, GF access allows users to enter networks in a more flexible and
immediate manner. In this access method, users can transmit their data freely without the
need for prior authorization from the central controllers (e.g., base station, access point,
etc.), streamlining the process of initiating real-time and mission-critical communications.
This is particularly crucial for novel applications, such as autonomous vehicles, industrial
automation, and emergency response systems, where instant access to the network can
make a life-saving difference. In the following, the access protocols based on GF and
conventional GB transmission strategies are presented to clarify the advantages of GF
access method.
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Grant-Based Transmission Protocol

Fig. 2.3(a) depicts the conventional GB access protocol. In particular, its process can be
indicated through the following handshake steps between users and base station (BS).

GB Users BS
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RA Preambles Selection
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RRC Request

RRC Response

GA Request

Uplink Grant

Data Transmission

GF Users BS

Broadcast RA Preambles
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4)

5)

6)
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2)

Figure 2.3: Handshake procedures of GB and GF access methods

1. In the initial step, the BS disseminates a list of its accessible random access (RA)
preambles to the GB users within the network.

2. The GB users select one of the RA preambles and then upload their selections to the
BS, a process aimed at identifying the channels they are occupying.

3. The BS transmits RA response (RAR), consisting of the information on optimal data
rates, synchronization signals, and resource management.

4. The GB users send radio resource control (RRC) request, awaiting a response from
the BS to determine their temporary identity.
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5. The GB users are then granted to specific resource blocks. If there are no collisions,
the GB users can utilize the assigned channels and send a connection request. Oth-
erwise, they can go to the idle mode and wait until next time slot to perform the
handshake procedure again.

6. The GB users can transmit their data after achieving the BS’s permission.

It is noteworthy that the sequence of steps from one to five is referred to as RA process,
while steps six and seven are known as grant acquisition (GA) process. Thus, although
uplink grants conducted in GB access scheme can reduce the collision situations, it leads
to long latency.

Grant-Free Transmission Protocol

Basically, GF access is designed to reduce latency caused by the uplink grants implemented
in GB access by mitigating the GA process. Specifically, GF access can be divided into
two main categories: RA channel based (RACH-based) and RA channel less (RACH-less)
GF transmissions [50]. Their handshake procedures are shown in Figs. 2.3(b) and 2.3(c),
respectively. In RACH-based GF access method, the RA procedure is carried out, but after
establishing synchronization with the BS, GF users can transmit their data immediately
without conducting the GA process. Meanwhile, using RACH-less GF access method, GF
users can begin their data transmission without performing any RA and GA procedures.
Given this context, the GF access can offer a notable reduction in uplink transmission
latency when compared to GB access, but the probability of collisions gets higher.

2.3 Machine Learning for Wireless Communications

Machine learning (ML) has emerged as a potential technology solution for next generation
of wireless communications, i.e., 5G and beyond, changing how we design, manage, and
optimize networks [51]. By leveraging data-driven insights and adaptive algorithms, ML
techniques can bring superior capabilities to 5G and beyond wireless networks. Various
machine learning approaches which is classified in Fig. 2.4, mainly including supervised
learning (SL), unsupervised learning (UL), and reinforcement learning (RL), have been
deployed to solve different problems in these networks, such as channel prediction [52],
clustering and anomaly detection [53], network optimization and dynamic resource alloca-
tion [54]. Additionally, deep learning, a subfield of ML, has been exploited for complex
tasks such as spectrum sensing, modulation recognition, and beamforming [55]. These tech-
niques not only enhance the efficiency and reliability of wireless networks but also open the
way for more adaptive and intelligent communication systems, making them crucial tools
in the evolving landscape of wireless technologies.
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Figure 2.4: Machine learning approaches.

Taking different ML approaches into account, in SL method, models are trained on
labeled data, where the correct answers are provided. The objective is to find a mapping
or relationship between the inputs and their corresponding labels, allowing the model to
make accurate predictions on new, unseen data. SL method can be broadly categorized
into two main types: classification and regression, whose typical algorithms are provided in
Fig. 2.5. In classification, the model is trained to assign input data to predefined categories
or classes, while in regression, the model predicts a continuous numerical value based on
the input.

On the other hand, UL methods deals with unlabeled data, where the model identi-
fies hidden patterns or structures within the data. It is commonly applied for clustering
problems. Its typical algorithms are shown in Fig. 2.6. Clustering algorithms aim to
group similar data points into clusters, uncovering natural groupings in the data, which is
valuable for tasks like customer segmentation and image categorization.

Finally, RL is a prominent subfield of ML enabling agents to make sequential decisions
in an environment in order to maximize a cumulative reward. In RL, an agent interacts with
an environment, where it takes actions and subsequently receives feedback, i.e., rewards or
penalties, depending on the consequences of its decisions. In this regard, the objective is to
learn a strategy or policy leading to a sequence of actions that bring the highest possible
cumulative reward. RL problems are typically classified into two broad categories [56]:
model-free and model-based methods. In model-free RL, agents learn directly from their
interactions with the environment, aiming to optimize their policies through trial-and-
error manner. In contrast, model-based RL involves constructing an internal model of the
environment and using it to plan actions more effectively. Deep RL (DRL) is an exciting
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advancement within RL that incorporates deep neural networks (DNN) to handle high-
dimensional state spaces and complex decision-making tasks [51].

Figure 2.7: Reinforcement learning algorithms classification.

There are a lot of different RL algorithms have been proposed in the literature [57].
A general picture regarding RL algorithms is provided in Fig. 2.7. For example, one of
typical RL algorithms is Q-learning that belongs to the class of model-free RL method and
is particularly suited for problems with discrete state-action spaces [56]. The essence of
Q-learning lies in estimating a value function known as the Q-function, which indicates the
expected cumulative rewards that an agent can achieve by taking a specific action in a given
state and following an optimal policy. Using Q-learning, the agent constructs a dedicated
Q-table for the purpose of storing Q-values corresponding to every conceivable state-action
pairing. Through an iterative process, Q-learning updates these Q-values based on the
agent’s experiences in the environment, gradually improving its policy to maximize long-
term rewards. In addition, one of popular DRL algorithms is Deep Q-network (DQN) that
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combines the principles of Q-learning with the capacity of DNN to handle complex and
high-dimensional state spaces. The need for DQN arises from the limitations of traditional
Q-learning, which struggles when dealing with environments that have large state spaces
and require extensive exploration to learn optimal policies. By using DNN architecture,
DQN can approximate the Q-values of different state-action pairs, allowing it to tackle
challenging tasks in real-world systems [51].

2.4 Non-Orthogonal Multiple Access
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Figure 2.8: Illustration of two-user power-domain NOMA

NOMA has emerged as a potential next generation multiple access candidate for be-
yond 5G wireless networks [58]. In NOMA, multiple users share the same time and fre-
quency resources simultaneously, resulting in a non-orthogonal overlap of signals. This
approach enables higher spectral efficiency and better utilization of available resources.
NOMA is classified into two primary categories: power-domain NOMA and code-domain
NOMA. Specifically, power-domain NOMA assigns different power levels to users shar-
ing the same resource block (time/frequency), while code-domain NOMA employs unique
spreading codes to separate users’ signals. Considering a typical downlink power-domain
NOMA system, which consists of two users including one near user U1 and one far user
U2, as depicted in Fig. 2.8. Following downlink NOMA principle, BS first combines the
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transmitted messages of two users as a superposition message and then transmits it to two
users. In this regard, the superposition message can be formulated as [59]

x =
√
Pα1x1 +

√
Pα2x2, (2.6)

where P is the transmission power, αi (α1 + α2 = 1, 1 ≤ i ≤ 2) and xi denote the power
allocation coefficient and message according to user Ui, respectively. Thus, the received
signal at user Ui (1 ≤ i ≤ 2) can be represented as [59]

yi = hix+ wi, (2.7)

where hi is the channel coefficient of the link from the BS to user Ui and wi ∼ CN (0, N0)
denotes the additive white Gaussian noise (AWGN) at user Ui. Since user U1 is a near
user to the BS, hence it usually has channel conditions better than far user U2. Given this
context, it is assumed that user U1 is allocated with lower power than user U2, i.e., α1 ≤ α2.
Therefore, user U2 can directly decode its message x2 by considering the message from user
U1 as interfering noise. Consequently, the instantaneous signal-to-interference-plus-noise
ratio (SINR) at user U2 for the detection of x2 is given by

γ2 = α2γ0 |h2|2

α1γ0 |h2|2 + 1
, (2.8)

where γ0 = P
N0

denotes the average transmit signal-to-noise ratio (SNR). Conversely, user
U1 first needs to decode x2 due to α1 ≤ α2 and then removes this component from its
received signal by applying successive interference cancellation (SIC) technique [60]. After
that, it can detect its own message x1. Based on the above discussion, the instantaneous
SINRs at user U1 for the detection of x2 and x1 are respectively written by

γ12 = α2γ0 |h1|2

α1γ0 |h1|2 + 1
, (2.9)

and
γ11 = α1γ0 |h1|2 . (2.10)

In addition, NOMA standardization for both uplink and downlink transmissions has
been also studied in the third Generation Partnership Project (3GPP) frameworks in recent
years [61–63]. Its recent developments, such as grant-free NOMA [31] and rate-splitting-
based NOMA [40], is opening the door to make it a promising candidate for addressing the
diverse needs of future wireless networks, especially in massive access scenario [58].
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Chapter 3
Short-Packet Communications in
URLLC-Enabled Systems: BLER and
Minimum Blocklength Analysis

Recently, ultra-reliable and low-latency communications (URLLC) using short-packets has
been proposed to fulfill the stringent requirements regarding reliability and latency of
emerging applications in 5G and beyond networks. In addition, multiple-input multiple-
output non-orthogonal multiple access (MIMO NOMA) is a potential candidate to im-
prove the spectral efficiency, reliability, latency, and connectivity of wireless systems. In
this chapter, we investigate short-packet communications (SPC) in a multi-user downlink
MIMO NOMA system over Nakagami-m fading, and propose two antenna-user selection
methods considering two clusters of users having different priority levels. In contrast to
the widely-used long data-packet assumption, the SPC analysis requires the redesign of the
communication protocols and novel performance metrics. Given this context, we analyze
the SPC performance of MIMO NOMA systems using the average block error rate (BLER)
and minimum blocklength, instead of the conventional metrics such as ergodic capacity and
outage capacity. More specifically, to characterize the system performance regarding SPC,
asymptotic (in the high signal-to-noise ratio regime) and approximate closed-form expres-
sions of the average BLER at the users are derived. Based on the asymptotic behavior of
the average BLER, an analysis of the diversity order, minimum blocklength, and optimal
power allocation is carried out. The achieved results show that MIMO NOMA can serve
multiple users simultaneously using a smaller blocklength compared with MIMO OMA,
thus demonstrating the benefits of MIMO NOMA for SPC in minimizing the transmission
latency. Furthermore, our results indicate that the proposed methods not only improve
the BLER performance, but also guarantee full diversity gains for the respective users.
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3.1 Introduction

The chapter is organized as follows. Introduction to the current state of the art is
discussed in Section 3.1. Section 3.2 introduces the system model. The proposed approach
for BLER performance analysis with SPC is presented in Section 3.3. Section 3.4 shows the
the proposed analytical framework for optimal power allocation and minimum blocklength.
Section 3.5 describes the simulation results. Finally, Section 3.6 provides the summary
and concluding remarks of this chapter.

3.1 Introduction

URLLC has recently been considered as a promising technology for the 5th generation
(5G) and beyond wireless networks to support novel applications with unprecedented re-
quirements of reliability and latency [6, 7, 64]. Furthermore, it is a potential solution for
mission-critical Internet of Things (IoT) applications such as industrial automation, remote
surgery, and vehicle-to-everything (V2X) communications, which require high reliability
and low latency [65, 66]. URLLC systems should be designed to meet the requirements
of high reliability (99.999%) and low latency (1 ms) [8]. To achieve such stringent re-
quirements, a new transmission approach, i.e., SPC, could be a promising solution. This
is different from the traditional analytic methods designed to target Shannon’s channel
capacity using long data-packets, which are no longer suitable for low latency systems [8].
To characterize the performance of SPC, new performance metrics including BLER and
overhead ratio (i.e., ratio of pilots to the information payload), have been introduced in
the literature [9, 10,67].

Besides, NOMA has recently emerged as a promising technology to improve the spectral
efficiency and user fairness for wireless networks [68, 69]. In contrast to the orthogonal
multiple access (OMA) which utilizes orthogonal resources (e.g., time and frequency) to
support multiple users, this technique can serve them at the same time/frequency/code by
using the power domain and effective interference management methods, such as SIC [68].
Therefore, NOMA can more effectively support massive connectivity and further improve
the reliability and latency for wireless systems [70, 71]. With its potential advantages,
NOMA standardization has been recently studied in 3GPP frameworks [61–63] including
the 3GPP Release 16 [63]. Also, the latest trend is to employ NOMA in the uplink due to
the emergence of IoT and machine-type communication systems [63,64,72]. Thus, NOMA
and its variations are expected to be employed in various 5G and beyond application
scenarios [71,73,74].

In addition, the combination of NOMA and multiple-input multiple-output (MIMO)
systems (so-called MIMO NOMA), which can significantly enhance the spectral efficiency
and performance of NOMA systems, has also been investigated in recent years [75, 76].
The ergodic capacity analysis of MIMO NOMA systems has been considered in [77], where
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the authors have proved the superiority of MIMO NOMA over MIMO OMA in terms of
capacity. To exploit the spatial degrees of freedom, some MIMO NOMA schemes have
been proposed in the literature [78, 79]. Specifically, the authors in [23] have considered a
multi-beam MIMO NOMA scenario, where multiple analog beams are formed for downlink
transmission of a NOMA user group by exploiting the channel sparsity and a large scale
antenna array. Meanwhile, the work in [24] has investigated a space-time coded MIMO
NOMA system, where two users’ signals are mapped into n-dimensional constellations
corresponding to the same algebraic lattices from a number field. Although the system
performance can be significantly improved with the increase in the utilized number of
antennas in MIMO systems, this requires large power consumption and high complexity of
signal processing [80]. To mitigate these issues while ensuring the diversity and capacity
benefits from MIMO, transmit antenna selection (TAS) scheme has been proposed as a
promising solution to improve the performance gain of MIMO NOMA systems [60,80,81].
It is noteworthy that the above works on MIMO NOMA have been conducted under the
assumption of long data-packet transmissions, which is no longer applicable for emerging
URLLC applications with short data-packets in 5G and beyond networks [2, 3, 64].

To overcome this challenge, in this chapter, we propose to utilize SPC for MIMO NOMA
systems to improve the reliability and latency as well as enhance the spectral efficiency and
connectivity for wireless systems. As stated earlier, the large power consumption and high
computational complexity of MIMO systems are putting a crucial challenge in designing
effective communication protocols for SPC-based MIMO NOMA systems. Therefore, we
consider a scenario, where TAS is used at the transmitter, and selection combining (SC) and
maximal ratio combining (MRC) are utilized at the users with the purpose of improving the
performance and reducing the complexity for MIMO NOMA systems with SPC. Herein,
suitable performance metrics for SPC including average BLER and minimum blocklength,
are utilized instead of the conventional ones such as ergodic capacity and outage capacity.

Recently, there have been a few works on SPC in NOMA systems, which is considered
as a promising solution to enhance the reliability, latency, and connectivity for wireless
networks [11–16,19,20]. In particular, in [11], a two-user NOMA system with short-packets
over Rayleigh fading channels was considered, in which the average BLER at users is derived
to evaluate the system performance. In [12], the BLER performance of a NOMA system
was addressed, where stochastic geometry and Nakagami-m fading channels are considered.
In [13], X. Lai et al. analyzed the performance of a cooperative NOMA SPC system over
Rayleigh fading channels. Furthermore, the transmission energy minimization problem
and packet scheduling for two-user downlink NOMA systems with strictly heterogeneous
latency constraints were investigated in [19, 20]. However, the works [11–13, 19, 20] only
considered single-input single-output (SISO) systems.
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To exploit the benefits of multiple antennas in improving the reliability and reducing the
latency for SPC in NOMA systems, the work in [14] investigated a multiple-input single-
output (MISO) scheme to evaluate the outage performance of a URLLC NOMA system
with wireless power transfer. In [15], MIMO NOMA for URLLC systems was considered to
enhance the reliability and latency performance of the system. In this regard, a closed-form
upper bound for the delay target violation probability was derived in [15] to identify the
sufficient and necessary condition for the optimal transmit power. However, the analysis
of average BLER and minimum blocklength was not considered in [15]. The works in
both [14] and [15] investigated a scenario where an N -antenna base station (BS) provides
services to N pairs of NOMA users, in which each pair of users is served by a distinct
single transmit antenna. In contrast to this scenario, in [16], the combination of transmit
antennas to serve a pair of users was examined in order to enhance the BLER performance
of short-packet NOMA systems by utilizing the maximum ratio transmission (MRT), in
which only the MISO scenario was considered.

Although MRT can significantly improve the system performance by combining all
transmit antennas for transmission, it leads to high complexity of the signal processing and
feedback overhead [82]. Against this context, TAS has been proposed as a low-complexity
and power-efficient solution for multi-antenna transmitters to enhance the performance of
NOMA systems by selecting a best transmit antenna for transmission that maximizes the
signal-to-noise ratio (SNR) at the receiver side [60, 80, 81]. Nevertheless, the short-packet
transmission in MIMO NOMA systems considering the TAS solution, average BLER, and
minimum blocklength has not yet been analyzed. Furthermore, it is noted that most of
these existing studies [11–16] only investigated Rayleigh fading channels. Research on
SPC for MIMO NOMA systems applying TAS for the transmitter, selection combining
(SC) and maximal ratio combining (MRC) for the receiver, over a generic fading channel,
i.e., Nakagami-m, to improve the system performance more effectively and bring more
general insights of the system behavior has not yet been conducted, and thus is the focus
of this chapter.

In contrast to the existing related works, in this chapter, we propose a new framework to
analyze the system performance of utilizing SPC in a NOMA network, in which MIMO and
Nakagami-m distribution are considered. Most existing works on NOMA are conducted
under the assumption that NOMA is carried out based on the difference in users’ channel
conditions [11–16,19,20,60,68–70,74–77,81]. More precisely, in a two-user downlink NOMA
system, a BS transmits information to the users by superimposing users’ messages with
different transmit power levels [68]. The user having worse channel quality is allocated with
the higher power level compared with the user having a better channel condition. However,
in practice, users may have similar channel conditions but require different quality of service
(QoS) as discussed in [83–85]. For example, some users may need to be served faster with
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low targeted data-rate, i.e, incident alerts, while some users can be served with the best
effort, i.e., downloading of multimedia files [84]. In such a heterogeneous scenario, NOMA
scheme becomes advantageous as compared to the conventional OMA as it can concurrently
serve users having different QoS priorities with the same resources (time/frequency/code).

Given this context, we examine a scenario, in which a BS communicates with two user
clusters having different priority levels over Nakagami-m fading channels, where the BS and
all users are equipped with multiple antennas. Note that Nakagami-m with parameter m
is described as a general distribution that can include the well-known Rayleigh distribution
and approximate the Rician one with the parameter K, where m = (K + 1)2 / (2K + 1)
[86]. In contrast to [12], which considers Nakagami-m fading channels for the BLER deriva-
tion in SISO case, our analysis derives the BLER expression for a more general scenario,
i.e., MIMO. Herein, different MIMO schemes are investigated to reduce the complexity of
signal processing and exploit the benefits of multiple antennas in improving the system
performance. Particularly, at the BS, TAS is utilized to select the best transmit antenna
for transmission that maximizes the post-processed SNR at the receiver [82]. Besides, at
the user-side, two different diversity techniques are investigated: 1) SC, which selects the
best received signal branch for further processing; and 2) MRC, which combines all the
received signal branches from receive antennas to maximize the output SNR.

In addition, as discussed in [60,78,79,81], assigning all users in a system for the imple-
mentation of NOMA is difficult due to the strong co-channel interference, leading to large
complexity and high decoding delay. To overcome this issue, hybrid NOMA has recently
been considered as a promising solution for 5G and beyond networks [87,88]. Particularly,
in this solution, all users in a network are divided into multiple small groups. Herein,
the users in each group are served by NOMA, whereas the different groups are assigned
to different orthogonal resource blocks (e.g., time or frequency). Therefore, in this chap-
ter, we consider a scenario, where users are paired1 to perform NOMA with the purpose
of decreasing the strong co-channel interference in NOMA systems [59, 89, 90]. This is a
common assumption widely adopted in the NOMA literature to reduce the computational
complexity and time delay of SIC decoding [60, 78, 79, 81]. It is noted that the achieved
results from this analysis can be straightforwardly applied to different groups, which are
incorporated into the network in an orthogonal manner.

Therefore, the main contributions of this chapter are summarized as follows:

1. Firstly, we propose a novel framework to analyze the performance of an SPC-based
NOMA system, where MIMO transmission and Nakagami-m fading are considered.

1It is noted that the proposed schemes can be applied to the general scenario with more than two users
within a NOMA group, which, however, results in higher computational complexity and larger time delay
of SIC decoding, and is thus left for future work.
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To achieve a general insight into the system behavior, we investigate two different
cases of applying MIMO schemes for the transmitter and receiver sides including
TAS/SC and TAS/MRC. Moreover, we investigate two antenna-user selection meth-
ods, namely high-priority cluster selection (HCS) and low-priority cluster selection
(LCS), to design the effective communication protocols for SPC in a MIMO NOMA
system.

2. Secondly, we derive closed-form expressions for the average BLER of users in all
considered cases. It should be noted that this work analyzes the performance in
terms of average BLER, which is more suitable for SPC than widely-used performance
metrics such as ergodic capacity and outage capacity [8, 9].

3. Thirdly, we derive asymptotic expressions for the average BLER in the high SNR
regime and carry out an analysis of diversity order, minimum blocklength and opti-
mal power allocation for SPC-based MIMO NOMA system based on the asymptotic
average BLER.

4. Finally, we perform the blocklength comparison between MIMO NOMA and MIMO
OMA systems to clarify the superiority of MIMO NOMA compared to MIMO OMA
in terms of low-latency transmission when considering SPC.

3.2 System Model

In this chapter, the SPC in a multiuser downlink MIMO NOMA system over Nakagami-
m fading channels is considered, as depicted in Fig. 3.1. The network consists of one
base station (BS), denoted by S, two cluster of users, denoted by H = {H1, . . . ,HI}
and L = {L1, . . . , LJ}. In addition, the BS and the users in both clusters H and L are
equipped with KS , KH , and KL antennas, respectively. As reported earlier in Section 3.1,
it is assumed that the users’ QoS requirements are taken into account in the design of the
MIMO NOMA transmission in SPC instead of their channel conditions. More precisely, we
consider the scenario where the users in clusters H and L are treated as high-priority and
low-priority ones, respectively. Furthermore, the users are paired to perform NOMA with
the purpose of decreasing the strong co-channel interference in NOMA systems [59,89,90].
Specifically, each user pair consists of two users having different priorities selected from
both the clusters H and L. Moreover, as mentioned earlier in Section 3.1, to exploit the
benefits of multiple antennas, we consider the scenario where TAS is employed at BS S
whereas SC or MRC is utilized at the users’ side (i.e., TAS/SC or TAS/MRC).

Regarding channel model, let hSkHi,r

(
hSkLj,s

)
(1 ≤ k ≤ KS , 1 ≤ i ≤ I, 1 ≤ j ≤ J ,

1 ≤ r ≤ KH , 1 ≤ s ≤ KL) denote the channel coefficient of the link from antenna k at BS S
to antenna r (s) at the user Hi (Lj). Herein, hSkHi,r

(
hSkLj,s

)
is an independent identically

43



Short-Packet Communications in URLLC-Enabled Systems: BLER and Minimum
Blocklength Analysis

Base Station 

(S)

…

…

…

…

…

…

High-Priority Users

H1

HI

L1

LJ

Low-Priority Users

SIC of Hi

signal

Lj signal 

detection

User Lj

Hi signal 

detection

User Hi

P
o

w
e
r 

a
t 

B
S

Resource Blocks

For user Hi

For user Lj

Figure 3.1: Model of a MIMO NOMA system under SPC over Nakagami-m fading.

distributed (i.i.d) random variable following Nakagami-m distribution with parameter mH

(mL) and mean value ΩH = E
[∣∣∣hSkHi,r

∣∣∣2] (ΩL = E
[∣∣∣hSkLj,s

∣∣∣2]). Thus, the Nakagami-m
distributions of hSkHi,r and hSkLj,s are, respectively, given by [86]

fhSkHi,r
(x) = 2mmH

H x2mH−1

Γ (mH) ΩH
e

− mH x2
ΩH , (3.1)

and
fhSkLj,s

(x) = 2mmL
L x2mL−1

Γ (mL) ΩL
e

− mLx2
ΩL . (3.2)

3.2.1 Antenna and User Selection

In this subsection, we present the proposed solutions of selecting antennas and users. As
stated earlier, the user pairing is utilized for designing the MIMO NOMA. Specifically, the
best user in each cluster is selected to perform NOMA based on the channel gains of the link
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from BS S to the users in order to improve the performance of NOMA implementation2 [91].
Furthermore, we investigate two different antenna-user selection methods, i.e., HCS and
LCS, which aim to improve the performance for the users selected from clusters H and L,
respectively. It is noted that this selection process can be carried out prior to information
transmission through a suitable signaling and channel state information (CSI) estimation
method [60]. In addition, as in [60, 75, 81], the perfect CSI scenario is considered and
the required partial CSI, i.e., the instantaneous channel power gains, for each method is
assumed to be available at the BS.

HCS Method

Since the users in cluster H has higher priority than those in cluster L, this method focuses
on improving the performance of the selected user in cluster H. In particular, HCS method
aims to jointly select a transmit antenna and a user in cluster H to maximize the channel
power gain of the link from the BS S to the selected user.

For the TAS/SC scheme, the indices of selected transmit antenna, k̂, user and receive
antenna selected from cluster H, î and r̂H , are given by [82,85](

k̂, î, r̂H
)

= arg max
1≤k≤KS ,1≤i≤I,1≤r≤KH

{∣∣∣hSkHi,r

∣∣∣2} , (3.3)

and the indices of user and receive antenna selected from cluster L, ĵ and r̂L, are expressed
as (

ĵ, r̂L
)

= arg max
1≤j≤J,1≤r≤KL

{∣∣∣hSk̂Lj,r

∣∣∣2}. (3.4)

For TAS/MRC, k̂, î, and ĵ are given by [82](
k̂, î
)

= arg max
1≤k≤NS ,1≤i≤I

{
∥hSkHi∥

2
}
, (3.5)

and
ĵ = arg max

1≤j≤J

{∥∥∥hSk̂Lj

∥∥∥2
}
, (3.6)

where hSkHi

(
hSkLj

)
represents the KH × 1 (KL × 1) channel vector of the link from

antenna k at BS S to user Hi (Lj).

2In fact, some other sophisticated user pairing methods may further improve the performance of SPC-
based MIMO NOMA systems. However, it is beyond the scope of this chapter.
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LCS Method

To improve the performance of the selected user in cluster L which has a lower priority, an
antenna at BS S and a user in cluster L are jointly chosen for transmission to provide the
best channel power gain of the link from BS S to the selected user. Mathematically, k̂, î,
ĵ, r̂H , and r̂L in this method can be expressed as follows:

For TAS/SC:
(
k̂, ĵ, r̂L

)
= arg max

1≤k≤KS ,1≤j≤J,1≤r≤KL

{∣∣∣hSkLj,r

∣∣∣2} ,(
î, r̂H

)
= arg max

1≤i≤I,1≤r≤KH

{∣∣∣hSk̂Hi,r

∣∣∣2} , (3.7)

and for TAS/MRC: 
(
k̂, ĵ

)
= arg max

1≤k≤NS ,1≤j≤J

{∥∥∥hSkLj

∥∥∥2
}
,

î = arg max
1≤i≤I

{∥∥∥hSk̂Hi

∥∥∥2
}
,

. (3.8)

3.2.2 Information Transmission Process and Channel Statistics

With the NOMA protocol, BS S transmits the mixed message [59]

x =
√
PSαHî

xHî
+
√
PSαLĵ

xLĵ
(3.9)

to users Hî and Lĵ . Herein, PS is the total transmit power, αHî
and αLĵ

(αHî
+ αLĵ

= 1)
denote the power allocation coefficients, as well as xHî

and xLĵ
represent the messages for

users Hî and Lĵ , respectively. It is noted that αHî
> αLĵ

> 0 due to higher priority of user
Hî. Thus, the received signal at user U

(
U ∈

{
Hî, Lĵ

})
is given by

yU = uUhSk̂U

√
PS

(√
αHî

xHî
+
√
αLĵ

xLĵ

)
+ uUwU , (3.10)

where wU ∼ CN (0, N0) denotes the additive white Gaussian noise (AWGN) at user U , and
uU represents the signal processing operation at user U , which is defined as in [92]

uU =


eKU ,r̂U

, for TAS/SC
h†

S
k̂

U∥∥∥hS
k̂

U

∥∥∥ , for TAS/MRC , (3.11)

where eK,i is a 1×K vector whose the i-th element is equal to 1, and the others are zeros.
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According to NOMA principle, the user Hî can directly decode its own message, xHî
,

since it is allocated with larger transmit power (i.e., αHî
> αLĵ

), hence, the interference
generated by the signal of the user Lĵ , xLĵ

, can be treated as noise [60]. Thus, the
instantaneous signal-to-interference-plus-noise ratio (SINR) at the user Hî to detect xHî

is
written as

γ
xH

î
Hî

=
αHî

γ0gSH

αLĵ
γ0gSH + 1 , (3.12)

where γ0 = PS
N0

denotes the average transmit SNR and gSH is defined as

gSH =


∣∣∣hSk̂Hî,r̂H

∣∣∣2, for TAS/SC∥∥∥hSk̂Hî

∥∥∥2
, for TAS/MRC

. (3.13)

Meanwhile, since the user Hî is served with higher priority than the user Lĵ (i.e.,
αHî

> αLĵ
), the user Lĵ first needs to decode xHî

and then remove this component from
the received signal by using SIC before detecting its own message, xLĵ

, [60]. Unlike [11–
13, 60] considering the perfect SIC (PSIC), in this chapter, we consider the imperfect SIC
(ISIC) scenario3 to achieve more practical insights, where there exists a residual interference
component due to the ISIC process [93]. Thus, the instantaneous SINRs at the user Lĵ to
detect xHî

and xLĵ
are respectively expressed as

γ
xH

î
Lĵ

=
αHî

γ0gSL

αLĵ
γ0gSL + 1 , (3.14)

and
γ
xL

ĵ

Lĵ
=

αLĵ
γ0gSL

ψαHî
γ0gSL + 1 , (3.15)

where ψ = E
[∣∣∣xHî

− x̂Hî

∣∣∣2] denotes the level of residual interference caused by the ISIC
process at user Lĵ , which indicates the difference between the actual signal xHî

and the
estimated signal x̂Hî

. Specifically, ψ = 0 means perfect SIC and 0 < ψ ≤ 1 denotes ISIC.
In (3.14) and (3.15), gSL is given by

gSL =


∣∣∣hSk̂Lĵ,r̂L

∣∣∣2, for TAS/SC∥∥∥hSk̂Lĵ

∥∥∥2
, for TAS/MRC

. (3.16)

3It is noteworthy to mention that in this chapter, we consider perfect CSI to evaluate the effects of ISIC
on the performance of SPC-based MIMO NOMA systems. However, analyzing the impact of imperfect CSI
on the performance of the SPC systems is also an important problem to be investigated in future works.
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3.3 Proposed approach for BLER performance analysis with
SPC

In this section, we present some preliminaries on SPC and average BLER calculation, the
derivation of CDF of channel power gains, and the average BLER analysis by utilizing
HCS and LCS methods with TAS/SC and TAS/MRC schemes, specified in Section 3.2.1.

3.3.1 Preliminaries

Considering SPC with blocklength N , the Shannon capacity C, and the BLER ε, the
maximum achievable rate can be expressed as [11]:

R = C −
√
v

N
Q−1 (ε) +O

( log2N

N

)
, (3.17)

where Q−1 (x) is the inverse of the Gaussian Q-function, Q (x) =
∞∫
x

1√
2πe

− t2
2 dt, C =

log2 (1 + γ), v = (log2e)2
[
1− 1

(1+γ)2

]
represents the channel dispersion, γ is the SNR or

SINR, and O
(

log2N
N

)
is the remainder terms of order log2N

N . From (3.17), an approximation
method, which is commonly referred to as normal approximation [9], is utilized to compute
the instantaneous BLER as follows:

ε ≈ Q
(
C − n/N√

v/N

)
, (3.18)

where R = n/N , n denotes the number of information bits, and the approximation is
achieved by omitting the term O

(
log2N
N

)
when N ≥ 100 as in [9].

Based on (3.18), the instantaneous BLER of decoding the message of user V , xV(
V ∈

{
Hî, Lĵ

})
, at user U

(
U ∈

{
Hî, Lĵ

})
is given by [11]:

εxV
U ≈ Q

 log2 (1 + γxV
U )− nV /NV√
vxV
U /NV

 , (3.19)

where vxV
U = (log2e)2

[
1− 1

(1+γxV
U )2

]
, nV and NV denote the number of information bits

and blocklength to user V , respectively. Thus, the instantaneous BLER is calculated
through the received SINR, the Shannon capacity, the number of information bits, and
the blocklength; and specific encoding and modulation methods are not considered. From
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(3.19), the average BLER ε̄xV
U has the following form

ε̄xV
U ≈

∞∫
0

εxV
U fγxV

U
(x) dx, (3.20)

where fX(x) is the probability density function (PDF) of a random variable X. It is
challenging to derive ε̄xV

U in (3.20). Therefore, an approximation4 of εxV
U is utilized as

discussed in [47], i.e.,

εxV
U ≈


1, γxV

U ≤ vV
AxV
U , vV < γxV

U < µV

0, γxV
U ≥ µV

, (3.21)

where AxV
U = 0.5 − χV

√
NV (γxV

U − βV ), χV =
√√√√ 1

2π
(

2
2nV
NV −1

) , vV = βV − 1
2χV

√
NV

, µV =

βV + 1
2χV

√
NV

, and βV = 2
nV
NV − 1. By substituting (3.21) into (3.20), ε̄xV

U can be given by

ε̄xV
U ≈ χV

√
NV

µV∫
vV

FγxV
U

(x) dx. (3.22)

For user Hî, from (3.12) and (3.22), its average BLER is expressed as

ε̄Hî
= ε̄

xH
î

Hî

≈ χHî

√
NHî

µH
î∫

vH
î

F
γ

xH
î

H
î

(x) dx.
(3.23)

For user Lĵ , it first needs to remove the message of user Hî, i.e., xHî
, by using ISIC

before detecting its own message, i.e., xLĵ
. Therefore, user Lĵ cannot decode xLĵ

if it
decodes xHî

unsuccessfully. This will affect its BLER performance. Given this context,
the average BLER at user Lĵ is given by

ε̄Lĵ
= ε̄

xH
î

Lĵ
+
(
1− ε̄

xH
î

Lĵ

)
ε̄
xL

ĵ

Lĵ
, (3.24)

4In this chapter, we consider an approximation method for BLER, as discussed in [47], to analyze the
performance of SPC-based MIMO NOMA systems in terms of BLER. Deriving the error bound for BLER
based on Jensen’s inequality [94], which is more challenging, could be an interesting problem to investigate
in future work.

49



Short-Packet Communications in URLLC-Enabled Systems: BLER and Minimum
Blocklength Analysis

where

ε̄
xH

î
Lĵ
≈ χHî

√
NHî

µH
î∫

vH
î

F
γ

xH
î

L
ĵ

(x) dx,

and

ε̄
xL

ĵ

Lĵ
≈ χLĵ

√
NLĵ

µL
ĵ∫

vL
ĵ

F
γ

xL
ĵ

L
ĵ

(x) dx.

3.3.2 Derivation for Cumulative Distribution Function (CDF) of Chan-
nel Power Gains

To derive the average BLER at users Hî and Lĵ , we first need to calculate the CDFs of
gSH and gSL with TAS/SC and TAS/MRC schemes in both HCS and LCS methods. Note
that these derivations are based on the MIMO diversity techniques, channel distribution,
and the antenna-user selection methods utilized for the analysis, regardless of the types of
transmission (e.g., SPC or long data-packet transmissions). This is described as follows:

HCS Method

The CDFs of gSH and gSL with HCS method are derived in the following propositions.

Proposition 1. Under HCS method and Nakagami-m fading, the CDF of gSH with TAS/SC
and TAS/MRC schemes is given by

FHCSgSH
(x) = 1 +

aH,I∑
p=1

∑
∆H=p

ΦHcH,Ix
φHe

− pmH x

λSH , (3.25)

where ∆H = ∑bH−1
q=0 δH,q, φH = ∑bH−1

q=0 qδH,q, ΦH = (−1)p
[
bH−1∏
q=0

(
mq

H

q!λq
SH

)δH,q
]
, λSH =

ΩHd
−θ
SH , aH,I =

{
KSKHI, for TAS/SC
KSI, for TAS/MRC

, bH =
{

mH , for TAS/SC
mHKH , for TAS/MRC

,

and cH,I =
(

aH,I

p

)(
p

δH,0, . . . , δH,bH−1

)
, dSH and θ denote the distance and path

loss exponent of the link from BS S to user Hî, respectively.

Proof. See Appendix A.1.
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Proposition 2. Under HCS method and Nakagami-m fading, the CDF of gSL with TAS/SC
and TAS/MRC schemes is expressed as

FHCSgSL
(x) = 1 +

aL,I∑
p=1

∑
∆L=p

ΦLcL,Ix
φLe

− pmLx

λSL , (3.26)

where ∆L = ∑bL−1
q=0 δL,q, φL = ∑bL−1

q=0 qδL,q, ΦL = (−1)p
[
bL−1∏
q=0

(
mq

L

q!λq
SL

)δL,q
]
, λSL =

ΩLd
−θ
SL, aL,I =

{
KLJ, for TAS/SC
J, for TAS/MRC

, bL =
{

mL, for TAS/SC
mLKL, for TAS/MRC

, and

cL,I =
(

aL,I

p

)(
p

δL,0, . . . , δL,bL−1

)
, dSL and θ denotes the distance of the link from

BS S to user Lĵ, respectively.

Proof. It is noted that TAS is used to select the best transmit antenna for user Hî in this
case, hence, it is considered as a random solution for user Lĵ . As such, using (3.3), (3.4),
(3.5), and (3.6), the CDF of gSL is given by [82,95]

FgSL (x) =

1−
bL−1∑
p=0

mp
L

p!λpSL
xpe

− mLx

λSL

aL,I

. (3.27)

By using binomial expansion and multinomial theorem similar to the proof of Propo-
sition 1 in Appendix A.1, we obtain the final expression of FgSL (x) as in (3.26) and the
proof is completed.

LCS Method

Utilizing (3.7), (3.8), and algebraic manipulations similar to the proof of Proposition 1 in
Appendix A.1, the CDF of gSH and gSL in this case are expressed as

FLCSgSH
(x) = 1 +

aH,II∑
p=1

∑
∆H=p

ΦHcH,IIx
φHe

− pmH x

λSH , (3.28)

and

FLCSgSL
(x) = 1 +

aL,II∑
p=1

∑
∆L=p

ΦLcL,IIx
φLe

− pmLx

λSL , (3.29)
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where aH,II =
{

KHI, for TAS/SC
I, for TAS/MRC

, cH,II =
(

aH,II

p

)(
p

δH,0, . . . , δH,bH−1

)
,

aL,II =
{

KSKLJ, for TAS/SC
KSJ, for TAS/MRC

, and cL,II =
(

aL,II

p

)(
p

δL,0, . . . , δL,bL−1

)
.

3.3.3 Average BLER Analysis of HCS Method

The derivation of the average BLER at users Hî and Lĵ in case of using the TAS/SC or
TAS/MRC scheme with HCS method are provided in the following theorems.

Theorem 1. Under HCS method and Nakagami-m fading, the average BLER at user Hî

utilizing TAS/SC or TAS/MRC is expressed as

ε̄HCSHî
≈ 1 +

χHî
αHî

√
NHî

γ0α2
Lĵ

aH,I∑
p=1

∑
∆H=p

φH∑
q=0

(
φH

q

)(
− 1
γ0αLĵ

)q
ΦHcH,Ie

ωH
γ0αL

ĵ AH , (3.30)

where

AH =


ωHΞH,1 + ΞH,2, φ̂H = −2
−ΞH,1, φ̂H = −1

ω
−φ̂H−1
H ΞH,3, φ̂H ≥ 0

,

ωH = pmH
λSH

, ΞH,1 = Ei
(
−ωHϕHî

)
− Ei

(
−ωHκHî

)
, ΞH,2 = e

−ωH ϕH
î

ϕH
î

− e
−ωH κH

î

κH
î

, ΞH,3 =

Γ
(
φ̂H + 1, ωHϕHî

)
− Γ

(
φ̂H + 1, ωHκHî

)
, ϕHî

= 1
γ0αL

ĵ

+BvH
î
, κHî

= 1
γ0αL

ĵ

+BµH
î
, Bx =

x

γ0

(
αH

î
−αL

ĵ
x

) , and φ̂H = φH − q − 2.

Proof. See Appendix A.2.

Theorem 2. Under HCS method and Nakagami-m fading, the average BLER at user Lĵ
utilizing TAS/SC or TAS/MRC is given by

ε̄HCSLĵ
= ε̄

xH
î
,HCS

Lĵ
+
(

1− ε̄
xH

î
,HCS

Lĵ

)
ε̄
xL

ĵ
,HCS

Lĵ
, (3.31)

where

ε̄
xH

î
,HCS

Lĵ
≈ 1 +

χHî
αHî

√
NHî

γ0α2
Lĵ

aL,I∑
p=1

∑
∆L=p

φL∑
q=0

(
φL

q

)

×
(
− 1
γ0αLĵ

)q
ΦLcL,Ie

ωL
γ0αL

ĵ AL
(
ϕHî

, κHî

)
,
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ε̄
xL

ĵ
,HCS

Lĵ
=


ε̄
xL

ĵ
,HCS

Lĵ ,1
, ψ = 0

ε̄
xL

ĵ
,HCS

Lĵ ,2
, 0 < ψ ≤ 1

,

ε̄
xL

ĵ
,HCS

Lĵ ,1
≈ 1 + χLĵ

√
NLĵ

aL,I∑
p=1

∑
∆L=p

ΦLcL,I ω̂
−φL−1
L(

αLĵ
γ0
)φL

ΞL,4,

ε̄
xL

ĵ
,HCS

Lĵ ,2
≈ 1 +

χLĵ
αLĵ

√
NLĵ

γ0ψ2α2
Hî

aL,I∑
p=1

∑
∆L=p

φL∑
q=0

(
φL

q

)

×
(
− 1
γ0ψαHî

)q
ΦLcL,Ie

ωL
γ0ηαH

î AL
(
ϕLĵ

, κLĵ

)
,

AL (x, y) =


ωLΞ(x,y)

L,1 + Ξ(x,y)
L,2 , φ̂L = −2

−Ξ(x,y)
L,1 , φ̂L = −1

ω
−φ̂L−1
L Ξ(x,y)

L,3 , φ̂L ≥ 0

,

Ξ(x,y)
L,1 = Ei (−ωLx) − Ei (−ωLy), Ξ(x,y)

L,2 = e−ωLx

x − e−ωLy

y , Ξ(x,y)
L,3 = Γ (φ̂L + 1, ωLx) −

Γ (φ̂L + 1, ωLy), x ∈
{
ϕHî

, ϕ̂Lĵ

}
, y ∈

{
κHî

, κ̂Lĵ

}
, ϕLĵ

= 1
γ0ψαH

î

+ B̂vL
ĵ
, κLĵ

= 1
γ0ψαH

î

+

B̂µL
ĵ
, B̂z = z

γ0

(
αL

ĵ
−ψαH

î
z

) , ΞL,4 = Γ
(
φL + 1, ω̂LvLĵ

)
− Γ

(
φL + 1, ω̂LµLĵ

)
, ωL = pmL

λSL
,

φ̂L = φL − q − 2, and ω̂L = pmL
λSLαL

ĵ
γ0

.

Proof. See Appendix A.3.

3.3.4 Average BLER Analysis of LCS Method

In this case, the average BLER at user Hî and Lĵ are derived through the following
theorems.

Theorem 3. Under LCS method and Nakagami-m fading, the average BLER at user Hî

with TAS/SC or TAS/MRC is expressed as

ε̄LCSHî
≈ 1 +

χHî
αHî

√
NHî

γ0α2
Lĵ

aH,II∑
p=1

∑
∆H=p

φH∑
q=0

(
φH

q

)(
− 1
γ0αLĵ

)q
ΦHcH,IIe

ωH
γ0αL

ĵ AH . (3.32)

Proof. To derive ε̄LCSHî
in this theorem, the algebraic manipulations similar to the derivation

of ε̄HCSHî
in Appendix A.2 can be utilized, where (3.28) is employed instead of (3.25).
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Theorem 4. Under LCS method and Nakagami-m fading, the average BLER at user Lĵ
with TAS/SC or TAS/MRC is given by

ε̄LCSLĵ
= ε̄

xH
î
,LCS

Lĵ
+
(

1− ε̄
xH

î
,LCS

Lĵ

)
ε̄
xL

ĵ
,LCS

Lĵ
, (3.33)

where

ε̄
xH

î
,LCS

Lĵ
≈ 1 +

χHî
αHî

√
NHî

γ0α2
Lĵ

aL,II∑
p=1

∑
∆L=p

φL∑
q=0

(
φL

q

)

×
(
− 1
γ0αLĵ

)q
ΦLcL,IIe

ωL
γ0αL

ĵ AL
(
ϕHî

, κHî

)
,

ε̄
xL

ĵ
,LCS

Lĵ
=


ε̄
xL

ĵ
,LCS

Lĵ ,1
, ψ = 0

ε̄
xL

ĵ
,LCS

Lĵ ,2
, 0 < ψ ≤ 1

,

ε̄
xL

ĵ
,LCS

Lĵ ,1
≈ 1 + χLĵ

√
NLĵ

aL,II∑
p=1

∑
∆L=p

ΦLcL,II ω̂
−φL−1
L(

αLĵ
γ0
)φL

ΞL,4,

and

ε̄
xL

ĵ
,LCS

Lĵ ,2
≈ 1 +

χLĵ
αLĵ

√
NLĵ

γ0ψ2α2
Hî

aL,II∑
p=1

∑
∆L=p

φL∑
q=0

(
φL

q

)

×
(
− 1
γ0ψαHî

)q
ΦLcL,IIe

ωL
γ0ηαH

î AL
(
ϕLĵ

, κLĵ

)
.

Proof. The proof of this theorem can be carried out in the same way as the proof of
Theorem 2, where (3.29) is used instead of (3.26).

3.4 Proposed analytical framework for optimal power allo-
cation and minimum blocklength

By following the average BLER analysis presented in Section 3.3, this section provides the
derivation of the optimal power allocation coefficients for a minimum blocklength5 based

5In this chapter, we focus on minimizing the blocklength in NOMA-based SPC systems to reduce the
latency for two users having the best channel conditions, which are selected from two predefined clusters
H and L. However, investigating suitable user pairing methods to guarantee latency requirements for the
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on asymptotic average BLER in high SNR regime, and it also presents the analytical
comparison of the minimum blocklength of NOMA with the OMA case.

3.4.1 Asymptotic Average BLER Analysis

As discussed in [11,12], the average BLER, ε̄xV
U , in (3.22) can be simplified by utilizing the

first-order Riemann integral approximation, i.e.,
∫ b
a f(x)dx = (b− a)f

(
a+b

2

)
, as follows:

ε̄xV
U ≈ χV

√
NV (µV − vV )FγxV

U

(
vV + µV

2

)
. (3.34)

By substituting vV and µV defined in (3.20) into (3.34), ε̄xV
U is rewritten as

ϵ̄xV
U ≈ FγxV

U
(βV ) , (3.35)

where βV is defined in (3.21).

By using the series representation of ex in [96, Eq. 1.211], i.e., ex =
∞∑
k=0

xk

k! , the

asymptotic CDF of γ
xH

î
Hî

, γ
xH

î
Lĵ

, and γ
xL

ĵ

Lĵ
are respectively given by

F s,∞

γ
xH

î
H

î

(x) = F s,∞gSH
(Bx)

γ0→∞
≈ (mHBx)bHaH,r

(bH !)aH,rλ
bHaH,r

SH

, (3.36)

F s,∞

γ
xH

î
L

ĵ

(x)
γ0→∞
≈ (mLBx)bLaL,r

(bL!)aL,rλ
bLaL,r

SL

, (3.37)

and

F s,∞

γ
xL

ĵ
L

ĵ

(x)
γ0→∞
≈

(
mLB̂x

)bLaL,r

(bL!)aL,rλ
bLaL,r

SL

, (3.38)

where s ∈ {HCS,LCS}, r =
{

I, if s = HCS

II, if s = LCS
, Bx = x

γ0

(
αH

î
−αL

ĵ
x

) , and B̂x =

x

γ0

(
αL

ĵ
−ψαH

î
x

) . From (3.34) - (3.38), the asymptotic average BLER at users Hî and Lĵ

users having weak channel gains is an important research issue to be addressed in future works.
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are respectively expressed as

ε̄s,∞Hî
≈

(
mHBβH

î

)bHaH,r

(bH !)aH,rλ
bHaH,r

SH

, (3.39)

and

ε̄s,∞Lĵ
= ε̄

xH
î
,s

Lĵ ,∞
+
(
1− ε̄

xH
î
,s

Lĵ ,∞

)
ε̄
xL

ĵ
,s

Lĵ ,∞

≈ ε̄
xH

î
,s

Lĵ ,∞
+ ε̄

xL
ĵ
,s

Lĵ ,∞

≈

(
mLBβH

î

)bLaL,r

(bL!)aL,rλ
bLaL,r

SL

+

(
mLB̂βL

ĵ

)bLaL,r

(bL!)aL,rλ
bLaL,r

SL

.

(3.40)

From (3.39) and (3.40), the diversity order at users Hî and Lĵ are respectively given
by [89]:

DHî
= − lim

γ0→∞

log
(
ε̄s,∞Hî

)
log (γ0)

=
{

mHKSKHI, for HCS method
mHKHI, for LCS method

,

(3.41)

and

DLĵ
= − lim

γ0→∞

log
(
ε̄s,∞Lĵ

)
log (γ0)

=
{

mLKLJ, for HCS method
mLKSKLJ, for LCS method

.

(3.42)

Remark 5. For both TAS/SC and TAS/MRC schemes, the diversity orders at users
Hî and Lĵ, denoted by

(
DHî

, DLĵ

)
, are (mHKSKHI,mLKLJ) for HCS method, and

(mHKHI,mLKSKLJ) for LCS method. This reveals that the users Hî and Lĵ have
achieved full diversity order with HCS and LCS methods, respectively. Furthermore, the
system performance of user Hî can be improved by increasing mH , KS, KH , and I with
HCS method, and by increasing mH , KH , and I with LCS method. Meanwhile, the growth
of mL, KL, and J with HCS method, and mL, KS, KL, and J with LCS method can help
enhancing the system performance of user Lĵ.

56



3.4 Proposed analytical framework for optimal power allocation and minimum blocklength

3.4.2 Power and Blocklength Optimization at High SNR

In this subsection, we focus on the problem of blocklength minimization6 subject to BLER
targets and power allocation coefficients to guarantee the reliability requirement and reduce
the transmission latency for SPC-based MIMO NOMA systems [9,11,16]. To determine the
values of power allocation coefficients (i.e., αHî

and αLĵ
) at which a minimum blocklength

NU

(
U ∈

{
Hî, Lĵ

})
is achieved to guarantee the reliability target ε̄thU , the following problem

needs to be addressed

min
αH

î
,αL

ĵ

NU (3.43a)

s.t. ε̄U ≤ ε̄thU , (3.43b)
αHî

+ αLĵ
= 1, 0 < αLĵ

< 0.5, (3.43c)

where the constraint (3.43c) is obtained based on the NOMA principle presented in Section
3.2, in which 0 < αLĵ

< αHî
and αLĵ

+ αHî
= 1, leading to αLĵ

< 0.5. It is noted that
αHî

= 1 − αLĵ
and ε̄U is a decreasing function of NU . The problem in (3.43) can be

simplified as

min
αL

ĵ

NU (3.44a)

s.t. ε̄U ≤ ε̄thU , (3.44b)
0 < αLĵ

< 0.5. (3.44c)

By substituting (3.39) into (3.44b) for user Hî and (3.40) into (3.44b) for user Lĵ ,
the blocklengths of users Hî and Lĵ with s (s ∈ {HCS,LCS}) method are respectively
calculated as

NHî,s
=

nHî

log2

(
1+τH,r

1+αL
ĵ
τH,r

) , (3.45)

and
NLĵ ,s

=
nLĵ

log2

1 +
αL

ĵ
τL,r

1+ψ
(

1−αL
ĵ

)
τL,r


, (3.46)

6It is noted that addressing the optimization problems subject to latency requirement (e.g., decoding
error probability minimization under the latency constraint) is also an important issue to be tackled in
the SPC-based systems to ensure the expected latency [24, 25]. This would be a noteworthy problem to
investigate in future work.
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where ηH,r = m
bH aH,r
H

(bH !)aH,rλ
bH aH,r
SH γ

bH aH,r
0

, ηL,r = (bH !)
bLaL,r

bH

(bL!)aL,r

(
mLλSH
mHλSL

)bLaL,r , η̂L,r = m
bLaL,r
L

(bL!)aL,rλ
bLaL,r
SL

,

τH,r =
(
ε̄thHî,r

/ηH,r
)1/bHaH,r , and τL,r = γ0

 ε̄th
L

ĵ
,r−ηL,r

(
εth

H
î
,r

) bLaL,r
bH aH,r

η̂L,r


1/bLaL,r

.

From (3.45) and (3.46), the derivative of NHî,s
and NLĵ ,s

with respect to αLĵ
can be

derived as follows:

∂NHî,s

∂αLĵ

=
nHî

τH,r(
1 + αLĵ

τH,r
) [

log2

(
1+τH,r

1+αL
ĵ
τH,r

)]2
ln 2

> 0, (3.47)

and
∂NLĵ ,s

∂αLĵ

= −
nLĵ

(1 + ψτL,r) τ̂L,r(
1 + αLĵ

τ̂L,r
) [

log2

(
1 + αLĵ

τ̂L,r
)]2

ln 2
< 0, (3.48)

where τ̂L,r = τL,r

1+ψ
(

1−αL
ĵ

)
τL,r

. Thus, NHî,s
is an increasing function of αLĵ

, whereas NLĵ ,s

is a decreasing function of αLĵ
. Therefore, to guarantee both reliability targets ε̄thHî,r

and
ε̄thLĵ ,r

, the minimum blocklength is obtained by addressing NHî,s
= NLĵ ,s

= Nopt,s and the
problem of minimizing blocklength in (3.44) is rewritten as

min
αL

ĵ

Nopt,s (3.49a)

s.t. ε̄sHî
= ε̄thHî,r

, (3.49b)

ε̄Lĵ ,s
= ε̄thLĵ ,r

, (3.49c)
0 < αLĵ

< 0.5. (3.49d)

Given this context, the optimal power allocation coefficient αLĵ ,opt
to minimize Nopt,s

can be achieved by solving the equation f
(
αLĵ

)
= NLĵ ,s

−NHî,s
= 0, which is addressed

in Algorithm 1. The minimum blocklength Nopt,r is attained by substituting αLĵ ,opt
into

(3.45) as follows:
Nopt,s =

nHî

log2

 1+
(
ε̄th

H
î
,r/ηH,r

)1/bH aH,r

1+αL
ĵ

,opt

(
ε̄th

H
î
,r/ηH,r

)1/bH aH,r


. (3.50)
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3.4 Proposed analytical framework for optimal power allocation and minimum blocklength

Algorithm 1 Proposed Power Allocation Algorithm for SPC-Based MIMO NOMA System
1: Initialize nHî

, nLĵ
, γ0, ε̄thHî,r

, ε̄thLĵ ,r
, KS , KH , KL, I, J , λSH , λSL, and tolerance µ.

2: Initialize α−
Lĵ
← 0, α+

Lĵ
← 0.5, and α̂Lĵ

←
α−

L
ĵ
+α+

L
ĵ

2 .
3: repeat
4: if f

(
α̂Lĵ

)
f
(
α−
Lĵ

)
> 0 then

5: Set α−
Lĵ
← α̂Lĵ

.
6: else
7: Set α+

Lĵ
← α̂Lĵ

.
8: end if

9: Set α̂Lĵ
←

α−
L

ĵ
+α+

L
ĵ

2 and compute f
(
α̂Lĵ

)
based on (3.45) and (3.46).

10: until
∣∣∣f (α̂Lĵ

)∣∣∣ > µ.
11: Set αLĵ ,opt

← α̂Lĵ
.

12: Return αLĵ ,opt
.

3.4.3 Comparison of MIMO NOMA and MIMO OMA Schemes

To perform the comparison between MIMO NOMA and MIMO OMA schemes, we con-
sider a scenario where users Hî and Lĵ are served simultaneously by using NOMA or over
different time-slots by utilizing OMA (i.e., time division multiple access). Herein, a MIMO
scheme, i.e., TAS, is utilized for both NOMA and OMA scenarios to reduce the complexity
of the signal processing and feedback overhead [60,81]. With OMA transmission, the min-
imum blocklength, NOMA,s (r ∈ {I, II}), is the summation of the minimum blocklengths
for users Hî and Lĵ , N̂Hî

and N̂Lĵ
. Similar to the derivation of blocklengths for users Hî

and Lĵ in Section 3.4.2, NOMA,s in the high SNR regime is calculated as

NOMA,s = N̂Hî
+ N̂Lĵ

=
nHî

log2

[
1 +

(
ε̄thHî,r

/ηH,r
)1/bHaH,r

] +
nLĵ

log2

[
1 + γ0

(
ε̄thLĵ ,r

/η̂L,r

)1/bLaL,r
] . (3.51)

From (3.50) and (3.51), the blocklength gap between NOMA and OMA, i.e., ∆Ns, can
be given by

∆Nr = NOMA,r −Nopt,r ≈ N̂Hî,r
> 0. (3.52)

Thus, OMA transmission needs a longer blocklength than NOMA transmission to serve
the users Hî and Lĵ .
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3.5 Numerical Results

In this section, we provide numerical results in terms of average BLER and minimum block-
length to characterize the effects of the proposed protocols, i.e., HCS and LCS methods with
TAS/SC and TAS/MRC schemes discussed in Section 3.2.1, on the system performance
in designing an SPC-based MIMO NOMA network. It is noted that the analysis of these
performance metrics have practical significance for the reliability and latency performance
evaluation of wireless systems [11–16]. The predetermined simulation parameters are set
as follows [11–13]: the number of information bits nHî

= nLĵ
= 80 bits; the blocklength

NHî
= NLĵ

= 100; the path loss exponent θ = 2.5; the distances dSH = dSL = 5 (m); the
power allocation coefficients αHî

= 0.7, and αHî
= 0.3; the reliability targets ε̄thHî

= 10−7

and ε̄thLĵ
= 10−6.

To evaluate our BLER performance analysis carried out in Section 3.3, we provide the
numerical outcomes through the following three types of result: i) Analytical result (Ana.),
ii) Asymptotic result (Asymp.), and iii) Simulation result (Sim.). For the simulation results,
similar to the method used in [11–14, 16], we create 106 Nakagami-m channel realizations
generated randomly through the Nakagami-m distribution given in (3.1) and (3.2) for all
the considered schemes. The respective average BLERs are then computed by averaging the
instantaneous BLERs according to these generated channel realizations while considering
the Gaussian-coded symbols instead of the real symbol constellations. The definition of
the instantaneous BLER is provided in (3.19), which has also been used in [11–14, 16].
Furthermore, the different values of Nakagami-m fading parameters, i.e., mH and mL, are
considered in the presented numerical results. For the analytical and asymptotic results,
they are obtained by adopting the expressions derived in (3.30), (3.31), (3.32), (3.33) for
the analytical results, and (3.39), and (3.40) for the asymptotic results, respectively.

In Fig. 3.2, we perform the rate comparison of SPC and long-packet communications
(LPC) for user Hî to gain more insights on SPC. Note that based on (3.17) and the
normal approximation method in [9], the achievable rate of user Hî with SPC can be
approximated as: RSPCHî

≈ log2
(
1 + γ

xH
î

Hî

)
−
√
v/NQ−1 (ε) + log2N/2N . We can observe

from this figure that when the blocklength of user Hî (NHî
) increases, the achievable rate

of this user with LPC (RLPCHî
) is unchanged, whereas the rate with the SPC, RSPCHî

grows
up. This can be explained by the fact that the LPC is implemented under the assumption
of infinite blocklength to obtain the Shannon’s channel rate, i.e., log2

(
1 + γ

xH
î

Hî

)
, which

is not influenced by NHî
. In contrast, finite blocklength is utilized in the SPC scenario.

Given the above approximation of RSPCHî
, the increase in NHî

leads to the higher value of
RSPCHî

in this case, and RSPCHî
→ RLPCHî

when NHî
→ ∞. Since (3.17) is applied for both

users Hî and Lĵ , the same conclusions can also be achieved for user Lĵ . Furthermore, this
figure indicates that HCS method with TAS/MRC provides the best performance for user
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Figure 3.2: Rate comparison between SPC
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Figure 3.3: Average BLER at user Hî vs.
γ0 with different methods, where mH = mL = 2
and (KS ,KH , I) = (2, 2, 1).

Hî. The effects of the proposed protocols on the performance of users Hî and Lĵ will be
clearly analyzed in the following.

Similar to [11–13], we utilize the simulation results to evaluate the correctness of our
analysis. Specifically, in Figs. 3.3 and 3.4, we plot the average BLERs at users Hî and Lĵ
as a function of γ0 with different methods (i.e., HCS method with TAS/SC or TAS/MRC
and LCS method with TAS/SC or TAS/MRC). As can be observed from these figures,
the BLER gap between the approximated analytical results and the simulation results are
very small. Furthermore, the asymptotic curves accurately predict the system performance
trend in the higher γ0 regime. These observations confirm the correctness of our analysis
in Section 3.4. In addition, Figs. 3.3 and 3.4 show that HCS method achieves better
performance (i.e., lower value of average BLER is observed) for user Hî over LCS method,
whereas LCS method outperforms HCS method in terms of the system performance for user
Lĵ . This result is achieved based on the fact that HCS and LCS methods are proposed to
improve the received signal quality at users Hî and Lĵ , respectively, as discussed in Section
3.2.1. Furthermore, these figures indicate that TAS/MRC scheme is better than TAS/SC
in improving the system performance.

In Figs. 3.5 and 3.6, we investigate the effects of the number of users at clusters H (I)
and L (J), and the number of antennas at BS S (KS), users Hî (KH), and Lĵ (KL), on the
system performance. Specifically, Fig. 3.5 shows the variation of average BLER at user
Hî with respect to γ0 with different values of KS , KH , and I, denoted by (KS ,KH , I), in
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Figure 3.5: Average BLER at user Hî vs.
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mH = mL = 2.

case of utilizing HCS and LCS methods with the TAS/SC scheme. Meanwhile, Fig. 3.6
plots the average BLER at user Lĵ versus γ0 with different values of (KS ,KL, J) when
using HCS and LCS methods with the TAS/SC scheme. These two figures indicate that
as KS , KH , KL, I, and J are all equal to one, HCS and LCS methods result in the same
curves. Furthermore, the system performance can be significantly improved by increasing
(KS ,KH , I) for user Hî and (KS ,KL, J) for user Lĵ . It is noted that the variation of KS in
LCS method does not impact the system performance at user Hî (see Fig. 3.5). The same
conclusion can be derived for user Lĵ when observing the change of KS in HCS method
(see Fig. 3.6). The reason for this is based on the nature of HCS and LCS methods as
mentioned in Section 3.2.1 and the discussion part of Figs. 3.3 and 3.4. This phenomenon
also confirms our analysis of diversity order for users Hî and Lĵ , as shown in Section 3.4.1.

Fig. 3.7 depicts the average BLER at user Lĵ as a function of γ0 with different values
of the residual interference level caused by the ISIC, i.e., ψ, in case of using HCS and LCS
methods with TAS/SC scheme. In other results presented in this section, we investigate
a scenario where the value of ψ is fixed to evaluate the effects of other parameters such
as antenna-user selection methods, the number of users, the number of antennas, fading
parameters, and power allocation coefficients, on the system performance. In contrast, Fig.
3.7 shows how the variation of ψ affects the BLER performance of SPC in the considered
MIMO NOMA system. We can observe from this figure that the increase in ψ leads to the
higher interference as in (3.15), making the system performance of user Lĵ lower. Thus,
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user Lĵ can achieve the best performance when ψ = 0, where the perfect SIC is observed,
which may be difficult to obtain in practical scenarios.

In Fig. 3.8, we consider the change of average BLER at users Hî and Lĵ with respect
to the fading parameters, i.e., mH and mL, in case of using HCS and LCS methods with
the TAS/SC scheme. Herein, we set mH = mL = m. Given the considered systems, it is
noteworthy that mH and mL are independent and only affect users Hî and Lĵ , respectively.
We can see from this figure that the performance of users Hî and Lĵ can be improved
with the increase in mH and mL, respectively, due to the better channel quality. More
precisely, when m = 1, Nakagami-m fading corresponds to Rayleigh fading and the worst
performance can be observed. In case of m = (K + 1)2/(2K + 1), it approximates the
Rician fading with parameter K [86]. This result also verifies the diversity order outcomes
obtained in (3.41) and (3.42). Furthermore, similar to Figs. 3.3, 3.4, 3.5, and 3.6, Fig. 3.8
indicates that HCS and LCS methods provide the best performance for users Hî and Lĵ ,
respectively.

Fig. 3.9 depicts the effect of power allocation coefficient αLĵ
on the blocklength of users

Hî

(
NHî

)
and Lĵ

(
NLĵ

)
. One can see from this figure that NHî

and NLĵ
are increasing

and decreasing functions of αLĵ
, respectively. Thus, there exists an optimal value of αLĵ

, at
which the minimum blocklength for both users Hî and Lĵ is achieved. The value of optimal
αLĵ

for different cases (i.e., HCS method with TAS/SC or TAS/MRC; LCS method with
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TAS/SC or TAS/MRC) can be found out by using Algorithm 1 and then the minimum
blocklength is calculated by using (3.50).

In Fig. 3.10, we perform the minimum blocklength comparison between NOMA and
OMA transmissions (Nopt and NOMA) to clarify the benefits of NOMA over OMA in
short-packet transmissions. As can be seen from this figure, the higher blocklength gap
between NOMA and OMA, i.e., ∆N (calculated from (3.52)), is achieved in case of using
HCS method and TAS/SC scheme. This implies that the benefits of MIMO NOMA versus
MIMO OMA in terms of minimum blocklength are more pronounced when utilizing HCS
method as compared to LCS method. Furthermore, ∆N is positive, hence, Nopt is always
smaller than NOMA. In other words, MIMO NOMA can lower the transmission latency of
SPC systems as compared to the MIMO OMA case.

From the above achieved results, we provide some useful insights when considering SPC
in the considered MIMO NOMA system as follows: i) Compared to LPC, SPC can fulfill
more stringent requirements of reliability and latency for MIMO NOMA but achieves lower
rate performance; ii) Transmission latency of MIMO NOMA is smaller than that of MIMO
OMA in SPC scenario; and iii) Minimum blocklength for MIMO NOMA is achieved at a
certain value of power allocation coefficients such that blocklengths of NOMA users are
the same.
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3.6 Summary

In this chapter, we analyzed the performance of SPC in a QoS-based multiuser downlink
MIMO NOMA system over a Nakagami-m fading channel under the ISIC scenario in terms
of the average BLER and minimum blocklength. Specifically, we considered the user pairing
to perform NOMA, where users are selected from two user clusters having different priority
levels. Furthermore, we investigated different MIMO schemes including TAS for BS, SC
and MRC for users, and proposed two antenna-user selection methods, i.e., HCS and LCS
to design effective communication protocols for the SPC-based MIMO NOMA systems.
We characterized the system performance by deriving the approximate and asymptotic (in
the high SNR regime) closed-form expressions of the average BLER at the users. From
the asymptotic average BLER, we carried out an analysis of diversity order, minimum
blocklength, and optimal power allocation. The analytical results verified by simulation
results indicated that the system performance decreases with the increase in the value of the
residual interference caused by the ISIC process. In addition, among the proposed schemes,
the HCS method with TAS/MRC and the LCS method with TAS/MRC provide the best
performance with full diversity gains for the users selected from the high-priority and low-
priority user clusters, respectively. Moreover, it has been demonstrated that MIMO can
significantly improve the performance of NOMA systems with short-packets, and MIMO
NOMA outperforms MIMO OMA in ensuring low-latency transmissions.
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Chapter 4
Deep Reinforcement Learning for Resource
Allocation Optimization in URLLC
Systems

Grant-free non-orthogonal multiple access (GF-NOMA) has emerged as a promising access
technology for the fifth generation and beyond wireless networks that enable ultra-reliable
and low-latency communications (URLLC) to ensure low access latency and high connec-
tivity density. Furthermore, designing energy-efficient (EE) resource allocation strategies
is a crucial aspect of future cellular system development. Taking these goals into account,
this chapter proposes an EE sub-channel and power allocation strategy for URLLC-enabled
GF-NOMA (URLLC-GF-NOMA) systems based on multi-agent (MA) deep reinforcement
learning (MADRL). In particular, the URLLC-GF-NOMA methods using MA dueling dou-
ble deep Q network (MA3DQN), MA double deep Q network (MA2DQN), and MA deep
Q network (MADQN) techniques are designed to enable users to select the most appro-
priate sub-channel and transmission power for their communications. The aim is to build
an efficient MADRL-based solution, ensuring rapid convergence with small signaling over-
head, to maximize the network EE while fulfilling the URLLC requirements of all users.
Simulation results show that the MADQN and MA2DQN methods, which have lower com-
plexity than MA3DQN, are more appropriate for the URLLC-GF-NOMA systems under
consideration. Moreover, our proposed methods exhibit superior convergence characteris-
tics, a reduction in signaling overhead, and enhanced EE performance compared to other
benchmark strategies.

The chapter is organized as follows. Introduction to the current state of the art is
discussed in Section 4.1. Section 4.2 presents the system model, URLLC method, and the
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EE maximization problem. Section 4.3 describes the MADRL-based solution of the EE
optimization problem for the considered URLLC-GF-NOMA system. Section 4.4 provides
the obtained simulation results and discussions. Finally, Section 4.5 concludes this chapter.

4.1 Introduction

URLLC is one of the most critical services of the fifth generation (5G) and beyond wire-
less networks [6, 7]. It is expected to support mission-critical Internet of Things (IoT)
applications, such as smart city, remote surgery, intelligent transportation, and vehicle-
to-everything (V2X) communications, with stringent reliability and latency requirements.
Specifically, a general URLLC condition for a one-way radio is defined as 99.999% target
reliability and 1 ms latency [3, 97]. Due to the unprecedented constraints of high relia-
bility and low latency, the packet lengths of URLLC messages are generally ultra-short.
Thus, the channel’s blocklength is finite, requiring a thorough analysis of achievable rate
and decoding error probability. These considerations can be ignored in traditional wire-
less communication schemes that mostly focus on the Shannon channel capacity under the
assumption of infinite blocklength [3]. Therefore, URLLC-enabled systems require a new
transmission method. In this regard, SPC in finite blocklength (FBL) regime could be a
promising approach to meet the URLLC requirements [3, 9].

Furthermore, one of the major challenges in 5G and beyond wireless networks is sup-
porting massive access over a limited radio spectrum [64]. To resolve this challenge, non-
orthogonal multiple access (NOMA) has been demonstrated as a promising solution [71].
One of the latest NOMA techniques is GF-NOMA, where users can communicate with the
base station (BS) simultaneously and quickly on the same time-frequency resource block
(RB) without the need for a demand-assigned access from the BS [98]. This access method
can improve the spectrum access efficiency and reduce the transmission latency for the
system. The application of NOMA to URLLC-enabled systems has also been considered
in recent years [99–101] to further enhance the system performance.

GF transmission has been proposed for 5G new radio (NR) as a promising solution
to reduce the latency in URLLC and massive access scenarios [71, 102]. In GF URLLC,
a user can communicate with the base station in an arrive-and-go manner without the
need to schedule the requests and uplink resource grants, thereby reducing the latency.
However, the random nature of the GF access might lead to congestion, as multiple users
could potentially access the same RB. The GF-NOMA can mitigate this issue by enabling
many users to share the same RBs. However, because the GF access is random, a larger
number of users can occupy one RB simultaneously, which may lead to severe interference
in GF-NOMA systems and degrade the system performance. This demands an intelligent
resource allocation approach for GF-NOMA networks to optimize the system performance.
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Machine learning (ML), which is recognized as one of the potential technologies for the
next generation wireless networks [51], could be an enabling solution to address the above
problem. The underlying principle of ML is to learn from the observed data or surround-
ing environment in order to make optimal decisions in complex, dynamic, and uncertain
large-scale environments. ML techniques including supervised learning [103], unsupervised
learning, and reinforcement learning (RL) [104,105], have been recently investigated in or-
der to address various issues in wireless communication schemes such as channel estimation
and signal detection, beamforming design, resource allocation, and system security.

Recently, the combination of NOMA and URLLC has been investigated in several works
[99–101] to increase connectivity and guarantee the reliability and latency requirements
for wireless networks. Specifically, these works considered multiple-input multiple-output
(MIMO) and multiple-input single-output (MISO) schemes for URLLC-enabled systems to
improve the system performance in terms of reliability and latency. The works proposed
user-pairing methods based on the power-domain NOMA principle to enhance connectivity
and reduce interference. However, the above works did not examine the GF access method,
which can support massive access and reduce the transmission latency for wireless systems
requiring high reliability and low latency.

Taking GF transmission into account, the works in [106, 107] studied GF access for
OMA. In the GF-OMA scheme, users can select RBs randomly, and each RB is used strictly
by a single user for successful reception. This limitation may lead to severe collisions when
the number of users is much higher than the number of available RBs. To overcome this
challenge, GF-NOMA has emerged as a promising technology for massive access by al-
lowing multiple users to access the same RB based on the power-domain NOMA [71].
In particular, the users occupying the same RB are distinguished by different received
power levels, and multi-user data can be decoded at the receivers by utilizing the succes-
sive interference cancellation (SIC). The traditional contention-based GF-NOMA schemes
are implemented by dividing a cell area into multiple fractions and using the orthogonal
resource allocation among those fractions to reduce the inter-fraction collisions [98, 108].
Nevertheless, the spectrum competition among users within the same fraction is still high,
resulting in severe interference and reducing system performance. Thus, it is important to
find a smart congestion control method to reduce the collisions and improve the long-term
system performance.

Intelligent features are an important aspect of future cellular networks, and many
current research works have applied RL-based algorithms to address the collisions and
severe interference in massive access scenarios [29, 31, 109–118]. Specifically, Sharma et
al. [109] proposed a collaborative distributed Q-learning algorithm for the frame-based
slotted-Aloha (SA) random access (RA) scheme to find the best resource block allocation

69



Deep Reinforcement Learning for Resource Allocation Optimization in URLLC Systems

strategy for IoT users, in order to avoid collisions in GF-OMA-based IoT systems. The
authors in [110–113] investigated the application of Q-learning to different GF-NOMA
scenarios with/without SPC to mitigate the congestion and interference in overloaded
systems, where the number of users is larger than the number of available RBs. How-
ever, RL-based algorithms such as Q-learning are not suitable for large high-dimensional
state-action spaces [51], making them inadequate for addressing the network optimization
problems in complex and large-scale scenarios of future wireless networks.

To overcome the aforementioned challenges, recent studies have been applying deep RL
(DRL) to address the complex resource allocation problems and optimize system perfor-
mance [29, 31, 114–118]. In particular, the work in [114] proposed a DRL framework to
find an optimal resource management strategy for GF-OMA systems and address dynamic
spectrum access issues. In [29], a DRL algorithm based on generative adversarial networks
was proposed to minimize power consumption while ensuring high reliability and low la-
tency for orthogonal frequency division multiple access (OFDMA) systems. To further
improve the spectral access efficiency and enhance the system performance, DRL-based
GF-NOMA schemes were investigated in [31, 115–118] under different scenarios. Specifi-
cally, the work [115] investigated a pilot sequence-based GF-NOMA system and proposed
a centralized training distributed execution multi-agent (MA) DRL (MADRL) solution to
maximize the network throughput (number of successfully served users). Additionally, dif-
ferent MADRL-based dynamic resource allocation strategies for power-domain GF-NOMA
systems were investigated in [116, 117] to maximize the system throughput [116] and sum
rate [117]. In [31,118], DRL-based methods were proposed for GF-NOMA systems enabling
massive URLLC (mURLLC) to maximize the long-term average throughput.

Unlike the aforementioned works on GF-NOMA systems, this chapter investigates an
MADRL-based resource allocation strategy aimed at maximizing the energy efficiency (EE)
while satisfying the users’ requirements on reliability and latency for URLLC-enabled GF-
NOMA (URLLC-GF-NOMA) systems. Given the stringent requirements of reliability and
latency of URLLC users, there is a demand for an efficient and rapid communication
protocol. Therefore, our focus is on constructing an effective distributed MADRL-based
solution that achieves both EE and rapid convergence with minimal signaling overhead.
The approach is designed to reduce the information exchange between the environment
and agents, based on which the lower processing latency for URLLC users can be achieved.
Indeed, we consider a GF-NOMA scenario where the users compete for the RBs, i.e.,
subchannels (SCs) and transmission power levels (TPLs), to communicate with the BS by
randomly selecting one SC and one TPL for their transmissions. Following the NOMA
principle, the users utilizing the same SC are distinguished by their received power at the
BS, and their messages are decoded in an orderly manner using SIC [98]. However, with
its random access nature, GF-NOMA may cause severe interference since too many users
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can select the same SC, leading to the system performance degradation. To overcome this
drawback, we utilize DRL techniques to enable the users to find the most suitable SCs and
TPLs for their transmissions, optimizing the EE and fulfilling the URLLC requirements of
all users. Thus, the main contributions of this chapter are summarized as follows:

1. Given that EE is an important factor due to users’ energy limitations, we investigate
the problem of maximizing the long-term average EE for URLLC-GF-NOMA sys-
tems. The goal must be achieved while also ensuring the strict requirements of users
in terms of reliability and latency, which necessitates a rapid and efficient transmis-
sion protocol. Building on this EE maximization problem, we further investigate the
objectives of maximizing the sum rate and minimizing power consumption to clarify
the benefits of the proposed problem in balancing the achievable sum rate against
power consumption for energy-limited users.

2. We develop three distributed MADRL-based resource allocation methods to address
the considered problem: MA Dueling Double Deep Q Network (MA3DQN), MA Dou-
ble Deep Q Network (MA2DQN), and MA Deep Q Network (MADQN). Within this
context, the MADRL frameworks are designed to provide energy-efficient learning-
based solutions which ensure rapid convergence and minimal signaling overhead, ul-
timately reducing the processing latency for URLLC users.

3. We provide a performance comparison between the proposed mechanisms and other
benchmark schemes to clarify the benefits of the former in terms of convergence
property and EE performance. Additionally, we evaluate the effects of different state-
action spaces, URLLC requirements, and the number of users on the achieved rewards
and EE performance. The provided numerical results prove that the proposed solu-
tions outperform other benchmark schemes, achieving higher EE, faster convergence,
and reduced signaling overhead.

4.2 System Model

We consider an uplink URLLC-GF-NOMA system consisting of one base station (BS) and
a set of M URLLC users, denoted by M, allocated uniformly around the BS within a
circle-cell radius of rc (m), as shown in Fig. 5.1. The system bandwidth is equally divided
into a set of K orthogonal SCs, denoted by K, to serve the users. Moreover, the GF-NOMA
transmission strategy is utilized to improve the spectrum access efficiency and guarantee
strict requirements of the URLLC users in overloaded scenarios, i.e., M > K. Following
this transmission scheme, the users utilize the available SCs to communicate with the BS,
and multiple users can share the same SC based on the power-domain NOMA principle [71].
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Figure 4.1: Illustration of an uplink URLLC-GF-NOMA system.

In 5G new radio (5G-NR) networks, the SC’s bandwidth is defined as 2ν times of SC’s
bandwidth in 4G systems (i.e., 180 kHz), where ν ∈ {0, 1, 2, 3, 4} denotes the numerology
index which stands for the various SC types in order to support different services [119,120].
In particular, the SC with higher bandwidth is used for URLLC service while other services
such as eMBB and mMTC can utilize the numerology with smaller SC spacing. Given this
context, this chapter considers that the total bandwidth is divided into a set of SCs, i.e.,
K, serving the URLLC users, and the bandwidth of SCs is defined as W = 2ν × 180 (kHz).

4.2.1 Uplink GF-NOMA Transmission Process

Under the GF strategy, the users are free to choose the SCs for their transmissions without
any scheduling instructions from the BS. However, this can lead to severe collision issues as
too many users may select the same SCs. To mitigate this drawback, the NOMA technique
can be applied, where multiple users can access the same SC. Considering the NOMA
transmission process over SC k (k ∈ K) in time slot (TS) t, we denote x(k)

m (t) as a binary
SC allocation variable, where x(k)

m (t) = 1 if user m occupies SC k and x
(t)
m = 0 otherwise.

The set of users occupying SC k in TS t is described asM(k)(t) = {m|x(k)
m (t) = 1,m ∈M}.

Let Mk be the number of users using SC k in TS t, i.e., ∑K
k=1Mk = M . Then, the received
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signal at the BS over SC k in TS t is given by

y(k)(t) =
Mk∑
m=1

√
P

(k)
m (t)h(k)

m (t)u(k)
m (t) + n(t), (4.1)

where n(t) ∼ CN
(
0, σ2) is the additive white Gaussian noise (AWGN), P (k)

m (t) and u(k)
m (t)

denote the transmission power and the transmitted message of user m over SC k in TS
t, respectively. Herein, the transmission power is defined as P (k)

m (t) = 0 if x(k
m(t) = 0,

otherwise, P (k)
m (t) ̸= 0. Besides, h(k)

m (t) represents the channel coefficient between user m
and the BS over SC k in TS t.

We assume that the users using SC k are sorted in the descending order of the corre-
sponding received power level at the BS, i.e.,

P(k)
1 (t) ≥ · · · ≥ P(k)

Mk
(t), (4.2)

where P(k)
m (t) = P

(k)
m (t)

∣∣∣h(k)
m (t)

∣∣∣2. Following the NOMA principle, the messages of the
users with higher received power level are decoded earlier at the BS. Specifically, the BS
decodes the message of a user by treating the messages of users with lower received power
level as noise [101,121]. It then reconstructs and removes this component from the received
signal to decode the remaining users’ messages successively by using the SIC technique.
Accordingly, the received signal-to-interference-plus-noise ratio (SINR) of user m over SC
k in TS t is expressed as

γ(k)
m (t) = P(k)

m (t)
Mk∑

i=m+1
P(k)
i (t) + σ2

. (4.3)

4.2.2 URLLC Communication Model

Due to the stringent low-latency requirement of URLLC communication, very short pack-
ets and finite blocklength (FBL) is implemented for data transmission, so-called SPC.
Consequently, the Shannon-related capacity formula cannot be applied to the URLLC
communication model since it is designed under the assumption of the infinite blocklength
(iFBL). According to [9], the achievable rate of user m over SC k in the FBL regime for a
quasi-static flat fading channel can be approximated as

R(k)
m (t) ≈W

log2

(
1 + γ(k)

m (t)
)
−

√
v

(k)
m (t)
τW

Q−1 (εm)

 , (4.4)
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where v(k)
m (t) = 1− 1(

1+γ(k)
m (t)

)2 is the channel dispersion, τ denotes the transmission latency

threshold, εm is the decoding error probability, and Q−1(x) represents the inverse of the
Gaussian Q-function which is defined as

Q(x) =
∫ ∞

x

1√
2π
e− t2

2 dt. (4.5)

Based on (4.4), one can define an SNR threshold for user m trying to transmit one packet
over one SC k in each transmission TS that satisfies the URLLC requirements (i.e., τ and
εm) as [26]

γ̂m = 2
nb

τW
+ Q−1(εm)

ln 2
√

τW − 1, (4.6)

where nb (bits) is the packet size. From (4.6), the target rate for the transmission of user
m can be defined as

R̂m ≈W

log2 (1 + γ̂m)−
√
v̂m
τW

Q−1 (εm)

 , (4.7)

where v̂m = 1 − 1
(1+γ̂m)2 . Similar to [26, 116], we assume that each user m can transmit

its packet only once. As the interference over an SC increases, the likelihood of packet
drops escalates. Specifically, a successful transmission occurs if R(k)

m (t) ≥ R̂m; otherwise,
any deviation from this condition results in a failed transmission, i.e., a dropped packet.

4.2.3 Energy Efficiency Maximization

Energy efficiency (EE) is considered one of the major goals in 5G and beyond wireless
networks [122]. Furthermore, the majority of mobile devices operate on limited battery
power [122], resulting in the need to design energy-efficient communication methods. To
address this concern, we first define an EE factor with the purpose of ensuring the achievable
rate requirement while reducing the power consumption for the system as follows:

E(t) =

K∑
k=1

Mk∑
m=1

x
(k)
m (t)R(k)

m (t)

MPc +
K∑
k=1

Mk∑
m=1

P
(k)
m (t)

, (4.8)

where Pc denotes the circuit power consumption. In what follows, the work focuses on
designing an effective distributed power control and SC assignment strategy for URLLC-
GF-NOMA systems to maximize the average EE while ensuring the URLLC requirements
of all users. This can have a direct impact on the overall sustainability and cost-effectiveness
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of the considered networks. The design objective can be cast by the following problem:

max
x,P

Et [E(t)] (4.9a)

s.t.
K∑
k=1

x(k)
m (t)R(k)

m (t) ≥ R̂m, ∀m, (4.9b)

P(k)
1 (t) ≥ P(k)

2 (t) ≥ ... ≥ P(k)
Mk

(t), ∀k, (4.9c)
K∑
k=1

x(k)
m (t) ≤ 1, ∀m, (4.9d)

K∑
k=1

P (k)
m (t) ≤ Pmax, ∀m, (4.9e)

where Et[·] is the expectation operation over TSs, x and P denote the SC assignment and
power control strategies, respectively. The constraint (4.9b) represents the rate condition
to guarantee the users’ URLLC requirements. The constraint (4.9c) ensures the NOMA-
based multi-user decoding process. The constraint (4.9d) implies that each user selects at
most one SC. The constraint (4.9e) shows the users’ power budget.

Remark 6. It is noteworthy that the EE maximization problem defined in (4.9) can also
include the objectives of maximizing the sum rate and minimizing the power consump-
tion. These objectives can be attained by setting the denominator and numerator as 1,
respectively. Thus, the considered scenario represents a general case where an efficient so-
lution, striking the trade-off between the achievable sum rate and power consumption, can
be achieved. Further evaluation on this matter is provided in Section 4.4.

4.3 MADRL-Based Energy Efficiency Resource Allocation
Solution For URLLC-GF-NOMA Systems

The problem described in (4.9) is challenging to solve due to its non-convex nature and NP-
hard complexity. Moreover, with the GF access method, the users can select their preferred
SC and transmission power independently in each TS without requiring admission approval
from the BS. While this feature can reduce the access latency and increase the connectivity
density, it also necessitates a decentralized optimization solution. Therefore, to effectively
address the problem stated in (4.9), we consider an MADRL-based method, which can be
implemented in a distributed manner.
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4.3.1 MADRL Framework

RL is one of the machine learning methods that enable a learning agent to achieve its
specific goal with the best long-term reward by interacting with the environment in a trial-
and-error manner [117]. In particular, an agent interacts with the environment by taking
an action selected from its action space at the current state. It then receives a respective
reward and moves to a new state. These procedures are repeated until convergence is
observed, where the learning policy of the agent achieves an optimal value in terms of
average reward. This learning process can be formulated as a Markov decision process
(MDP) with a tuple of four elements (S,A,R,P), defined as follows:

• S: The set of states in the environment, where s(t) ∈ S denotes the state of an agent
at TS t.

• A: The set of actions that an agent can take, where a(t) ∈ A is the action of an
agent at TS t.

• R: The reward function, where r(t) represents the immediate reward of the agent at
TS t by performing action a(t) in state s(t).

• P: The probability distribution function of the state transition, where P(s(t), s(t+1))
denotes the state transition probability from state s(t) to state s(t+ 1).

In the considered URLLC-GF-NOMA system, the behavior of all users (i.e., transmis-
sion power and SC selection) can be modeled as an MA MDP (MAMDP), which is denoted
by ({S}Mm=1, {A}Mm=1,R,P). Unlike a single-agent DRL related to the learning process of
only one single agent, our proposed MADRL-based model involves a set of agentsM, where
all agents operate autonomously and concurrently in a sharing environment. In particular,
each agent m observes its current state sm(t) ∈ Sm from the environment and performs an
action am(t) chosen from its own action space Am. The joint action of all agents can be
formulated as a(t) = {a1(t), a2(t), . . . , aM (t)}. The agent m then moves from the current
state sm(t) to a new state sm(t + 1). All agents then receive a reward of r(t + 1) and
perform an update of their current policy according to the feedback from the environment.
It is worth noting that each agent having a distinct reward may result in selfish behavior,
leading to a reduction of the global network performance [123]. Therefore, we assume that
all agents have a common reward to obtain the global optimum. The main elements of the
proposed MADRL approach are defined as follows:

• State: Due to users’ independence and URLLC requirements, the state of agent (user)
m ∈ M is designed only based on the local information available at this agent to
reduce the processing latency and the signaling overhead in information exchange
between the agent and environment. Specifically, the state of agent m in TS t can
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be defined as the combination of SC index and transmission power value it selected
in the previous TS t− 1, which is expressed as

s(t) =
{
km(t− 1), P km(t−1)

m (t− 1)
}
, (4.10)

where km(t − 1) and P
km(t−1)
m (t − 1) are the selected SC index and transmission

power of agent m. Since the users’ selection of SC and transmission power will
impact the overall EE, it is reasonable to include this information in the defined
state. From (4.10), the state of agent m has a cardinality of 2. It is noteworthy that
the state definition in (4.10) differs from those in recent related works on GF-NOMA
systems, which require a large signaling overhead in information exchange between
the environment and the agents during the learning process [116,117]. A performance
comparison between different state definitions will be provided in Section 4.4.

• Action: At the beginning of TS t, agentm selects an SC and transmission power for its
transmission. As a feasible solution, the discrete power domain has been widely used
for the learning-based GF-NOMA systems in the literature [110, 115, 117]. This ap-
proach can ensure stable convergence and reduce the computational complexity of the
distributed learning models conducted by the users who have limited computational
resources. Given this context, we consider a discrete action space, where the power
is quantized into L levels which are determined as P̂l = lPmax/L, l ∈ {1, 2, . . . , L},
where P̂l is the l-th TPL. Thus, the action of user m in TS t is defined as

am(t) ∈ Am = {1, . . . , kl, . . . ,KL} , (4.11)

where am(t) = kl indicates that agent m selects SC k and TPL l in TS t. Thus, the
action space size of agent m is KL and the overall action space size of all agents is
determined as (KL)M .

• Reward: After all agents take their chosen actions, they receive an immediate reward
from the environment reflecting if their transmissions are successful or not, i.e., if all
constraints in the problem (4.9) are satisfied or not. In the MADRL frameworks, both
centralized and decentralized rewards can be considered to build learning models.
The centralized-reward mechanism yields a common reward to all agents, whereas
in decentralized-reward schemes, each agent receives a distinct reward. However,
the decentralized-reward strategy can lead to selfish behavior among agents. They
may compete with others to maximize their own rewards, which potentially results
in a degradation of overall system performance. To circumvent this issue, a common
reward can be implemented to align the agents towards a shared global objective
[123]. Since the objective is to maximize the network EE, we use the achieved EE to
formulate the reward function (RF). Furthermore, all agents receive the same reward
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with the aim of achieving the common objective, i.e., optimizing the network EE and
guaranteeing URLLC requirements of all users. Thus, the RF is defined as

r(t) =

 E (t) ,
if all constraints in the
problem (4.9) are satisfied,

0, otherwise.
(4.12)

Based on the reward function defined in (4.12), it becomes apparent that inappro-
priate user actions, such as an excessive number of users choosing the same SC, may
degrade the system’s EE. Consequently, the users will receive a low reward. Through-
out the learning process, users explore the environment to find the best policies that
will maximize their reward, ultimately leading to optimal EE performance.

The objective of RL algorithms is to find a policy π to maximize the expected re-
ward [56]. Considering the Q-learning algorithm - a popular RL technique, the expected
reward achieved by agent m after taking action am in state sm following a policy π can be
determined based on the action-value function (or Q-value function) as

Qπ(sm, am) = Eπ [r̂(t)|sm(t) = sm, am(t) = am] , (4.13)

where E [·] denotes the expectation operator and r̂(t) is the long-term discounted cumulative
reward which is given by

r̂(t) =
∞∑
k=0

γkr(t+ k + 1), (4.14)

where γ is the discount factor that determines the weight of the future reward. Based on
(4.13), the optimal Q-function can be calculated as

Q∗(sm, am) = max
π

Qπ(sm, am). (4.15)

Through the Q-learning method, the optimal policy can be found based on the available
information (sm(t), am(t), r(t), sm(t+ 1)). The update equation of the Q-value function of
agent m can be expressed as [56]

Q(sm(t), am(t)) = Q(sm(t), am(t)) + α [ym(t)−Q(sm(t), am(t))] , (4.16)

where ym(t) = r(t) + γmax
a

Q(sm(t+ 1), a) and α ∈ [0, 1] is the learning rate.
Although the Q-learning method has been widely adopted in wireless networks for

resource management purposes, it only works well under small state-action spaces, which
limits its applicability. Its practicality diminishes as the problem size increases, primarily
due to two key factors [117]: (i) the need for a lookup table to store Q-values for every
possible state-action pair becomes unmanageable in terms of storage complexity when
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Figure 4.2: Illustration of DQN/2DQN model.

dealing with large-scale problems; and (ii) with a larger state space, many states are rarely
visited, resulting in decreased performance. To overcome this drawback, we consider DRL
techniques to efficiently solve the proposed problem in (4.9). In the DRL method, a deep
neural network (DNN) is integrated into the framework of Q-learning to reduce the memory
size and computational complexity by calibrating and training the DNN’s different layers
to define the best action for each state instead of using a large storage space (i.e., Q-table)
to store all Q-values [124]. In this chapter, we propose MADRL-based EE URLLC-GF-
NOMA methods, where different DRL techniques including deep Q network (DQN), double
DQN (2DQN), and dueling 2DQN (3DQN), are investigated1.

4.3.2 Proposed MADRL Algorithms For URLLC-GF-NOMA Systems

MADQN-Based Approach

In this section, we consider a MADQN-based URLLC-GF-NOMA approach. With this
method, each agent constructs its own DQN model that consists of two different DNNs:
the online and target networks, as depicted in Fig. 4.2. Specifically, in each TS t, agent
m uses the online network for Q-function approximation Q (sm(t), am(t); θm) to select an
action am(t) ∈ Am at state sm(t) ∈ Sm. Here, θm represents the parameters (weights)

1Besides DRL algorithms based on Q-learning and DNN, tile coding and on-policy learning could also be
promising methods to achieve an effective solution and analytical convergence. This would be a noteworthy
issue to investigate in future work.
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of the agent m’s online network. Meanwhile, the target network is used to stabilize the
learning process, and its parameters θ̂m are updated by copying the parameters θm of the
online network after a certain number of TSs, which is also known as the parameter update
frequency F .

Regarding the action selection at each state, one should consider the trade-off between
exploration and exploitation during the learning process to achieve the optimal policy.
Given this context, the ϵ-greedy policy can be used for action selection to obtain a balance
between the exploitation of the best Q-value function and the environmental exploration
[56]. In particular, the ϵ-greedy policy selects an action based on two conditions:

am (t) =

 random action, with probability ε
arg max
a∈Am

{Qm(t)} , with probability 1− ε , (4.17)

where Qm(t) = Q (sm(t), a; θm). Herein, the parameter ϵ determines the level of explo-
ration, and it is usually set to decrease over time to reduce the exploration rate as the
learning progresses.

During the learning process, MADQN approach uses the experience replay strategy to
achieve learning stability, where the transition in the form of a tuple (sm(t), am(t), r(t), sm(t+ 1))
is stored in the experience replay memory of each agent m. At each iteration, a mini-batch
of experiences is sampled uniformly to train the learning model and update the parameters
of the online network θm with the purpose of minimizing the loss function defined as

Lm (θm) = [ym (t)−Q (sm (t) , am (t) ; θm)]2, (4.18)

where ym(t) is the target value calculated from the target network as follows:

ym (t) = r (t) + γ max
a∈Am

Q
(
sm(t+ 1), a; θ̂m

)
. (4.19)

Given the DQN model of each agent mentioned above, the proposed MADQN-based
URLLC-GF-NOMA approach is summarized in Algorithm 2. In particular, in TS t, each
agent m observes its current state sm(t) ∈ Sm and takes an independently action am(t) ∈
Am selected based on the ϵ-greedy policy in (5.37). After performing the chosen action,
agent m receives a common reward r(t) based on the achieved EE and moves to a new
state sm(t+ 1). It then stores an experience tuple of (sm(t), am(t), r(t), sm(t+ 1)) into its
experience replay memory, and a minibatch of experiences is sampled for training the online
network. The parameters of the online network θm are then updated to minimize the loss
function in (4.18) by using the stochastic gradient method, where the target value is given
by (4.19). After a predetermined number of TSs, the parameters of the target network
θ̂m are updated by copying θm. The above training process continues until reaching a
predefined number of episodes guaranteeing the algorithm’s convergence.
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Algorithm 2 MADRL-based Energy Efficiency Optimization Algorithm for URLLC-GF-
NOMA Systems.

1: Initialize online Q network with random parameters θm, ∀m ∈M.
2: Initialize target Q network with parameters θ̂m = θm, ∀m ∈M.
3: for e = 1, 2, . . . , E do
4: Initialize the network state sm(t), ∀m.
5: for t = 1, 2, . . . , T do
6: All agents select their actions am(t) ∈ Am, ∀m, based on the ϵ-greed policy in

(5.37).
7: All agents take their actions, receive a common reward r(t), and move to the

next state sm(t+ 1).
8: for m = 1, 2, . . . ,M do
9: Store an experience tuple of (sm(t), am(t), r(t), sm(t+ 1)) to the replay mem-

ory of agent m.
10: Randomly sample a mini-batch of experience from the replay memory for

training.
11: Determine the loss function L(θm) as follows:
12: - MADQN approach: Using (4.18) and (4.19).
13: - MA2DQN approach: Using (4.18) and (4.20).
14: - MA3DQN approach: Using (4.18) and (4.20), where the Q-value

(action-value) functions are calculated by utilizing (4.21).
15: Update θm by using stochastic gradient to minimize L(θm).
16: Update θ̂m as θ̂m = θm after every F TSs.
17: end for
18: end for
19: end for

MA2DQN-Based Approach

From (4.19), one can observe that the MADQN approach based on DQN model using the
same Q-value function for both tasks, i.e., action selection, max

a∈Am

Q(sm(t + 1), a; θ̂m), and

action estimation, Q(sm(t+ 1), a; θ̂m). This can lead to an unstable learning process since
the Q-value function is estimated over-optimistically. To mitigate this issue, we investigate
an MA2DQN-based URLLC-GF-NOMA approach, where 2DQN model is considered [125],
as shown in Fig. 4.2. In this method, the action selection and evaluation are decoupled
to avoid the overestimation issue by replacing the target value in (4.19) with the following
one

ym (t) = r (t) + γQ

(
sm (t+ 1), arg max

a∈Am

Qm(t+ 1); θ̂m
)
, (4.20)
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Figure 4.3: Illustration of 3DQN model.

where Qm(t+1) = Q (sm (t+ 1), a; θm). As can be seen from (4.20) that the online network
Q (s, a; θm) is used for the action selection, whereas the target network Q

(
s, a; θ̂m

)
is

applied to estimate the action. The MA2DQN-based URLLC-GF-NOMA algorithm is
also summarized in Algorithm 2 with MA2DQN remark in Step 11.

MA3DQN-Based Approach

An MA3DQN-based URLLC-GF-NOMA approach is studied in this section. This method
uses a 3DQN model whose structure is depicted in Fig. 4.3, to speed up the convergence
and improve the learning efficiency [126]. Following MA3DQN approach, each agent m
creates its own 3DQN model based on 2DQN, where the last layer of the 2DQN model is
split into two parts to evaluate the state value function (SVF) V (sm(t)) and the advantage
function (AF) A(sm(t), am(t)). Herein, the SVF V (sm) is used for estimating the quality
(goodness or badness) of a given state sm(t), allowing the agent to evaluate the long-term
potential of being in that state. Meanwhile, the AF A(sm(t), am(t)) captures how much
better or worse a specific action is compared to other actions in state sm(t). This allows the
agent to choose the best action to take in a given state. The two parts are then combined
to produce the final action-value function Q(sm(t), am(t); θm, θVm, θAm) that is used to select
actions in the environment. Here, θVm and θAm denote the parameters according to SVF-
related and AF-related parts, respectively. Given this context, the action-value function
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determined by agent m for a given state sm(t) and action am(t) is calculated as follows:

Q(sm(t), am(t); θm, θVm, θAm) = V (sm(t)) +A(sm(t), am(t))

− 1
|Am|

∑
a∈Am

A(sm(t), am(t)), (4.21)

where the last term of the right-hand side of (4.21) is the mean of the AF over all ac-
tions. It is subtracted from the AF A(sm(t), am(t)) of a specific action to ensure that
the AF is centered around zero, making it easier to train the network. This approach
improves the convergence and stability of the network and enables the effective separation
of the estimation of SVF and AF, resulting in better performance compared to DQN and
2DQN architectures. The MA3DQN-based URLLC-GF-NOMA approach is also cast by
Algorithm 2 under the designation MA3DQN mentioned in Step 11.

4.3.3 Analysis of The Proposed Methods

Complexity Analysis

Let H, Nh, and Is be the number of training layers (input, hidden, and output layers), the
number of neurons in layer h, and the size of the input layer. For each TS, the compu-
tational complexity of URLLC-GF-NOMA algorithms based on MADQN and MA2DQN
can be calculated by

CTS = O (X) , (4.22)

where X = IsN1 +
H−1∑
h=1

NhNh+1. For the training phase with M agents, E episodes, and
T TSs, the computational complexities of the algorithms can be given by

CMADQN = CMA2DQN = MET × CTS = O (METX) . (4.23)

Taking the MA3DQN-based URLLC-GF-NOMA algorithm into account, it has higher
complexity than MADQN and MA2DQN-based algorithms due to the implementation of
the dueling network architecture. Specifically, its complexity can be determined as

CMA3DQN = O (MET (X +NH−1)) . (4.24)

Convergence Analysis

The convergence of a multi-agent system relies on whether the combined strategy of the
agents ultimately approaches the optimal state (Nash equilibrium), ensuring the stabil-
ity of the solution. In this chapter, we propose URLLC-GF-NOMA methods based on
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MADQN, MA2DQN, and MA3DQN, which combine the conventional Q-learning and neu-
ral networks. To analyze the convergence of these methods, two key aspects need to be
addressed [127]: (i) demonstrating the ability of the conventional Q-learning to converge
to the optimal state, and (ii) verifying that the neural network approach effectively identi-
fies or approximates the nonlinear Q-values generated by the general Q-learning iteration
as depicted in equation (4.16). In particular, it has been shown in [128] that the con-
ventional Q-learning algorithm guarantees the attainment of the optimal state when the
learning rate αt satisfies 0 ≤ αt ≤ 1, ∑t αt = ∞, and ∑t α

2
t < ∞. Additionally, based

on [129], it is established that the neural network can approximate any nonlinear contin-
uous function when adequately sized and suitably initialized. Thus, the convergence of
our proposed methods can be guaranteed. It is noteworthy that as mentioned in [130],
the theoretical analysis of the neural network’s size and initial conditions for ensuring its
convergence before training poses challenges due to the complex quantitative relationship
between the network convergence and hyperparameters. Therefore, we utilize simulations
to demonstrate the convergence of our proposed methods.

Solution Analysis

To clarify the difference between the scenario considered in this chapter and the ones
investigated in related works on RL-based GF-NOMA [31, 115–117], this section provides
a solution summary examined in these works, as shown in Table 4.1. As can be seen from
this table, different DRL frameworks have been proposed to address the unique problems
of GF-NOMA systems effectively. In delay-sensitive RL-based systems, signaling overhead
is a key performance indicator. It is defined as the number of information bits needed to
feed back the channel status data, SC indicators, and the transmission power of a specific
user over an SC [131]. Also, the total number of users and SCs, and the exchange of states
as well as rewards between the agents and environment can affect the signaling overhead.
Higher signaling overhead results in larger processing latency for users.

Following [131], it is assumed that transmitting a continuous value of channel status,
data rate, and reward requires 16 bits. Additionally, 1 bit is allocated for acknowledgment
(ACK) feedback, 2 bits for decoding status, and 4 bits for the SC indicator, transmission
power, and other relevant parameters. The work [115] produces a large signaling overhead
because it depends on the decoding status of K̂ pilot sequences, users’ average throughput,
and parameters (weights) of the centralized-training MADRL model transmitted from the
BS to users who build local DRL models for distributed execution. These parameters
depend on the number of input, hidden, and output layers (A) and the number of neurons
per layer (Na, 1 ≤ a ≤ A). In addition, large signaling overhead can be observed in [116,
117] due to the inclusion of various feedback information. This includes the channel status
and ACK information of each user [116], as well as users’ data rate [117]. In [31], the BS
decides the actions for users (the selection of repetition value and contention transmission
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Table 4.1: Solution Summary of Related Works
Refs. Opt.

Problem Solution State Action Reward Signalling
Overhead

[115] Throughput
Centralized-training
distributed execution

MADRL

Decoding states,
and average
throughput

Pilot
sequence Throughput

2K̂ +M︸ ︷︷ ︸
State

+
∑A

a=1
4Na︸ ︷︷ ︸

Parameters

[116] Throughput Distributed
MADRL

User’s action,
CSI, and ACK

SC
and TPL Throughput

16KM +M︸ ︷︷ ︸
State

+ 4︸︷︷︸
Reward

[117] Sum rate Distributed
MADRL

Users’
achievable rate

SC
and TPL Sum rate

16KM︸ ︷︷ ︸
State

+ 16︸︷︷︸
Reward

[31] Throughput Centralized
MADRL

Vcc, Vic, Vsc,
Vsd, Vud

Repetition
value

and CTU
Throughput 8M︸︷︷︸

Action

Our
Paper

Energy
efficiency

Distributed
MADRL

User’s selected
SC index
and TPL

SC
and TPL

Energy
efficiency 16︸︷︷︸

Reward

unit (CTU)), hence, the signaling overhead depends on the feedback information from the
BS to the users regarding the selected actions for the transmission of each user. Note that
Vcc, Vic, Vsc, Vsd, and Vud used in Table 4.1 stand for the number of collision CTUs, idle
CTUs, singleton CTUs, successfully served users, and failure decoding users, respectively.
In our method, only the reward feedback is required to reduce the signaling overhead,
but still guarantee an effective learning solution. Consequently, the signaling overhead is
determined by the reward feedback.

4.4 Simulation Results

In this section, the simulation results are provided to evaluate the performance of the pro-
posed MADRL-based resource allocation methods for the considered URLLC-GF-NOMA
system. The simulations were performed on an Intel core i7-8665U CPU with 1.9 GHz
frequency, 16 GB of random access memory (RAM), and 64-bit Windows 10 operating
system. The learning models were considered with three hidden layers, including 256, 128,
and 64 neurons. The experimental parameters are provided in Tables 4.2. Besides the
proposed URLLC-GF-NOMA approaches based on MADQN, MA2DQN, and MA3DQN,
we further investigate the following methods for comparison purpose.

• MA Q-learning (MAQL) [110]: MAQL is applied for GF-NOMA systems in [110].
With this scheme, each agent builds its own Q-table to store Q-values of all possible
state-action combinations during learning process.
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Table 4.2: Simulation Parameters
Parameters Value
Cell radius (rc) 500 m
Channel model Rayleigh
Number of users (M) {2; 4; 6; 8; 10}
Number of SCs (K) {2; 3}
Reliability requirement (εm)

{
10−1, 10−3, 10−5, 10−7}

Latency threshold (τ) {0.5; 1; 1.5; 2} ms
Numerology index (ν) 2
Number of transmit power levels (L) {2; 4; 6; 8; 10}
Circuit power consumption (Pc) 0.05 W
Noise power (σ2) −174 dBm/Hz
Packet size (nb) 256
Number of episodes (E) 500
Number of learning steps (T ) 100
Number of hidden layers 3
Number of neurons per hidden layer {256, 128, 64}
ϵ-greedy policy ϵ = 1 and ϵmin = 0.001
Learning rate (α) 0.001
Discount factor (γ) 0.9
Optimizer Adam

• Random approach: In this scheme, users randomly select SC and TPL for their
transmissions without learning.

• Exhaustive search (ES): This method determines the optimal solution through explo-
ration of the entire network space in every TS.

• GF-OMA method: This method explores GF-OMA scheme, where the users utilize
distinct frequency/time domains for their transmissions [132].

• Different state spaces [116,117]: Various state spaces for MADRL-based GF-NOMA
systems introduced in [116,117] are also considered to assess the proposed methods’
efficiency in terms of convergence property and signaling overhead. Specifically, the
network state defined for agent m in [116], named State 1, consists of its action, its
channel gains over all SCs, and its transmission outcome. Meanwhile, the work [117]
defines agent m’s state, so-called State 2, as the combination of the achievable rates
of all agents.
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Figure 4.4: Convergence analysis with different approaches, where M = 4, K = 2, L = 7.

Fig. 4.4(a) shows the convergence behavior during the training phase of the URLLC-
GF-NOMA approaches based on MA3DQN, MA2DQN, MADQN, MAQL, and Random
schemes by plotting the reward achieved by all agents with respect to the various num-
ber of episodes. As can be observed from this figure, the Random method achieves the
worst performance (i.e., lowest reward) as compared to other schemes. This is because the
users randomly select SC and TPL when using this method. It is, therefore, difficult for
them to find the best SC and TPL for their transmissions to optimize the network perfor-
mance and guarantee URLLC requirements. Among the remaining approaches, the MAQL
scheme outperforms the Random method thanks to the application of the Q-learning algo-
rithm, but still achieves worse performance than others. This highlights the constraint of
the Q-learning method when applied to a dynamic environment with an extremely large
state-action space. Taking our proposed URLLC-GF-NOMA methods (i.e., MA3DQN,
MA2DQN, and MADQN) into account, they are superior to the MAQL and Random
methods, while achieving the same learning behavior and comparable rewards in this sim-
ulation. After the training phase, the testing phase is conducted to evaluate the training
results, where the users always select the best action with the highest Q-value based on
their learning results under new network conditions (network states and channels). The
simulation results for the testing phase are provided in Fig. 4.4(b), where the testing pro-
cess is performed over 100 episodes. This figure shows that during the testing phase, the
learning-based methods (MA3DQN, MA2DQN, MADQN, and MAQL) can guarantee the
convergence they achieved in the training phase.
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Figure 4.5: Convergence analysis with different network states and MA3DQN method, where
M = 4, K = 2, L = 7.

In Fig. 4.5, we plot the variation of the achieved reward versus the number of episodes
when using the MA3DQN approach with different network state definitions. This is to
evaluate the efficiency of our proposed methods in terms of convergence and signaling
overhead. Specifically, we investigate two network states used for GF-NOMA systems
in [116, 117], namely State 1 and State 2, as mentioned earlier. In addition, a channel-
based state definition, so-called State 3, is also investigated, where only the channel state
information (CSI) of each user is used to define its state. One can see from Fig. 4.5 that the
method utilizing the proposed state in (4.10) attains rewards comparable to the method
that uses State 2 and State 3, and larger than the method utilizing State 1. Furthermore,
the proposed state demands lower signaling overhead than State 1, State 2, and State 3. In
particular, the proposed state only requires the agents to know their own selected SC index
and transmission power value, which are available at the agent. Thus, the environment
only needs to provide feedback to the agents regarding their transmission outcomes (i.e.,
reward), which is used for the training process. Meanwhile, State 1 requires the agents
to also have knowledge of their own channel quality and incorporate transmission results
into their state information. This unnecessarily increases the input data for the agents’
learning model. On the other hand, State 2 requires agents to grasp the achievable rates of
all users. This necessitates significant information exchange between the environment and
the agents, resulting in high signaling overhead. Moreover, State 3 demands for additional
information exchange between the agents and the BS to achieve the CSI, increasing the
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Figure 4.6: Effect of state-action spaces on the achieved reward with different approaches.

signaling overhead but does not contribute to further improving the learning process and
the system performance in our considered scenario.

Fig. 4.6(a) and Fig. 4.6(b) illustrate the effect of small and large state-action spaces
(i.e., number of users (M), SCs (K), and TPLs (Lp)) on the achieved rewards, respectively.
Herein, the MA3DQN, MA2DQN, and MADQN approaches using the proposed state and
State 2 are considered. As demonstrated by these figures, the methods using the proposed
state and those employing State 2 have similar learning behavior and achieve comparable
reward values in the small state-action space. However, in the large state-action space, the
methods utilizing the proposed state outperform those using State 2. This is because by
utilizing the proposed state, the state-action space of the considered methods is significantly
reduced compared to that of the methods employing State 2, resulting in a faster learning
process and higher achieved rewards for the methods using the proposed state.

Fig. 4.6(b) also illustrates that the MA3DQN method outperforms the MA2DQN
and MADQN methods in the large state-action space generated by State 2. This is due
to the MA3DQN approach’s ability to rapidly identify optimal actions and important
states, leading to better learning outcomes than the MA2DQN and MADQN techniques.
The enhanced performance of MA3DQN is achieved by the separation of state and action
networks at the last layer of the DNNs model used in these schemes. On the other hand,
when the proposed state is employed, it results in a considerably smaller state-action space
than State 2, even with an increase in M , K, and Lp, resulting in faster learning. As
a result, the MA3DQN, MA2DQN, and MADQN methods employing the proposed state
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(εm, τ) on the achieved reward, where M = 4,
K = 2, and L = 10.
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achieve comparable learning outcomes. Thus, the MA3DQN method is developed for
problems with a larger state-action space, whereas the MA2DQN and MADQN methods,
with a simpler network design, are suitable for problems with smaller state-action spaces.

To evaluate the effect of the URLLC requirements (i.e., εm and τ) on the system
performance, we plot the variation of the achieved reward versus the number of episodes
with different value sets of (εm, τ), while using the MA3DQN method in Fig. 4.7. This
figure indicates that the achieved reward can converge to a greater value when the lower
URLLC requirements are set; for instance, the reliability decreases (i.e., εm increases from
10−7 to 10−1), and the latency threshold is degraded (i.e., τ increases from 0.5 ms to 2
ms). This can be explained by the fact that the minimum data rate threshold based on
(4.7) gets higher with the increase in the URLLC requirements. It is, thus, more difficult
to obtain the rate constraint required to fulfill the URLLC conditions in this case, leading
to an EE performance degradation.

Fig. 4.8 shows the performance comparison in terms of the achieved reward between
the methods using GF-NOMA and GF-OMA. For the GF-OMA scheme, each user oc-
cupies a distinct resource block and the system bandwidth W is equally divided among
the users [132]. Observing Fig. 4.8 reveals that the methods utilizing GF-NOMA obtain
greater reward gains compared to those utilizing GF-OMA. This can be attributed to the
performance degradation that occurs in the latter due to the splitting of bandwidth re-
sources among users in the OMA scheme. Moreover, this figure illustrates that in both
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GF-NOMA and GF-OMA scenarios, the achieved rewards are comparable for the pro-
posed MA3DQN, MA2DQN, and MADQN methods, and these approaches outperform the
MAQL and Random schemes.

Fig. 4.9 depicts the variation of the average EE with respect to the number of users
(M) for different methods. As observed from this figure, the EE performance decreases as
the value of M gets higher since the growth of the number of users sharing the same SCs in
this case leads to stronger interference. In addition, the proposed MA3DQN, MA2DQN,
and MADQN methods yield better EE performance than the MAQL and Random methods
when M increased. Furthermore, they achieve comparable EE gains under the different
values of M . As mentioned earlier in the previous results, this is because the proposed
approaches produce a small state-action space for each agent, accelerating their learning
process and leading to equivalent EE performance.

Fig. 4.10 provides an EE performance comparison between the investigated methods
(i.e., MA3DQN, MA2DQN, MADQN, MAQL, and Random) and an optimal solution ob-
tained through the ES method by plotting the achieved EE versus the number of TPLs.
The ES method finds the largest EE by traversing all possible actions in the network in
every TS. As illustrated in Fig. 4.10, the EE values achieved by the MA3DQN, MA2DQN,
and MADQN methods are close to those of the ES method and significantly exceed those
of the MAQL and Random approaches. It is noteworthy that the ES method is infeasible
for large network spaces since it requires exploring the entire network space, leading to
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Figure 4.11: EE performance of MADQN method with centralized and decentralized rewards.

high computational complexity. To address this issue, the proposed URLLC-GF-NOMA
methods based on MA3DQN, MA2DQN, and MADQN enable the users to interact with
the wireless environment and learn from their accumulated experiences to rapidly achieve
a near-optimal solution without visiting the entire network space.

Fig. 4.11 provides an EE performance comparison between MADQN methods using
centralized and decentralized rewards with different values of M , K, and L. Specifically,
the centralized reward is defined in (4.12), whereas the decentralized reward implies that
each agent can receive a distinct reward depending on its own transmission outcome. In
particular, with the objective of maximizing EE, the decentralized reward of each agent m
can be defined as rm(t) = R

(k)
m (t)/P (k)

m (t) if its transmission is successful (i.e., R(k)
m (t) ≥ R̂m)

and rm(t) = 0 otherwise. Herein, P (k)
m (t), R(k)

m (t), and R̂m are defined in (4.1), (4.4), and
(4.7), respectively. As can be seen from Fig. 4.11, the EE performance achieved by using
decentralized rewards is much smaller than the cases using centralized rewards. This is due
to the fact that employing decentralized rewards can lead to the selfish behavior of agents,
where they may compete with each other to maximize their own objective instead of the
common one, i.e., maximizing the overall EE while guaranteeing the URLLC requirements
of all users. Therefore, a significant global EE performance degradation can be observed
as shown in Fig. 4.11.

As mentioned earlier in Section II-C, the problems of maximizing the achievable sum
rate, named as maxRate, and minimizing the power consumption, so-called minPower,
can also be investigated based on the EE maximization problem, denoted by maxEE,
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Figure 4.12: Achievable sum rate and power consumption of different problems, where M = 4,
K = 2, and L = 7.

defined in (4.9). Herein, maxRate and minPower are achieved by setting the denominator
and numerator of (4.8) as 1, respectively. Given this context, Figs. 4.12(a) and 4.12(b)
depict the achievable sum rate and the power consumption versus learning episodes for
different problems, including maxEE, maxRate, and minPower, respectively. These figures
demonstrate that maxRate can obtain the highest sum rate but with the largest power
consumption since it only focuses on maximizing the sum rate, leading to high power
consumption. Meanwhile, minPower can achieve minimum power consumption but results
in a poor achievable sum rate due to its power minimization objective. On the other
hand, the proposed maxEE problem can achieve a high sum rate close to that obtained
by maxRate while minimizing the users’ power consumption. Thus, maxEE outperforms
maxRate and minPower in guaranteeing the trade-off between the achievable sum rate and
power consumption for energy-limited users.

Fig. 4.13 provides the EE performance of different MADRL frameworks proposed for
GF-NOMA systems including our proposed solution, throughput-based solution [116], and
rate-based solution [117]. As can be seen from this figure, our proposed solution achieves
much better EE performance than throughput-based and rate-based solutions. This is
because our proposed solution aims to maximize EE with minimum transmission power to
save energy for those users with limited energy resources. In contrast, the throughput-based
method tries to maximize network throughput, hence, higher transmission power than
necessary can be used to ensure the successful decoding of the users’ messages. Meanwhile,

93



Deep Reinforcement Learning for Resource Allocation Optimization in URLLC Systems

2 4 6 8 10

Number of transmission power levels

20

40

60

80

100

120

E
n
e
rg

y
 E

ff
ic

ie
n
c
y
 (

M
b
/J

)

Proposed solution

Rate-based solution

Throughput-based solution

Figure 4.13: EE performance of differ-
ent MADRL solutions for GF-NOMA systems,
where M = 4 and K = 2.
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Figure 4.14: EE performance of different
SIC methods, where M = 4, K = 2, and L = 7.

the rate-based solution focuses on maximizing data rate with large transmission power
resulting in EE performance reduction.

To clarify the benefits of received power-based decoding order, Fig. 4.14 shows the EE
comparison between received power-based and rate-based SIC methods during the learning
process. Here, we consider that the predetermined rate demand of user m (1 ≤ m ≤ M)
is set as m bps/Hz. Considering the rate-based SIC method, the message of the user with
lower rate demand will be decoded earlier at the BS. This is because the user having its
signal decoded earlier would suffer stronger interference and achieve a smaller data rate.
As can be observed from Fig. 4.14, the received power-based SIC outperforms the rate-
based SIC in terms of EE. The reason behind this result is that the decoding order in
the received power-based SIC method is more flexible than that in the rate-based SIC
approach, which depends on the users’ channel conditions and TPL selection. This can
help the users find the most appropriate SC and TPL for their transmissions to optimize
the global EE performance and satisfy the different rate demands of all users. In contrast,
the decoding order is fixed in the rate-based SIC method due to the predetermined rate
demand of the users. It is, therefore, difficult for users to find the best learning policy,
especially in time-varying and strong-interference environments, leading to performance
degradation.
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4.5 Summary

From the results achieved above, it can be concluded that the proposed URLLC-GF-
NOMA methods based on MA3DQN, MA2DQN, and MADQN can obtain similar perfor-
mance and outperform other benchmark schemes in terms of EE, convergence rate, and
signaling overhead. However, the methods based on MA2DQN and MADQN exhibit lower
complexity compared to the MA3DQN-based method as indicated in Section 4.3.3, thereby
reducing the power consumption and processing latency for the URLLC users. This benefit
makes them better suited for the considered URLLC-GF-NOMA system.

4.5 Summary

In this chapter, we have investigated a resource allocation problem in an uplink URLLC-
GF-NOMA system where the users aim to maximize energy efficiency while satisfying their
URLLC requirements. To achieve this, we have proposed three MADRL-based URLLC-
GF-NOMA approaches (MA3DQN, MA2DQN, and MADQN) for the users to learn how
to select the most suitable sub-channel and transmission power for their transmissions. In
particular, we have designed an MADRL framework that guarantees a rapid convergence
and small signaling overhead to maximize energy efficiency and satisfy users’ URLLC
requirements. Our simulation results have shown that the proposed URLLC-GF-NOMA
methods based on MA3DQN, MA2DQN, and MADQN can achieve similar performance,
but MA2DQN and MADQN are more appropriate for the investigated URLLC-GF-NOMA
system due to their lower complexity compared to MA3DQN. Moreover, our proposed
methods outperform existing benchmark schemes in terms of energy efficiency performance,
convergence property, and signaling overhead to guarantee the URLLC requirements of
energy-limited users.
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Chapter 5
Coexistence of eMBB, mMTC, and
URLLC Heterogeneous Services

The escalating number of wireless users requiring different services, such as enhanced mobile
broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable
low-latency communications (URLLC), has led to exploring non-orthogonal multiplexing
methods like heterogeneous non-orthogonal multiple access (H-NOMA). This method al-
lows users demanding divergent services to share the same resources. However, implement-
ing the H-NOMA scheme faces major resource management challenges due to unpredictable
interference caused by the random access mechanism of mMTC users. To address this is-
sue, this paper proposes a joint optimization and cooperative multi-agent (MA) deep rein-
forcement learning-based resource allocation mechanism, aimed at maximizing the energy
efficiency (EE) of H-NOMA-based networks. Specifically, this work initially establishes
an optimization framework capable of determining the optimal power allocation for any
specific sub-channel assignment (SA) setting for all users. Based on that, a cooperative
MA double deep Q network (CMADDQN) scheme is carefully designed at the base station
to conduct SA among users. In addition, a distributed full learning-based approach us-
ing MADDQN for both SA and power allocation is also designed for comparison purposes.
Simulation results show that the proposed joint optimization and machine learning method
outperforms the solely-learning-based approach and other benchmark schemes in terms of
convergence rate and EE performance.

The rest of the chapter is organized as follows. Introduction to the current state of the
art is discussed in Section 5.1. Section 5.2 presents the system model, uplink transmission
strategy for H-NOMA-based systems, the achievable rate of users, and the EE maximization
problem. Section 5.3 and Section 5.4 describes the proposed learning-based optimization
solutions to address the EE optimization problem for the considered system. Section 5.5
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provides the obtained simulation results and discussions. Finally, Section 5.6 summarize
this chapter.

5.1 Introduction

The future wireless networks are anticipated to support a tremendous number of devices
requiring heterogeneous services, e.g.,eMBB, mMTC, and URLLC, together with different
quality-of-service (QoS) demands [119]. Specifically, the eMBB service aims to bring a sig-
nificant increase in user data rate; the mMTC service supports the connectivity for a huge
number of devices; and the URLLC is expected to provide a service with unprecedented
high reliability and low latency [2]. Due to the high data rate demand, eMBB communica-
tion is designed under the assumption of infinite blocklength (iFBL) to target Shannon’s
channel capacity utilizing long data packets. In contrast, the demands of high connectivity
density in mMTC, and ultra-reliable and low latency in URLLC require a new transmission
method since mMTC and URLLC packets are generally short. In this regard, short-packet
communications (SPC) have been applied for mMTC and URLLC transmissions to meet
their requirements [133,134].

To meet the diverse requirements arising from heterogeneous services, non-orthogonal
multiple access (NOMA) technology is considered a promising solution [135]. Specifically,
numerous studies in the literature have considered employing NOMA to efficiently man-
age the transmission in systems where heterogeneous services coexist [37, 136]. Thanks to
the NOMA mechanism, users of heterogeneous services can simultaneously communicate
with the base station (BS) using the same time-frequency resource block (RB). This is
achieved through various methods such as power domain [135, 137], rate splitting [138],
or codebook/pilot sequences [139]. Recently, NOMA technologies have been empowered
by the introduction of the semi-grant-free (semi-GF) strategy, also known as semi-GF
NOMA [140]. Following this novel integrated strategy, users having stringent QoS require-
ments (e.g., eMBB or URLLC users) are scheduled orthogonally by the system controllers
(e.g., BS, access point, etc.) using grant-based (GB) access to fulfill their demands. Mean-
while, other users, such as mMTC users, can access the opened RBs freely according to a
grant-free (GF) access mechanism. This approach can significantly increase connectivity
opportunities in dense networks. On top of the semi-GF scheme, the NOMA transmission
becomes particularly advantageous when more than one user accesses a specific RB.

Recently, the applications of NOMA to the systems with multiplexed diverse services
have been investigated [37–40, 140–142]. In particular, the authors in [37] explored a het-
erogeneous NOMA (H-NOMA)-based network slicing scheme for wireless communication
systems supporting the eMBB, URLLC, and mMTC services. In this work, H-NOMA
is defined as a novel approach to non-orthogonal sharing of the RBs for various services,
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distinct from the conventional NOMA which caters to homogeneous demands. In par-
ticular, the employment of this H-NOMA network slicing scheme enables users requiring
various services to continuously utilize the same specific frequency radio resources over
time. This approach leads to a significant improvement in spectrum efficiency. This work
also showed that the H-NOMA-based slicing scheme can outperform heterogeneous orthog-
onal multiple access (H-OMA) in meeting diverse requirements under certain considered
scenarios. In [140–142], the advantage of the semi-GF NOMA scheme serving both GB and
GF users has been investigated in different circumstances. Furthermore, the closed-form
expressions of outage probability and ergodic rate were derived in these works to analyze
system performance. In [38], the authors have developed an efficient NOMA-based network
slicing solution for eMBB and URLLC coexisting networks to minimize the total power
consumption. In [39], the coexistence of eMBB and URLLC in MIMO NOMA systems was
investigated by maximizing eMBB users’ data rate while fulfilling the latency demands of
URLLC users. In [40], a network slicing method for eMBB, URLLC, and mMTC based on
a rate-splitting MA (RSMA) scheme was proposed. This work showed that RSMA-based
network slicing can achieve better performance in terms of sum-rate in some investigated
regions as compared to conventional OMA-based and NOMA-based ones.

Applying the grant-free (GF) strategy can reduce the overhead time associated with
setting up transmission links; however, it also introduces complex issues related to inter-
ference management. Specifically, in scenarios involving massive access, the random access
nature of GF or mMTC users can result in severe interference. This is particularly prob-
lematic when a large number of users attempt to access a limited number of RBs. This can
make users’ heterogeneous QoS requirements unsatisfied, leading to significant performance
degradation. Furthermore, in the context of the wireless channel varying unpredictably over
time, developing dynamic resource allocation mechanisms addressing the above congestion
problem and fulfilling the various QoS requirements from different services becomes more
challenging. In recent years, the reinforcement learning (RL) method has been applied to
intelligently resolve the resource allocation problem in communications [143]. Its applica-
tion to the coexistence of heterogeneous services has been investigated in [41–44].

Specifically, the authors in [41] developed an intelligent resource-slicing approach for
downlink eMBB-URLLC coexisting orthogonal frequency-division MA (OFDMA) systems
by exploiting the well-known deep RL (DRL) tools. Considering uplink transmission, the
authors in [42] proposed a multi-agent (MA) DRL (MADRL) resource allocation framework
using deep Q network (DQN) and transfer learning for OFDMA-based uplink systems serv-
ing multiple users with different QoS requirements, such as high reliability, low latency, and
high data rate. In this study, the power quantization (PQ) method is utilized to discretize
the continuous range of possible transmission powers into a limited set of transmission
power levels (TPLs), thereby facilitating the learning process. However, this approach
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may lead to performance loss if the discretized power levels are unable to closely approx-
imate the optimal points. In [43], Fayaz et al. developed a DRL-based sub-channel (SC)
and power allocation mechanism for semi-GF NOMA-based uplink HetNets, which aims
to maximize the sum rate while meeting different rate demands of both GB and GF users.
In this work, the PQ method is only employed for GF users’ power allocation while the
transmission power of the GB users is fixed. In [44], the authors investigated a two-hop
NOMA-based uplink HetNet, where each GF user first transmits its message to a selected
GB user, the chosen GB users then forward the information to BS. The GF users in this
scheme were considered as DQN agents to select SC and transmission power from finite
sets of all SCs and pre-discretized TPLs. In addition, a GB user is designated as the head
of the GF-user cluster. Meanwhile, the power allocation for GB users is centrally defined
at the BS using another DRL algorithm, namely proximal policy optimization (PPO).

Unlike the above-related works, this paper develops a joint optimization and MADRL-
based method for H-NOMA-based uplink systems serving eMBB, mMTC, and URLLC
users requesting heterogeneous QoS requirements, not only to speed up the learning pro-
cess but also to achieve the optimal resource allocation solution. Specifically, the main
contributions of this paper are summarized as follows:

1. We investigate the coexistence of eMBB, mMTC, and URLLC in a H-NOMA-based
uplink system, where eMBB and URLLC users are assigned orthogonally to a number
of SCs to fulfill their stringent QoS requirements on high reliability, low latency, and
high data rate. Meanwhile, mMTC users can access any SCs freely and quickly
without any admission approval from BS to improve the spectrum access efficiency
and connectivity density.

2. We formulate an energy efficiency (EE) maximization problem for the considered
system. The objective is to maximize the long-term average EE under constraints on
various QoS requirements of users.

3. We design a novel learning-based resource allocation strategy to address the proposed
problem. In particular, we propose a joint optimization and cooperative MA DDQN
(JOCDDQN) method to optimize the resource allocation policy as well as significantly
improve learning performance. The JOCDDQN method utilizes a cooperative MA
DDQN (CMADDQN) scheme centralized at the BS for SC assignment based on which
a dynamic power allocation solution is developed to obtain optimal transmission
power for users. In addition, we also design a distributed full learning solution based
on MADDQN, namely FDDQN, where all users are considered as learning agents to
find the best SC and power level selection policy in order to resolve the investigated
problem. It is noteworthy that the PQ method is applied in the proposed FDDQN
method similar to the existing works [42,43].
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Figure 5.1: Illustration of a H-NOMA-based uplink system.

4. We carry out the performance comparison between our proposed methods and other
benchmark schemes to evaluate the efficiency of the former in terms of convergence
property and EE performance. Additionally, we provide numerical results to analyze
the effects of different system parameters, such as the number of SCs, number of
transmission power levels (TPLs), number of users, maximum transmission power,
and divergent QoS requirements, on the system performance.

5.2 System Model and Problem Formulation

As shown in Fig. 5.1, we investigate an H-NOMA-based uplink system that consists of
one BS located at the center of the cell with a radius of rc (m) and a number of users
randomly distributed in this cell requiring different services such as eMBB, mMTC, and
URLLC. Let MU, ME and MM be the sets of URLLC, eMBB, and mMTC users, whose
cardinalities are MU, ME and MM, respectively. For convenience, we also denote the set of
all users asM =MU ∪ME ∪MM and M = MU +ME +MM. To serve these users, a total
bandwidth of W (Hz) is assumed in the system, which is divided into K SCs. Let K be the
set of all K SCs. Furthermore, due to high requirements of eMBB (data rate) and URLLC
(reliability and latency) services, one assumes that each of the eMBB and URLLC users is
preassigned several orthogonal SCs for its transmissions. Meanwhile, the mMTC users are
assumed to be able to access any available SCs freely to improve the connection density
due to the massive access requirement of the mMTC service. Therefore, the mMTC users
can use the SCs granted to the eMBB and URLLC users. In this case, when there are
more than one user occupy the same SC, the power-domain H-NOMA scheme is applied
for multi-user communication. In practice, the number of active mMTC and URLLC users
is random which can be described by Poisson distribution [37]. Here, we consider the worst
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scenario where all MM mMTC users and MU URLLC users have packets to transmit in
each time-slot (TS), leading to the highest co-channel interference.

5.2.1 Uplink Transmission Strategy for H-NOMA

5G New Radio (NR) Numerologies

5G NR standard introduces various physical-resource-block (PRB) or subchannel (SC)
types in order to support different communication requirements and use-cases, which is
referred to as “numerology”. In particular, the bandwidth of SC in 5G NR schemes is
defined as 2ν times of SC’s bandwidth in 4G systems (i.e., 180 kHz), where ν ∈ {0; 1; 2; 3; 4}
is the numerology index [119]. PRBs with high SC spacing are arranged for URLLC services
while traffic flows from the eMBB service can adopt a numerology with the smaller SC
spacing [119]. Therefore, this chapter focuses on an SC setting that the whole bandwidth
is divided into two sets of SCs, KU and KE. Particularly, KU represents the set of SCs
serving URLLC users with numerology νU while KE is the set of eMMB-service SCs with
numerology νE. Herein, KU ∪ KE = K. One assumes that νE < νU and denotes WE =
2νE × 180 (kHz) and WU = 2νU × 180 (kHz) as the bandwidth of SCs corresponding to
eMBB and URLLC services, respectively.

Uplink Transmission Mechanism

Considering the transmission over SC k (k ∈ K), we denote c(k)
z (t) (z ∈ M) as a binary

SC allocation variable at time-slot (TS) t, where c(k)
z (t) = 1 if user z occupies SC k and

c
(k)
z (t) = 0 otherwise. As mentioned earlier, each of eMBB and URLLC users is assigned

a set of orthogonal SCs to guarantee its strict requirements. In addition, we assume a
one-SC freely access strategy for mMTC users where each mMTC user can select only one
arbitrary SC for its transmission. These assumptions yield the following conditions

(C1) : ∑
z∈ME∪MU

c
(k)
z (t) ≤ 1, ∀k ∈ K. (5.1)

(C2) : ∑
k∈K c

(k)
z (t) = 1, ∀z ∈MM. (5.2)

Thus, many mMTC users can access the same SC and they can use the SCs granted to
the eMBB and URLLC users. To enable a multi-user data stream over the same SC, the
power-domain NOMA scheme is employed. Following NOMA principle, many users can
occupy the same SC for their transmissions. In this regard, the received signal over SC k
at the BS in TS t can be expressed as

yk(t) =
∑
z∈M

c(k)
z (t)

√
P

(k)
z (t)h(k)

z (t)x(k)
z + wk(t), (5.3)
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where wk(t) ∼ CN
(
0, σ2

k

)
is the additive white Gaussian noise (AWGN) over SC k at the

BS; P (k)
z (t), h(k)

z (t), and x(k)
z denote the transmission power, channel coefficient, and trans-

mitted symbol of user z over SC k, respectively. It is worth noting that the transmission
power is defined as P (k)

z (t) = 0 if c(k)
z (t) = 0 and P (k)

z (t) ̸= 0, otherwise. From (5.3), the BS
can decode the received multi-user data systematically through the use of the successive
interference cancellation (SIC) technique [144]. In uplink NOMA, the decoding order of
the multi-user data stream is affected by various different factors. Specifically, a decoding
order can be formulated based on channel gain conditions [141], received power levels [145],
or QoS constraints of users [144]. In this chapter, the messages of the users over each SC
can be decoded at the BS as follows:

• Due to strict requirements on reliability and latency, the URLLC users’ messages
need to be decoded first. However, as long as their requirements are guaranteed, the
SCs granted to them can still be used by the mMTC users to improve the spectrum
efficiency.

• The symbols belonging to eMBB and mMTC users will be decoded in the order of
the corresponding channel gains. In particular, the user having the higher channel
gain will be decoded earlier at the BS.

• After decoding the message of a user based on the decoding order mentioned above,
the BS removes this component from its observation to decode the remaining users’
messages by using the successive interference cancellation (SIC) technique.

Without loss of generality, one assumes there are Zk users accessing SC k in TS t,
then they are arranged in the decoding order discussed above as Z(k)(t) =

{
z

(k)
1 , ..., z

(k)
Zk

}
.

Accordingly, the received signal-to-interference-plus-noise ratio (SINR) of user z(k)
ℓ (1 ≤

ℓ ≤ Zk) is expressed as

γ
(k)
z

(k)
ℓ

(t) =
Y(k)
z

(k)
l

(t)

Zk∑
j=ℓ+1

Y(k)
z

(k)
j

(t) + σ2
k

, (5.4)

where Y(k)
z (t) = P

(k)
z (t)g(k)

z (t) is the power of signal due to user z’s data over SC k in TS t,
g

(k)
z (t) =

∣∣∣h(k)
z (t)

∣∣∣2 denote the corresponding channel gain, and σ2
k = FN0Wk represents the

noise power over SC k. Herein, F is the noise figure in dB, N0 is the noise power spectral
density (PSD) in dBm/Hz, Wk denotes the bandwidth of SC k, Wk = WE if k ∈ KE and
Wk = WU if k ∈ KU.
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5.2.2 Achievable Rate of Users

URLLC Communication

Regarding the transmission of URLLC user u over SC k in KU, which happens when
c

(k)
u = 1. Based on the NOMA transmission mechanism given in Section 5.2.1, one must

have u ≡ z(k)
1 . Moreover, the SINR of URLLC device u over SC k is expressed as

γ(k)
u (t) = Y(k)

u (t)
I(k)
u (t) + σ2

u

, (5.5)

where I(k)
u (t) = ∑Zk

j=2 Y
(k)
z

(k)
j

(t) represents the interference caused by mMTC users over SC

k. Furthermore, bandwidth of SC k in KU is WU and σ2
u = FN0WU. In URLLC com-

munication, SPC in FBL regime is implemented to meet the strict URLLC requirements.
Consequently, Shannon’s capacity formula cannot be applied for URLLC communication
model to capture the transmission data rate and decoding error probability effectively since
it is designed under the assumption of iFBL. According to [26, 146], the achievable rate
of URLLC user u over SC k in FBL regime for a quasi-static flat fading channel can be
approximated as

R(k)
u (t) = WU[log2(1 + γ(k)

u (t))− Φ(k)
u (t)], (5.6)

where Φ(k)
u (t) =

√
V

(k)
u (t)
DuWU

Q−1(εu)
ln 2 , εu is the decoding error probability (DEP) which can

be used to evaluate the transmission reliability, Du is the transmission latency threshold,
Q−1(x) is the inverse of the Gaussian Q-function, and V

(k)
u (t) is the channel dispersion

which is given by
V (k)
u (t) = 1− 1[

1 + γ
(k)
u (t)

]2 ≈ 1, (5.7)

where the approximation in (5.7) is achieved when γ
(k)
u (t) ≥ 5 dB and using it for (5.6)

in low SNR regime (i.e., γ(k)
u (t) < 5 dB) can obtain a lower bound of the achievable

rate which can guarantee users’ QoS requirements [26]. Note that the channel dispersion
definition in (5.7) is achieved based on the assumption that each user has its perfect
channel state information1 (CSI), such that the packet error occurs due to the noise instance
only [133,147]. For URLLC service, we assume that each URLLC user tries to upload one
packet over one SC in each transmission TS. Thus, the target SNR threshold for URLLC

1CSI knowledge requires signaling exchange between BS and users. This can lead to a latency increase.
The effect of this scenario can be analyzed by addressing the problem of latency minimization which is
beyond the scope of this paper.
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user u that satisfies the URLLC requirements (i.e., Du and εu) can be derived based on
(5.6) as [26]

γtar
u = 2

nu
DuWU

+ Q−1(εu)
ln 2

√
DuWU − 1, (5.8)

where nu is the packet size. This demand yields the following constraints,

(C3) : c(k)
u (t)γ(k)

u (t) ≥ γtar
u , ∀k ∈ K. (5.9)

eMBB Communication

Regarding the transmission of eMBB user e over SC k in KE, which happens when c(k)
e (t) =

1. Due to its order in the NOMA-based decoding process, its SINR denoted as γ(k)
e (t), can

be defined as in (5.4) with noting that σ2
k = FN0WE. Then, the achievable rate of eMBB

user e is given by
R(k)
e (t) = WE log2

[
1 + γ(k)

e (t)
]
. (5.10)

Herein, one addresses a predetermined target transmission rate, Rtar
e , for each eMBB user

e in every TS as
(C4) :

∑
k∈K

c(k)
e (t)R(k)

e (t) ≥ Rtar
e , ∀e ∈ME. (5.11)

mMTC Communication

Based on the NOMA transmission strategy mentioned earlier in Section 5.2.1, the mMTC
users can select a free SC or the one occupied by either eMBB or URLLC user. When
c

(k)
m (t) = 1, mMTC user m utilizes SC k in TS t. In such case, the SINR of this user,

denoted as γ(k)
m (t), can be calculated as in (5.4) with noting that σ2

k = FN0Wk. In mMTC
communication, SPC is utilized to exchange small packets. Consequently, the achievable
rate of mMTC user m over SC k in FBL regime for a quasi-static flat fading channel can
be approximated as [26,146]

R(k)
m (t) = Wk

[
log2(1 + γ(k)

m (t))− Φ(k)
m (t)

]
, (5.12)

where the parameters in (5.12) are defined similarly in (5.6). From (5.12), we define a
target SINR threshold for mMTC user m to satisfy its predetermined requirements on
DEP and latency (i.e., εm and Dm) when transmitting one packet over one SC in each TS
as [26]

γtar
m = 2

nm
DmWk

+ Q−1(εm)
ln 2

√
DmWk − 1, (5.13)
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where nm is the packet size. This demand yields the following constraint,

(C5) : c(k)
m (t)γ(k)

m (t) ≥ γtar
m , ∀k ∈ K. (5.14)

5.2.3 Energy Efficiency Maximization Problem

In this chapter, we aim to develop an effective SC and power allocation strategy to max-
imize the long-term average energy efficiency (EE) while ensuring the heterogeneous QoS
requirements from users. To guarantee the transmission rate requirement while reducing
the power consumption for the system, we define an energy efficiency (EE) factor as follows:

ζ(t) = Rtot(t)
PTx(t) +MPc

, (5.15)

where Rtot(t) = ∑
k∈K

∑
z∈M c

(k)
z (t)R(k)

z (t), PTx(t) = ∑
k∈K

∑
z∈M P

(k)
z (t), and Pc denotes

the circuit power consumption. Based on (5.15), the EE maximization problem can be
formulated as

max
c,P

Et [ζ(t)] (5.16a)

s.t. constraints (C1)− (C5), (5.16b)
(C6) :

∑
k∈K

P (k)
z (t) ≤ Pmax

z , ∀(z, t), (5.16c)

where c and P denote the SC assignment and power control strategies, respectively; and
constraint (C6) stands for the power budget of users.

Remark 7. Problem (5.16) is a mixed-integer non-linear programming (MINLP), well-
known as NP-hard, which is difficult to solve. In particular, the challenges of solving this
problem include the coupling between binary variables c and continuous ones P. Moreover,
the complicating NOMA-based SINR formula of users as given in (5.4) has raised another
extremely critical issue to define the solution of this problem.

5.3 Proposed Joint Optimization and Cooperative MAD-
DQN Method

In this section, we present the proposed joint optimization and MADRL method to solve
(5.16), where a cooperative MADDQN (CMADDQN) scheme is built for SC assignment
based on which a dynamic power allocation (DPA) for every SC setting is proposed to
maximize the EE in (5.16). To do this, one assumes that the perfect CSI is available at
the BS.
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5.3.1 Power Allocation for Given SC Assignment

Before presenting the CMADDQN-based SC assignment method, we first introduce our
proposed power allocation solution for a given SC assignment in this section. In particular,
for a fixed SC allocation, problem (5.16) in TS t can be expressed as

max
P

ζ(t) (5.17a)

s.t. constraints (C1)− (C6). (5.17b)

where p(t) = {p(k)
z (t)}∀(z,k). To tackle the challenge caused by the fraction form in the

objective (5.17), an efficient method well-known as the Dinkelbach algorithm [148,149] can
be employed. Following this, an iterative solution approach can be developed to obtain the
optimal solution of problem (5.17) by dealing with a sequence of parameterized problems
with subtracting-form objective functions. Let us state the parameterized problem for a
given value of ζ as follows:

max
P

Rtot(t)− ζPTx(t) (5.18a)

s.t. (C1)− (C6). (5.18b)

Then, Theorem 1 in [149] suggests to iteratively solve problem (5.18) for a certain value of
ζ and adjusting ζ until an optimal value of ζ⋆ ≥ 0 satisfying Rtot(t) = ζ⋆

(
PTx(t) +MPc

)
is found.

To address the problem (5.18), we first provide the following valuable remark based on
(5.4) and the uplink NOMA transmission mechanism discussed in Section 5.2.1.
Remark 8. The SINR formula given in (5.4) demonstrates that there is no interference
suffering the decoding process due to user z(k)

Zk . Moreover, once the power of all users in set{
z

(k)
ℓ+1, ..., z

(k)
Zk

}
is defined, the transmission power of user z(k)

ℓ , i.e., P (k)
z

(k)
ℓ

, can be optimized
without coupling to other users. Hence, the power transmission can be determined in the
reverse order of the coding sequence.

Thanks to the observation given in Remark 8, an efficient approach to solving the
problem (5.18) will be proposed in the following. The concept of this solution is to de-
compose problem (5.18) into a number of sub-problems each of which aims to obtain the
power transmission of a user separately. Then, the sub-problems are solved in the order
suggested in Remark 8. Particularly, the power allocation strategy for all types of users is
described as follows:

• For mMTC users, each of them will have its transmission power optimized only when
the power of all other users accessing the same SC with weaker channel gains are
determined.
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• For eMBB users, the transmission power of an eMBB user over all SCs assigned to
it will be optimized jointly when all mMTC users using the same SCs with weaker
channel gains have their power defined.

• For URLLC users, they will be the last ones having their transmission power opti-
mized over all SCs that they are assigned.

Next, one focuses on presenting the sub-problems as well as their solution corresponding
to eMBB, mMTC, and URLLC services.

Power Allocation for mMTC Users

Considering the user set accessing SC k Z(k)(t) defined in Section 5.2.1, one assumes that
user m ≡ z

(k)
ℓ is an mMTC user. As described above, when {P (k)

z
(k)
i

}Zk

i=ℓ+1 are determined,

the power of this user, i.e., P (k)
m , is optimized by solving the following sub-problem.

max
p

Wk

[
log2

(
1 +A(k)

m p
)
− Φ(k)

m

]
− ζp (5.19a)

s.t. P tar
m ≤ p ≤ Pmax

m , (5.19b)

where P tar
m = γtar

m /A
(k)
m , p is the power transmission variable, A(k)

m represents the NOMA-
based channel gain over interference and noise ratio (NOMA-CINR) of user m, i.e.,

A(k)
m =

∣∣∣h(k)
m (t)

∣∣∣2∑Zk

j=ℓ+1

∣∣∣∣h(k)
z

(k)
j

(t)
∣∣∣∣2 P (k)

z
(k)
j

+ σ2
k

. (5.20)

Note that constraint P tar
m ≤ p is equivalent to (C5) for this user. The solution of the

problem (5.19) is determined in the following proposition.

Proposition 9. The transmission power of mMTC user m over SC k is the solution of
(5.19) which is given as

P (k)⋆
m = min

(
max

(
Wk
ζ ln 2 −

1
A

(k)
m

, P tar
m

)
, Pmax

m

)
. (5.21)

Proof. The proof can be described simply as follows. Let us define y(k)
m (p) as

y(k)
m (p) = Wk

[
log2

(
1 +A(k)

m p
)
− Φm(k)

]
− ζp. (5.22)

As can be seen, problem (5.19) is convex due to that y(k)
m (p) is concave and the feasible set
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is convex. If the feasible set is not regarded, we first derive the derivative of y(k)
m (p) with

respect to the variable p as

∂y
(k)
m (p)
∂p

= WkA
(k)
m(

1 +A
(k)
m p

)
ln 2
− ζ. (5.23)

From (5.23), the maximum point of the objective function can be defined by resolving the
equation ∂y

(k)
m (p)/∂p = 0, which yields

p̂ = Wk

ζ ln 2 −
1

A
(k)
m

. (5.24)

Then, by taking the feasible set into account, the optimal solution of problem (5.19) can
be defined as given in (5.21) which has finished the proof.

Power Allocation for eMBB Users

Considering the transmission of eMBB user e ∈ME. Assume that user e is assigned n SCs
named as {ke1, ..., ken}, and it is denoted as user z(ke

j )
ℓ ∈ Z(ke

j )(t) over SC kej (1 ≤ j ≤ n and

1 ≤ ℓ ≤ Zk
e
j ), where Z(ke

j )(t) =
{
z

(ke
j )

1 , ..., z
(ke

j )

Z
ke

j

}
denotes the user set accessing SC kej at

TS t arranged in the decoding order explained in Section 5.2.1. Then, if all mMTC users
with weaker channel gains on {ke1, ..., ken} have their power defined, the transmission power
over all SCs of eMBB user e can be determined as follows. Denote Aej be the NOMA-CINR
of eMBB user e over SC kej which is defined similarly as in (5.20). Then, the decomposed
part of the problem (5.18) according to eMBB user e can be stated as

max
Pe

n∑
j=1

(
WE log2

(
1 +Aejp

e
j

)
− ζpej

)
(5.25a)

s.t.
n∑
j=1

WE log2

(
1 +Aejp

e
j

)
≥ Rtar

e , (5.25b)

n∑
j=1

pej ≤ Pmax
e , (5.25c)

where Pe = [pe1, ..., pen] and pej denotes the transmission power variable corresponding to
eMBB user e over SC kej . As can be observed, this problem is convex and hence its optimal
solution can be obtained by employing the duality method. In particular, the solution
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approach can begin with describing the Lagrangian of (5.25) as

L(Pe, κ, λ) =
n∑
j=1

[
(1 + κ)WE log2

(
1 +Aejp

e
j

)
− (ζ + λ)pej

]
− κRtar

e + λPmax
e , (5.26)

where κ and λ are the Lagrangian multipliers corresponding to constrains (5.25b) and
(5.25c), respectively. Then, the dual function can be defined as the maximum of the
Lagrangian function as

g(κ, λ) = max
Pb
L(Pb, κ, λ). (5.27)

Proposition 10. The solution of the right-hand-side (RHS) of (5.27) is defined as

pbj = max
(

(1 + κ)WE
(λ+ ζ) ln 2 −

1
Abj
, 0
)
. (5.28)

Proof. The proof of this proposition can be obtained easily by solving the following equa-
tion: ∂L(Pb, κ, λ)/∂pbj = 0.

Then, to determine the values of κ and λ, the dual problem can be written as

max
κ,λ

g(κ, λ) s.t. κ, λ ≥ 0. (5.29)

Since problem (5.25) is convex, the dual-gap between the primary and dual problem is
zero [150]. In the following, one will describe a searching approach to define the optimal
solution of the dual problem by using the standard sub-gradient method, where the dual
variable κ and λ can be iteratively updated as follows:

κ(v+1) =

κ(v) − δ(v)

 n∑
j=1

WE log2

(
1 +Abjp

b
j

)
−Rtar

e

+

, (5.30)

and

λ(v+1) =

λ(v) + δ(v)

 n∑
j=1

pej − Pmax
e

+

, (5.31)

where the suffix (v) represents the iteration index, δ(v) is the step size, and [x]+ is defined
as max(0, x). This sub-gradient method guarantees the convergence if the step-size δ(v) is
chosen appropriately so that δ(v) v→∞−→ 0 such as δ(v) = 1/

√
v [150,151].
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Power Allocation for URLLC Users

Similar to the previous section, one assumes that there are l SCs are assigned to URLLC
user u which are denoted as {ku1 , ..., kul }. Then, if the power of all mMTC users on SCs
{ku1 , ..., kul } are determined, the power transmission over all SCs can be determined by
solving the following problem

max
Pu

l∑
j=1

(
WU

(
log2

(
1 +Auj p

u
j

)
− Φu

j

)
− ζpuj

)
(5.32a)

s.t. puj ≥ γtar
u /Auj , ∀j (5.32b)

l∑
j=1

puj ≤ Pmax
u , (5.32c)

where γtar
u is defined in (5.8), Φu

j =
√

V u
j

DuWU

Q−1(εu
j )

ln 2 , V u
j = 1 −

(
1 +Auj p

u
j

)−2
≈ 1 [152],

Pu = [pu1 , ..., pel ] and puj denotes the transmission power variable corresponding to URLLC
user u over SC kuj .

Similar to the results obtained in solving problem (5.25), the transmission power of
URLLC user u over SCs {ku1 , ..., kul }, can be defined as

puj = max
(

WU
(ψ + ζ) ln 2 −

1
Auj

,
γtar
u

Auj

)
, ∀j. (5.33)

where ψ can be iteratively updated as follows:

ψ[v+1] =

ψ[v] + δ[v]

 l∑
j=1

puj − Pmax
u

+

. (5.34)

Thanks to the Dinkelbach solution approach and the power allocation mechanism given
above, one proposes an power control algorithm which is summarized in Algorithm 3.

5.3.2 CMADDQN-based SC Assignment Strategy

We assume that each of eMBB and URLLC users is preassigned several SCs for its trans-
missions to guarantee its high requirements. Meanwhile, mMTC users can use SCs freely
to reduce access latency and increase the number of active users [50]. To do this, we inves-
tigate a CMADDQN-based DRL method to help mMTC users quickly select the best SCs
for their transmissions. By using CMADDQN scheme, each mMTC user is mapped to a
learning agent and all MM agents are centralized at the BS to exploit full information on
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Algorithm 3 Energy-Efficiency Power Allocation Algorithm
1: Initialize v = 0, ζ(0) = 0, step size δ, the Lagrangian multipliers κ, λ, and ψ, χi = 1 (1 ≤ i ≤ 4),

and choose predetermined tolerate ϕ.
2: repeat
3: for k = 1, . . . ,K do
4: Determine the number of users accessing SC k, i.e., Zk.
5: for z = Zk, . . . , 1 do
6: if z ∈MM then
7: Determine P (k)

z as in (5.21).
8: end if
9: if z ∈ME then

10: Determine P (k)
z as in (5.28).

11: end if
12: if z ∈MU then
13: Determine P (k)

z as in (5.33).
14: end if
15: end for
16: end for
17: Update κ(v+1), λ(v+1), and ψ(v+1) as in (5.30), (5.31), and (5.34), respectively.
18: Update ζ(v+1) = Rtot(t)

P Tx(t)+MPc
.

19: Update χ1 = |κ(v+1)−κ(v)|, χ2 = |λ(v+1)−λ(v)|, χ3 = |ψ(v+1)−ψ(v)|, and χ4 = |ζ(v+1)−ζ(v)|.
20: Set v := v + 1.
21: until χi ≤ ϕ.

users available at the BS [30]. This facilitates the learning process and helps users select
the most appropriate SC for their transmissions to maximize the overall network EE.

We denote S, A, and R as the set of states, actions, and rewards, respectively. At
the beginning of each TS t, an agent observes the current state s(t) ∈ S to take an action
a(t) ∈ A. After performing the action a(t), the agent can receive a reward/penalty from
the environment and discover the next state s(t + 1). Thanks to the feedback from the
environment, the agent can update/strengthen its decision policy. The such process can be
operated continuously until optimal policy can be obtained at the agent. In addition, cen-
tralized or decentralized rewards can be utilized in MADRL. Specifically, MADRL methods
with centralized rewards provide a common reward for all agents, whereas each agent can
receive a distinct reward in MADRL methods with decentralized rewards [153]. However,
using decentralized rewards can lead to the selfish behavior of agents, where they may
compete with each other to maximize their own rewards resulting in a global performance
degradation. To avoid this issue, the same reward can be allocated to all agents in order
to achieve a common objective [154] (e.g., maximizing the overall network EE while guar-
anteeing all users’ QoS requirements). Given this context, the definitions of state, action,
and reward according to each agent m ∈MM are described as follows.

112



5.3 Proposed Joint Optimization and Cooperative MADDQN Method

• State: The state of agent m in TS t, sm(t) ∈ Sm, is defined as the combination of
its current channel gains over K SCs and the SC selection status of all MM mMTC
users in the previous TS, i.e.,

sm(t) = {gm(t), c(t− 1)} , (5.35)

where gm(t) =
{
g

(1)
m (t), . . . , g(K)

m (t)
}
, c(t−1) = {c1(t− 1), . . . , cMM(t− 1)} , and cm(t−

1) =
{
c

(1)
m (t− 1), . . . , c(K)

m (t− 1)
}

. Thus, the state of agent m has the cardinality of
K(1 +MM).

• Action: Since each mMTC user m can use only one SC every TS, the action of agent
m in TS t, am(t) ∈ Am, is defined as its current SC selection which is expressed as

am(t) ∈ Am = {1, . . . ,K} . (5.36)

As can be observed, the action space size of agent m is determined as |Am| = K. For
the action selection strategy, the ϵ-greedy policy can be exploited, where the random
action is taken with the probability of ϵ and the action with the highest Q-value is
employed for the remaining probability. In particular, the action am(t) is selected
based on the ϵ-greedy policy can be mathematically expressed as

am(t) =
{

random action, with probability ϵ,
amax
m , with probability 1− ϵ,

(5.37)

where, amax
m = argmaxa∈Am

{Q (sm(t), a;θm)}, Q (sm(t), am(t);θm) is the Q-value
corresponding to action am(t) at state sm(t).

• Reward: this chapter aims to optimize the average network EE while fulfilling the
heterogeneous QoS requirements of all users. Therefore, we design a CMADDQN
algorithm for SC assignment with centralized rewards to optimize the above common
objective. Specifically, we use the achieved EE in (5.15) to define the immediate
common reward for all agents. Thus, the reward function in TS t, denoted by r(t),
is defined as

r(t) =
{

ζ(t), if all constraints are satisfied,
0, otherwise.

(5.38)

Based on the actions and rewards obtained from trials, each agent m builds its own
DDQN model consisting of two deep neural networks (DNNs), namely online and target
networks corresponding to weight matrices θm and θ′

m, respectively. Herein, the online
network is used to select an action. Meanwhile, the target network is applied to evaluate
the online-network-based action. Thus, the objective is to reduce the loss function which
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is formulated as [155]

L(θm) = [ym(t)−Qm (sm(t), am(t);θm)]2 , (5.39)

where ym(t) denotes the target Q-value determined by the target network as

ym(t) = r(t) + γQm

(
sm(t+ 1), argmax

a∈Am

Qm(t+ 1);θ′
m

)
, (5.40)

where γ denotes the discount factor, Qm(t + 1) = Qm (sm(t+ 1), a;θm). It is noteworthy
from (5.40) that in DDQN model, the action selection, i.e., argmax

a∈Am

Qm(t+ 1), and action

evaluation, i.e., Qm(sm(t + 1), argmax
a∈Am

Qm(t+ 1);θ′
m), are decoupled using two different

Q-value function to avoid the overestimation issue in the conventional DQN model [156].
Given the above discussions, we propose a joint optimization and cooperative MAD-

DQN method, so-called JOCDDQN, to address the problem (5.16). Specifically, in TS t,
the CMADDQN is applied for SC allocation, where each agent m observes its current state
sm(t) ∈ Sm and takes an action am(t) ∈ Am. The power allocation method in Algorithm
3 is then utilized to achieve optimal transmission power for all users. After that, agent m
observes the environment to receive a reward r(t) and moves to a new state sm(t+ 1). It
then stores an experience tuple of (sm(t), am(t), r(t), sm(t+ 1)) into its experience replay
memory, and a minibatch of experiences is sampled for training the online network. The
weight matrix of the online network θm is then updated to minimize the loss function in
(5.39) by using the stochastic gradient method. After a predetermined number of TSs (F ),
the weight matrix of the target network θ′

m is updated by copying θm. The above pro-
cess continues until reaching a predefined number of episodes guaranteeing the algorithm’s
convergence. The proposed JOCDDQN algorithm is summarized in Algorithm 4.

5.4 Proposed Distributed Reinforcement Learning Method

In this section, we present another DRL-based solution to address (5.16) by developing a
full MADDQN method, namely FDDQN, in a distributed manner to reduce the information
exchange between the BS and users. The FDDQN method is designed to conduct both SC
assignment and power allocation.

5.4.1 FDDQN Method

Employing FDDQN method, all users are considered as learning agents to find the optimal
policies for selecting both SC and transmission power. In addition, the multi-level quanti-
zation strategy is exploited to deal with the continuous characteristic of power variables in
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Algorithm 4 JOCDDQN Algorithm for Maximizing Energy Efficiency
1: Initialize the weight matrices of the online and target networks, i.e., θm and θ′

m, ∀m ∈MM.
2: for i = 1, . . . , Ep do
3: Initialize the state sm(t), ∀m.
4: for t = 1, . . . , T do
5: All agents take an action (SC selection) am(t) (∀m) following the ε-greedy policy in

(5.37).
6: Run Algorithm 3 to achieve the optimal transmission power for all users.
7: The BS broadcasts the SC selection and the power allocation to users.
8: All agents observe the reward r(t) in (5.38) and move to the next states sm(t+ 1) (∀m).
9: for m = 1, . . . ,MM do

10: Store an experience tuple (sm(t), am(t), r(t), sm(t+ 1)) to the memory of agent m.
11: Randomly sample a mini-batch of experiences from the memory to train the online

network.
12: Update θm by using gradient descent to minimize the loss function in (5.39).
13: if t%F = 0 then
14: Set θ′

m = θm.
15: end if
16: end for
17: end for
18: end for

the similar approach introduced in [145,155]. Specifically, we investigate a scenario where
mMTC users build their own DDQN model to learn how to choose the best SC and power
level for their transmissions from the available SCs and TPLs sets. Furthermore, eMBB
and URLLC users are also learning agents to select suitable TPLs for their communication
over preassigned orthogonal SCs.

Given the above context, the states, actions, and rewards of agents according to eMBB,
mMTC, and URLLC users are defined as follows:

• State: In TS t, the states of agents according to user z ∈ME∪MU and user m ∈MM
are respectively defined as

sz(t) = {gz(t),pz(t− 1)} , (5.41)

and
sm(t) = {gm(t), cm(t− 1),pm(t− 1)} , (5.42)

where gz(t) =
{
g

(kz
1)

z (t), . . . , g(kz
b )

z (t)
}

(b = n if z ∈ ME and b = l if z ∈ MU) is the

channel gain vector of user z over assigned SCs, pz(t−1) =
{
P

(kz
1)

z (t− 1), . . . , P (kz
b )

z (t− 1)
}

denotes the TPLs selection of user z over assigned SCs, gm(t) and cm(t−1) are defined
in (5.35), and pm(t− 1) =

{
P

(1)
m (t− 1), . . . , P (K)

m (t− 1)
}

.
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Algorithm 5 FDDQN Algorithm for Maximizing Energy Efficiency
1: Initialize the weight matrices of the online and target networks, i.e., θz and θ′

z, ∀z ∈M.
2: for i = 1, . . . , Ep do
3: Initialize the state sz(t), ∀z.
4: for t = 1, . . . , T do
5: All agents take an action az(t), ∀z, following the ε-greedy policy in (5.37), where az(t)

is defined in (5.43) if z ∈ME ∪MU and in (5.44) if z ∈MM.
6: All agents observe the reward r(t) in (5.38) and move to the next states sz(t+ 1) (∀z).
7: for z = 1, . . . ,M do
8: Perform steps 10− 15 in Algorithm 4.
9: end for

10: end for
11: end for

• Action: In TS t, the actions of agents according to user z ∈ ME ∪MU, az(t), and
user m ∈ MM, am(t), are defined as the power selection of user z over n granted
SCs, and the SC and power selection of mMTC user m, respectively. Thus, az(t) and
am(t) are respectively expressed as

az(t) =
{
P

(kz
1)

z (t), . . . , P (kz
b )

z (t)
}
∈ Âz, (5.43)

and
am(t) ∈ Âm = {1, . . . , kl, . . . ,KL} , (5.44)

where P (k)
z (t) ∈ P, P = {P1, . . . , PL} is the available L TPLs set, am(t) = kl indicates

that mMTC user m selects SC k and TPL l in TS t. Thus, the action space size of
agents z and m are determined as

∣∣∣Âz∣∣∣ = Lb and
∣∣∣Âm∣∣∣ = KL.

• Reward: Similar to the JOCDDQN method, the reward function in TS t for the
FDDQN approach is defined as in (5.38).

The FDDQN method requires each agent to create its own DDQN model following the
same process as described in Section 5.3.2. The details of the proposed FDDQN algorithm
are summarized in Algorithm 5.

5.4.2 Complexity Analysis

FDDQN Algorithm

Let H, Nh, and Is be the number of training layers, the number of neurons in layer h,
and the size of the input layer. For each TS, the computational complexity of FDDQN
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algorithm in algorithm 5 can be calculated by

CTS = O (X) , (5.45)

where X = IsN1 +
H−1∑
h=1

NhNh+1. For the training phase with M agents, E episodes, and
T TSs, the computational complexity of the algorithm is given by

CFDDQN = O (METX) . (5.46)

JOCDDQN Algorithm

The complexity of the JOCDDQN algorithm in Algorithm 4 consists of the complexity of
the DPA algorithm in Algorithm 3 and the CMADDQN scheme. For the DPA algorithm,
its complexity is given by

CDPA = O(I(MM + nME + lMU)), (5.47)

where I denotes the number of iterations to get convergence. For CMADDQN scheme, its
complexity is determined similarly to the one of the FDDQN algorithm as

CCMADDQN = CFDDQN = O(METX). (5.48)

Thus, the complexity of the JOCDDQN algorithm can be calculated as

CJOCDDQN = CDPACCDDQN. (5.49)

5.4.3 Convergence Discussion

This part provides a discussion regarding the convergence of the proposed learning meth-
ods. In particular, the learning mechanisms in the JOCDDQN and FDDQN methods are
built based on the DDQN model which combines Q-learning and neural networks (NNs).
Therefore, their convergence properties can be described by considering the convergence
conditions of the Q-learning and NNs’ possibility of effectively approximating the non-
linear Q-values [127]. Firstly, the convergence constraints of the Q-learning algorithm are
expressed as [157,158]

lim
T→∞

T∑
t=1

αt = +∞ & lim
T→∞

T∑
t=1

α2
t < +∞, (5.50)

where 0 ≤ α ≤ 1 denotes the learning rate. The conditions in (5.50) indicate that it is
necessary to progressively reduce the learning rate during the training process to ensure
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Table 5.1: Experimental Parameters
Parameters Value
Cell radius (r) 500 m
Channel model Rician
eMBB and URLLC numerology indices (νE & νU) 1 & 2
Number of SCs (K) 4
Number of URLLC users (MU) 1
Number of eMBB users (ME) 1
Number of mMTC users (MM) 6
Number of SCs assigned to a URLLC/eMBB user 2
eMBB data-rate demand (Rtar

e ) 2 bps/Hz
URLLC & mMTC latency threshold (Du & Dm) 1 & 2 ms
URLLC & mMTC reliability threshold (εu & εm) 10−5 & 10−3

Maximum transmission power 23 dBm
Circuit power consumption (Pc) 0.05 W
Noise figure & PSD (F & N0) 6 dB & -174 dBm/Hz
Packet length (mb) 32 bytes
Number of hidden layers 3
Number of neurons per hidden layers {256, 128, 64}
Learning rate (α) 0.001
Discount factor (γ) 0.9
Optimizer Adam

the algorithm’s convergence. Secondly, the works in [129,158] showed that NNs are capable
of approximating any non-linear continuous functions. Given the above discussions, the
proposed methods can achieve the convergence status.

5.5 Simulation Results

This section provides the simulation results to evaluate our proposed algorithms’ perfor-
mance. The DDQN model consists of three fully-connected hidden layers including 256,
128, and 64 neurons. The experimental parameters are provided in Table 5.1. Here, we
investigate the behavior and the performance of our proposed algorithms (i.e., JOCDDQN
and FDDQN) as well as the benchmark methods which are described as follows:

• Fixed transmission power (FTP): In this scheme, each user transmits their messages
with a predetermined transmission power [140]. Thus, the MADDQN algorithm is
applied only for SC assignment in this case.

• Fixed resource allocation (FRA): This scheme is considered in [43], where SC and
power allocation for high-demand users (i.e., URLLC and eMBB users) is fixed,
whereas mMTC users can find the best resource allocation policy based on MADDQN
scheme.

• Random SC selection (RSS): The SC assignment is carried out randomly in this
method. Based on that, Algorithm 3 is implemented for optimal power allocation.
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Figure 5.2: Convergence performance with
different learning rate values.
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Figure 5.3: Convergence performance of
learning approaches with different values of K.

Since the hyper-parameters significantly affect the learning process in the DRL algo-
rithms, we first evaluate the effect of the learning rate on the convergence performance
in Fig. 5.2. In particular, we only investigate the convergence behavior of the FDDQN
method versus different values of the learning rate. Fig. 5.2 shows that a lower learning
rate increases the learning time and can lead to a poor policy. In contrast, a higher learning
rate can make the learning process too fast, leading to a sub-optimal solution. Therefore,
the learning rate value should be selected carefully. Based on the results observed from
Fig. 5.2, we set the learning rate value as 0.001.

Fig. 5.3 depicts the convergence behavior of the proposed approaches (i.e., JOCDDQN
and FDDQN) by plotting the achieved reward versus number of episodes. Furthermore,
different values of the number of SCs (K) are considered in this figure. One can observe
from Fig. 5.3 that both JOCDDQN and FDDQN methods can achieve the convergence
status after a number of learning episodes. More specifically, the JOCDDQN method ob-
tains higher reward and converges faster than the FDDQN method. This is because the
JOCDDQN method utilizes the CMADDQN scheme to select only SCs for users, result-
ing in a small action space; and applies the DPA algorithm in Algorithm 3 to attain an
optimal power allocation, leading to a performance improvement in terms of the achieved
reward and convergence. In contrast, the FDDQN method is designed by using the power
quantization (PQ) method [43, 145] to split the transmission power into multiple discrete
power levels, and the MADDQN scheme is then applied for SC and power level selection.
This significantly increases the action space requiring agents to spend more time (episodes)
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Figure 5.5: Energy efficiency of different
approaches vesrus number of mMTC users.

exploring the environment. Additionally, the PQ method makes it challenging to obtain
an optimal power allocation policy. Therefore, the FDDQN method demonstrates infe-
rior learning performance compared to the JOCDDQN method. Furthermore, Fig. 5.3
shows that better performance in terms of the achieved reward can be observed as K gets
higher. This is because when K increases, the number of users using the same SC decreases,
reducing the co-channel interference.

Fig. 5.4 shows the effect of the number of TPLs (L) on the system performance by
plotting the achieved reward of the proposed JOCDDQN and FDDQN methods versus
the number of episodes with different values of L. It is noteworthy that the JOCDDQN
is not influenced by the values of L since it does not employ the PQ method. It can be
observed from this figure that the FDDQN method can get a higher reward towards the one
achieved by the JOCDDQN method when increasing L. However, the value of L should
be selected carefully since increasing L makes the action space larger leading to a longer
learning process.

Fig. 5.5 shows the variation of EE versus the number of mMTC users (MM) of different
approaches including JOCDDQN, FDDQN, RSS, FRA, and FTP. This figure indicates
that lower EE performance for all considered methods can be observed with the increase in
the value of MM due to higher interference. Moreover, the proposed JOCDDQN and FD-
DQN methods outperform other investigated methods in terms of EE performance when
MM increases. In particular, the proposed JOCDDQN method achieves the best EE per-
formance thanks to its joint optimization and DRL scheme, whereas the RSS method gives
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Figure 5.6: Energy efficiency of differ-
ent approaches versus maximum transmission
power.
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the worst performance due to the random SC selection strategy applied in this method.
Among the remaining approaches (i.e., FDDQN, FRA, and FTP), the proposed FDDQN
method attains higher EE performance as compared to others. This is because the FRA
and FTP methods are built based on some ideal assumptions leading to their performance
degradation. Specifically, the FRA method fixes the transmission power of high-demand
users (i.e., URLLC and eMBB users), whereas the FTP method considers a communication
protocol with fixed transmission power for all users.

Fig. 5.6 depicts the effect of the maximum transmission power (Pmax) on the achieved
EE performance of different approaches. This figure demonstrates that the proposed
JOCDDQN method can still bring the best EE performance when Pmax gets larger. In
contrast, the EE performance achieved by the FDDQN, FRA, and FTP methods is signifi-
cantly reduced with the increase in Pmax. This phenomenon occurs since the PQ approach
utilized in these methods leads to higher transmission power when Pmax scales up, causing
the EE performance loss. Meanwhile, the RSS method can get higher EE performance
than the FDDQN, FRA, and FTP methods when Pmax becomes much larger. However, its
random SC selection mechanism makes it difficult to obtain an optimal solution.

Fig. 5.7 provides the evaluation regarding the effect of URLLC and eMBB require-
ments, denoted by (Du, εu, R

tar
e ), on the achieved EE performance of different approaches.

Specifically, we plot the variation of the EE versus different URLLC and eMBB require-
ment sets (Du(i), εu(i), Rtar

e (i)), where 1 ≤ i ≤ 5, Du = {4, 3, 2, 1, 0.5} (ms), εu =
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{
10−3, 10−4, 10−5, 10−6, 10−7}, and Rtar

e = {2, 4, 6, 8, 10} (bps/Hz). As can be seen from
Fig. 5.7, when the requirements get more stringent, the worse EE performance can be
observed. In addition, this figure also indicates that the proposed JOCDDQN method
outperforms other schemes, i.e., the FDDQN, RSS, FRA, and FTP methods, in terms of
EE performance under different URLLC and eMBB requirements.

Given the above-mentioned results, we can conclude that the proposed JOCDDQN
method demonstrates superior performance over other considered approaches in terms
of EE and convergence rate thanks to its joint optimization and cooperative MADDQN
framework. However, this approach comes with a higher complexity. Meanwhile, although
the proposed FDDQN method outperforms other benchmark schemes, it shows lower EE
performance and convergence characteristics than the proposed JOCDDQN method. No-
tably, it allows for a distributed implementation with reduced complexity as compared to
the JOCDDQN method.

5.6 Summary

In this chapter, we have investigated the H-NOMA method for the coexistence of eMBB,
mMTC, and URLLC services. To analyze the system performance, we have formulated
the energy efficiency maximization problem subject to divergent QoS constraints of vari-
ous users. We then have proposed two MADRL-based resource allocation solutions, i.e.,
JOCDDQN and FDDQN, to address the considered problem. In particular, the JOCDDQN
method utilizes a CMADDQN scheme for SC assignment among users while the power cor-
responding to a given SC setting is optimized effectively using the proposed dynamic power
allocation algorithm. Meanwhile, the FDDQN method implements a MADDQN scheme
for both SC and power allocation, where the continuous power variable is split into multiple
discrete power levels to facilitate the learning process. Simulation results have shown that
the JOCDDQN method can achieve higher energy efficiency and converge faster than the
FDDQN method and other benchmark schemes.
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Chapter 6
Conclusions and Future Research

In Section 6.1, we present a summary of our works in this thesis along with their key
conclusions. Additionally, Section 6.2 explores potential avenues for future research.

6.1 Conclusions

The progress made in URLLC has recently motivated the inspiration of researchers, leading
to the proposal of numerous exciting ideas. This dissertation centers on the resource
allocation design and optimization within various URLLC-enabled systems. To encapsulate
the core structure of this thesis, it can be summarized as follows:

• In chapter 1, we offered a foundational understanding of the heterogeneous services
in 5G and beyond wireless networks, encompassing eMBB, mMTC, and URLLC.
We then presented a general overview of recent advancements and applications of
URLLC under different scenarios as discussed in related works. Additionally, we
highlighted the limitations and unaddressed technical challenges within the scope of
these previous works, setting the stage for this thesis.

• In chapter 2, we provided fundamental knowledge about URLLC and technologies uti-
lized in this dissertation such as short packet communications (SPC), non-orthogonal
multiple access (NOMA), grant-free (GF) access, and machine learning, with a par-
ticular emphasis on reinforcement learning.

• In chapter 3, we delved into the examination of the short-packet communications
(SPC) method, an auspicious transmission approach tailored for URLLC scenarios.
Our focus was on the thorough investigation of SPC within downlink MIMO NOMA
systems, where we derived a closed-form expression for the average block error rate
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(BLER) and conducted an asymptotic analysis of its behavior in the high signal-to-
noise ratio (SNR) regime. These findings served as the basis for the formulation of a
problem aimed at minimizing blocklength while adhering to BLER constraint, with
the goal of reducing transmission latency.

• In chapter 4, our focus was on the integration of GF-NOMA and deep reinforcement
learning (DRL) in uplink URLLC scenarios. More precisely, we developed an efficient
distributed resource allocation strategy for GF-NOMA systems catering to URLLC
needs, employing a multi-agent DRL (MADRL) approach. This strategy’s primary
objective was to jointly optimize the assignment of sub-channels (SCs) and the trans-
mission power, with the aim of maximizing network energy efficiency (EE) while also
expediting algorithm convergence and reducing signaling overhead, thereby decreas-
ing latency. Our findings demonstrated the superiority of our proposed method over
benchmark schemes, particularly in terms of its convergence properties and EE per-
formance, effectively addressing URLLC requirements.

• In chapter 5, we emphasized the coexistence scenario between eMBB, mMTC, and
URLLC services within H-NOMA-based uplink systems. Our primary focus in this
chapter was to introduce a joint optimization and DRL approach for devising an
optimal solution for SC assignment and power allocation. This solution was designed
with the goal of maximizing network energy efficiency (EE) while meeting the diverse
quality-of-service (QoS) requirements of various services. To achieve this, we devised
a cooperative MADRL framework centralized at the base station (BS) to intelligently
manage SC assignment, based on which we developed a dynamic power allocation
scheme to optimize users’ transmission power. Furthermore, we also formulated a full
MADRL-based resource allocation method for comparative analysis, wherein both SC
and power allocation were driven by the developed MADRL modeling. The achieved
results exhibited the superior performance of our proposed approach when compared
to other benchmark schemes, ensuring not only optimal EE performance but also the
harmonious coexistence of different services.

6.2 Potential Avenues for Future Research

Within this dissertation, we have delved into targeted challenges and offered efficient reso-
lutions for various URLLC-related scenarios. Nevertheless, the evolution of the forthcom-
ing generation of wireless communications, namely 6G, is motivated by a growing set of
ambitious requirements that surpass the current network capabilities, necessitating more
advanced technologies. This motivates the need for further investigation and research on
URLLC and its related aspects. Based on our works conducted in this thesis, the promising
research directions for future research can be outlined in the following.
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• More detailed examinations of SPC for URLLC-related systems: Building
upon the findings outlined in chapter 3, we can explore promising research avenues.
In chapter 3, the focus was on assessing performance through deriving the closed-form
expression of average block error rate (BLER) and minimizing blocklength while ad-
hering to BLER constraints. A fascinating extension of this research involves delving
into the challenge of maximizing throughput while simultaneously upholding relia-
bility (BLER) and latency (blocklength) constraints. This broader investigation is
essential for gaining comprehensive insights into SPC in scenarios related to URLLC.
Furthermore, a compelling direction for extension lies in real-time predictive modeling
for optimal throughput and blocklength. Leveraging deep learning, an optimization
framework based on an efficient deep convolutional neural network (CNN) can be
devised to accurately and expeditiously estimate optimal performance in terms of
throughput and blocklength, in a real-time operational setting.

• A more comprehensive analysis of scenarios enabled by MADRL for URLLC
in the context of GF-NOMA: In Chapter 4, we highlighted the potential of the
MADRL-based GF-NOMA transmission method in meeting the stringent URLLC
requirements within uplink massive access scenarios, one of the key objectives in the
6G landscape. This involved our consideration of a GF-NOMA-based uplink URLLC
model and the development of a MADRL-driven resource allocation strategy aimed at
maximizing energy efficiency while guaranteeing the users’ initial URLLC demands.
To build upon this research, we can explore a more practical scenario focused on
multiple configured-grants (MCG)-based GF-NOMA for URLLC. MCG represents
a mechanism proposed by 3GPP to enhance the efficiency of resource allocation in
wireless networks, especially in situations characterized by high traffic demands and
a need for low-latency communication. The fundamental concept behind MCG lies
in the capacity for a base station to grant multiple transmission opportunities to
a user equipment (UE) in a concurrent fashion. This simultaneous allocation of
resources has the potential to boost the utilization of network resources while mit-
igating latency. It allows the UE to transmit multiple data packets consecutively
without requesting resources individually for each packet. This is particularly useful
in applications with stringent latency requirements, such as URLLC. Moreover, the
prospect of exploring a distributed cooperative learning strategy among users, based
on transfer learning, can be examined to address dynamic scenarios involving active
users, which has seen limited comprehensive research to date. In this approach, when
a new user joins the network, it can interact with neighboring users to gain insights
from their experiences. This not only reduces the learning time for the network but
also ensures an effective solution for low-latency ultra-dense systems in dynamic and
ever-evolving environments.
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• A rate-splitting-based NOMA for multiplexing diverse services in hetero-
geneous networks: In chapter 5, we conducted an investigation into the utilization
of power-domain NOMA for multiplexing eMBB, mMTC, and URLLC services. We
introduced a novel approach involving joint optimization and cooperative MADRL
to achieve optimal SC and power allocation. Our objective was to maximize network
EE while accommodating the diverse requirements of users. Notably, recent develop-
ments in the field have introduced rate-splitting-based NOMA (RS-NOMA), which
promises superior performance compared to conventional NOMA techniques. Given
this context, our work in chapter 5 lays the foundation for an extension that considers
RS-NOMA in Heterogeneous Networks (HetNets). In RS-NOMA, the basic idea is
to divide the data destined for a user into two parts: a common part and a private
part. Each part is then allocated specific data rates and assigned to users based on
their unique channel conditions and QoS demands. Consequently, the exploration
of RS-NOMA-based resource allocation optimization in HetNets presents new chal-
lenges that necessitate advanced optimization methods. This aspect represents an
open avenue for future research endeavors.

• Reconfigurable intelligent surfaces (RIS) for URLLC systems: Reconfig-
urable Intelligent Surfaces (RIS) have significant potential in enhancing the perfor-
mance of URLLC systems. RIS represents a transformative technology that lever-
ages programmable metasurfaces to control and manipulate electromagnetic waves,
offering unprecedented flexibility and adaptability in wireless communication envi-
ronments. By intelligently altering the propagation characteristics of signals, RIS
enables network operators to mitigate issues like signal blockage, interference, and
latency, which are critical concerns in URLLC scenarios. Thus, the combination of
RIS and URLLC represents a highly promising research avenue for exploration in the
coming years. While significant research efforts have already been conducted in this
field, there is a growing need for more comprehensive studies to meet the evolving
and diverse requirements, particularly in the context of 6G technology.

• Machine learning (ML)-based resource management for grant-free mas-
sive access in non-terrestrial networks (NTNs): NTNs are increasingly rec-
ognized as a promising technology for future communication networks beyond 5G.
Their potential lies in the ability to provide global connectivity, effectively closing
the digital divide and facilitating communication in remote or underserved regions.
Furthermore, grant-free access could be beneficial for NTNs to reduce their long prop-
agation delay, facilitating their global coverage abilities. Additionally, the integration
of RL techniques has emerged as a viable means to intelligently address the compli-
cated resource management challenges in wireless communications. There has been
a growing interest in the application of ML-based resource management for NTNs in
recent years. However, with the exponential proliferation of wireless devices together
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with their diverse QoS requirements in ultra-dense network environments, there is an
urgent need for further exploration and the development of advanced optimization
methods in this field. Consequently, this research avenue is expected to continue
being a hot topic in the coming years.

• ML for multi-layer ground-air-space networks (MLGASNs) supporting
heterogeneous services: Another potential future research is the investigation of
applying ML, such as DRL, for resource and control management in MLGASNs serv-
ing heterogeneous services including eMBB, mMTC, and URLLC. MLGASNs repre-
sent a cutting-edge approach to wireless communication that integrates terrestrial,
aerial, and satellite components into a seamless and interconnected system. These
networks exploit the collective capabilities of ground-based infrastructure, drones,
and satellite technology to provide robust, ubiquitous, and high-capacity connec-
tivity. In this context, terrestrial networks and unmanned aerial vehicles (UAV)
can be applied for delivering various services, especially low-latency applications like
URLLC, whereas satellite technology can excel in providing services that demand
high data rate and connectivity density, such as eMBB and mMTC. In addition,
one of the key enablers for the optimization and efficient operation of MLGASNs is
the application of ML. ML techniques play an important role in dynamically manag-
ing network resources, mitigating interference, optimizing routing, and ensuring QoS.
These technologies enable the network to adapt to changing environmental conditions
and traffic patterns, ensuring that each layer operates efficiently and cooperatively
to optimize the overall system performance.
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Appendix A
Appendices for Chapter 3

A.1 Proof for Proposition 1 in Chapter 3

Using (3.3) and (3.5), the CDF of gSH in this case is given by [82]

FHCSgSH
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1−
bH−1∑
p=0

mp
H

p!λpSH
xpe

− mH x

λSH

aH,I

. (A.1)

Applying binomial expansion in [96, Eq. (1.111)], (A.1) can be rewritten as

FHCSgSH
(x) = 1 +
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p=1
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where ϕ =
(
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p

)
(−1)pe− pmH x

λSH .

To derive (A.2), we first resolve Ψ in (A.2) by utilizing the multinomial theorem as
follows:

Ψ =
∑

∆H=p
ψ

bH−1∏
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(
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q!λqSH

)δH,q
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where ψ =
(

p

δH,0, . . . , δH,bH−1

)
.

The final expression of FHCSgSH
(x) is achieved in (3.25) by substituting (A.3) into (A.2).
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A.2 Proof of Theorem 1 in Chapter 3

From (3.12), the CDF of γ
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î
Hî

is given by
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where (A.4) is obtained under the condition αHî
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) as

defined in (3.30).

By substituting (A.4) into (3.23) and using (3.25), the average BLER at user Hî in
HCS method with TAS/SC or TAS/MRC is expressed as
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To derive the integral in (A.5), we carry out the change of variable by letting t = Bx and
(A.5) can be rewritten as
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≈ 1 +AH,1
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By letting u = 1
γ0αL

ĵ

+ t and using binomial expansion [96, Eq. (1.111)], (A.6) has the
following form

ε̄HCSHî
≈ 1 +AH,1
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We derive AH,3 in (A.7) with the aid of [96, Eqs. (3.351.4), (3.352.2), and (3.351.2)] and
the final expression of ε̄HCSHî

is achieved as in (3.30).
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A.3 Proof of Theorem 2 in Chapter 3

From (3.14) and (3.15), the CDF of γ
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are, respectively, given by
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To derive ε̄HCSLĵ
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î
,HCS

Lĵ
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After some algebraic manipulations similar to the proof of Theorem 1 in Appendix B, the
final expression for ε̄

xH
î
,HCS

Lĵ
can be obtained as in (3.31).
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aL,I∑
p=1

∑
∆L=p

ΦLcL,I(
αLĵ
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By using [96, Eq. (3.351.2)], the integral in (A.11) can be represented as
µL

ĵ∫
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L ΞL,4, (A.12)

where ΞL,4 is defined in (3.31). By substituting (A.12) into (A.11), we obtain the final

expression for ε̄
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as in (3.31).

By utilizing (3.24), (3.26), and (A.9) for the case 0 < ψ ≤ 1, ε̄
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is given by
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After some algebraic manipulations similar to the proof of Theorem 1 in Appendix B, the
final expression for ε̄
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Lĵ ,2
can be achieved as in (3.31).
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