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We introduce a wide class of quantum maps that arise in collisional reservoirs and are able to thermalize
a system if they operate in conjunction with an additional dephasing mechanism. These maps describe the
effect of collisions and induce transitions between populations that obey detailed balance, but also create
coherences that prevent the system from thermalizing. We combine these maps with a unitary evolution
acting during random Poissonian times between collisions and causing dephasing. We find that, at a low
collision rate, the nontrivial combination of these two effects causes thermalization in the system. This
scenario is suitable for modeling collisional reservoirs at equilibrium. We justify this claim by identifying
the conditions for such maps to arise within a scattering theory approach and provide a thorough
characterization of the resulting thermalization process.
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Collisional reservoirs are becoming an essential tool
for the study of open quantum systems and quantum
thermodynamics [1–4]. The term applies to situations in
which a system interacts sequentially with the internal
degrees of freedom of particles extracted from a reservoir.
The effect of each interaction is described by a quantum
map that can be obtained under some simplifying assump-
tions, like supposing that the particle and the system
interact for a given time. However, this approach turns
out to be thermodynamically inconsistent in certain sit-
uations of interest because switching on and off the
interaction involves the performance of a work that, for
example, prevents the system from thermalizing when
the reservoir is a thermal bath at equilibrium [1,4–6].
This drawback imposes some limitations when applying
collisional models to fundamental problems in quantum
thermodynamics, such as the thermalization of spatially
extended systems [7] and of systems with noncommuting
conserved quantities [8–10].
One way to restore thermodynamic consistency is to

consider the particle’s spatial degrees of freedom and
analyze the collision as an autonomous event. In this case,
there is no longer a need for an external agent to switch on
and off the interaction [6]. In this context, using a scattering
theory approach, two necessary conditions for thermal-
ization have been found: (i) the velocity of the particles
must be distributed according to the effusion distribution at
a given temperature and (ii) the interaction must be time
reversible [6,11,12]. Moreover, in the quantum case, the
dispersion of the momentum of the incident particles must
be small enough to cancel out the coherences among the

eigenstates of the system’s Hamiltonian [6]. For incident
wave packets with a non-negligible momentum dispersion,
the collision can induce coherences that prevent the system
from thermalizing.
An open question is whether the combination of these

collisions with some dephasing mechanism can yield a
repeated-interaction scheme that is thermodynamically
consistent. This is the question that we address in this
Letter. We first analyze the problem of thermalization
in a generic repeated-interaction scheme given by a
quantum map whose transition probabilities obey detailed
balance but, at the same time, generate coherences that
drive the system out of equilibrium. Then we apply this
generic analysis to quantum maps derived within scatter-
ing theory.
Consider a quantum system with Hamiltonian HS and

eigenstates HSjji ¼ ejjji. When it interacts with an aux-
iliary system for a given time or is bombarded by particles
coming from a reservoir, the density matrix of the system
changes as ρ → ρ0 ¼ Sρ. The superoperator S can be
written in tensorial form Sjk

j0k0 in the eigenbasis of HS:

ρ0j0k0 ¼
X
jk

Sjk
j0k0ρjk ð1Þ

with ρjk ≡ hjjρjki. The term Sjj
j0j0 is the transition proba-

bility from eigenstate jji to jj0i. In this Letter, we analyze
quantum maps with transition probabilities that obey
detailed balance:
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e−βejSjj
j0j0 ¼ e−βej0Sj0j0

jj ð2Þ

with respect to an inverse temperature β.
Such a map S can induce thermalization by itself.

A relevant example is when the only nonzero entries
of the tensor are the transition probabilities Sjj

j0j0 and Sjk
jk,

with jSjk
jkj < 1 for j ≠ k. Then coherences (the off diagonal

entries of the density matrix ρ in the eigenbasis of HS)
decay and populations (the diagonal entries of ρ in the
eigenbasis ofHS) evolve as a Markov chain and thermalize.
This is the case of systems bombarded by wave packets
with a small momentum dispersion [6,12].
However, in some relevant situations, such as systems

bombarded by broad packets in momentum representation
coming from thermal baths at equilibrium, populations can
couple to coherences through nonzero terms Sjj

j0k0 with
j0 ≠ k0. In these cases, even though the transition proba-
bilities obey detailed balance, coherences prevent the
system from thermalizing. Concatenation of the map S
is not enough to thermalize the system and must be
complemented by a dephasing mechanism. The most trivial
one consists of intercalating a full dephasing superoperator
D that kills all off diagonal terms of the density matrix. In
the eigenbasis of the Hamiltonian,

Djk
j0k0 ¼ δjj0δkk0δjk: ð3Þ

It is straightforward to prove that the detailed balance condi-
tion [Eq. (2)] and the complete dephasingD are sufficient to
thermalize the system for any initial condition ρ0:

lim
n→∞

½DS�nρ0 ¼
e−βHS

Z
≡ ρTherm; ð4Þ

Z ¼ Tr½e−βHS � being the partition function.
However, to devise realistic scenarios, one has to

consider more specific dephasing mechanisms. A candidate
is the random phase added to the off diagonal terms of the
density matrix if the system is bombarded at random times
and evolves under the Hamiltonian HS between collisions
[13]. The density matrix after n collisions is

ρn ≡ SUτnSUτn−1…SUτ2SUτ1ρ0 ð5Þ

where Uτρ ¼ e−iHSτ=ℏρeiHSτ=ℏ is the superoperator
corresponding to the Hamiltonian unitary evolution and
τ1;…; τn are random variables. The density matrix ρðtÞ at
time t is given by the average

ρðtÞ ¼ hρni ð6Þ

taken over all possible values of n and τk (k ¼ 1; 2;…; n)
such that t ¼ P

k τk. If the collisions are Poissonian events
occurring at a rate Γ, then the probability of a collision in an

interval ½t; tþ Δt� is ΓΔt, independently of past events.
Hence,

ρðtþ ΔtÞ ≃ ½1 − ΓΔt�UΔtρðtÞ þ ΓΔtSρðtÞ ð7Þ

yielding the master equation [1,13]

dρðtÞ
dt

¼ −
i
ℏ
½HS; ρðtÞ� þ ΓðS − IÞρðtÞ: ð8Þ

The corresponding steady state verifies

−
i
ℏ
½HS; ρss� þ ΓðS − IÞρss ¼ 0: ð9Þ

Detailed balance for the transition probabilities [Eq. (2)]
is not sufficient for thermalization, i.e., for having
ρss ¼ ρTherm, even with Poissonian collisions. The reason
is that, if S generates coherences that subsequently affect
populations, then SρTherm ≠ ρTherm. However, the genera-
tion of coherences can be reduced if the collision rate Γ is
very small. To see this, let us solve Eq. (9) perturbatively by
inserting

ρss ¼ ρð0Þ þ Γρð1Þ þ Γ2ρð2Þ þ…: ð10Þ

The first-order terms yield

−
i
ℏ
½HS; ρð0Þ� ¼ 0

−
i
ℏ
½HS; ρð1Þ� þ ðS − IÞρð0Þ ¼ 0

−
i
ℏ
½HS; ρð2Þ� þ ðS − IÞρð1Þ ¼ 0: ð11Þ

Multiplying these equations by hjj on the left and jki on the
right, we get

−
i
ℏ
Δjkρ

ð0Þ
jk ¼ 0

−
i
ℏ
Δjkρ

ð1Þ
jk þ

X
j0k0

Sj0k0
jk ρð0Þj0k0 − ρð0Þjk ¼ 0

−
i
ℏ
Δjkρ

ð2Þ
jk þ

X
j0k0

Sj0k0
jk ρð1Þj0k0 − ρð1Þjk ¼ 0; ð12Þ

where Δjk ≡ ej − ek. For simplicity, we assume that the
eigenstates of HS are nondegenerate: Δjk ¼ 0 ⇔ j ¼ k. In
this case, the first equation in Eq. (12) implies that ρð0Þ is
diagonal in the eigenbasis of HS, and the second one,
particularized for k ¼ j, determines the diagonal terms or
populations. They fulfill the following equation:

X
j0
Sj0j0
jj ρ

ð0Þ
j0j0 ¼ ρð0Þjj ; ð13Þ
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whose solution is ρTherm if the transition probabilities verify
the detailed balance condition [Eq. (2)]. The off diagonal
terms are of order Γ with

ρð1Þjk ¼ −
iℏ
Δjk

X
j0
Sj0j0
jk ρ

ð0Þ
j0j0 ð14Þ

for j ≠ k. The third equation in Eq. (12) for k ¼ j
determines the first-order correction to the diagonal terms

X
j0k0

Sj0k0
jj ρð1Þj0k0 ¼ ρð1Þjj ; ð15Þ

which are no longer thermal. We see that the corrections to
the thermal state are of order Γℏ=jΔjkj. That is, the system
thermalizes if the average time between collisions 1=Γ is
much longer than the evolution time of the phases of the off
diagonal terms of the density matrix, which are ℏ=jΔjkj.
Now we investigate the conditions under which this type

of map results from the interaction between a system and a
particle or unit U extracted from a reservoir.
As in Ref. [6], we study the case of a system colliding

with a one-dimensional quantum particle of mass m. The
Hamiltonian of the global setup reads as

H ¼ p̂2

2m
þHS þ Vfðx̂Þ; ð16Þ

where p̂ and x̂ are the momentum and position operators
of the particle, respectively; V is an operator acting on the
system; and fðxÞ is a function with finite support, which is
the scattering region where the system and the particle
interact. Here, we assume for simplicity that the scatterer
is symmetric under spatial inversion, fðxÞ ¼ fð−xÞ, and
that the particle has no internal degrees of freedom. They
can be incorporated in a straightforward manner, follow-
ing Ref. [12].
We bombard the system with units prepared in a generic

mix state ρU. In this case, the resulting scattering map is
[6,14]

Sjk
j0k0 ¼

X
α¼�

Z
∞

pinf

dp ρU½p; πðpÞ�
ffiffiffiffiffiffiffiffiffiffi
p

πðpÞ
r

sðαÞj0j ðEp þ ejÞ

× ½sðαÞk0kðEp − Δj0j þ ek0 Þ��; ð17Þ

where ρUðp; p0Þ ¼ hpjρUjp0i is the density matrix of the
particle in the momentum representation, Ep ¼ p2=ð2mÞ,
πðpÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − 2mðΔj0j − Δk0kÞ

q
, and the lower limit of the

integral obeys p2
inf=ð2mÞ ¼ maxf0;Δj0j;Δj0j − Δk0kg. The

quantities sðαÞj0j ðEÞ are the complex entries of the scattering
matrix, which are related to the amplitudes of the reflected
(α ¼ −) and transmitted (α ¼ þ) plane waves of scattering
states [6] with total energy E. They are obtained by solving

the time-independent Schrödinger equation for scattering
states, which behave as plane waves asymptotically [6,14]
(see also Ref. [12] for exact and approximate expressions of
the scattering matrix in terms of transfer matrices).
Following similar steps as in Refs. [6,12], we can obtain

sufficient conditions for the scattering map [Eq. (17)] to
obey the detailed balance condition [Eq. (2)]. The first
condition requires that the diagonal of the state of the
particles in momentum representation coincides with the
effusion distribution:

ρUðp; pÞ ¼ μeffðpÞ ¼
βp
m

e−βp
2=ð2mÞ: ð18Þ

The second one is microreversibility:

sðαÞj0j ðEÞ ¼ sðαÞjj0 ðEÞ: ð19Þ

The proof is straightforward. Inserting Eq. (18) in Eq. (17)
for k ¼ j and k0 ¼ j0, we obtain

Sjj
j0j0 ¼

X
α¼�

Z
∞

pinf

dp
βp
m

e−βp
2=ð2mÞ

����sðαÞj0j

�
p2

2m
þ ej

�����
2

ð20Þ

with pinf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mΔj0j

p
if Δj0j > 0 and zero otherwise. With

the change of variable ε ¼ p2=ð2mÞ þ ej, we get

Sjj
j0j0 ¼ βeβej

X
α¼�

Z
∞

maxfej;ej0 g
dε e−βεjsðαÞj0j ðεÞj

2; ð21Þ

which, together with Eq. (19), immediately yields the
detailed balance condition [Eq. (2)].
Microreversibility is fulfilled by the exact scattering

matrix in any collision described by a Hamiltonian of
the form in Eq. (16). In Ref. [12], we have developed
several approximations of the scattering matrix that still
satisfy this condition and can be used to design simple
quantum repeated-interaction thermostats. We use one of
these approximations to analyze an explicit example below
(see the Supplemental Material [15]).
However, if ρUðp; p0Þ ≠ 0 for p ≠ p0, then the scattering

map can create coherences [6]. For example, if

ρUðp;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − 2mΔj0k0

q
Þ ≠ 0 for j0 ≠ k0 and the amplitudes

of the transitions j → j0 and j → k0 are nonzero, then the
term Sjj

j0k0 is nonzero and couples the off diagonal term ρj0k0

to the population ρjj.
In particular, for particles in a pure state, the density

matrix is ρUðp; p0Þ ¼ ϕðpÞϕ�ðp0Þ, where ϕðpÞ is the
wave function of the pure state in the momentum repre-
sentation. Then, a diagonal state ρU in momentum repre-
sentation can be obtained only by using plane waves with
jϕðpÞj2 ∝ δðp − p0Þ. These plane waves are completely
delocalized in space and do not induce individual collision
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events, but rather a continuous-time evolution of the state of
the system [16]. In Ref. [6], we have shown that this
condition can be relaxed to narrow wave packets whose
momentum dispersion σp is small enough to avoid over-
lapping between outgoing packets with different energies,

i.e., ρUðp;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 − 2mΔj0k0

q
Þ ≃ 0 for all j0 ≠ k0. On the other

hand, for very broad packets, one can even obtain a unitary
scattering map that preserves the entropy of the system.
Consequently, in this case, the collision is a work source
from a thermodynamic point of view [17].
We now analyze whether the dephasing induced by

Poissonian collisions can restore thermalization even in the
case of broad packets. As we have shown above, this is the
case if the rate of collisions is low enough. Now, we check
this statement using a specific example. We consider a
qubit bombarded by particles that are localized in space
around an initial position x0 with dispersion Δx, and whose
momentum is distributed according to the effusion distri-
bution [Eq. (18)]. These two requirements can be imple-
mented using the following Wigner function [17]:

Wðp; xÞ ¼ μeffðpÞ
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2πΔx2
p e−ðx−x0Þ2=ð2Δx2Þ; ð22Þ

which is valid if 4πΔx
ffiffiffiffiffiffiffiffiffi
m=β

p
≥ ℏ [18]. From the Wigner

function, we can obtain the density matrix in momentum
representation [17]:

ρUðp;p0Þ¼
Z

dxW

�
pþp0

2
;x

�
e−iðp−p0Þx=ℏ

¼μeff

�
pþp0

2

�
exp

�
−
Δx2ðp−p0Þ2

2ℏ2
−i

ðp−p0Þx0
ℏ

�
:

ð23Þ

Notice that the density matrix is diagonal in the momentum
representation only for Δx → ∞ (the Wigner function
Eq. (22) in this case is not valid because the resulting
state ρU is a mixture of plane waves, which are not proper
states). This is equivalent to the narrow packets considered
in Refs. [6,12]. If one imposes the localization of the
particle, which is necessary to have well-defined isolated
collisions, then the density matrix ρU is no longer diagonal
in the momentum representation. This is equivalent to the
broad packets that exhibit non-negligible momentum
dispersion when one localizes the packet in space, due
to the Heisenberg uncertainty principle.
The total Hamiltonian of our system is Eq. (16), with

HS ¼ ðΔ=2Þσz and V ¼ λðσx þ σyÞ, σi being the three
Pauli matrices of the qubit. The difference between the
energy levels is Δ, and λ is the intensity of the interaction.
The scattering region is the interval ½0; L�, and fðxÞ is the
indicator function of this interval: fðxÞ ¼ 1 if x ∈ ½0; L�
and zero otherwise.

First, we show in Fig. 1 the time evolution of the
population of the ground state of the qubit when the
evolution is given by random collisions, as in Eq. (5) (blue
curves), for different values of the bombarding rate Γ. To
obtain the time evolution, we calculate the amplitudes

sðαÞj0j ðEÞ using the approximation introduced in Refs. [12,15],
which neglects the reflecting waves but fulfills microrever-
sibility. From the scattering amplitudes and the incident
density matrix [Eq. (23)], we get the scattering mapS, using
Eq. (17). Figure 1 shows the population of the ground state
ρ00 for a given realization of collision times τ1; τ2;….
The populations are plotted as a function of Γt, which is
the average number of collisions up to time t.We see that the
system does not thermalize for values of Γ well above the
Bohr frequency Δ ¼ 0.6 (ℏ ¼ 1). For comparison, we also
include the population when the dephasing operator
[Eq. (3)] is applied in each collision for Γ ¼ 10. In this

FIG. 1. Time evolution of the diagonal element ρ00 with
Poissonian bombarding with rates Γ ¼ 10, 5, 1 and when
we intercalate the dephasing superoperator D (red). The black
dashed line represents the population in the thermal equilibrium
state. Δ ¼ 0.6, β ¼ 0.1, m ¼ 0.1, λ ¼ L ¼ ℏ ¼ 1, Δx ¼ 1,
and x0 ¼ −10.

FIG. 2. Numerical solution of Eq. (9) in the case of a single
qubit as a function of Γ: ρ00 (blue), ρ11 (red), and jρ10j (green).
The black dashed lines represent the population in the thermal
equilibrium state. Δ ¼ 0.6, β ¼ 0.1, m ¼ 0.1, λ ¼ L ¼ ℏ ¼ 1,
Δx ¼ 1, and x0 ¼ −10.
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case, the evolution is almost deterministic and drives the
qubit to the thermal state.
The steady state of the evolution can be calculated

analytically by solving Eq. (9). We plot the solution as a
function of Γ (for both populations and coherences) in
Fig. 2. The two plots confirm our results and show that
thermalization is achieved when Γ is of the same order as
the qubit frequency Δ=ℏ ¼ 0.6 or lower.
There are three key parameters that determine whether

the qubit thermalizes or not: the Bohr energy Δ, the
bombardment rate Γ, and the dispersion of the particle’s
position Δx that determine the magnitude of the off
diagonal terms of the density matrix ρU in momentum
representation, as shown by Eq. (23). The interplay
between the three parameters is not trivial, as shown in
Fig. 3, but is qualitatively captured by the following
expression (see the Supplemental Material [15]):

jρ01j ∼
Γ
ω
e−βmΔx2ω2=2; ð24Þ

where ω≡ Δ=ℏ is the Bohr frequency of the qubit. For a
1 GHz qubit, for example, one could observe coherence if
effusion occurs at a rate of 109 particles per second or
greater, which is achievable [19] and compatible with the
condition ΓL ≪

ffiffiffiffiffiffiffiffiffiffiffiffi
kT=m

p
, warranting that there is a single

particle in the scattering region at any time (the presence of
two or more particles could induce nonlinear effects that
have been explored in the context of cavity QED [20]). The
exponential factor in Eq. (24) imposes a more involved
condition on the spatial dispersion of the bombarding
particles, but it does not seem very restrictive either: for
the 1 GHz qubit, molecules with a mass of 1000 protons
could generate coherences at room temperature if they are
localized in an interval of the order of 50 nanometers or
smaller.
To conclude, we have established the necessary con-

ditions for thermalization in a wide class of quantum maps
combined with a unitary evolution that lasts for a random
Poissonian time. We have determined when one could
expect a deviation from thermalization due to quantum

effects. Our results are useful to design repeated-interaction
reservoirs that are thermodynamically consistent and could
help to clarify current open problems. One example is
whether the presence of noncommuting conserved observ-
ables hinders or boosts thermalization [8–10], a problem
that has been partially addressed using generic collisional
reservoirs [21]. In addition, they show that the system
exhibits a high sensitivity to the kinetic characteristics of
the bombarding particles in situations that can be repro-
duced in experimental setups, such as those used in cavity
QED [22], and could shed light on the problem of spatial
decoherence of macromolecules [23–25].
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