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Abstract
We study the time evolution of thermodynamic observables that characterise the dissipative nature
of thermal relaxation after an instantaneous temperature quench. Combining tools from stochastic
thermodynamics and large-deviation theory, we develop a powerful theory for computing the
large-deviation statistics of such observables. Our method naturally leads to a description in terms
of a dynamical Landau theory, a versatile tool for the analysis of finite-time dynamical phase
transitions. The topology of the associated Landau potential allows for an unambiguous
identification of the dynamical order parameter and of the phase diagram. As an immediate
application of our method, we show that the probability distribution of the heat exchanged
between a mean-field spin model and the environment exhibits a singular point, a kink, caused by
a finite-time dynamical phase transition. Using our Landau theory, we conduct a detailed study of
the phase transition. Although the manifestation of the new transition is similar to that of a
previously found finite-time transition in the magnetisation, the properties and the dynamical
origins of the two turn out to be very different.

1. Introduction

Thermal relaxation is a fundamental process in statistical mechanics, with numerous applications in Nature
and industry. Nonetheless, the kinetics of relaxation is well understood only close to equilibrium; within the
quasistatic approximation [1] and in the linear response regime [2–5]. As a major complication,
far-from-equilibrium relaxation is characterised not only by the change of the instantaneous state of the
system of interest, but also by its interaction with the surrounding environment. The dynamical interplay
between system and environment manifests itself in macroscopically irreversible fluxes [6] of
thermodynamic quantities [7–10] that, in turn, determine the dissipative nature of the process.
Consequently, far-from-equilibrium relaxation is a genuinely non-equilibrium problem that offers
fascinating open questions, and a variety of unexpected phenomena.

A famous example of a relaxation anomaly is the Mpemba effect [11], i.e. the faster cooling of an initially
hotter system [12–15]. Other examples include asymmetries in the rates of heating and cooling [16–19], as
well as coarsening [20–22], ergodicity breaking [23], and ageing [24] in glassy [25] or phase-ordering
[20, 22] dynamics.

Often, but not always, anomalous relaxation phenomena are associated with the presence of equilibrium
phase transitions, i.e. qualitative changes of the equilibrium state of a system under slow variation of the
external parameters [26, 27]. For example, in its original formulation [11], the Mpemba effect corresponds
to the (shorter) time it takes hot water to freeze, compared to cold water. Similarly, phase-ordering describes
how a system condenses into its ordered phase starting in a disordered initial configuration [20, 22]. The
abrupt state changes associated with equilibrium phase transitions manifest themselves in singular points of
thermodynamic quantities such as the free energy [26, 27].
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The analysis of equilibrium phase transitions has led to the development of powerful methods, such as
Landau theory [28] or the renormalisation group [29–31], that have become standard tools of modern
statistical mechanics. In particular at mean-field level, Landau theory provides a universal, widely
model-independent picture of both continuous and first-order phase transitions in terms of the minima of a
potential function, the so-called Landau potential. Although the importance of these methods in equilibrium
statistical mechanics can hardly be overstated, their generalisation to non-equilibrium systems is not
straightforward.

In the past decades, remarkable developments [32–39] in non-equilibrium statistical mechanics have led
to conceptual generalisations of phase transitions to systems in non-equilibrium steady states [40–48] and to
dynamic observables [49–58], generating a pressing need for adequate theoretical tools to describe them.
This demand has partly been met by a surge of new methods, based on, e.g. linear-response [59–61],
optimal-control techniques [62, 63] and machine learning [64–66], but also on non-equilibrium versions of
Landau theory [67–70].

In a recent Letter [71], we reported another surprising relaxation phenomenon, a finite-time dynamical
phase transition. This transition manifests itself in a finite-time cusp singularity [72–77] of the probability
distribution of the magnetisation of a mean-field magnet after an instantaneous quench of the temperature.
In contrast to conventional phase transitions, this finite-time transition is induced by a change of the typical
dynamics under variation of the observation time. In other words, time takes the role of a control parameter,
analogous to, e.g. the pressure in an equilibrium phase transition. Although unfamiliar in classical systems,
similar finite-time transitions exist in conservative quantum systems as singularities of the Loschmidt
echo [78, 79]. The analysis in reference [71] is based on the standard Hamiltonian method [32, 80, 81] which
allows one to compute the finite-time statistics of the state of the system in the thermodynamic limit.

In the present paper, we study the stochastic thermodynamics [36, 39, 82] of the spin system in response
to an instantaneous temperature quench from the ordered into the disordered phase of the magnet. We
analyse the finite-time statistics of thermodynamic observables, characterising the irreversibility of the
relaxation process. Remarkably, the spins undergo another finite-time dynamical phase transition, associated
with the heat exchanged between the spins and the bath, at a critical, finite time after the quench. As a
consequence, the statistics of the exchanged heat develops a finite-time cusp that persists in the infinite-time
limit. Despite the apparent similarity with the transition of the magnetisation [71], we show that the new
transition, associated with the exchanged heat, is of entirely different origin. As we shall describe in detail, the
mechanisms that drive the two transitions, and their properties, are complementary. At the trajectory level,
we show that the new transition is caused by a sudden switch of an optimal fluctuation of the spins with
constrained initial and final points.

The analysis of finite-time transitions of thermodynamic observables requires a method that gives access
to the time-dependent statistics of these observables in the thermodynamic limit. While existing
non-equilibrium tools [62–67, 69] are typically tailored for steady states, finite-time approaches such as the
mentioned Hamiltonian method [32, 33, 80, 81] are limited to phase transitions associated with the
instantaneous state of the system [71]. Computing the finite-time statistics of thermodynamic observables
thus requires a significant extension of the Hamiltonian method. In the course of this work, we develop such
an extension by combining methods from stochastic thermodynamics [36, 39, 82] and large-deviation
theory [32, 35, 83, 84]. In particular, we show that the finite-time statistics of thermodynamic observables
naturally lend themselves to a description in terms of a dynamical Landau theory. The corresponding Landau
potential is most useful in the presence of a dynamical phase transition, because its topology unambiguously
identifies the dynamical phase diagram and its minima determine the dynamical order parameter.

More generally, our analysis reveals that finite-time dynamical phase transitions occur in a variety of
ways for different observables within the same system. This hints towards the existence of such transitions in
a much wider range of setups and it indicates that finite-time dynamical phase transitions of different nature
are an integral part of the non-equilibrium statistical mechanics of relaxation. The extended Hamiltonian
method including the dynamical Landau theory we develop here is a powerful tool for the identification and
classification of finite-time dynamical phase transitions of systems in the thermodynamic or weak-noise
limit.

The paper is organised as follows: In section 2 we summarise the relevant background, including a brief
review of the standard Hamiltonian method [32, 33, 80, 81] applied at finite time and of the main results of
reference [71]. In section 3 we give a detailed description of the extended Hamiltonian method that allows us
to compute the finite-time statistics of thermodynamic observables. This extension naturally leads to a
dynamical version of Landau theory for thermodynamic observables at finite time. Finally, we use our theory
to study the heat exchange of a mean-field magnet with its environment in section 4. We identify a
finite-time dynamical phase transition associated with this observable and analyse and classify it in detail. In
section 5 we draw our conclusions and describe future applications, as well as open questions.
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2. Background

In this section, we review the relevant background for our analysis. First, we define the Curie-Weiss model, a
mean-field version of the Ising model, describe its equilibrium properties, and how we model its dynamics.
We then explain the standard Hamiltonian method [80, 81, 85] and how it is used to analyse the statistics of
the magnetisation of the model after a temperature quench. The post-quench dynamics of the
magnetisation, previously discussed in reference [71], exhibits a finite-time dynamical phase transition
whose properties we review at the end of the section.

2.1. Curie-Weiss model
The Curie-Weiss model is a simplified caricature of a magnet where N→∞ Ising spins σi =±1 at sites
i= 1, . . . ,N are coupled by an infinite-range, ferromagnetic interaction of strength J/N> 0. The system is
immersed in a heat bath at inverse temperature β = 1/(kBT). Due to the mean-field nature of the
interaction, we can write all microstates with equal numbers N± of spins in the states±1 in terms of the total
magnetisationM= N+ −N−. The constrained free energy F(M) of the system at a given magnetisationM
reads [27]

F(M) = E(M)−β−1Sint(M), (1)

where E the denotes internal energy

E(M) =− J

2N

(
M2 −N

)
. (2)

An additional coupling−HM to an external field H is omitted here. In this field-free version of the model,
the internal energy E(M) is entirely due to ferromagnetic interactions between the spins.

The dimensionless internal entropy Sint(M) = lnΩ(M) in (1) originates from the microscopic degeneracy
ofM:

Ω(M) =
N!

[(N+M)/2]![(N−M)/2]!
. (3)

State changes of the system are induced by thermal fluctuations of the heat bath, modelled by a stochastic
dynamics forM. An arbitrary spin flip leads to a changeM→M± ≡M± 2 in the magnetisation. The
probability P(M, t) for finding the system in stateM at time t obeys the evolution equation

Ṗ(M, t) =
∑
η=±

[Wη(M−η)P(M−η, t)−Wη(M)P(M, t)] , (4)

with Arrhenius-type ratesW±(M) for the transitionsM→M±, given by

W±(M) =
N∓M

2τ
exp [−βE±(M)/2] . (5)

Here, τ denotes the microscopic relaxation time for a single spin flip and E±(M) = E(M±)− E(M) =
−2J(±M+ 1)/N is the change of internal energy E during the transitionM→M±. The algebraic prefactor
(N∓M)/2= N∓ in (5) reflects that all N∓ microscopic transitions∓1→±1 are equivalent. Furthermore,
the transition rates obey the spin-flip symmetryW±(M) =W∓(−M) and the detailed-balance
condition [86]

W±(M)

W∓(M±)
=

Peq(M±)

Peq(M)
= exp [−βF±(M)] , (6)

where

Peq(M) = Z(β)−1 exp [−βF(M)] , (7)

denotes the equilibrium distribution with partition function Z(β). In (6), the change in the constrained free
energy F±(M) due to the transitionM→M± reads F±(M) = F(M±)− F(M).
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Figure 1. (a) Phase diagram for the Curie-Weiss model at vanishing external field, featuring the SM (solid black line) and CE
(dotted line) phases, separated by the phase boundary at βc. The equilibrium rate functions V eq in the two phases are shown
schematically in red and blue. The orange arrow indicates the direction of the disordering quench as described in the text. (b)
Spontaneous magnetisation m̄(β) in the SM and CE phases.

2.2. Thermodynamic equilibrium
We now take the thermodynamic limit N→∞. To this end, we define the intensive magnetisationm≡M/N
per spin and the constrained free-energy density

F (β,m)≡ lim
N→∞

F(Nm)/N= E (m)−β−1S int(m), (8)

with internal energy density

E (m) =−Jm2/2 (9)

and internal entropy per spin

S int(m) =−
∑
η=±

1+ ηm

2
ln

(
1+ ηm

2

)
. (10)

The equilibrium distribution in (7) written as a function ofm=M/N, takes the large-deviation form
[35, 83, 84]

Peq(m)≍ exp [−NV eq(m)] , (11)

with equilibrium rate function [71]

V eq(m) = β
[
F (β,m)− F̄ (β)

]
. (12)

Here, the equilibrium free energy

F̄ (β) = lim
N→∞

1

βN
lnZ(β) =min

m
F (β,m) (13)

arises as a consequence of the normalisation of Peq(M) in (7), which ensures that V eq(m) vanishes at its
minima±m̄(β), i.e. V eq[m̄(β)] = 0. The magnetisation m̄(β) at the minima reflects the typical, most likely
magnetisation that occurs at inverse temperature β in the thermodynamic limit. According to (11), the
probabilities for fluctuations ofm away from±m̄(β) are exponentially suppressed in N at a rate given by
V eq(m).

The shape of V eq(m) reflects the macroscopic behaviour of the system at equilibrium. This macroscopic
behaviour is driven by the tendency of the system to minimise its free energy, which results in a competition
between energetic and entropic contributions in equation (8) as β is varied. At small inverse temperatures,
the entropy term−β−1S int(m), minimised atm= 0, dominates. In this case, V eq(m) has a unique
minimum at m̄(β) = 0, meaning that the contributions of up and down spins cancel each other and the
system is said to be in a disordered state. Upon increasing β, however, the energy term E (m) in equation (8),
minimised atm=±1, becomes important and V eq(m) changes its shape. In particular, at the critical inverse
temperature βc = 1/J, V eq(m) passes from single-well shape into that of a symmetric double-well, reflecting
a continuous equilibrium phase transition [28]. Consequently, for β > βc the magnetisation m̄(β) becomes
finite and the system is said to be ordered, because m̄(β)> 0 implies that a dominant fraction of spins is
aligned in either direction.

Figure 1(a) shows the phase diagram of the Curie-Weiss model at vanishing external field, determined by
the different topologies of V eq(m) as β is varied. The phase diagram exhibits two phases: a disordered
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single-mode (SM) phase (solid black line) for β < βc, where V eq (red in figure 1(a)) has a unique minimum
(white bullet) and an ordered coexistence (CE) phase (dotted line) for β > βc, where two degenerate, finite
minima±m̄(β) (black bullets) of V eq (blue) coexist. Close to βc, the order parameter m̄(β), given by the
minima of F and V eq, changes continuously from m̄(β) = 0 (disordered) to finite m̄(β) (ordered), as
shown in figure 1(b).

Objects like V eq(m) or F (β,m), whose minima±m̄(β) specify the order (or disorder) of the system, are
crucial tools for identifying equilibrium phase transitions, and are often summarised under the term ‘Landau
potentials’ [26, 27]. The corresponding Landau theory [28], aims to describe phase transitions by postulating
phenomenological Landau potentials based on the microscopic symmetries of the problem. For the simple
model we describe here, the functions V eq(m) and F (β,m) can be derived explicitly, see (12) and (8).

The concept of Landau theory has proven useful also in non-equilibrium contexts [67–71], where it
serves to identify different non-equilibrium behaviours and dynamical order parameters. In section 4, we
extend the notion of Landau theory to finite-time dynamical phase transitions of thermodynamic
observables. Also in this case, the corresponding dynamical Landau potential proves to be a powerful tool for
the identification and the classification of the transition.

2.3. Post-quench dynamics
At time t< 0 we initialise the system in the CE phase at inverse temperature β > βc, where V eq

q (m) has
double-well shape and m̄(β)> 0. At t= 0, we impose an instantaneous temperature quench β → βq into the
SM phase, i.e. βq < βc. Such a quench is said to be ‘disordering’ as it forces the system to cross the phase
boundary between the SM and CE phases (orange arrow in figure 1(a)), inducing an order-to-disorder phase
transition in the long-time limit [71]. Ergodicity ensures that P(m, t)→ Peqq (m)≍ exp[−NV eq

q (m)] as
t→∞, where V eq

q (m) is the equilibrium rate function given in (12), but at final inverse temperature βq. For
t> 0, the time dependence of P(m, t) is characterised by the large-deviation form

P(m, t)≍ e−NV(m,t), (14)

with time-dependent rate function V(m, t), whose evolution follows from an appropriate limit of (4). This
limit is analysed using the standard Hamiltonian method [32, 33, 80, 81].

2.3.1. Standard Hamiltonian method
When the transition ratesW± are extensive in N, i.e.

w±(q) = lim
N→∞

W±(Nq)

N
, 0< w±(q)<∞, (15)

then (4) transforms into a Hamilton–Jacobi equation for V(m, t) [80, 81],

0= ∂tV(m, t)+H [m,∂mV(m, t)], (16)

by substituting (14) into (4) and taking the large-N limit. For the Curie-Weiss model, (15) is satisfied and the
dynamical Hamiltonian H reads [71, 85]

H (q,p) = w+(q)
(
e2p − 1

)
+w−(q)

(
e−2p − 1

)
, (17)

including the N-scaled transition rates

w±(q) =
1∓ q

2τ
exp

[
∓βqE

′(q)
]
=

1∓ q

2τ
exp

(
±βqJq

)
. (18)

The initial condition of (16) is given by the equilibrium rate function V eq before the quench,

V(m,0) = V eq(m). (19)

Solutions to the Hamilton–Jacobi equation (16) are expressed in terms of the characteristics q(s) and
p(s) = ∂mV[q(s), s], 0⩽ s⩽ t, that solve the Hamilton equation [87]

q̇(s) = ∂pH (q,p), ṗ(s) =−∂qH (q,p), (20)

with the condition that q(s) must end atm at the given (observation) time t:

q(t) =m. (21a)
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Figure 2. (a) Phase portrait of the Hamilton equation (20) featuring the fixed point (white bullet), the stable and unstable
manifolds (black lines), and the level lines of H (light brown lines). Gray solid and dotted lines show the initial and final
conditions in (21a), respectively. Coloured lines show optimal fluctuations for t> tc ≈ 0.3466τ , with arrows indicating the
evolution in time, for t/τ = 0.55 (blue), 0.57 (magenta), 0.7 (red), 1 (orange), 1.75 (yellow), and 5 (green). (b) Rate function
V(m, t) after disordering quench. The initial equilibrium rate function V eq (solid black line) evolves into V(m, t) at t/τ = 0.5
(blue), 0.8 (red), and 1.5 (yellow), toward the final equilibrium rate function V eq

q (dotted line). Arrows indicate the time
evolution. (c) Dynamical order parameterm0(m, t) as function of t atm= 0.

The initial condition for p(s) at s= 0 follows from (19):

p(0) = ∂mV[q(0),0] =
d
dmV eq[q(0)]. (21b)

In order to solve the Hamilton–Jacobi equation (20), we evaluate the total derivative of V[q(s), s] along
q(s):

d
dsV[q(s), s] = ∂mV[q(s), s]q̇(s)+ ∂tV[q(s), s] = p(s)q̇(s)−H [q(s),p(s)], (22)

where we have used the definition of p(s) and (16). Integrating (22) from 0 to t and using the boundary
conditions (21a), one obtains V(m, t) as an integral over the characteristics [q(s),p(s)]0⩽s⩽t

V(m, t) =

ˆ t

0
ds [pq̇−H (q,p)]+V eq[q(0)]. (23)

Because of the parity symmetrym→−m of the problem, the dynamical Hamiltonian H in (17) is invariant
under inversion H (q,p) = H (−q,−p) of q and p. Furthermore, H satisfies a shift-inversion symmetry in
p, with respect to the equilibrium rate function V eq

q at inverse temperature βq,

H (q,p) = H
[
q,−p+ d

dmV eq
q (q)

]
, (24)

which follows from detailed balance [88]. For p= 0, (24) directly yields H (q,0) = H [q,dV eq
q (q)/dm] = 0,

which implies, together with (16), that the equilibrium rate function V eq
q at quenched inverse temperature

βq is invariant under time evolution.
Each pair [q(s),p(s)]0⩽s⩽t of characteristics is associated with a fluctuation path that realises q(t) =m for

givenm and t. While the coordinate q(s) corresponds to the change in the magnetisationm as function of
time, the conjugate coordinate p(s) quantifies, roughly speaking, the fluctuations of the environment
required to realise q(t) =m. In particular, characteristic pairs with p(s) = 0 correspond to the typical
macroscopic relaxation dynamics q̇(s) = 2[w+(q)−w−(q)], ṗ(s) = 0, i.e. the dynamics of the minima of
V(m, t).

When there are multiple pairs [q(s),p(s)]0⩽s⩽t of characteristics that solve (20) for same boundary
conditions (21a), one must pick the pair that minimises V(m, t), since the probabilities of all other solutions
are exponentially suppressed [71]. The minimising characteristic q(s) represents the most probable way to
realise the magnetisation q(t) =m at time t, called the optimal fluctuation for the event.

2.3.2. Finite-time dynamical phase transition in magnetisation
A sudden switch in the optimal fluctuation that realises vanishing magnetisationm= 0 at the critical time tc
gives rise to a finite-time dynamical phase transition associated with the magnetisationm in the Curie-Weiss
model [71,74,75]. This switch can be visualised using the phase portrait of the Hamiltonian dynamics (20),
depicted in figure 2(a).

The dynamics (20) occurs along the level lines (shown as the brown lines) of H and has a single fixed
point (white bullet) at

qFP = pFP = 0, (25)

6
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where q̇= ṗ= 0. For infinite observation times (t→∞), trajectories may approach the fixed point
asymptotically along the stable manifold

ps(q) = 0, (26)

shown as black line with inwards-pointing arrows in figure 2(a). Asymptotic escape away from the fixed
point, by contrast, must occur along the unstable manifold

pu(q) =
d
dmV eq

q (q) =−βqq+
1

2
[log(1+ q)− log(1− q)], (27)

shown as the black line with outwards-pointing arrows.
At small observation times t≪ τ , the optimal fluctuations that realise vanishing magnetisation

q(t) =m= 0 are given by the inactivity solution q(s) = p(s) = 0 which resides at the fixed point (25) of the
dynamics. However, when t exceeds the critical time tc, which is a function of the parameters of the quench,
see (75) in Section 4.1.2, non-trivial optimal fluctuations (coloured lines in figure 2(a)) occur. For times
slightly above tc, they remain close to the fixed point, but depart from it more and more as t increases further.
For long observation times t≫ τ , the initial points of the optimal fluctuation approach the minima (black
bullets) of the initial equilibrium rate function V eq. As t→∞, the dynamics occurs on the stable
manifold (26), where the fixed point is approached exponentially slowly.

The switch of the optimal fluctuation at t= tc from the inactivity solution for t⩽ tc to non-trivial
trajectories for t> tc gives rise to a finite-time cusp in V(m, t) atm= 0 for t> tc, shown in figure 2(b). In
close analogy with the equilibrium transition of the model, this cusp can be interpreted as a continuous,
finite-time dynamical phase transition [71]. The order parameter for the transition, the dynamical analogue
for m̄(β) at equilibrium, is given by q(0) =m0(m, t), the most-likely initial magnetisation for givenm and
t [71]. Figure 2(c) shows howm0(0, t) transitions from zero to a finite value at the critical time tc, in direct
analogy with m̄(β) at equilibrium (figure 1(b)).

3. Extended Hamiltonianmethod for observables

To study the finite-time statistics of observables other than the magnetisationm in the thermodynamic limit,
we must generalise the Hamiltonian method described in section 2.3.1. Although we focus on
thermodynamic observables in the Curie-Weiss model, the theory we develop here is generally applicable to
systems with well-defined thermodynamic or weak-noise limitsth and for a larger class of observables
(specified below). Every observable in the extended Hamiltonian method is connected to its own dynamical
Landau potential. This potential is a powerful tool for the identification and the classification of dynamical
phases and phase transitions, associated with a given observable.

3.1. Thermodynamic observables
The thermodynamic observables of the Curie-Weiss model and their statistics are the main objects of our
study. In order to define them, we use the framework of stochastic thermodynamics [36, 39, 82] to endow the
stochastic dynamics of the model with a thermodynamic interpretation. This allows us to identify fluctuating
thermodynamic observables at the microscale, that are consistent with macroscopic thermodynamics in the
limit of large system size.

Because the energy of the system does not change during the temperature quench, the work done on the
system vanishes. Hence, the thermodynamics of the quench is determined by the statistics of the heat per
spin Q, released by the system into the environment, and the total entropy Σ produced (per spin) in the
relaxation process.

The dimensionless released heat Q is given by the negative energy change of the system, multiplied by βq:

Q(m,m ′) =−βq[E (m)−E (m ′)]. (28)

Here,m′ andm denote two magnetisations before and after the quench, respectively. Bothm′ andm are
random variables which depend on the thermal fluctuations of the heat baths before and after the quench. In
our dimensionless formulation, Q is equal to the change in environment entropy per spin, Q =Σenv.

The probability distribution P(Q, t) of Q is constrained by a detailed fluctuation relation [36, 89]

P(Q, t)

P(−Q, t)
= exp

[
−N(β/βq − 1)Q

]
, (29)

7
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which relates the negative and positive branches of P(Q, t). We prove (29) for the present setup in
appendix A.

The total entropy production Σ is the sum of the entropy changes of the environment Σenv and of the
system Σsys:

Σ(m,m ′, t) = Σsys(m,m ′, t)+Σenv(m,m ′). (30)

The change in system entropy Σsys, in turn, decomposes further into

Σsys(m,m ′, t) = V(m, t)−V eq(m ′)+S int(m)−S int(m ′). (31)

Here, the last two terms represent the change in internal entropy (10) of the spin system. The first two terms
constitute the change in state entropy [90], related to the changing probability distribution during the
relaxation after the quench. Using (28), (31) and (8), we conveniently rewrite (30) as

Σ(m,m ′, t) = V(m, t)−V eq(m ′)−βq[F (m)−F (m ′)]. (32)

In this formulation, the total entropy production is the sum of the negative change in free energy density
(last two terms) and the change in state entropy at time t (first two terms). Note that due to the latter
contribution, Σ(m,m ′, t) depends explicitly on time, while Q(m,m ′) does not.

3.2. Statistics of thermodynamic observables
Because of the instantaneous nature of the temperature quench β → βq at t= 0, the observables Q and Σ
can be written as differences of state functions. More precisely, Q and Σ in (28) and (32) are differences of
−βqE and V−βqF , respectively, evaluated at (m, t) and (m ′,0). Observables of this kind depend only on
the initial and final states,m′ andm, and on time t, but are otherwise independent of the specific path
m(s)0⩽s⩽t taken by the dynamics.

Based on this observation, we now develop a general theory for the large-deviation statistics of such
observables that applies to systems subject to quenches of the temperature or of other external parameters.
This includes, but is not limited to, the thermodynamic observables Q and Σ.

We define the moment-generating function G(k, t) of an intensive state-variable difference

∆A = A (m, t)−A (m ′,0), (33)

by

G(k, t) =
⟨
eNk∆A

⟩
. (34)

Note again that the explicit time dependence of A in (33) is absent for Q but present in Σ.
Conditioning (34) on the initial and final magnetisationsm′ andm, we write

G(k, t) =
∑
m,m ′

⟨
eNk∆A |m, t;m ′,0

⟩
P(m, t;m ′,0), (35)

where P(m, t;m ′,0) denotes the joint probability of observingm at time t andm′ at vanishing initial time.
Because the observable∆A in (35) depends only onm,m′, and t, the conditioning renders∆A
deterministic, so that ⟨eNk∆A |m, t;m ′,0⟩= eNk∆A . Furthermore, we write the joint probability in (35) as
P(m, t;m ′,0) = Pq(m, t|m ′,0)Peq(m ′), where Pq(m, t|m ′,0) denotes the probability of observing
magnetisationm at time t conditional on starting withm′ at time t= 0. The subscript q emphasises that the
dynamics is due to the heat bath at quenched inverse temperature βq. After these manipulations, (35) reads

G(k, t) =
∑
m,m ′

eNk[A (m,t)−A (m ′,0)]Pq(m, t|m ′,0)Peq(m ′), (36)

We now define the ‘k-tilted’ initial probability distribution

Pk(m
′,0)≡ Z−1

k e−NkA (m ′,0)Peq(m ′), (37)

with Zk obtained from normalisation. Summing overm′ in (36) we then arrive at

G(k, t) = Zk

⟨
eNkA

⟩
k
, (38)

8
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where ⟨. . .⟩k denotes the average with respect to the time-evolved, k-tilted distribution

Pk(m, t) =
∑
m ′

Pq(m, t|m ′,0)Pk(m
′,0). (39)

Equation (38) has the advantage that the observable A (m, t) is independent of the initial statem′, in
distinction to∆A in (34), which depends on bothm′ andm.

3.3. Thermodynamic limit and Landau potential
In the thermodynamic limit N→∞, the probability distribution of an intensive observable∆A typically
takes a large-deviation form [35, 83, 84]

P(∆A , t)≍ e−NI(∆A ,t), (40)

with non-negative rate function I(∆A , t)⩾ 0, analogous to V(m, t) in (14). The location of the vanishing
minimum of I(∆A , t) is given by the typical, most probable value of∆A , which coincides with its mean
⟨∆A ⟩, i.e. I(⟨∆A ⟩, t) = 0, in the thermodynamic limit. Away from this minimum, the rate function
quantifies the exponentially suppressed probabilities of deviations from the typical behaviour, thus
generalising the central-limit theorem [35, 83, 84]. In other words, the rate function I(∆A , t) provides us
with the time-dependent statistics of∆A , to leading exponential order in the thermodynamic limit.

It is convenient to use the scaled cumulant-generating function

Λ(k, t)≡ lim
N→∞

1

N
lnG(k, t), (41)

to obtain I(∆A , t) by Legendre transform [35, 83, 84]

I(∆A , t) =max
k

{k∆A −Λ(k, t)}. (42)

The scaled cumulants of∆A are given by the derivatives of Λ(k, t), evaluated at k= 0. In particular, the
mean is given by the slope at k= 0,

⟨∆A ⟩= ∂kΛ(0, t). (43)

For∆A = Q, the detailed fluctuation relation (29) implies a symmetry for Λ(k, t) about the inflection point
k0 = (β/βq − 1)/2:

Λ(k+ k0, t) = Λ(−k+ k0, t). (44)

In order to derive an expression for Λ(k, t), we take the thermodynamic limit of (38) using the
large-deviation form

Pk(m, t)≍ e−NVk(m,t) (45)

for the k-tilted probability distribution, with k-tilted rate function Vk(m, t). In the limit N→∞, the sums
in (38) and (39) turn into integrals that we evaluate by a saddle-point approximation. We collect the
exponential terms and substitute them into (41), which yields

Λ(k, t) =−min
m

{Wk(m, t)} , (46)

where

Wk(m, t) =−kA (m, t)+Vk(m, t)− ζk. (47)

Equation (46) expresses Λ(k, t) as the negative minimum of the potential functionWk(m, t). We show in
section 4 thatWk(m, t) takes the role of a dynamical Landau potential. The k-dependent constant

ζk = lim
N→∞

1

N
lnZk, (48)

in (47) originates from the normalisation of the tilted rate function Vk(m, t), but it cancels in the expressions
ofWk(m, t) and Λ(k, t), as we shall see in (53) and (56) below.
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From (39), we observe that the k-tilted rate function Vk(m, t) obeys, up to different boundary conditions,
the same Hamilton–Jacobi equation (16) as the ‘untilted’ magnetisation rate function V(m, t) = Vk=0(m, t),
i.e.

0= ∂tVk(m, t)+H [m,∂mVk(m, t)]. (49)

The initial condition for Vk(m, t) follows from the large-deviation form of Pk(m,0) in (37):

Vk(m,0) = kA (m,0)+V eq(m)+ ζk. (50)

As a consequence, the time evolution ofWk(m, t) is also dictated by (49) through (47).
Before we proceed, we find it instructive to compute I(∆A , t) at t= 0 with what we have derived so far.

Substituting the boundary condition (50) into (47) at t= 0, we findWk(m,0) = V eq(m). Equation (46) then
gives Λ(k,0) = 0 for all k. Performing the Legendre transform (42), we find P(∆A ,0) = δ(∆A ), where δ(x)
denotes the Dirac delta function. This shows that the state-difference observable∆A in (33) is initially zero
with unit probability for all observables A , as expected.

3.4. Post-quench dynamics ofWk(m, t)
At finite time t> 0 after the quench, Vk(m, t) is the solution of the Hamilton–Jacobi equation (49) with
initial condition (50). Equation (49) is solved by a k-dependent family of characteristics [qk(s),pk(s)]0⩽s⩽t

that are solutions to the Hamilton equation (20) with k- andm-dependent boundary conditions:

pk(0) = k∂mA [qk(0),0] +
d
dmV eq[qk(0)], qk(t) =m. (51)

An expression for Vk(m, t) is then given by the k-tilted analogue of (23),

Vk(m, t) =

ˆ t

0
ds [pkq̇k −H (qk,pk)]+Vk[qk(0),0]. (52)

Using (47), we can now writeWk(m, t) in terms of the characteristics [qk(s),pk(s)]0⩽s⩽t as

Wk(m, t) =

ˆ t

0
ds [pkq̇k −H (qk,pk)]+V eq[qk(0)]− k{A [qk(t), t]−A [qk(0),0]}. (53)

Hence, using (53) one computesWk(m, t) from the solutions [qk(s),pk(s)]0⩽s⩽t of (20) with boundary
conditions (51), for givenm, k and t. In order to obtain Λ(k, t) fromWk(m, t) according to (46), we must
then take an additional, error-prone minimum overm. Hence, although (53) is useful for computing the
Landau potentialWk(m, t), it is not the ideal starting point for the evaluation of Λ(k, t). In the next section,
we derive a method for computing Λ(k, t), that avoids evaluatingWk(m, t) for allm and only requires a
one-dimensional k grid.

3.5. Post-quench dynamics ofΛ(k, t)
Equation (53) provides an expression forWk(m, t) for givenm and t. The scaled cumulant-generating
function Λ(k, t) in (46), however, requires only the valueWk(m∗

k , t) whereWk(m, t) acquires its minimum,
i.e. ∂mWk(m∗

k , t) = 0. The minimum valueWk(m∗
k , t) can be obtained directly by imposing ∂mWk(m∗

k , t) = 0
as a boundary condition, in addition to (50). Written as a condition for Vk(m, t), one finds from (47):

∂mVk(m
∗
k , t) = k∂mA (m∗

k , t) (54)

at time t. This boundary condition leads to yet another family of characteristics [q∗k (s),p
∗
k (s)]0⩽s⩽t, which,

again, obey the Hamilton equation (20), but now withm-independent boundary conditions

p∗k (0) = k∂mA [q∗k (0),0] +
d
dmV eq[q∗k (0)], (55a)

p∗k (t) = k∂mA [q∗k (t), t]. (55b)

These boundary conditions ensure that q∗k (t) =m∗
k is an extremum ofWk(m, t). Using this set of

characteristics [q∗k (s),p
∗
k (s)]0⩽s⩽t, we directly express Λ(k, t) as

Λ(k, t) =−
ˆ t

0
ds [p∗k q̇

∗
k −H (q∗k ,p

∗
k )]−V eq[q∗k (0)]+ k{A [q∗k (t), t]−A [q∗k (0),0]}. (56)
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In the particular case∆A = Q, that we study in detail in section 4, the shift-inversion symmetry (24) of H ,
combined with the boundary conditions (55a), implies a time-reversal symmetry for characteristics below
and above k0,

q∗k+k0(s) = q∗−k+k0(t− s), p∗k+k0(s) =−p∗−k+k0(t− s)+V eq
q [q∗−k+k0(t− s)]. (57)

This is a generalisation of the detailed fluctuation relation (44) to the level of optimal fluctuations, which can
be seen by recovering (44) from (56) and (57).

Depending on whether we intend to computeWk(m, t) or Λ(k, t), we solve the Hamilton equation (20)
with either boundary conditions, (51) or (55a), by a shooting method [71]. This returns families of
characteristics on a grid of k (andm) values, enabling us to evaluate eitherWk(m, t) in (47), or Λ(k, t) in (56)
on this grid.

3.6. Long-time limit
In the long-time limit, the evaluation of Λ(k, t) simplifies considerably. This is seen most directly by taking
the long-time limit of G(k, t) in (36), where the conditional probability converges to the equilibrium
probability distribution Peqq at the quenched inverse temperature βq, limt→∞Pq(m, t|m ′,0) = Peqq (m). We
can then write the limit G∞(k)≡ limt→∞G(k, t) as

G∞(k) =
⟨
eNkA∞(m)

⟩eq

q

⟨
e−NkA (m ′,0)

⟩eq
, (58)

where A∞(m)≡ limt→∞A (m, t); ⟨. . .⟩eq and ⟨. . .⟩eqq denote averages with respect to the equilibrium
distributions Peq and Peqq , respectively. Taking the thermodynamic limit, we use the large-deviation forms of
these distributions and evaluate the integrals overm andm′ in the saddle-point approximation. This leads us
to an expression for Λ∞(k)≡ limt→∞Λ(k, t) in terms of a maximisation over initial and final statesm and
m′, given by

Λ∞(k) =max
m

{kA∞(m)−V eq
q(m)}+max

m ′
{−kA (m ′,0)−V eq(m ′)}. (59)

To connect this to our previous results, we write (59) as a function of the initial and final points, q∗k (0) and
q∗k (∞), of an infinite-time optimal fluctuation:

Λ∞(k) = kA∞[q∗k (∞)]−V eq
q [q∗k (∞)]− kA [q∗k (0),0]−V eq[q∗k (0)]. (60)

In order for the optimal fluctuation to fulfil the boundary conditions (55a) in infinite time, it must initiate
on the stable manifold (26), pass through the fixed point at (qFP,pFP) = (0,0), and either stay there [when
q∗k (∞) = 0], or end on the unstable manifold (27) [when q∗k (∞) ̸= 0]. Combining (26) with (55a) at
q= q∗k (0) and (27) with (55b) at q= q∗k (∞), we find that the initial and end points must satisfy

0= k∂mA [q∗k (0),0] +
d
dmV eq[q∗k (0)], (61a)

0= k∂mA∞[q∗k (∞)]− d
dmV eq

q [q∗k (∞)]. (61b)

In case there are several solutions to (61a) and (61b), we must pick the combination of q∗k (0) and q∗k (∞)
for which the right-hand side of (60) takes its maximum value. This approach leads to explicit expressions
for the scaled cumulant-generating function Λ∞(k) and for the initial and final points of q∗k (s)0⩽s⩽∞ in the
infinite-time limit.

3.7. Rate function
Finally, we compute the rate function I(∆A , t) from Λ(k, t) using the Legendre transform in (42). To this
end, we evaluate

∆A (k∗) = ∂kΛ(k
∗, t) = A [q∗k∗(t), t]−A [q∗k∗(0),0], (62)

which gives an implicit equation for the value k∗, where the right-hand side of (42) acquires its maximum.
The second equality in (62) follows by taking a k derivative of (56):

∂kΛ(k, t) = A [q∗k (t), t]−A [q∗k (0),0] +

ˆ t

0
ds

[
δΛ

δp∗k

∂p∗k
∂k

+
δΛ

δq∗k

∂q∗k
∂k

]
. (63)
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The integral in (63) vanishes due to the variational principle δΛ = 0, which implies δΛ/δq∗k = δΛ/δp∗k = 0,
see appendix B.

By inverting (62) we obtain the function k∗(∆A , t) and express (42) as

I(∆A , t) = k∗(∆A , t)∆A −Λ[k∗(∆A , t), t]. (64)

Equation (64) is the sought-after expression for the rate function I(∆A , t) in (40), that completes the
extended Hamiltonian method for the calculation of the finite-time statistics of observables in the
thermodynamics limit.

To summarise, while the standard Hamiltonian method, outlined in section 2.3.1, only yields the
statistics of the state (magnetisationm for the Curie-Weiss model), the extended Hamiltonian method
developed here represents a significant generalisation. It computes the finite-time large-deviations of
arbitrary∆A in the thermodynamic limit, whenever∆A can be written as a difference of state functions.
For the post-quench dynamics we analyse here, the thermodynamic observables Q and Σ fall into this
category. Furthermore, the method automatically provides the dynamical Landau potentialWk(m, t) given
in (53), a powerful tool of the identification and classification of finite-time dynamical phase transitions.

We note that since our method uses generating functions and the Legendre transform, I(∆A , t) obtained
from (64) is always convex. In cases where the underlying rate function has a non-convex part, such as, e.g.,
V(m, t) in figure 2(b), (64) returns its convex hull, and the information stored in the non-convex part is lost.
Non-convex parts in rate functions are signalled by non-differentiable points [84] in the scaled-cumulant
generating function Λ(k, t) in (41). As a simple but non-trivial example of∆A where this non-convexity
matters, one may consider the magnetisation itself,∆A =m, so that A (m, t) =m and A (m ′,0) = 0. In
this case, the scaled cumulant generating function Λ(k, t) has a sharp kink at k= 0, because the
magnetisation rate function V(m, t) is non-convex between its minima for all finite times, see figure 2(b).
The rate function I(m, t) obtained from (64) then gives the convex hull of V(m, t), which is flat around the
origin and, in particular, misses the kink of V(m, t) atm= 0.

Fortunately, Λ(k, t) is oftentimes differentiable in its domain, and (64) returns the exact rate function.
This is the case for thermodynamic observables of the Curie-Weiss model, so that non-convexity is of no
concern here.

4. Finite-time dynamical phase transition

We now apply the theory developed in the previous section to the time-dependent large-deviation statistics of
Q in the Curie-Weiss model. The total entropy production Σ, see (32), can be analysed in an analogous way.

In order to compute Λ(k, t) for Q at finite time t, we solve the Hamiltonian equation (20) with boundary
condition (55a) to obtain [q∗k (s),p

∗
k (s)]0⩽s⩽t for a grid of k values, and evaluate (56) on this grid.

Figure 3(a) shows Λ(k, t) at different times t> 0 after the quench. We observe that Λ(k, t) has an initially
parabolic shape, but develops a flat region around its inflection point k0 = (β/βq − 1)/2 at a finite, critical
time tQc . This critical time is of the order of the microscopic relaxation time τ and is specified in
section 4.1.2, see (74). For t/τ > 1, we observe quick convergence towards the long-time limit Λ∞(k) (dotted
line), obtained from (59). Figure 3(b) shows a magnification of the flat region in figure 3(a); the arrows
indicate the evolution in time.

Figures 3(c) and 3(d) show the optimal initial and final magnetisations q∗k (0) and q∗k (t) at different times.
Note that there exists an equivalent, negative pair−q∗k (0) and−q∗k (t), due to the parity symmetrym→−m
of the problem. Furthermore, the time-reversal symmetry (57), evaluated at s= 0, relates the initial and end
points of the optimal fluctuations in figures 3(c) and 3(d).

At short times when Λ(k, t) is parabolic, both q∗k (0) and q∗k (t) are finite. For t> tQc , by contrast,
q∗k (0) = q∗k (t) = 0 in the finite k region around k0 where Λ(k, t) is flat. This indicates that the inactivity
solution q∗k (s) = p∗k (s) = 0 is the optimal fluctuation within this k interval, leading to the flat region in
Λ(k, t). A more detailed analysis of the optimal fluctuations, conducted in section 4.1.4, provides an intuitive
explanation for this, based on the constrains on the optimal fluctuations imposed at Q = 0. Substituting the
inactivity solution into (56), we find the constant value Λ(k, t) =−V eq(0) = ln(2)+βF̄ (β)≈−0.0359 for
t> tQc within the flat region.

For longer times, we observe convergence, indicated by the black arrows, of the initial and end points
q∗k (0) and q∗k (t) toward the asymptotic, long-time solution (dotted lines), obtained from (61a). From (59) we
obtain the asymptotic boundaries kmin and kmax of the flat interval as
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Figure 3. Post-quench evolution of scaled-cumulant generating function Λ(k, t) for β = 5/(4J) and βq = 1/(2J), with critical
time tQc /τ = ln(30≈ 1.0986 computed in Sec. 4.1.2 see (74). Arrows indicate changes in time. (a) Λ(k, t) for t/τ = 0.25 (blue),
0.5 (red), 1 (yellow), 1.5 (green), and∞ (dotted). (b) Magnified view of the flat region in figure 3(a), including Λ(k, t) for
t/τ = 0.75 (orange). (c)–(d) Initial and final magnetisations q∗k (0) and q∗k (t) for t/τ = 0.25 (blue), 0.5 (red), 1 (orange), 1.25
(yellow), 2 (green), and∞ [dotted, obtained from (61a)].

Figure 4. Post-quench evolution of rate function I(Q, t) for β = 5/(4J) and βq = 1/(2J), with critical time
tQc /τ = ln(3)≈ 1.0986 computed in Sec. 4.1.2 see (74). Arrows indicate changes in time.
(a) I(Q, t) for t/τ = 0.25 (blue), 0.5 (red), 1 (orange), 2 (green) and∞ (dotted). (b) Derivative ∂QI(Q, t) in small interval
around kink, including ∂QI(Q, t) for t/τ = 1.5 (yellow). (c)–(d) Initial and final magnetisations q∗k∗ (0) and q∗k∗ (t) for times
t/τ = 0.25 (blue), 0.5 (red), 1 (orange), 1.5 (green) and∞ (dotted).

kmin =
β−βc

βq
, kmax =

βc −βq

βq
, (65)

which evaluate to kmin = 1/2 and kmax = 1 for the parameters of figure 3.
By the Legendre transform (42) of Λ(k, t), we obtain the rate function I(Q, t), shown in figure 4(a). At

the critical time tQc when Λ(k, t) starts developing the flat region, I(Q, t) acquires a kink around vanishing
Q. The location Q = 0 of the kink is determined by the vanishing slope of the flat k-interval in Λ(k, t). At the
kink, the derivative ∂QI(Q, t) attains a finite jump, centred at k0 (see figure 4(b)), whose magnitude, in turn,
corresponds to the width of the flat k-interval in Λ(k, t).

The minimum of the rate function represents the typical, average, amount of heat ⟨Q⟩ released from the
system into the environment. As time evolves, ⟨Q⟩ takes increasingly negative values, because the typical net
heat flow occurs from the environment into the spin system, increasing its temperature, β → βq. For t≫ τ ,
⟨Q⟩ settles at a finite value, while the spins equilibrate with the environment. During this process, the value
I(0, t) of the rate function at the kink increases, which implies that the event Q = 0 becomes less typical,
i.e. less probable, at larger times.

Figures 4(c) and 4(d) show the (positive) initial and final magnetisations q∗k∗(0) and q∗k∗(t) as functions
of the heat Q they generate. As the critical time tQc is approached, both q∗k∗(0) and q∗k∗(t) develop a cusp at
Q = 0, the location of the kink in I(Q, t). The cusp is sharp and non-differentiable for t⩾ tQc , and arises
because the Legendre transform (42) contracts the finite, flat k-interval in figures 3(c) and 3(d) where
q∗k (0) = q∗k (t) = 0 to the single point Q = 0. Consequently, for t⩾ tQc , q∗k∗(0) and q∗k∗(t) vanish at Q = 0 but
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Figure 5. (a) Phase diagram for the finite-time dynamical phase transition of Q in the t-k plane, featuring the DSM phase (lined)
and the DCE phase (white), separated by a phase boundary (black line) that emerges from the critical point (tQc ,k0) (orange
bullet). The extended DSM phase corresponds to the flat region in Λ(k, t). (b) Phase diagram in the t-Q plane after Legendre
transform, with DSM phase contracted to the dashed line.

are otherwise finite. As function of Q, the symmetry (57) implies, that the optimal fluctuations for Q and
−Q are related by time reversal, so that their initial and end points in figures 4(c) and 4(d) swap places for
Q →−Q. In the long-time limit, we observe asymptotic convergence towards the long-time limit (dotted
lines), obtained from (61a) and (61b).

In the spirit of the equilibrium analysis of section 2.2, we interpret the development of the flat region in
the scaled cumulant-generating function Λ(k, t) and the kink in the rate function I(Q, t) as a finite-time
dynamical phase transition. This transition appears similar to the finite-time cusp in V(m, t) discussed in
reference [71] and shown in figure 2(b), but its properties and origin are different. To proceed, we first
identify the optimal, finalmagnetisationmt = q∗k (t) as the dynamical order parameter. This is a natural
choice, because within the flat region in Λ(k, t) and at the kink of I(Q, t) q∗k (t) is finite for t< tQc and
vanishes otherwise, indicating the existence of different dynamical phases. Since±q∗k (t) are the minima of
Wk(m, t), see (46),Wk(m, t) takes the role of a dynamical Landau potential, with minima given by±q∗k (t), in
close analogy with V eq(m) at equilibrium.

The dynamical phases of the transition in Q are associated with the shape ofWk(m, t) in the t-k (and
t-Q) parameter plane. The number of minima±q∗k (t) suggests two extended phases, shown in figure 5(a). In
the dynamical coexistence (DCE) phase (white region)Wk(m, t) has two minima at±q∗k (t) and the
dynamical order parametermt = q∗k (t) is finite. In the dynamical single mode (DSM) phase [lined region in
figure 5(a)]Wk(m, t) has a vanishing unique minimum, so thatmt = 0. The two phases are separated by a
phase boundary (solid line) that emerges from the critical point (tQc ,k0) (orange bullet).

Comparing figures 3(c) and 3(d) with figures 4(c) and 4(d), we observe that due to the nature of the
Legendre transform (42), the extended DSM phase in the t-k plane contracts to a line at Q = 0, in the t-Q
parameter space. Hence, the phase diagram transforms into a cut plane, with respect to the physical
parameters t and Q. This is shown in figure 5(b), where the DSM phase is given by the dashed line.

The cut-plane topology of the phase diagram provides an intuitive explanation of the formation of the
kink in I(Q, t) at Q = 0 for t> tQc : When Q = 0 is crossed for t< tQc , i.e. without crossing the DSM phase,
the order parameter remains finite and I(Q, t) is smooth. For t> tQc , however, I(Q, t)must cross the DSM
phase at Q = 0. At the crossing,mt becomes zero and bounces back non-differentiably, see the green line in
figure 4(d), resulting in the kink in I(Q, t).

4.1. Characterisation of phase transition
We now give a more detailed characterisation of the dynamical phase transition in terms of the dynamical
Landau potentialWk(m, t) defined in section 3.4. This allows us to establish the continuous nature of the
transition, to obtain an explicit expression for the critical time tQc and the critical exponent, and to provide
an intuitive explanation for the occurrence of the transition in terms of a switch in the optimal fluctuations.

To get started, we first establish a connection between the locations of the kink in the k and Q spaces. We
take a k derivative of the detailed fluctuation relation (44), and evaluate at k= k0:

∂kΛ(k0, t) =−∂kΛ(k0, t) = 0. (66)

By (62), the derivative at k0 is connected to the value of the observable Q generated by the k-tilted dynamics
as

∂kΛ(k0, t) = Q(k0, t) = 0. (67)
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Figure 6. Dynamical Landau potentialWk0 (m, t) at different times for varying quench parameters (coloured lines). Bullets show
the minima±mt. (a) For β = 5/(4J) and βq = 1/(2J) at times t/τ = 0 (black), 0.25 (red), 1 (yellow), 1.5 (green) and∞
(dotted). (b) For β = 5/(4J) and βq = 4/(5J) at times t/τ = 0 (black), 1 (red), 2 (yellow), 4 (green) and∞ (dotted).
(c) Magnification of the local maximum ofWk0 aroundm= 0 in figure 6(b), includingWk0 (m, t) for t/τ = 6 (orange).

Inverting this equation, we find k∗(0, t) = k0 = (β/βq − 1)/2, establishing that q∗k0(s)0⩽s⩽t is the optimal
fluctuation that generates Q = 0 for all times t. In particular, this means that we can write the dynamical
order parametermt(Q) for Q = 0, asmt(0) = q∗k0(t) and that the dynamical Landau potential of the
transition at Q = 0 is given byWk0(m, t).

After identifyingWk0(m, t) as our object of study, we compute it with the method described in
section 3.4: We solve the Hamilton equation (20) with boundary condition (51) to obtain a one-parameter
family of characteristics on a finem-grid. From (52) we then evaluate Vk0(m, t) on this grid. In the last step,
we computeWk0(m, t) using (47).

Figure 6(a) showsWk0(m, t) for different t after a quench with the same parameters as in figures 3 and 4.
As expected from the previous discussion,Wk0(m, t) is initially of double-well shape but transitions into a
single well at t= tQc ∼ τ (coloured lines). At the same time, the dynamical order parametermt (bullets),
passes from finite to zer.

Figure 6(b) showsWk0(m, t) after a quench with a different set of parameters. In this case, we observe that
Wk0(m, t) retains its double-well shape at all times, so that the order parametermt remains finite,mt > 0. In
other words, although the second quench also crosses the phase boundary in figure 1(a) (orange arrow), it
does not induce a finite-time dynamical phase transition for Q. This shows that the requirement that the
quench be disordering, i.e. βq < βc < β, does not ensure that the phase transition in Q takes place. This is in
contrast to the transition in the magnetisationm [71], which occurs for all disordering quenches.

Furthermore, as shown in the magnified view in figure 6(c), for this second set of parameters and after a
finite, critical time, the dynamical Landau potentialWk0(m, t) develops a singular point (a kink) atmt = 0
that persists for all (finite) later times, but vanishes asymptotically in the infinite-time limit. Through (47),
this kink is traced back to a singular point of Vk0(m, t) atm= 0, which has the same origin as the kink in the
(untilted) magnetisation rate function Vk=0(m, t) [71], shown in figure 2(b). This suggests that the
finite-time dynamical phase transitions of the magnetisationm and of the exchanged heat Q are
complementary phenomena: The transition in Q is present only when the phase transition inm is absent in
Vk0(m, t).

4.1.1. Occurrence and continuity of transition
We explain our previous observations by analysing the phase transition for smallmt . In particular, we show
that the transition is continuous and determine the β-βq parameter space where it occurs. Our main strategy
for this section is to assume a continuous transition ofWk0(m, t) at tQc and to justify this assumption a
posteriori.

Sincemt = 0 for t> tQc , all continuous transitions occur at smallm. ExpandingWk0(m, t) aroundm= 0
gives

Wk0(m, t)∼Wk0(0, t)+ ∂2
mWk0(0, t)

m2

2
+ ∂4

mWk0(0, t)
m4

4!
, (68)

form≪ 1. A continuous dynamical phase transitions at time tQc requires that ∂2
mWk0(0, t) changes sign,

while ∂4
mWk0(0, t) remains positive. This ensures thatWk0(0, t) passes from a single into a double-well.

To show that this is the case, we again recall thatWk0(m, t) is a function of the tilted rate function
Vk0(m, t) through (47), and that Vk0(m, t) obeys the Hamilton–Jacobi equation (49) with initial
condition (50). Taking partial derivatives of (49) with respect tom, and evaluating atm= 0, we find an exact,
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Figure 7. (a) Phase portrait of the zk0 −wk0 dynamics (69a) and (69b), featuring the unstable (red bullet) and stable (green bullet)
fixed points. Sample trajectories are shown in different colours with arrow heads indicating the direction of the flow. (b)
∂2
mWk0 (0, t) (blue and green) and ∂4

mWk0 (0, t)− 2 (orange and magenta) forβq = 1/(2J), and 4/(5J), respectively, and fixed
β = 5/(4J). (c) Occurrence of the finite-time dynamical phase transition in the β-βq parameter space. Bullet colours indicate the
parameter values of the zk0 and wk0 trajectories in figure 7(b).

closed set of evolution equations for the derivatives of Vk0(m, t), zk0(t)≡ ∂2
mVk0(0, t) and wk0(t)≡ ∂4

mVk0

(0, t), that we later relate to (68). The equations read

τ żk0 = 4zk0 J(βc −βq)− 4z2k0 , (69a)

τ ẇk0 = 4wk0

[
d
dt logzk0 − 2J(βc −βq)

]
+ żk0

{
żk0 − 2[(βqJ− 2)βqJ− 2]

}
− 16zk0 , (69b)

with initial conditions following from (50),

zk0(0) = J[βc − β̄], wk0(0) = 2, (69c)

where β̄ denotes the arithmetic mean β̄ ≡ (β+βq)/2 of β and βq. For later reference, we note that when

β̄ < βc, (70)

then zk0(0)> 0, and zk0(0)⩽ 0 otherwise.
The evolution equations (69a) and (69b) can be solved explicitly, leading to a complicated expression for

wk0 that we find unenlightening. However, the dynamics is easily understood qualitatively, by considering the
phase portrait of the combined flow of (69a) and (69b). Figure 7(a) shows the phase portrait of (69a) and
(69b), featuring an unstable fixed point (red bullet) at (zk0 ,wk0) = (0,0) and a stable fixed point (green
bullet) at (zk0 ,wk0) = [(βc −βq)J,2]. The arrow heads indicate the time direction of the flow. We observe that
all initial conditions with zk0(0)> 0 are attracted by the stable fixed point. This is shown by the orange and
yellow example trajectories. By contrast, initial conditions with zk0(0)< 0 escape to infinity
(zk0 ,Wk0)→ (−∞,∞) in finite time, exemplified by the red trajectory in figure 7(a).

Returning to (68), we express the derivatives ofWk0(m, t) in terms of zk0 and wk0 :

∂2
mWk0(0, t) =zk0(t)− (β−βq)J/2, (71a)

∂4
mWk0(0, t) =wk0(t). (71b)

When ∂4
mWk0(0, t)> 0 and ∂2

mWk0(0, t) changes sign, from negative to positive, say, thenWk0(m, t)
transitions from a double to a single well, marking a continuous finite-time dynamical phase transition. To
understand for which parameters this happens, it is convenient to introduce

∆β̄ ≡ βc − β̄, ∆βq ≡ βc −βq. (72)

For the disordering quenches (β > βc,∆βq > 0) we consider here, ∂2
mWk0(0, t) is initially negative,

∂2
mWk0(0,0) =−(β−βc)J< 0. This means that for any continuous transition, ∂2

mWk0(0, t)must evolve from
negative to positive. When∆β̄ > 0, then zk0(0)> 0 [recall (70)], so that zk0(t) approaches the stable fixed
point, leading to a positive ∂2

mWk0(0,∞) = ∆β̄ > 0 in the long-time limit. Hence, for these parameters
∂2
mWk0(0, t) transitions from negative to positive in finite time. This is the case forWk0(m, t) shown in

figure 6(a), where∆β̄ = 1/(8J)> 0.

16



New J. Phys. 25 (2023) 023034 J Meibohm and M Esposito

For∆β̄ ⩽ 0, zk0(t) and wk0(t) run into a finite-time divergence and no transition occurs, which is the case
depicted in figure 6(b), where∆β̄ =−1/(40J)< 0. The finite-time divergences of zk0(t) and wk0(t) reflect
the formation of the kink inWk0(m, t) atm= 0, depicted in figure 6(c).

Figure 7(b) shows the time evolution of ∂2
mWk0(0, t) and ∂4

mWk0(0, t) for disordering quenches with the
parameter sets of figures 6(a) and 6(b). For the first set (green and orange lines,∆β̄ > 0), ∂2

mWk0(0, t) is
initially negative, but changes sign at tQc . Because of the structure of the initial and final equilibrium rate
functions of the model, given in (12) and (8), ∂4

mWk0(0, t) = 2 for t= 0 and as t→∞. Nontrivially, however,
∂4
mWk0(0, t)⩾ 2 during the entire time evolution. This ensures that, close to tQc , the finite-time dynamical

phase transition is completely characterised by the expansion in (68), and justifies our initial assumption that
the phase transition is continuous.

For the second set of parameters in figure 7(b) (blue and magenta,∆β̄ < 0), by contrast, ∂2
mWk0(0, t)

remains negative, and both ∂2
mWk0(0, t) and ∂4

mWk0(0, t) diverge in finite time, when the kink in figure 6(c)
forms. In this case, the finite-time dynamical phase transition is absent.

From our small-mt analysis, we conclude that the dynamical phase transition is continuous and that it
requires quenches with∆β̄ > 0. The coloured region in figure 7(c) shows where in the β-βq parameter space
the finite-time dynamical phase transition occurs, i.e. where∆β̄ > 0. The bullets correspond to the
parameter values of the plots in figure 7(b): While the phase transition occurs for the first set of parameters
(orange and green), it is absent for the second set (blue and magenta).

4.1.2. Critical time
With all necessary methods in place, we now compute the critical time tQc for the finite-time dynamical
phase transition. When ∂4

mWk0(0, t)> 0, as we observed, the critical time tQc for disordering quenches is
determined by the time at which ∂2

mWk0(0, t) changes sign, i.e. ∂
2
mWk0(0, t

Q
c ) = zk0(t)− (β−βq)J/2= 0. The

solution of (69a) is given explicitly by

zk0(t) =
J∆βq∆β̄

∆β̄+∆βqe−4J∆βq
t
τ /2

. (73)

The critical time tQc follows from (73) by setting zk0(t
Q
c ) = (β−βq)J/2. Solving for tQc gives

tQc =
τ

2J∆βq
log

(
β̄

∆β̄

)
. (74)

For the parameter values in figures 3 and 4, we have tQc /τ = ln(3)≈ 1.0986, in excellent agreement with the
numerics.

Our analysis shows in particular, that tQc is different from the critical time [71, 75]

tc =
τ

4J∆βq
log

(
∆βq

β−βc

)
, (75)

for the finite-time dynamical phase transition in the magnetisationm. Note also that tQc in (74) diverges both
when∆βq → 0 and when∆β̄ → 0, which mark the boundaries of the coloured region in figure 7(c)

4.1.3. Dynamical order parameter
We now discuss the behaviour of the dynamical order parameter in the vicinity of the transition, derive the
dynamical critical exponent= 1/2, and compare our results to direct numerical simulations of (4).

Close to tQc , the order parameter becomes small,mt ≪ 1, and the expansion in (68) is exact. Hence, we
may computemt as the minimum of (68). This gives

mt ∼

{
±[−zk0(t)+ J(β−βq)]

1/2[wk0(t)]
−1/2, t< tQc

0, t⩾ tQc
, (76)

i.e. a continuous, finite-time dynamical phase transition characterised bymt . Close to criticality, for
|t− tQc |/τ ≪ 1 and t< tQc , we have−zk0(t)+ J(β−βq)∝ (tQc − t). We therefore findmt ∝ |t− tQc |1/2, i.e. a
dynamical critical exponent of mean-field type, the same as form0 in reference [71].

As explained previously,mt = q∗k0(t) represents the most likely final magnetisation that realises Q = 0 in
time t. This allows us to obtain an independent numerical estimate ofmt by means of direct numerical
simulations of (4) at large but finite N. To this end, we generate a large number∼108 of trajectories, and
condition them on Q = 0 at different times t. We then collect the histograms of the final magnetisationsmt

for each t and join them into one plot such that the maximum in each time slice is normalised to unity.
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Figure 8. (a) Order parameter for∆β̄ > 0 with β = 5/(4J) and βq = 1/(2J). Density from numerical simulation (heat map,
N= 250, 108 trajectories) andmt from theory (solid line). The dotted line shows the inactivity solution (sub-leading for t< tQc ),
the bullets are the same as in figure 6(a). (b) Order parameter for∆β̄ < 0 with β = 5/(4J) and βq = 4/(5J). Density from
numerical simulation (heat map, N= 250, 108 trajectories) andmt from theory (solid line). The dotted line shows the
sub-leading inactivity solution, the bullets are the same as in figure 6(b).

Figure 8(a) shows the so-obtained order parameter density for∆β̄ > 0 as a heat map. The theoretical
predictionmt = q∗k0(t) is shown as the solid line. The dashed, blue line shows (76), which coincides with the

exactmt close to tQc , but deviates for short times. The bullets correspond to the minima of the Landau
potentialsWk0(m, t) in figure 6(a). We observe good agreement between the yellow regions of high order
parameter density withmt calculated from the optimal fluctuations. The transition between finitemt at
t⩽ tQc andmt = 0 for t> tQc is clearly visible. Note that the transition is inverted (finite to zero) compared to
the transitions of m̄ andm0 shown in figures 1(b) and 2(c) (zero to finite). Close to tQc , we observe strong
fluctuations ofmt and a high order-parameter density atmt ≈ 0 (black dotted line) even for t≈ 0.7τ < tQc .
This is a finite-N effect, as we explain in more detail in the next section.

Figure 8(b) shows the same as figure 8(a) but now for a parameter set with∆β̄ < 0. Here, the bullets
correspond to the minima ofWk0 in figure 6(b). We observe no phase transition, as the order parameter
remains finite at all times and approaches zero asymptotically.

In both figures 8(a) and 8(b), the numerical data turns noisier for increasing t, because the event Q = 0
becomes less typical as the spin system equilibrates with the environment. Consequently, less trajectories
remain after conditioning on Q = 0, resulting in an increased statistical error.

4.1.4. Optimal fluctuations
Finally, the origin of the dynamical phase transition can be viewed from the perspective of the optimal
fluctuations that generate Q = 0. To improve our intuition for these fluctuations, it is useful to consider how
the condition Q = 0 constrains their dynamics.

According to (62), the optimal fluctuation q∗k0(s)0⩽s⩽t for Q = 0 must satisfy

E [q∗k0(t)] = E [q∗k0(0)], (77)

i.e. the internal energy before the quench and at time t must coincide. For E (m) =−βqJm2/2, (77) translates
into

q∗k0(t) =±q∗k0(0). (78)

Hence, the requirement that Q = 0 forces the initial and end points of the optimal fluctuations to agree up to
a sign.

The constraint (78) on the optimal fluctuation gives a simple qualitative explanation of why the
dynamical phase transition occurs at a finite time, by considering the most likely ways to achieve Q = 0 at
short and long times: For short times t≪ τ , the most likely way is to start and end close to the most likely
initial condition q∗k0(0)≈ m̄(β)> 0, because the relaxation dynamics can be sustained for short times at low
probabilistic cost. For long times t≫ τ and∆β̄ > 0, by contrast, the system is more likely to start at
vanishing magnetisation, at high initial probabilistic cost, because it is also the most likely final
magnetisation, i.e. m̄(βq) = 0. In other words, although the initial probabilistic cost of q∗k0(0)≈ 0 is high, the
system may then stay close to the origin for an arbitrary amount of time at no additional cost.

According to this argument one expects different optimal fluctuations for short and long times, implying
a transition between the two behaviours at some intermediate time, given by the critical time tQc .

For∆β̄ < 0, the probability of initiating (and staying) atm= 0 is always too low, compared to starting
(and ending) somewhere in the middle ground between to a likely initial condition and an unlikely final
condition.
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Figure 9. Optimal trajectories for Q(t) = 0 with β = 5/(4J) and βq = 1/(2J), constrained by (78) with only the+ sign.
(a) Trajectory density from simulation (heat map, N= 250, 108 trajectories) and optimal fluctuation (red line) from theory for
t= 0.8τ < tQc . The dashed line shows the sub-leading fluctuation. (b) Same as in figure (a) but with t= 1.2τ > tQc .

At finite N, the variable sign in (78) gives rise to the premature transition observed in the numerics in
figure 8(a). This is, because at any finite N, trajectories that initiate close tom= 0 have two possibilities that
occur with similar probability: At time t they may end up at either the positive or negative value of their
initial magnetisation. Trajectories that initiate far away from the origin, close to the initial minima of
V eq(m), say, have effectively only one possibility, q∗k0(t) = q∗k0(0), because the probability of trajectories
crossing the origin and ending up at their negative initial magnetisation, q∗k0(t) =−q∗k0(0), is exponentially
suppressed. As a result, the probability to start and end close to the origin is enhanced at finite N.

This effect becomes smaller as N increases, since trajectories for which both possibilities in (78) are of
similar probability, recide closer and closer to the origin. In the thermodynamic limit, only the+ constraint
in (78) survives, so that the optimal fluctuations always obey q∗k0(t) = q∗k0(0), see (57). Based on this
argument, we have checked that the premature transition in figure 8(a) is absent when we enforce
q∗k0(t) = q∗k0(0) also at finite N.

From our direct numerical simulations for∆β̄ > 0, we visualise the optimal fluctuations by conditioning
the trajectories on Q = 0 at times smaller and larger than tQc . In order to emulate the thermodynamic limit,
we now enforce q∗k0(t) = q∗k0(0), instead of admitting both signs in (78). Tracking the entire history of the
conditioned trajectories provides us with a numerical estimate of the conditioned trajectory density in the
thermodynamic limit, before and after the phase transition. The resulting trajectory densities, normalised to
unity for each time slice, are shown in figure 9.

Figure 9(a) shows the trajectory density (heat map) for t< tQc , together with the corresponding optimal
fluctuation q∗k0(s)0⩽s⩽t (red line). The dotted line shows the sub-leading fluctuation q(s) = 0. Although the
numerical data is noisy for the reasons mentioned previously, we observe good agreement between the
yellow streak of high trajectory density and the theoretical curve. Note that there is a negative, but otherwise
identical optimal fluctuation, not shown in figure 9, that starts and ends at a finite negative magnetisation.
For t> tQc shown in figure 9(b), by contrast, the optimal fluctuation remains zero at all times, reflected in
both the numerics and the theory.

5. Conclusions

Combining elements from stochastic thermodynamics and large-deviation theory, we derived a powerful
extension of the Hamiltonian method for computing the time-dependent statistics of thermodynamic
observables after an instantaneous temperature quench. The approach proves particularly effective for the
analysis of finite-time dynamical phase transitions, as it naturally gives rise to a dynamical generalisation of
Landau theory. The corresponding dynamical Landau potential allows for an unambiguous identification of
the dynamical order parameter and of the associated dynamical phases in the phase diagram. Our theory
applies to systems with underlying stochastic dynamics that admit well-defined thermodynamic or
weak-noise limits.

We introduced our approach using the Curie-Weiss spin model as a concrete, non-trivial example of a
system with an equilibrium phase transition. For disordering quenches across the phase boundary, the
magnetisationm of this system was shown to exhibit a finite-dynamical phase transition in reference [71].
Using our new method, we conducted a detailed analysis of the statistics of the heat Q released into the
environment after such a disordering quench.

In a finite region of the parameter space, our investigation revealed another finite-time dynamical phase
transition associated with this observable. The transition manifests itself in a finite-time kink in the
probability distribution of Q and classifies as continuous, with mean-field critical exponent, similar to the
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transition form [71]. Apart from these similarities, however, the two transitions exhibit very different,
complementary properties.

On the trajectory level, we showed that the new finite-time dynamical phase transition associated with Q
is related to a constraint on the initial and end points of individual trajectories. The most likely ways to
satisfy the constraint differ in the short- and long-time limits. This implies the occurrence of a sudden switch
in the optimal, most likely fluctuation at finite time and thus provides a qualitative explanation for the
occurrence of the phase transition. At finite N, we argued that the constraint posed on the fluctuations is
effectively weaker for trajectories that reside close tom= 0, which explains a premature phase transition at
t< tQc observed our direct numerical simulations.

The extended Hamiltonian method presented here opens the door to a complete, finite-time analysis of
the stochastic thermodynamics of systems subject to quenches of either the temperature or other external
parameters. Our analysis of the finite-time statistics of the released heat Q reveals that multiple finite-time
dynamical phase transitions associated with different observables and generated in different ways occur in
the relaxation dynamics of the same system, as a consequence of different constraints posed on the dynamics
at the trajectory level. This indicates that finite-time dynamical phase transitions with distinct properties are
an integral part of far-from-equilibrium relaxation processes, that occur in a wide range of physical
situations. The dynamical Landau theory we propose for the study of these transitions has proven powerful
in identifying the distinct time-dependent phases and for classifying them in terms of well-known
equilibrium categories. We are confident that our methods will be useful in the study of finite-time
dynamical phase transitions in other models and for a variety of observables.

As for the Curie-Weiss model, the next logical step is to investigate the finite-time statistics of entropy
production in response to quenches. This would give a more detailed account of the finite-time dynamics of
dissipation and provide further insights into the irreversibility of relaxation processes in the thermodynamic
limit. The analysis is slightly more involved in this case, because the observable depends explicitly on time,
leading to time-dependent constraints on the trajectories. Notwithstanding, the theory developed here
applies without further limitations.

An important generalisation our method is the inclusion of steady and time-dependent driving. This
enables the study of dynamical observables not only in non-equilibrium steady states but also the transient
relaxation towards them. For example, the characteristic kink in the rate function of entropy production
found at steady state in references [49, 50, 91] could have formed in the transient, as a consequence of a
finite-time dynamical phase transition. An analysis of this and related problems with our methods would
provide new insights into how known dynamical phase transitions are generated.

Finally, the fact that our theory applies in the thermodynamic limit, raises the question how finite N as
well as critical fluctuations (in both space and time [71]) affect finite-time dynamical phase transitions. In
equilibrium, finite-N corrections are known to potentially alter the location of the critical pointand even
change the order of phase transitions [26]. Our numerical simulations in figure 8(a) indicate that such
corrections could also occur for finite-time dynamical phase transitions. How precisely these finite-N
corrections and critical fluctuations, responsible for corrections to mean-field critical exponents at
equilibrium [26, 27], affect finite-time dynamical phase transitions, remains an intriguing open question.

Data availability statement

All data that support the findings of this study are included within the article (and any supplementary files).

Acknowledgment

This work was supported by the European Research Council, project NanoThermo (ERC-2015-CoG
Agreement No. 681456) and by a Feodor-Lynen Fellowship (JM) of the Alexander von
Humboldt-Foundation.

Appendix A. Fluctuation relation forQ

We prove a fluctuation relation for Q, (29) in the main text. The proof given here is based on the following
observation: In an equilibrium state at inverse temperature βq, the joint probability P

eq
q (m, t;m ′,0) obeys

detailed balance [86],

Peqq (m, t;m ′,0) = Peqq (m
′, t;m,0). (A.1)
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The subscript q indicates that bothm andm′ are sampled from the equilibrium distribution at inverse
temperature βq. Conditioning on the initial equilibrium state, we now write

Peqq (m, t;m ′,0) = Pq(m, t|m ′,0)Peqq (m
′), (A.2a)

Peqq (m
′, t;m,0) = Pq(m

′, t|m,0)Peqq (m). (A.2b)

Using this and (A.1), we relate the conditional probability distributions by

Pq(m
′, t|m,0) = Pq(m, t|m ′,0)

Peqq (m ′)

Peqq (m)
, (A.3)

= Pq(m, t|m ′,0)e−Nβq[F(βq,m
′)−F(βq,m)]. (A.4)

Swapping the summation indicesm↔m ′ in (36) we obtain for G(k, t)

G(k, t) =
∑
m,m ′

e−Nkβq[E (m ′)−E (m)]Pq(m
′, t|m,0)Peq(m,0). (A.5)

Using (A.4) and rearranging the terms gives

G(k, t) =
∑
m,m ′

e−Nβq(−k+β/βq−1)[E (m)−E (m ′)]Pq(m, t|m ′,0)Peq(m ′,0). (A.6)

Comparing with (36), and shifting k by k0 = (β/βq − 1)/2, gives the finite-time fluctuation relation

G(k+ k0, t) = G(−k+ k0, t), (A.7)

which shows that G(k, t) is symmetric about k= k0. For the probability distribution P(Q, t), (A.7) implies

P(Q, t) = P(−Q, t)e−N(β/βq−1)Q, (A.8)

leading to

I(Q, t)− I(−Q, t) = (β/βq − 1)Q, (A.9)

for the rate function.

Appendix B. Variational principle forΛ(k, t)

Here we prove a variational principle for Λ(k, t) valid for all k and t. We consider the variation δΛ(k, t) with
respect to q∗k (s) and p∗k (s). From the integral expression (56) we obtain

δΛ(k, t) =−
ˆ t

0
ds
[
δp∗k q̇

∗
k + p∗k

d
dsδq

∗
k − ∂qH (q∗k ,p

∗
k )δq

∗
k − ∂pH (q∗k ,p

∗
k )δp

∗
k

]
− δq∗k (0)

d
dqV

eq[q∗k (0)]+ k{δq∗k (t)∂qA [q∗k (t), t]− δq∗k (0)∂qA [q∗k (0),0]}. (B.1)

An integration by parts gives

δΛ(k, t) =

ˆ t

0
ds
[
ṗ∗k + ∂qH (q∗k ,p

∗
k )
]
δq∗k (s)−

ˆ t

0
ds
[
q̇∗k − ∂pH (q∗k ,p

∗
k )
]
δp∗k (s)

+ δq∗k (t)
{
− p∗k (t)+ k∂qA [q∗k (t), t]

}
+ δq∗k (0)

{
p∗k (0)− k∂qA [q∗k (0),0]− d

dqV
eq[q∗k (0)]

}
. (B.2)

Applying the Hamilton equation (20) together with the boundary conditions (55a) we readily obtain
δΛ(k, t) = 0. Equation (B.2) can be conveniently written as

δΛ(k, t) =

ˆ t

0
ds

[
δΛ

δp∗k
δp∗k +

δΛ

δq∗k
δq∗k

]
, (B.3)
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where the variational derivatives

δΛ

δp∗k
=− q̇∗k + ∂pH (q∗k ,p

∗
k ), (B.4a)

δΛ

δq∗k
= ṗ∗k + ∂qH (q∗k ,p

∗
k )+ δ(s− t)

[
−p∗k + k∂qA (q∗k , s)

]
+ δ(s)

[
p∗k − k∂qA (q∗k , s)− d

dqV
eq(q∗k )

]
, (B.4b)

vanish individually, i.e. δΛ
δp∗k

= δΛ
δq∗k

= 0, as stated in the main text.
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