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We lay the foundation of a circuit theory for chemical reaction networks. Chemical reactions are grouped
into chemical modules solely characterized by their current-concentration characteristic—as electrical
devices by their current-voltage (I-V) curve in electronic circuit theory. Combined with the chemical analog
of Kirchhoff’s current and voltage laws, this provides a powerful tool to predict reaction currents and
dissipation across complex chemical networks. The theory can serve to build accurate reduced models of
complex networks as well as to design networks to perform desired tasks.
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I. INTRODUCTION

Chemical reaction networks (CRNs) are ubiquitous in
nature and can easily reach high levels of complexity.
Combustion [1], atmospheric chemistry [2,3], geochemis-
try [4], biochemistry [5], biogeochemistry [6,7], and
ecology [8] provide some examples. The complexity of
many of these networks arises from their large size and
complex topology (encoded in the stoichiometric matrix),
from the nonlinearity of chemical kinetics, and from the
fact that they do not operate in closed vessels. They
continuously exchange energy and matter with their sur-
roundings, thus maintaining chemical reactions out of
equilibrium [9,10]. Their detailed characterization would
require knowing the currents through all the reactions,
which, for elementary reactions satisfying mass-action
kinetics, implies the knowledge of the reaction rate of
every reaction and of the concentrations of all the species.
Naturally, such knowledge is very seldom achieved.
Some approaches seek to develop reduced models of
CRNs often based on eliminating the fast-evolving
species [11–14]. Other approaches such as flux balance
analysis impose a complicated mix of constraints (physical
and experimental) and objective functions (enforcing bio-
logically desired results) to determine the currents through
the CRN and avoid using kinetic information about the
system [15–17] (see also Sec. V). In both cases, ensuring

the thermodynamic consistency of the schemes has been a
major topic of concern in recent years [18–23].
In this paper, we present a novel approach: a thermo-

dynamically consistent circuit theory of CRNs, inspired by
electronic circuit theory. In CRNs, elementary reactions
transform chemical species into each other, while in
electrical circuits, devices transfer charges between con-
ductors. However, electronic devices are complex objects,
and the charge transfers are not characterized at an
elementary level but instead in terms of current-voltage
(I-V) curves, which are often determined experimentally or
may also be computed using a more detailed description of
the inner workings of the device. For CRNs, we group
elementary reactions into chemical modules that are then
solely characterized by their current-concentration curves
between terminal species. The current-concentration curve
of a chemical module thus corresponds to the I-V curve of
an electronic device, but differs from it in an important way.
While the electric currents only depend on the difference
between the electrostatic potentials applied to the terminals
of the devices, the chemical currents are functions of the
concentrations and, consequently, depend on the absolute
value of the chemical potentials of the terminal species.
Another difference between the two circuit theories is that
conservation laws in CRNs are significantly more compli-
cated than in electronic circuits where only charge con-
servation is involved. Chemical circuit theory may become
an important tool to study and design complex CRNs, in the
sameway that electronic circuit theory for electrical circuits
has become the cornerstone of electrical engineering. To
this aim, experimental methodologies to determine current-
concentration curves should be developed, which is within
reach thanks to recent developments in microfluidics and
systems chemistry [9].
In order to present our theory, we adopt a twofold

strategy. In the main text, we adopt an informal style and
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present the theory with examples, as we simplify the
description of the CRN depicted in Fig. 1(a) to the one
depicted in Fig. 1(b), first identifying the chemical modules
(Sec. II) and then characterizing them in terms of their
current-concentration characteristic (Sec. III). The formal
theory is presented in Appendix A. The more mathemati-
cally inclined readers may want to start there before turning
to the main text for illustrations.
In Fig. 1(a), the outer black box defines the boundary of

the entire open CRN, and the concentration of species with
arrows crossing that boundary is controlled by the envi-
ronment. The colored boxes inside the CRN denote the
chemical modules, and the corresponding colored arrows
denote the (elementary and reversible) reactions inside
those modules. Note that the colored (internal) species
change solely due to reactions in the module of the same
color, while the black (terminal) species are involved in
reactions of different modules. In Fig. 1(b), the reactions
within the modules are lumped into a minimal number of
effective reactions called emergent cycles. As we will see,

an emergent cycle defines a combination of elementary
reactions that upon completion do not interconvert the
internal species of a module but exchange terminal species
with othermodules. Theywere originally introducedbecause
they capture the entire dissipation of open CRNs at a steady
state [24–26]. The current along the emergent cycles of a
module as a function of the concentrations of its terminal
species defines the current-concentration curve of the mod-
ule. Three strategies (Sec. III) can be used to determine the
current-concentration characteristic. The first two [illustrated
in Appendix B for some of the modules in Fig. 1(a)] are
theoretical and require the detailed knowledge of the kinetic
properties of the reactions inside the module. The third one
(detailed in Sec. III) is experimental and requires the control
of the concentrations of the terminal species as well as
measuring their consumption or production rates. It is
analogous to the way the I-V curve of an electronic device
is determined. Finally, based on the current-concentration
characteristics of each module, a closed dynamics for
the terminal species is obtained in Eq. (19), providing a

(a) (b)

FIG. 1. (a) Elementary and (b) circuit descriptions of a complex CRN enclosed in gray boundaries using hypergraph notation. Gray
arrows crossing the network boundaries denote the exchange processes with the environment. Colored boxes are chemical modules.
Their internal species and (elementary or effective) reactions are represented by chemical symbols and arrows of the same color,
respectively. Their terminal species are represented by black chemical symbols. All the chemical reactions are assumed to be reversible
even though only the forward reactions are represented. Effective reactions are coupled when connected by black lines.
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simplified description of the original open CRN. Crucially,
this coarse-grained dynamics is thermodynamically consis-
tent (Sec. IVA) and satisfies the chemical equivalent of
Kirchhoff’s current and potential laws (Sec. IVB): the sums
of currents involving each terminal species vanish at the
steady state, and the sum of the Gibbs free energy of
the reaction along any closed cycle is zero, respectively.
The limitations and extensions of our circuit theory are
discussed in Sec. V and illustrated in more detail in
Appendix C for the CRN in Fig. 1(a). In order to be valid
beyond steady-state conditions, our theory requires a time-
scale separation between the dynamics of terminal species and
the internal dynamics of the modules in such a way that the
latter is uniquely determined by the former, but multistability
(Appendix C 1) can still be treated. Modules may be merged
into a supermodule (Appendix C 2) or split into submodules
under certain conditions (AppendixC 3). Finally, the effective
reactions can be experimentally determined without knowing
the internal stoichiometry of the modules (Appendix C 4).

II. CHEMICAL MODULES

To explain how to reduce the description of a complex
open CRN in terms of chemical modules, we use the CRN
depicted in Fig. 1(a) and reduce it to Fig. 1(b). The formal
description of this procedure is given in Appendix A. In
particular, Appendix A 1 gives a formal definition of
modules, while in Appendixes A 2 and A 3, their reduced
description is derived.
In Fig. 1(a), the arrows denote both the chemical reactions

of the network and the exchange processes with the envi-
ronment. The latter are represented by (gray) arrows entering
the CRN from the outside and involve the exchanged species
(S, F, W, Pex, Pb, Pe, and Pf). The direction of the arrows is
arbitrary (set by convention) as all reactions are assumed to
be reversible. The boxes inside the CRN in Fig. 1(a) are the
modules. Each module is a subnetwork composed of a
unique set of internal species (drawn inside the module)
reacting among themselves and potentially also with other
species, named terminal species (drawn outside themodule).
For instance, the (blue) module a in Fig. 1(a) interconverts
the internal species Ea;EaS, and EaS2 and the terminal
species S and Na via the chemical reactions

Sþ Ea⇌
þa1

−a1
EaS;

EaS⇌
þa2

−a2
Ea þ Na;

EaSþ S⇌
þa3

−a3
EaS2; ð1Þ

represented by the (blue) arrows labeled a1, a2, and a3 (also
specified in Fig. 2).
Chemical modules are the chemical analog of the elec-

tronic components (for example, diodes, transistors, or

microchips) of an electric circuit, and the terminal species
are the analog of the electrical contacts or pins of each
component. However, arrows in Fig. 1(a) should not be
compared to cables or connections between components in
an electronic circuit diagram. Instead, the analog of electrical
connections between contacts of different electronic com-
ponents is the chemical species shared between chemical
modules, i.e., the terminal species.However,while electronic
components are spatially separated, chemicalmodules donot
have to be. Assuming homogeneous solutions for simplicity,
the definition of the modules, as well as their representation,
is based on the network of reactions and does not require any
spatial organization. Situations involving spatial organiza-
tion will be discussed in Sec. V.
In the circuit description depicted in Fig. 1(b), each

module is coarse grained into effective reactions (denoted
by the arrows through the boxes) between its terminal
species. The coarse graining reduces the (blue) module a to
the single effective reaction

S⇌
ϵa

Na: ð2Þ
The coarse-graining procedure is based on the stoichiom-
etry of the module and starts from its stoichiometric
matrix [16]

ð3Þ

also specified in Fig. 2, whose entries have a clear physical
meaning: They encode the net variation of the number of
molecules of each species (identified by the matrix row)
undergoing each reaction (identified by the matrix column)
[16]. This matrix is split into the substoichiometric matrices
for the internal species SQ

a and for the terminal species SP
a .

The effective reactions correspond to the emergent cycles
of Sa, i.e., a set of linearly independent right-null vectors of
SQ
a that are not right-null vectors of SP

a . As we will see, this
set may not be unique. However, for the stoichiometric
matrix (3), one only finds the single emergent cycle

cϵa ¼
a1
a2
a3

0
B@

1

1

0

1
CA ; ð4Þ

also reported in Fig. 2. The sequence of reactions encoded
in the emergent cycle only interconverts (upon completion)
the terminal species while leaving the internal species
unaltered. By multiplying the substoichiometry matrix
for the terminal species SP

a in Eq. (3) and the emergent
cycle cϵa in Eq. (4), one obtains the variation of the number
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FIG. 2. Chemical reactions, stoichiometric matrix, and cycles of the modules in Fig. 1(a). The black horizontal line splits the
stoichiometric matrix of each module Sm into the substoichiometric matrix for the internal species SQ

m and for the terminal species SP
m.
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of molecules of terminal species along the emergent cycle,
i.e., the stoichiometry of the corresponding effective
reaction (2):

SP
acϵa ¼

S

Na

�−1
1

�
: ð5Þ

The general and formal discussion of the coarse-grained
procedure based on the use of the emergent cycles is given
in Appendixes A 2 and A 3.
We now turn to the (green) module b, whose internal

species Eb, EbF, EbW, and E�
b react via the chemical

reactions b1, b2, b3, b4, and b5 (see Fig. 2) with the terminal
species Na, Nb, F, and W. From the corresponding stoichio-
metric matrixSb (in Fig. 2), we identify two emergent cycles
cϵb and cϵ0b (in Fig. 2), which correspond to the following
effective reactions between the terminal species:

F⇌
ϵb

W; ð6aÞ

Na⇌
ϵ0b

Nb; ð6bÞ

respectively. Note that

cϵ00b ¼

b1
b2
b3
b4
b5

0
BBBBBB@

1

0

1

1

1

1
CCCCCCA

ð7Þ

is also a right-null vector of SQ
b , which corresponds to the

effective reaction

Fþ Na⇌
ϵ00b

Nb þW: ð8Þ
However, it is linearly dependent on the other two and is thus
excluded from the circuit description. Any other pair of these
three emergent cycles could also have been chosen.
We now consider the (aqua-green) module d whose

internal species Ed, E�
d, and EdS are involved in the

chemical reactions d1, d2, d3, d4, and d5 (see Fig. 2) with
the terminal species S and Nd. Its stoichiometric matrix is
specified in Fig. 2 and, unlike the previous modules, the
substoichiometry matrix for the internal species SQ

d admits
the right-null vectors cιd and cιd0 , called internal cycles,
which are also right-null vectors of the substoichiometry
matrix for the terminal species SP

d . These internal cycles are
sequences of reactions that, upon completion, leave all the
species (both internal and terminal) unaltered. Thus, they
do not correspond to any effective reaction between
terminal species. However, the substoichiometry matrix
for the internal species also admits the emergent cycle cϵd ,
which corresponds to the following effective reaction:

S⇌
ϵd

Nd: ð9Þ
By following the same procedure for the remaining

modules, one obtains the following effective reactions:

Nex⇌
ϵc

Pex;

Nb⇌
ϵ0c

Pb;

Ne⇌
ϵ00c

Pe ð10Þ

for the (orange) module c;

2Nd⇌
ϵe

Ne ð11Þ

for the (purple) module e, and

Nd þ Ne⇌
ϵf

Pf ð12Þ
for the (red) module f.
Note that a chemical module m with jPmj terminal

species can have a maximum of jPmj − 1 (linearly inde-
pendent) emergent cycles and, therefore, effective reac-
tions. This is analogous to the fact that an electronic
component with jPmj contacts can have at most jPmj − 1
independent electrical currents at the steady state [27]. This
follows directly from the existence of at least one con-
servation law, namely, the mass conservation law in CRNs
or the electric charge conservation law in electronic
circuits. The existence of additional conservation laws
(involving the terminal species in CRNs or the contacts
in electronic circuits) reduces the number of emergent
cycles. In the case of electronic circuits, the only kind of
conservation law is the charge, and the only way to have
additional conservation laws beyond that of the total charge
is for a component to consist of smaller subcomponents that
do not interchange any charge (although they might still
influence each other). This is not the case for CRNs, where
conservation laws (involving the terminal species) can be
more complicated [24,25]. They identify parts of (or entire)
molecules, named moieties, that are not modified by the
chemical reactions. Mathematically, they correspond to
left-null vectors of the full stoichiometric matrix Sm of a
module whose restrictions to the internal species are not
left-null vectors of the stoichiometric matrix SQ

m for the
internal species. It can be seen that if jλmj and jϵmj are the
number of independent conservation laws and emergent
cycles, respectively, then jλmj þ jϵmj ¼ jPmj [25]. Together
with the existence of at least one conservation law (the mass
conservation law in CRNs or charge conservation in
electronic circuits), this explains why the number of
emergent cycles is at most jPmj − 1. Note that these
conservation laws are said to be broken because they
define quantities that are only conserved in a closed system
(CRNs [25] or electronic circuits [27]).
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III. CURRENT-CONCENTRATION
CHARACTERISTIC

In electronic circuits, the steady-state behavior of electronic
components is given by their current-voltage characteristics,
or “I-V curves,” which specify how the value of all indepen-
dent currents of an electronic component depends on the
voltages applied to its contacts. We now apply the same
strategy to chemical modules. The current-concentration
characteristic of a chemical module specifies how the (effec-
tive) reaction currents depend only on the concentrations of
the terminal species by assuming that the internal species have
already relaxed to a steady state (see Appendix A 2).
When the kinetic constants of the internal reactions of a

module are known, the current-concentration characteristic
can be derived analytically if the internal reactions of a
module are pseudo-first-order reactions; otherwise, it can
be derived numerically. The relevant procedures are
described in Appendixes B 1 and B 2 and applied to some
of the modules in Fig. 1(a). However, in practice, a
complete characterization of the kinetics of the internal
reactions is seldom achieved. The real power of the circuit
theory is that the current-concentration characteristic can be
determined experimentally, as discussed next.
One possibility is to use membrane reactors [28]. We

describe this procedure using the (blue) module a and the
(green) module b in Fig. 1(a). The formal theory is detailed
in Appendix A 5. The setup to characterize the (blue)
module a is illustrated in Fig. 3. The concentrations of S
and Na are held constant thanks to the exchange processes
whose currents are IS and INa

, satisfying

dt½S� ¼ −ψϵa þ IS ¼ 0; ð13aÞ
dt½Na� ¼ ψϵa þ INa

¼ 0: ð13bÞ
Thus, the effective reaction current ψϵa can be determined
by measuring the exchange current IS (or equivalently INa

)
for every value of the concentrations [S] and ½Na�:

ψϵa ¼ IS ¼ −INa
: ð14Þ

The setup for the (green)moduleb in Fig. 1(a) is illustrated
in Fig. 4. The module now has two effective reactions,
Eqs. (6a) and (6b), but the general strategy remains the same.
The concentrations of the terminal species ðNa;Nb; F;WÞ
are held constant thanks to the exchange processes whose
currents are INa

, INb
, IF, and IW, satisfying

dt½Na� ¼ −ψϵ0b
þ INa

¼ 0; ð15aÞ

dt½Nb� ¼ ψϵ0b
þ INb

¼ 0; ð15bÞ

dt½F� ¼ −ψϵb þ IF ¼ 0; ð15cÞ

dt½W� ¼ ψϵb þ IW ¼ 0; ð15dÞ

and thus the effective reaction currents ψϵb and ψϵ0b
are

given by

ψϵ0b
¼ INa

¼ −INb
; ð16aÞ

ψϵb ¼ IF ¼ −IW: ð16bÞ

This operation can be repeated for every module. In
Appendix A 5, we formally derive the general expression
[Eq. (A22)] of the effective reaction currents in terms of the
exchange currents.

IV. CIRCUIT DESCRIPTION

Having determined the effective reactions and the current-
concentration characteristic of each module, we can finally
formulate the circuit description of the CRN in Fig. 1(b).
The general formulation is presented in Appendix A 6.

(a) (b)

FIG. 3. (a) Elementary and (b) circuit descriptions of the (blue)
module a in Fig. 1 in a reactor, similar to the membrane reactor
used in Ref. [28], where the concentrations of S and Na are
controlled by exchange processes whose currents are specified by
IS and INa

.

(a) (b)

FIG. 4. (a) Elementary and (b) circuit descriptions of the
(green) module b in Fig. 1 in a reactor, similar to the membrane
reactor used in Ref. [28], where the concentrations of Na, Nb, F,
and W are controlled by exchange processes whose currents are
specified by INa

, INb
, IF, and IW.
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For this process, modules are connected by sharing their
terminal species. For instance, the terminal species S is
involved in the two effective reactions ϵa and ϵd [given
in Eqs. (2) and (9), respectively] as a reagent and also
exchanged with the environment. Its concentration thus
evolves according to

dt½S� ¼ −ψϵa − ψϵd þ IS; ð17Þ
where IS is the exchange current of S with the environment.
Analogously, the terminal species Nd is the product of the
effective reaction ϵd [given in Eq. (9)] and the reagent of the

effective reactions ϵe and ϵf [given in Eqs. (11) and (12),
respectively]. Its concentration evolves as follows:

dt½Nd� ¼ ψϵd − 2ψϵe − ψϵf ; ð18Þ
which accounts for the fact that two molecules of Nd are
consumed every time reaction ϵe occurs, namely, the
stoichiometry of the effective reaction ϵe.
By repeating the same reasoning, the rate equation for

the terminal species can be written as

dtp ¼ Ŝ ψ̂ þI; ð19Þ
where

Ŝ ¼

Na

Nb

Nex

Nd

Ne

G

F

W

S

Pb
Pex

Pe
Pf

ϵa ϵb ϵ0b ϵc ϵ0c ϵ00c ϵd ϵe ϵf ge gf

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBB@

1 0 −1 0 0 0 0 0 0 0 0

0 0 1 0 −1 0 0 0 0 0 0

0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 1 −2 −1 0 0

0 0 0 0 0 −1 0 1 −1 0 0

0 0 0 0 0 0 0 0 0 2 3

0 −1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

−1 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 −1 0

0 0 0 0 0 0 0 0 1 0 −1

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð20Þ

is the stoichiometric matrix of the effective reactions (where the black horizontal line splits the set of species into internal
and exchanged species), and

p ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

½Na�
½Nb�
½Nex�
½Nd�
½Ne�
½G�
½F�
½W�
½S�
½Pb�
½Pex�
½Pe�
½Pf�

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

; ψ̂ ¼

0
BBBBBBBBBBBBBBBBBBBBBB@

ψϵa

ψϵb

ψϵ0b

ψϵc

ψϵ0c

ψϵ00c

ψϵd

ψϵe

ψϵf

ψge

ψgf

1
CCCCCCCCCCCCCCCCCCCCCCA

; and I ¼

0
BBBBBBBBBBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

0

IF
IW
IS
IPb
IPex
IPe
IPf

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCA

ð21Þ
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are the concentration vector of all the terminal species, the
reaction current vector, and the exchange current vector,
respectively. Note that in ψ̂, the currents ψge and ψgf still
correspond to the elementary reactions

Pe⇌
þge

−ge
2 G; ð22aÞ

Pf⇌
þgf

−gf
3 G ð22bÞ

of the complex CRN in Fig. 1(a).

A. Thermodynamics

We emphasize that our circuit theory is thermodynami-
cally consistent, contrary to many other coarse-graining
schemes. This means that the entropy production rate of the
coarse-grained description is the same as the entropy
production of the original full description of the CRN.
In other words, the reduction scheme preserves the entropy
production rate of the CRN.
The chemical potential of a chemical species α in a

homogeneous solution [29] is given by

μα ¼ μ∘α þ RT ln½α�; ð23Þ

where μ∘α is the standard chemical potential, R is the gas
constant, and T is the temperature of the solution. The
Gibbs free energy change in a homogeneous CRN caused
by a reaction ρ is given by

ΔρG ¼
X
α

μαSαρ; ð24Þ

where Sαρ is the net stoichiometric coefficient of the α
species in the ρ reaction. For example, the Gibbs free-
energy changes of the internal reaction of the (blue) module
a in Fig. 1(a) are given by

Δa1G ¼ μEaS − μEa
− μS; ð25aÞ

Δa2G ¼ μEa
þ μNa

− μEaS; ð25bÞ

Δa3G ¼ μEaS2 − μEaS − μS: ð25cÞ

At the elementary level of description of CRNs, the local
detailed balance property

−ΔρG ¼ RT ln
jþρ

j−ρ
ð26Þ

must hold. It relates thermodynamics to the log ratio of
the forward and backward reaction fluxes j�ρ [given by
Eq. (A4)] contributing to the reaction currents jρ ¼
jþρ − j−ρ. Furthermore, the entropy production rate of
elementary CRNs (also called the total dissipation) reads

T _Σ ¼ −
X
ρ

ΔρGjρ ð27Þ

and quantifies the entropy change per unit of time inCRNs as
well as in the thermal and chemical reservoirs [25]. Together
with the local detailed balance property (26), the entropy
production rate can be rewritten in a manifestly non-negative
form,

T _Σ ¼ RT
X
ρ

ðjþρ − j−ρÞ ln
jþρ

j−ρ
≥ 0; ð28Þ

thus mathematically ensuring the validity of the second law.
The summation over ρ in Eq. (27) runs over all the reactions,
excluding the exchange processes with the environment
[i.e., all arrows but the gray ones in Fig. 1(a)]. Vanishing
entropy production defines the thermodynamic equilibrium
where all reaction currents vanish. Together, Eqs. (26)–(28)
ensure a thermodynamically consistent description of
elementary CRNs.
Our circuit theory allows for a thermodynamically

consistent description of CRNs made of effective reac-
tions because the entropy production rate (27) can be
expressed as

T _Σ ¼ −
X
ϵ

ΔϵGψϵ; ð29Þ

where the summation now only runs over the effective
reactions ϵ of the modules [all arrows but the gray ones in
Fig. 1(b)] and the free energy along the effective reaction ϵ
is given by

ΔϵG ¼
X
α∈P

μαŜ
α
ϵ ; ð30Þ

where P is the set of all the terminal species. For instance,
the Gibbs free-energy change along the single effective
reaction of the (blue) module a reads

ΔϵaG ¼ μNa
− μS: ð31Þ

The remarkable reduction from Eq. (27) to Eq. (29) arises
because the emergent cycles define a minimal set of effec-
tive reactions that preserve the exact evolution of the
terminal species while carrying the full dissipation of
modules, as long as there is a timescale separation between
the dynamics of the internal and terminal species. This has
been proven in Ref. [19]. We emphasize, however, that the
entropy production rate at the circuit level (29) cannot, in
general, be expressed in a form reminiscent of Eq. (28), as
shown in Ref. [18]. We also note that, unlike our theory,
most coarse-graining schemes underestimate the exact
dissipation, even in the presence of a timescale separation
(see, for instance, Ref. [30]) because the fast degrees of

AVANZINI, FREITAS, and ESPOSITO PHYS. REV. X 13, 021041 (2023)

021041-8



freedom that have been eliminated are still out of equilib-
rium and contribute to the dissipation.

B. Kirchhoff’s laws

We now show that the dynamics of our circuit theory
(19) satisfy the chemical equivalent of Kirchhoff’s laws in
electrical circuits. Here, we present these laws for the CRN
in Fig. 1(b), while their general formulation and derivation
are given in Appendix A 6. We emphasize that Kirchhoff’s
laws for CRNs at the level of the elementary dynamics are
not new (see, for instance, Refs. [31–34]). The novelty of
our approach is that Kirchhoff’s laws are recovered at the
coarse-grained or circuit level.
Kirchhoff’s current law states that, at a steady state, the

sum of the currents entering a node of an electronic circuit
is equal to the sum of the currents exiting it. The terminal
species correspond to the nodes of an electrical circuit in
our circuit theory. Hence, Kirchhoff’s current law can be
expressed for the CRN in Fig. 1(b) in terms of the steady-
state conditions (denoted by the overline)

dt½Na� ¼ ψ̄ ϵa − ψ̄ ϵ0b
¼ 0; ð32aÞ

dt½Nb� ¼ ψ̄ ϵ0b
− ψ̄ ϵ0c ¼ 0; ð32bÞ

dt½Nex� ¼ −ψ̄ ϵc ¼ 0; ð32cÞ

dt½Nd� ¼ ψ̄ ϵd − 2ψ̄ ϵe − ψ̄ ϵf ¼ 0; ð32dÞ

dt½Ne� ¼ −ψ̄ ϵ00c þ ψ̄ ϵe − ψ̄ ϵf ¼ 0; ð32eÞ

dt½G� ¼ 2ψ̄ge þ 3ψ̄gf ¼ 0; ð32fÞ

dt½F� ¼ −ψ̄ ϵb þ ĪF ¼ 0; ð32gÞ

dt½W� ¼ ψ̄ ϵb þ ĪW ¼ 0; ð32hÞ

dt½S� ¼ −ψ̄ ϵa − ψ̄ ϵd þ ĪS ¼ 0; ð32iÞ

dt½Pb� ¼ ψ̄ ϵ0c þ ĪPb ¼ 0; ð32jÞ

dt½Pex� ¼ ψ̄ ϵc þ ĪPex ¼ 0; ð32kÞ

dt½Pe� ¼ ψ̄ ϵ00c − ψ̄ge þ ĪPe ¼ 0; ð32lÞ

dt½Pf� ¼ ψ̄ ϵf − ψ̄gf þ ĪPf ¼ 0; ð32mÞ

imposing that the sum of the currents (both effective and
exchange) affecting the concentration of each terminal
species vanishes. This is formally derived by imposing
that the left-hand sides of Eq. (19) vanish and by using the
stoichiometric matrix given in Eq. (20) and the currents
given in Eq. (21).

On the other hand, Kirchhoff’s potential law states that
the sum of potential differences along any closed loop is
zero. In our circuit description of CRNs, loops correspond
to the internal cycles of Ŝ (introduced in Sec. II and detailed
in Appendix A 2) and potential differences to the variations
of the Gibbs free energy along the (effective or not)
reactions [e.g., fΔϵaG;ΔϵbG;Δϵb0G;…g for the effective
reactions in Fig. 1(b)]. Since, the stoichiometric matrix (20)
admits only one internal cycle,

ĉι ¼

ϵa

ϵb

ϵ0b
ϵc

ϵ0c
ϵ00c
ϵd

ϵe

ϵf

ge
gf

0
BBBBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

−3
0

−1
2

−3
2

1
CCCCCCCCCCCCCCCCCCCCCA

; ð33Þ

Kirchhoff’s potential law can be expressed as

2ΔϵfGþ 2ΔgfG − 3ΔgeG − 3Δϵc00G − ΔϵeG ¼ 0 ð34Þ

for the CRN in Fig. 1(b), which, using Eq. (24), is indeed
true since

ΔϵfG ¼ μPf − μNe
− μNd

; ð35aÞ

ΔgfG ¼ 3μG − μPf ; ð35bÞ

ΔgeG ¼ 2μG − μPe ; ð35cÞ

Δϵc00G ¼ μPe − μNe
; ð35dÞ

ΔϵeG ¼ μNe
− 2μNd

: ð35eÞ

This is formally derived by imposing that the sum of the
variations of the Gibbs free energy along the (effective or
not) reactions (e.g., fΔϵaG;ΔϵbG;Δϵb0G;…g) multiplied
by the corresponding entry of the internal cycles in Eq. (33)
vanishes.

V. DISCUSSION AND PERSPECTIVES

We start by discussing how apparent limitations of our
circuit theory may be overcome.
The fact that the current-concentration characteristic of a

chemical module is evaluated by assuming that the module
is in a steady state (based on the timescale separation
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assumption mentioned before and formally discussed in
Appendix A 2) may give the impression that oscillations in
the concentrations of the species internal to a module com-
promise the theory. However, we prove in Appendix A 3
that this is not the case and that such oscillations can be
treated as long as their period is much shorter than the
timescale of the terminal species dynamics.
In certain situations, the current-concentration character-

istic may be such that the effective reaction currents are not
uniquely defined in terms of the concentrations of the
terminal species. This will happen for modules with non-
linear chemical reactions displaying multistability. In such
cases, hysteresis effects may arise, creating a dependence
on the past history of the network, but the network theory is
still applicable. An explicit example of such a situation is
worked out in Appendix C 1.
We presented the circuit theory starting from elementary

reactions that we grouped into modules. Naturally, modules
can be further grouped into higher-level modules. We
examine this in Appendix C 2 by showing that the entire
CRN depicted in Figs. 1(a) and 1(b) can be treated as a
module, and its exchanged species become terminal species.
This also raises the question of under which conditions a
module can be decomposed into smaller modules. The
answer is quite simple: as long as the effective reactions
belonging to a smaller module are independent of those of
anothermodule, i.e., when their emergent cycles do not share
internal species. Such a decomposition is discussed in
Appendix C 3 for the (orange) module c in Fig. 1(a).
When discussing the experimental characterization of

the current-concentration characteristic, we implicitly
assumed that the stoichiometry of the internal reactions
of the module was known. However, even when this is not
the case, recovering that stoichiometry is not too compli-
cated experimentally. We illustrate how such a procedure
might be implemented in Appendix C 4 for some of the
modules in Fig. 1(a).
Our circuit theory was presented here for ideal homo-

geneous solutions, but these conditions can easily be
relaxed. Nonideal solutions can be treated within mean-
field theories [26], and introducing spatially organized
compartments is straightforward. It suffices to treat the
chemical species in the different compartments as different
dynamical variables and add reactions amongst them to
describe (passive or active) exchanges across compart-
ments. Adding diffusion by promoting the description of
some or all species from homogeneous concentrations to
space-dependent concentration fields is, in principle, not an
issue either. In such cases, diffusion is treated within Fick’s
law and contributes to the dissipation in the CRN [35–37].
Our approach is fundamentally different from flux

balance analysis approaches. The latter are designed to
determine the steady-state currents in a CRN. In the space
of all possible steady-state currents, they select those
that satisfy a set of constraints to which the system is

supposedly subjected. These can range from thermody-
namic constraints [38–40] or limits imposed by the
environment [23] to presumed aims like growth maximi-
zation for some cells [40]. The resulting steady-state
currents will naturally depend on the enforced constraints.
These approaches are thus top-down types. Some of the
more teleological constraints, such as maximizing growth,
may only be justified in complex systems such as living
systems shaped by evolution. Identifying the constraints
predicting the steady-state currents of the CRN in Fig. 1 for a
given set of thermodynamically consistent kinetic constants
would be more complicated than solving the full dynamics.
Instead, our circuit theory may be defined as a bottom-up
approach. Indeed, it is built to be compatible with a micro-
scopic description of the dynamics. As explained in themain
text, the current-concentration characteristics of the modules
result from the full dynamics and can be used as an input to
our theory to predict the correct dynamics and thermody-
namics of the terminal species (Sec. IV).
Our work shares some conceptual similarities with the

work by Oster and co-workers, who, in the 1970s,
developed a very general network thermodynamics describ-
ing networks made of any type of thermodynamics systems
[31,41]. Their intent was to describe coupled thermody-
namics processes arising in biophysics involving different
forces such as mechanical, electrical, and chemical forces.
Their theory makes use of bond graphs, a graphical
representation inspired by electric diagrams used in elec-
trical circuit theories. However, the generality of the theory
turns into a disadvantage in the context of CRNs since the
theory is not tailored for them. The bond graph represen-
tation of simple CRNs quickly becomes very cumbersome
[42,43]. This also explains why the use of the theory has
remained limited to simple CRNs. In contrast, our formal-
ism is algebraic and is based on the representation of
modules in terms of emergent cycles. The latter identify the
minimal set of currents needed to define the current-
concentration characteristics of a module and to determine
its dissipation. They also provide an intuitive description of
modules in terms of effective chemical reactions, which can
be easily represented in terms of hypergraphs. The theory
by Oster and co-workers does not exploit that reduction.
Furthermore, one of the main purposes of our theory is to
provide a simplified (i.e., coarse-grained) description of the
dynamics of CRNs. The theory by Oster and co-workers
instead has been mostly used as a formalization and
representation tool, not as a reduction tool.
We now discuss interesting perspectives raised by our

work. Electronic engineering makes extensive use of circuit
theory to design circuits with intended functionalities, such
as computing operations. Similarly, one should explore how
to make use of the chemical circuit theory to design useful
chemical functions. This may be particularly relevant in the
context of chemical computing, a field increasingly drawing
attention [44–47].
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Our work focused on the deterministic description of
CRNs; however, in many instances, such as cellular
biology, extending the theory to stochastic descriptions
of CRNs would be important. This may be challenging
because the statistics of the effective chemical reactions is
not trivially related to the Poisson statistics of the elemen-
tary reactions; see, for instance, Ref. [48].
We presented our circuit theory for open CRNs exchang-

ing matter and heat with the surroundings. Other forms of
energy may be incorporated in the description, such as
energy provided by thermal light [49], electrical energy,
and osmotic pressure. Indeed, the concept of emergent
cycles is a general feature of thermodynamics when taking
into account conservation laws [50]. This is why circuit
theories have the potential to provide a powerful and
realistic characterization of the dynamics and thermody-
namics of complex systems. The key point is that, as for
electric circuits, the current-potential characteristics pro-
vide an empirical characterization of complex modules that
would otherwise be very hard to determine.
As shown implicitly in Ref. [51], but clearly retrospec-

tively, the circuit theory underlies the fact that central
metabolism can be decomposed into modules (glycolysis,
Krebs cycles,…). However, what is true at the level of
cellular metabolism still holds true at higher levels, namely,
whenever one is dealing with open CRNs coupled to each
other by the exchange of terminal species. A food web, for
instance, can be seen as a collection of modules represent-
ing the metabolisms of the different living systems feeding
on each other and ultimately powered by solar energy. In
ecology, as previously shown in biochemistry, tracking the
movement of different types of atoms across a network
under different molecular forms is nowadays used to
reconstruct CRNs up to global scales—for instance, in
biogeochemistry [6,7]. Measuring or estimating current-
potential characteristics may not be easy in such a context,
but it is conceivable and worth trying given the importance
of these networks.
Circuit theories may even provide a proper framework to

formulate models in ecological economics (also called
steady-state economics) where minimizing the dissipation
arising in the use and recycling of natural resources is a
major concern [52].
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APPENDIX A: FORMAL CIRCUIT THEORY

We start by summarizing the formal definition of CRNs,
on top of which we develop the concept of chemical

modules. We consider CRNs composed of chemical spe-
cies, identified by the label α ∈ Z, undergoing elementary
reactions [53], identified by the index ρ ∈ R. Each reaction
ρ is represented by the equation

α · νþρ⇌
þρ

−ρ
α · ν−ρ; ðA1Þ

with α ¼ ð…; α;…Þ⊺α∈Z the vector of chemical species and
ν�ρ the vector of stoichiometric coefficients of the forward-
backward reaction �ρ. Note that all reactions are assumed
to be reversible for thermodynamic consistency. In open
CRNs [such as the CRN in Fig. 1(a)], the species Z are split
into the internal species X and the exchanged species Y.
The former undergo only the chemical reactions ρ ∈ R. The
latter undergo the chemical reactions ρ ∈ R, and they are
also exchanged with the environment to which the CRN is
exposed.
The state of deterministic CRNs is specified by the

concentration vector z ¼ ð…; ½α�;…Þ⊺. Its dynamics fol-
lows the rate equation

dtz ¼ Sjþ I; ðA2Þ

where we introduced the stoichiometric matrix S, the
reaction current vector j, and the exchange current vector
I. The first term on the rhs of Eq. (A2), i.e., Sj, accounts for
the variations to the concentrations due to the chemical
reactions. Each column Sρ of S is given by Sρ ¼ ν−ρ − νþρ.
The reaction current vector j ¼ ð…; jρ;…Þ⊺ρ∈R specifies the
net reaction current for every ρ reaction as the difference
between the forward jþρ and backward j−ρ reaction fluxes:

jρ ¼ jþρ − j−ρ: ðA3Þ

In ideal CRNs, the fluxes j�ρ of elementary reactions
satisfy mass-action kinetics [54–56]:

j�ρ ¼ k�ρzν�ρ ; ðA4Þ

where k�ρ are the kinetic constants of the forward-back-
ward reaction �ρ and we used the following notation:
ab ¼ Q

i a
bi
i . The second term on the rhs of Eq. (A2), i.e., I,

specifies that the matter flows with the environment [57]. It
has null entries for the internal species, i.e., Iα ¼ 0 for
α ∈ X: The concentration of the internal species changes
only because of the chemical reactions, by definition.
By applying the splitting of the chemical species into

internal and exchanged ones to the stoichiometric matrix

S ¼
�
SX

SY

�
; ðA5Þ

and the concentration vector z ¼ ðx; yÞ, the rate
equation (A2) becomes
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dtx ¼ SXj; ðA6aÞ

dty ¼ SY jþ IY; ðA6bÞ

with IY ¼ ð…; Iα;…Þ⊺α∈Y collecting the non-null entries
of I. Note that Eqs. (A6a) and (A6b) are only a reformu-
lation of Eq. (A2).

1. Elementary modules

A chemical module of a CRN, labeled by the index m, is
defined as a subnetwork: a subset of chemical reactions
Rm ⊂ R interconverting a subset of chemical species
Zm ⊂ Z. The species Zm are further classified as either
internal species of the module Qm or terminal species Pm.
The former must only undergo the chemical reactions ρ ∈
Rm (the reason for this will become clear at the end of
Appendix A 2). The latter undergo the chemical reactions
ρ ∈ Rm, but they can also undergo other reactions ρ ∉ Rm
and/or be externally exchanged. Several examples of
modules are discussed in Sec. II and illustrated in Fig. 1(a).
The rate equation (A2) can be specialized for the

concentrations qm ¼ ð…; ½α�;…Þ⊺α∈Qm
and for the concen-

trations pm ¼ ð…; ½α�;…Þ⊺α∈Pm
:

dtqm ¼ SQ
m jm; ðA7aÞ

dtpm ¼ SP
m jm þ Im; ðA7bÞ

where jm ¼ ð…; jρ;…Þ⊺ρ∈Rm
, and we introduced the sub-

stoichiometric matrixes SQ
m and SP

m whose entries are
fSαρgα∈Qm

ρ∈Rm
and fSαρgα∈Pm

ρ∈Rm
, respectively. Here, the terminal

current vector of the module Im accounts for all the
processes affecting the concentrations pm besides the
reactions ρ ∈ Rm. Note that Eqs. (A7a) and (A7b) coincide
with Eqs. (A6a) and (A6b) when the module is treated as an
open CRN, and the species Qm and Pm are identified as X
and Y, respectively.

2. Effective modules at quasi-steady state

Modules can be coarse grained into effective reactions
interconverting the terminal species Pm when two con-
ditions are satisfied. The first is the existence, for every
concentration vector pm, of a unique steady-state concen-
tration vector q̄mðpmÞ for the internal species of the module
(see Appendix C 1 for an explicit example where this does
not hold, but the theory can still be applied). The second is
the equivalence between the actual concentration vector qm
and the steady-state one q̄m. This obviously happens at the
steady state to which the module relaxes when the con-
centrations pm are kept constant by the other reactions ρ ∉
Rm and the exchange processes, i.e., when

Im ¼ −SP
mjm: ðA8Þ

It also happens to a very good approximation when the
chemical species evolve over two different timescales such
that the concentrations of the Qm species quickly relax to
the steady state corresponding to the values of pm. Indeed, a
zero-order expansion of the concentrations qm in the ratio
between the fast timescale of the internal species and the
slow timescale of the terminal species leads to

qm ¼ q̄mðpmÞ ∀ t: ðA9Þ

This physically occurs when (i) the elementary reactions
and the exchange processes involving only the terminal
species are slower than the elementary reactions involving
only the internal species and (ii) the abundance of the
terminal species is very large compared to the abundance of
the internal species, which therefore changes much more
quickly [48] (indeed, when the terminal and internal species
are involved in the same reaction, on the same timescale
where the concentrations of the internal species dramatically
change, the concentrations of the terminal species remain
almost constant).Note that describing electronic components
in terms of their I-V curves also requires a timescale
separation between their internal dynamics and the dynamics
of the voltages on their contacts or pins.
When those two conditions are satisfied, the reaction

current vector of the module

j̄m ≡ jmðq̄m; pmÞ ðA10Þ

depends only on the concentrations pm and is, by definition,
a steady-state current of Eq. (A7a), namely, SQ

m j̄m ¼ 0. This
means that j̄m ∈ kerðSQ

mÞ and, consequently, it can be
written as

j̄m ¼
X
γm

cγmψγm; ðA11Þ

using the (linearly independent) right-null vectors
SQ
mcγm ¼ 0 and pm dependent coefficients fψγmg. The

vectors fcγmg are called cycles because they represent
sequences of reactions that, upon completion, leave the
concentrations qm unchanged. Each coefficient ψγm repre-
sents the current along the cycle γm. The cycles can be split
into two disjoint sets, i.e., fcγmg ¼ fcιmg ∪ fcϵmg. The
so-called internal cycles fcιmg are also right-null vectors
of SP

m, i.e., SP
mcιm ¼ 0. Thus, they represent sequences of

reactions that, upon completion, also leave the concen-
trations pm unchanged [for instance, the (aqua-green)
module d in Fig. 1(a) has two internal cycles as specified
in Fig. 2]. The others fcϵmg are called emergent cycles. The
internal and emergent cycles of the modules in Fig. 1(a) are
reported in Fig. 2.
By employing the steady-state current (A11) in

Eq. (A7b) and the splitting of the cycles into internal
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and emergent ones, we obtain an effective and closed
dynamical equation for the Pm species:

dtpm ¼ SP
m j̄m þ Im ðA12aÞ

¼
X
ϵm

SP
mcϵmψϵm þ Im: ðA12bÞ

Each vector SP
mcϵm specifies the net variation of the number

of molecules for each Pm species along the ϵm emergent
cycle. Namely, it specifies the stoichiometry of an effective
reaction. The effective reactions of the modules in Fig. 1(a)
are discussed in Sec. II. Correspondingly, the emergent
cycle current ψϵm specifies the current of this effective
reaction.
Equation (A12b) can be rewritten in a more compact

way,

dtpm ¼ ŜP
mψ̂m þ Im; ðA13Þ

introducing the effective stoichiometric matrix ŜP
m and the

effective current vector ψ̂m. Here, each ϵm column of ŜP
m is

given by SP
mcϵm and ψ̂m ¼ ð…;ψϵm;…Þ⊺ does not, in

general, satisfy mass-action kinetics.
Note that each module is defined as a subnetwork with a

unique set of internal species because this ensures that q̄m
and, consequently, ψ̂m are functions of the concentrations
pm of its terminal species only. This is a necessary condition
to obtain the closed dynamical equation (A13) for the
terminal species.

3. Effective modules with internal oscillations

Modules can be coarse grained into the same effective
reactions defined by the emergent cycles fcϵmg even if the
concentrations of the internal species oscillate. This can
be done when the concentration vector qm relaxes instanta-
neously to an oscillating dynamics q̃mðpm; tÞ [formally,
we again use a zero-order expansion of qm in the ratio
between the relaxation timescale of the internal species
and the timescale of the terminal species leading to
qm ¼ q̃mðpm; tÞ], whose period τ is much shorter than
the timescale Δt of the terminal species, i.e., τ=Δt ≪ 1.
When these conditions are satisfied, the reaction current

vector of the module

j̃m ≡ jmðq̃m; pmÞ ðA14Þ

is not a steady-state current of Eq. (A7a), and it reads

j̃m ¼
X
ιm

cιmψιm þ
X
ϵm

cϵmψϵm þ
X
χm

vχmψχm; ðA15Þ

where we used the internal fcιmg and emergent fcϵmg cycles
as well as the (linearly independent) vectors fvχmg, named

cocycles, generating the orthogonal complement of
kerðSQ

mÞ. Correspondingly, the dynamical equation (A7b)
for the Pm species becomes

dtpm ¼ SP
m

Z
tþΔt

t

dt0

Δt

�X
ϵm

cϵmψϵm þ
X
χm

vχmψχm

�
þ Im

ðA16Þ

by using SP
mcιm ¼ 0 and assuming that the concentrations

of all terminal species are almost constant in the time
interval Δt, namely, dtpm ≃ ðpmðtþ ΔtÞ − pmðtÞÞ=Δt
and

R
tþΔt
t dt0Im=Δt ≃ Im.

We now show that Eq. (A16) simplifies to a closed
dynamical equation for the Pm species similar to Eq. (A13).
We consider that (i) the internal dynamics completes n
oscillations (with Δt=τ − 1 < n ≤ Δt=τ) in the time inter-
val Δt; (ii) n ≃ Δt=τ when the timescale separation is
satisfied, i.e., τ=Δt ≪ 1; (iii) the integral

R
tþΔt
t dt0=Δt can

be split into
R
tþnτ
t dt0=Δtþ R

tþΔt
tþnτ dt0=Δt, where the latter

contribution is of order 1 − nτ=Δt ≃ 0 and hence negli-
gible; (iv)

R
tþnτ
t dt0ψχm ¼ 0 since

R
tþτ
t dt0 j̃m ∈ kerðSQ

mÞ.
These characteristics lead to

dtpm ¼
X
ϵm

SP
mcϵm ψ̃ ϵm þ Im; ðA17Þ

where ψ̃ ϵm ≡ R
tþτ
t dt0ψϵm=τ is a function of pm only.

Similarly to Eq. (A12b), Eq. (A17) can also be rewritten
as Eq. (A13) by using the effective stoichiometric matrix
ŜP
m and collecting fψ̃ ϵmg into an effective current vector.

Physically, this means that on the timescale Δt of the
terminal species, the internal dynamics is averaged over
many (∼Δt=τ ≫ 1) oscillations and acts, in practice, as an
effective steady state.

4. Effective currents via the elementary mechanism

We show here how to determine the effective currents,
i.e., the function ψ̂mðpmÞ in Eq. (A13), from the elementary
dynamics, given in Eqs. (A7a) and (A7b), by assuming that
the steady-state concentration vector q̄mðpmÞ can be com-
puted for every pm (either analytically or numerically). This
approach is then illustrated in Appendix B for the (blue)
module a, the (green) module b, and the (purple) module e
of Fig. 1(a).
We start by recognizing that j̄mðpmÞ can be obtained

using its definition (A10) and q̄mðpmÞ. We then rewrite
Eq. (A11) as

j̄mðpmÞ ¼ CmψmðpmÞ; ðA18Þ

where we introduced the cycle current vector ψmðpmÞ ¼
ð…;ψγmðpmÞ;…Þ⊺, which also includes the internal cycle
currents, unlike ψ̂mðpmÞ in Eq. (A13), which includes only
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the emergent cycles, and the matrix Cm whose columns are
the cycles fcγmg. Since the cycles fcγmg are linearly
independent, the matrix C⊺

mCm can be inverted, and we
thus obtain

ψmðpmÞ ¼ ðC⊺
mCmÞ−1C⊺

m j̄mðpmÞ: ðA19Þ

5. Effective currents via the terminal currents

We now discuss how to determine the effective currents,
i.e., the function of ψ̂mðpmÞ in Eq. (A13), by assuming that
(i) the effective stoichiometric matrix ŜP

m is known and
(ii) the concentrations pm can be kept equal to arbitrary and
constant values by controlling the terminal currents Im
according to Eq. (A8). This approach is illustrated in
Sec. III of the main text.
When the concentrations pm are constant, the module

relaxes instantaneously towards a nonequilibrium steady
state. By using Eq. (A13), the steady-state terminal currents
of the module read

ImðpmÞ ¼ −ŜP
mψ̂mðpmÞ: ðA20Þ

We now use Eq. (A20) to express ψ̂mðpmÞ in terms of
ImðpmÞ. We recognize that the effective stoichiometric
matrix ŜP

m has no right-null vectors, as already discussed
in Ref. [19]. Indeed, suppose that there is a vector ϕ ¼
ð…;ϕϵm;…Þ⊺ such that ŜP

mϕ ¼ 0. This means that

SP
m

X
ϵm

cϵmϕϵm ¼ 0; ðA21Þ

and, consequently,
P

ϵm
cϵmϕϵm is a right-null vector of both

SQ
m and SP

m, i.e., an internal cycle. Since
P

ϵm
cϵmϕϵm is a

linear combination of emergent cycles, we can conclude
that ŜP

m has no right-null vectors. This implies that the
columns of ŜP

m are linearly independent, and the matrix
ðŜP

mÞ⊺ŜP
m can be inverted. Thus,

ψ̂mðpmÞ ¼ −ððŜP
mÞ⊺ŜP

mÞ−1ðŜP
mÞ⊺ImðpmÞ: ðA22Þ

6. General circuit theory and Kirchhoff’s laws

Once modules are fully characterized, namely, their
effective reactions fSP

mcϵmg and currents fψ̂mg are known,
they can be connected by sharing the terminal species.
The result is a circuit theory where the dynamics of all
terminal species emerges from combining the dynamical
equation (A13) of the modules:

dtp ¼ Ŝ ψ̂ þI: ðA23Þ

Here, p ¼ ð…; ½α�;…Þ⊺α∈P is the concentration vector of all
terminal species (with P the set of all terminal species

P ¼∪m Pm), Ŝ (respectively, ψ̂) is the stoichiometric
matrix (respectively, effective current vector) whose col-
umns (respectively, entries) specify the net stoichiometry
(respectively, current) of the effective reactions of all
modules (labeled ϵ), and I is the exchange current vector
as in Eq. (A2). Note that Eq. (A23) is exactly equivalent to
Eq. (19) in the main text.
Equation (A23) satisfies the chemical equivalent of

Kirchhoff’s laws in electrical circuits [whose specific
expressions for the CRN in Fig. 1(b) are reported in
Sec. IV B]. The chemical equivalent of Kirchhoff’s current
law is the condition that the sum of all the currents (both
effective and exchange) affecting the concentration of each
terminal species vanishes at the steady state (denoted by the
overline):

dtp̄ ¼ Ŝ ψ̄ þĪ ¼ 0: ðA24Þ

The chemical equivalent of Kirchhoff’s voltage law is the
condition that the sum of the variations of the Gibbs free
energy along each internal cycle of Ŝ vanishes:

ΔrG · ĉι ¼ 0; ðA25Þ

where ΔrG ¼ ð…;ΔϵG;…Þ⊺ (with ΔϵG the variations of
the Gibbs free energy along the effective reaction ϵ, i.e.,
ΔϵG ¼ P

α∈P μαŜ
α
ϵ ) and the internal cycles are defined as

Ŝĉι ¼ 0 (note that this definition is analogous to the one
given for the internal cycles of modules in Appendix A 2).

APPENDIX B: ILLUSTRATION OF THE
ANALYTICAL AND COMPUTATIONAL

DERIVATION OF THE EFFECTIVE CURRENTS

We illustrate here two approaches to determine the
current-concentration characteristic of some of the modules
in Fig. 1(a) when their elementary dynamics is known and
can be solved [namely, when steady-state concentration
vector q̄mðpmÞ can be computed as discussed, in general, in
Appendix A 4].

1. Analytical strategy

Explicit analytical expressions can be derived for the
current-concentration characteristic when the internal reac-
tions of a module are pseudo-first-order reactions, i.e.,
when they are effectively unimolecular reactions in terms of
the internal species, and follow mass-action kinetics [54–
56] (see also Appendix A) with known kinetic constants.
The diagrammatic method developed in Refs. [58,59] can
be used for this purpose, as in Refs. [13,18]. This strategy
can be applied for all the modules in Fig. 1(a) except the
(purple) module e (see Appendix B 2). We now show this
for the (blue) module a and the (green) module b.
Let us start with the (blue) module a in Fig. 1(a). The

diagrammatic method [58,59] provides the steady-state
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concentrations of the internal species of the module
ð½Ea�; ½EaS�; ½EaS2�Þ for given concentrations of the termi-
nal species ð½S�; ½Na�Þ:

½Ea� ¼
LEa

Da
ðk−a1k−a3 þ kþa2k−a3Þ; ðB1aÞ

½EaS� ¼
LEa

Da
ðkþa1k−a3 ½S� þ k−a2k−a3 ½Na�Þ; ðB1bÞ

½EaS2� ¼
LEa

Da
ðkþa1kþa3 ½S�2 þ k−a2kþa3 ½S�½Na�Þ; ðB1cÞ

where fk�aigi¼1;2;3 are the kinetic constants of the chemical
reactions in Eq. (1), LEa

¼ ½Ea� þ ½EaS� þ ½EaS2� is the
total concentration of the enzyme that is conserved by the
chemical reactions, and

Da ¼ ðk−a1 þ kþa2Þk−a3 þ ðkþa3 ½S� þ k−a3Þ
× ðkþa1 ½S� þ k−a2 ½Na�Þ: ðB2Þ

Thus, the steady-state reaction currents of the internal
reactions in Eq. (1), according to mass-action kinetics,
are specified as

j̄a1 ¼
LEa

Da
ðkþa1kþa2k−a3 ½S� þ k−a1k−a2k−a3 ½Na�Þ; ðB3aÞ

j̄a2 ¼ j̄a1 ; ðB3bÞ

j̄a3 ¼ 0: ðB3cÞ

Since the current vector j̄a ¼ ðj̄a1 ; j̄a2 ; j̄a3Þ⊺ must be equal
to the emergent cycle (4) times the effective reaction current
ψϵa (refer to Appendix A 2 for a formal discussion), i.e.,

j̄a ¼ ψϵa

0
B@

1

1

0

1
CA; ðB4Þ

we obtain an analytical expression of the effective reaction
current:

ψϵa ¼
LEa

Da
ðkþa1kþa2k−a3 ½S� þ k−a1k−a2k−a3 ½Na�Þ: ðB5Þ

We now turn to the (green) module b in Fig. 1(a). Using
again the diagrammatic method [58,59], we determine the
steady-state concentrations of the internal species of the
module ð½Eb�; ½EbF�; ½EbW�; ½E�

b�Þ for fixed concentrations
of the terminal species ð½Na�; ½Nb�; ½F�; ½W�Þ:

½Eb� ¼
LEb

Db
ðk−b1k−b4k−b5 ½Nb� þ k−b1k−b2k−b4

þ k−b1k−b2kþb5 þ k−b1kþb3k−b4
þ k−b1kþb3kþb5 þ kþb2kþb3kþb5

þ kþb2kþb3k−b4 þ kþb3kþb4kþb5 ½Na�Þ; ðB6Þ

½EbF� ¼
LEb

Db
ðkþb1k−b4k−b5 ½F�½Nb�þ kþb1k−b2k−b4 ½F�

þ kþb1k−b2kþb5 ½F� þ kþb1kþb3k−b4 ½F�
þ kþb1kþb3kþb5 ½F� þ k−b2k−b3kþb5 ½W�
þ k−b2k−b3k−b4 ½W� þ k−b3k−b4k−b5 ½W�½Nb�Þ; ðB7Þ

½EbW� ¼ LEb

Db
ðkþb1kþb4kþb5 ½F�½Na� þ kþb1kþb2k−b4 ½F�

þ kþb1kþb2kþb5 ½F� þ k−b1k−b3k−b4 ½W�
þ k−b1k−b3kþb5 ½W� þ kþb2k−b3kþb5 ½W�
þ kþb2k−b3k−b4 ½W� þ k−b3kþb4kþb5 ½W�½Na�Þ;

ðB8Þ

½E�
b� ¼

LEb

Db
ðkþb1kþb4k−b5 ½F�½Na�½Nb� þ kþb1k−b2kþb4 ½F�½Na�

þ kþb1kþb2k−b5 ½F�½Nb� þ kþb1kþb3kþb4 ½F�½Na�
þ k−b1k−b3k−b5 ½W�½Nb� þ kþb2k−b3k−b5 ½W�½Nb�
þ k−b2k−b3kþb4 ½W�½Na� þ k−b3kþb4k−b5 ½W�½Na�½Nb�Þ;

ðB9Þ
where LEb

¼ ½Eb� þ ½EbF� þ ½EbW� þ ½E�
b� and Db equals

the sum of all terms between parentheses in Eqs. (B6)–
(B9). The steady-state reaction currents of reactions b1, b2,
b3, b4, and b5 can thus be computed by again using mass-
action kinetics:

j̄b1 ¼
LEb

Db
ðkþb1kþb3ðkþb2ðk−b4 þ kþb5Þ þ kþb4kþb5 ½Na�Þ½F�

− k−b1k−b3ðk−b2ðk−b4 þ kþb5Þ þ k−b4k−b5 ½Nb�Þ½W�Þ;
ðB10Þ

j̄b2 ¼
LEb

Db
ðkþb1kþb2ðkþb3ðk−b4 þkþb5Þþk−b4k−b5 ½Nb�Þ½F�

þkþb2k−b3k−b4k−b5 ½W�½Nb�−kþb1k−b2kþb4kþb5 ½F�½Na�
−k−b2k−b3ðk−b1ðk−b4 þkþb5Þþkþb4kþb5 ½Na�Þ½W�Þ;

ðB11Þ

j̄b3 ¼
LEb

Db
ðkþb1kþb3ðkþb2ðk−b4 þ kþb5Þ þ kþb4kþb5 ½Na�Þ½F�

− k−b1k−b3ðk−b2ðk−b4 þ kþb5Þ þ k−b4k−b5 ½Nb�Þ½W�Þ;
ðB12Þ

CIRCUIT THEORY FOR CHEMICAL REACTION NETWORKS PHYS. REV. X 13, 021041 (2023)

021041-15



j̄b4 ¼
LEb

Db
ðkþb4kþb5ðkþb1ðk−b2 þ kþb3Þ½F�

þ k−b2k−b3 ½W�Þ½Na�− k−b4k−b5ðk−b3ðk−b1 þ kþb2Þ½W�
þ kþb1kþb2 ½F�Þ½Nb�Þ; ðB13Þ

j̄b5 ¼
LEb

Db
ðkþb4kþb5ðkþb1ðk−b2 þ kþb3Þ½F�

þ k−b2k−b3 ½W�Þ½Na�− k−b4k−b5ðk−b3ðk−b1 þ kþb2Þ½W�
þ kþb1kþb2 ½F�Þ½Nb�Þ: ðB14Þ

The corresponding current vector j̄b ¼ ðj̄b1 ; j̄b2 ; j̄b3 ;
j̄b4 ; j̄b5Þ⊺ can be written as a linear combination of the
two emergent cycles cϵb and cϵ0b in Fig. 2 using the two
effective reaction currents ψϵb and ψϵ0b

as coefficients, i.e.,

j̄b ¼ ψϵb

0
BBBBBB@

1

1

1

0

0

1
CCCCCCA

þ ψϵ0b

0
BBBBBB@

0

−1
0

1

1

1
CCCCCCA
; ðB15Þ

which leads to

ψϵb ¼ j̄b1 ¼ j̄b3

¼ LEb

Db
ðkþb1kþb3ðkþb2ðk−b4 þ kþb5Þ þ kþb4kþb5 ½Na�Þ½F�

− k−b1k−b3ðk−b2ðk−b4 þ kþb5Þ þ k−b4k−b5 ½Nb�Þ½W�Þ
ðB16Þ

and

ψϵ0b
¼ j̄b4 ¼ j̄b5

¼ LEb

Db
ðkþb4kþb5ðkþb1ðk−b2 þ kþb3Þ½F�

þ k−b2k−b3 ½W�Þ½Na�− k−b4k−b5ðk−b3ðk−b1 þ kþb2Þ½W�
þ kþb1kþb2 ½F�Þ½Nb�Þ: ðB17Þ

In general, the diagrammatic method [58,59] provides
the steady-state concentrations of the internal species of a
module and then, by applying mass-action kinetics, its
steady-state current vector.

2. Numerical strategy

When the internal reactions are nonlinear (i.e., not
pseudo-first-order reactions) but the kinetic constants of
the internal reactions are known, the current-concentration
characteristic can be determined numerically. We illustrate
this procedure for the (purple) module e in Fig. 1(a), where
the internal species M, M�, A2, and A�

2 react via the
chemical reactions e1, e2, e3, and e4 with the terminal

species Nd and Ne. Reactions e2 and e4 are bimolecular
reactions in M� and M, respectively. When the kinetic
constants of the internal reactions are known, one can
numerically compute the steady-state concentrations of the
internal species for different concentrations of the terminal
ones, namely, ð½M�; ½M��; ½A2�; ½A�

2�Þ for every value of
ð½Nd�; ½Ne�Þ. To do so, one can either use algorithms that
directly determine the fixed point of the rate equation or
simulate the evolution of the internal concentrations until
the steady state is reached for fixed concentrations of the
terminal species. Then, one can repeat the steps of
Appendix B 1. First, the steady-state current vector j̄e ¼
ðj̄e1 ; j̄e2 ; j̄e3 ; j̄e4Þ is determined for every value of the con-
centrations ð½Nd�; ½Ne�Þ using mass-action kinetics and the
numerically determined values of ð½M�; ½M��; ½A2�; ½A�

2�Þ.
Second, j̄e is written as a linear combination of cycles. In
this case, the stoichiometric matrix admits one emergent
cycle cϵe (given in Fig. 2) whose corresponding effective
reaction is specified in Eq. (11). Hence, j̄e ¼ ψϵecϵe , which
leads to the effective reaction current

ψϵe ¼ j̄e1=2 ¼ j̄e2 ¼ j̄e3 ¼ j̄e4 ; ðB18Þ

shown in Fig. 5 for a specific set of kinetic constants
fk�eigi¼1;2;3;4.

APPENDIX C: UNDERLYING ASSUMPTIONS
AND LIMITATIONS OF CIRCUIT THEORY

1. Multistability

The circuit description given in Sec. IV and Eq. (19)
implicitly assumes that the effective reaction currents are

FIG. 5. Current of the effective reaction (11) for different values
of the concentrations of the terminal species Nd and Ne. We use
1=k−e1 and k−e1=kþe1 as units of measure for time and concen-
tration, respectively. We assume kþe1 ¼ kþe2 ¼ k−e3 ¼ k−e4 ,
k−e1 ¼ k−e2 ¼ kþe3 ¼ kþe4 , and ½M� þ ½M�� þ ½A2� þ ½A�

2� ¼
k−e1=kþe1 .
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fully determined by the values of the concentrations of the
terminal species only. This imposes that the internal species
of the modules relax instantaneously towards a unique
steady state for all values of the concentrations of the
terminal species. When a module has multiple steady states,
its dynamics cannot, in general, be characterized in terms of
the concentrations of the terminal species only.
Consider, for instance, the module in Fig. 6, which

interconverts the terminal species A and B through the
autocatalytic chemical reactions

Aþ 2X⇌
þs1

−s1
3X;

X⇌
þs2

−s2
B; ðC1Þ

with the internal species X and a single effective reaction

A⇌
ϵs

B: ðC2Þ

This is the well-known Schlögl model [60], displaying
bistability far from equilibrium when kþs2 ≳ 1.7 (using
specific units of measure such that kþs1 ½A� ¼ k−s2 ½B� ¼ 1).
Indeed, when the chemical potential difference Δμ

between the terminal species A and B is small enough,
e.g., Δμ < 2.6 if kþs2 ¼ 2, the steady-state concentration

½X� of internal species has the unique value ½X�1 represented
by the blue line in Fig. 7(a). Correspondingly, the effective
reaction current ψϵs has the unique value ψ1 represented by
the blue line in Fig. 7(b). On the other hand, when Δμ >
2.6 if kþs2 ¼ 2, there are two possible stable steady-state

concentrations ½X�1 and ½X�2 represented by the blue and
orange lines in Fig. 7(a), respectively, and one unstable
steady-state concentration ½X�3 represented by the green
line in Fig. 7(a). Correspondingly, the effective reaction
current ψϵs can have three different values ψ1, ψ2, and ψ3

represented by the blue, orange, and green lines in
Fig. 7(b), respectively.
This implies that the steady state to which the internal

species relaxes and, consequently, the effective reaction
current are not uniquely determined by the terminal
species. To see this, imagine that the initial concentration
of the internal species is ½X�ð0Þ ¼ 12.5 and the concen-
tration of the terminal species is such that Δμ ¼ 3.75

[red point in Fig. 7(a)]. Then, assuming the timescale sepa-
ration holds, after a rapid transient [dotted line in Fig. 7(a)],
the concentration of internal species reaches the steady
state ½X� ¼ ½X�2 ¼ 19, and the effective current becomes
ψϵs ¼ ψ2 ≃ 37. If the concentrations of the terminal species
change (because of the dynamics of the module and the
coupling with other possible modules in a large CRN) in
such a way that Δμ decreases until Δμ ¼ 2.6, the steady-
state concentration ½X� and effective current ψϵs will follow
the black dashed lines overlapping the orange lines in
Figs. 7(a) and 7(b), respectively. Once Δμ < 2.6, the

(a) (b)

FIG. 6. (a) Elementary and (b) circuit descriptions of the
Schlögl model [60].

(b)

(a)

FIG. 7. (a) Steady-state concentration and (b) effective current
of the Schlögl module 6 for different values of the chemical
potential difference between terminal species A and B, i.e.,
Δμ ¼ μA − μB. The red dot represents an initial concentration
½X�ð0Þ of the module, which relaxes along the dotted line towards
the corresponding steady state. The dashed lines specify the value
of the steady-state concentration ½X� and effective current ψϵs
when the value of Δμ is decreased from 3.75 to 2.6 and then
increased back to 3.75 assuming that ½X�ð0Þ ¼ 12.5. We use units
of measure such that kþs1 ½A� ¼ k−s2 ½B� ¼ 1, which, together with
the local detailed balance condition, imposes k−s1 ¼ kþs2e

−Δμ=RT .
We assume kþs2 ¼ 2.
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steady-state concentration ½X� jumps from ½X�2 to ½X�1. If
the concentrations of the terminal species change in such a
way that Δμ increases until Δμ ¼ 3.75, the steady-state
concentration ½X� and effective current ψϵs will follow the
black dashed lines overlapping the blue lines in Figs. 7(a)
and 7(b), respectively.
In general, this kind of evolution of a module cannot be

obtained by a circuit description accounting only for the
terminal species since different values of the current
correspond to the same values of the concentrations of the
terminal species. Nevertheless, if the current-concentration
characteristic resolves the multiple steady states (like
we have done above for the Schlögl model), the circuit
description still holds.

2. Open CRNs as modules

In the circuit description of the open CRN in Fig. 1(b),
the species S, F, W, Pex, Pb, Pe, and Pf are exchanged with
the environment. Let us assume now that the environment is
constituted by other chemical processes. In this case, S, F,
W, Pex, Pb, Pe, and Pf are involved in the chemical
reactions of both the CRN in Fig. 1(b) and the environment.
Namely, they play the role of terminal species coupling the
CRN to the environment, and hence the CRN in Fig. 1(b)
can be treated as a module like in Fig. 8(a).
Like the modules in Fig. 1(a), the module in Fig. 8(a) can

also be further coarse grained into what we call a second-
order circuit description, given in Fig. 8(b) (assuming that
the timescale separation between internal and terminal
species holds). For this purpose, we follow the same
strategy as before. First, we determine the effective reac-
tions by looking for the emergent cycles of the stoichio-
metric matrix in Eq. (20), where the black horizontal line
now splits Ŝ into the substoichiometric matrix ŜQ for the
internal species (i.e., Na, Nb, Nex, Nd, Ne, and G) and the
substoichiometric matrix ŜP for the terminal species (i.e.,
S, F, W, Pex, Pb, Pe, and Pf). The right-null vectors of Ŝ

Q

include the internal cycle (33) and the emergent cycles

ĉϵ1 ¼

ϵa

ϵb

ϵ0b
ϵc

ϵ0c
ϵ00c
ϵd

ϵe

ϵf

ge
gf

0
BBBBBBBBBBBBBBBBBBBBB@

0

1

0

0

0

0

0

0

0

0

0

1
CCCCCCCCCCCCCCCCCCCCCA

; ĉϵ2 ¼

ϵa

ϵb

ϵ0b
ϵc

ϵ0c
ϵ00c
ϵd

ϵe

ϵf

ge
gf

0
BBBBBBBBBBBBBBBBBBBBB@

1

0

1

0

1

0

0

0

0

0

0

1
CCCCCCCCCCCCCCCCCCCCCA

; ðC3aÞ

ĉϵ3 ¼

ϵa

ϵb

ϵ0b
ϵc

ϵ0c
ϵ00c
ϵd

ϵe

ϵf

ge
gf

0
BBBBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

1

2

1

0

0

0

1
CCCCCCCCCCCCCCCCCCCCCA

; ĉϵ4 ¼

ϵa

ϵb

ϵ0b
ϵc

ϵ0c
ϵ00c
ϵd

ϵe

ϵf

ge
gf

0
BBBBBBBBBBBBBBBBBBBBB@

0

0

0

0

0

−1
1

0

1

0

0

1
CCCCCCCCCCCCCCCCCCCCCA

; ðC3bÞ

which correspond to the following effective reactions
between the terminal species:

F⇌
ϵ1

W;

S⇌
ϵ2

Pb;

2S⇌
ϵ3

Pe;

Sþ Pe⇌
ϵ4

Pf: ðC4Þ

Note that the current-concentration characteristic of these
reactions cannot be determined using the diagrammatic
method [58,59] as the dynamics of the module in Fig. 8(a)
[given in Eq. (19)] does not follow mass-action kinetics,
and one should therefore rely on the numerical (see
Appendix B 2) or the experimental strategy (see Sec. III).

3. Further decomposition of the modules

In the circuit description, each module is coarse grained
into at least one effective reaction between terminal species.

(a) (b)

FIG. 8. (a) First- and (b) second-order circuit descriptions of
the CRN in Fig. 1(a). Note that Pex is not interconverted by the
effective reactions (C4), and thus no arrows connect it to the
module in the second-order circuit description.
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When a module [like the (orange) module c in Figs. 1(a)
and 9(a)] has more than one effective reaction [given in
Fig. 9(b)], one can ask if it can be split into independent
(sub)modules corresponding to a single effective reaction
each [like in Fig. 9(d)]. This can be done only if each (sub)
module has a unique set of internal species. Indeed, the
procedure to split a module into submodules is exactly the
same as the one to split a generic CRN into modules, and it
must satisfy the same assumptions.
One can also determine if a module can be split into

submodules by examining the currents of the effective
reactions without analyzing the internal species. When the
currents of some effective reactions depend only on a
subset of terminal species, they involve a unique set of
internal species and constitute, by definition, an indepen-
dent (sub)module. To see this, we consider the effective
reaction currents (derived using the diagrammatic method
[58,59]) of the (orange) module c in Fig. 1(b):

ψϵc ¼
LEc

Dc
ðk−c3 þ kþc4Þðkþc1kþc2 ½Nex� − k−c1k−c2 ½Pex�Þ;

ðC5aÞ

ψϵ0c ¼
LEc

Dc
ðk−c1 þ kþc2Þðkþc3kþc4 ½Nb� − k−c3k−c4 ½Pb�Þ;

ðC5bÞ

ψϵ00c ¼
LE�

c

D�
c
ðkþc5kþc6 ½Ne� − k−c5k−c6 ½Pe�Þ; ðC5cÞ

where Dc and D�
c are given by

Dc ¼ ðk−c1 þ kþc2Þðk−c3 þ kþc4Þ
þ ðk−c3 þ kþc4Þðkþc1 ½Nex� þ k−c2 ½Pex�Þ
þðk−c1 þ kþc2Þðkþc3 ½Nb� þ k−c4 ½Pb�Þ; ðC6aÞ

D�
c ¼ kþc5 ½Ne� þ k−c5 þ kþc6 þ k−c6 ½Pe�; ðC6bÞ

respectively. On the one hand, the reaction current ψϵ00c
depends only on the concentration of the terminal species
Ne and Pe. On the other hand, the reaction current ψϵc
(respectively, ψϵ0c) not only depends on the concentration of
Nex and Pex (respectively, Nb and Pb) but also on the
concentration of Nb and Pb (respectively, Nex and Pex) via
Dc. Thus, only reaction ϵ00c can be treated as an independent
module [as represented in Fig. 9(c)]. The coupling between
reactions ϵc and ϵ0c is a direct consequence of sharing the
internal species Ec: Whether or not this species is available
for one effective reaction depends on how much is involved
in the other. The two reactions ϵc and ϵ0c must therefore be
considered as part of the same module despite closely
resembling a Michaelis and Menten mechanism.

4. Experimental derivation of the effective reactions

The effective reactions of themodules have been identified
byderiving the emergent cycles from the stoichiometry of the
elementary reactions in Sec. II and Appendix A 2. If the
elementary stoichiometry is not known, the effective reac-
tions can still be determined by using an approach similar to
the one implemented in Sec. III.
Consider, for instance, transferring the (blue) module a in

Fig. 1 in a reactor where the concentration of the terminal
species S and Na can be maintained constant via the
exchange currents IS and INa

as done in Fig. 3. Bymeasuring
these exchange currents, one can observe that they always
satisfy

IS ¼ −INa
: ðC7Þ

Since these exchange currents (as already pointed out)
balance the variations of the concentrations due to the
effective reaction, Eq. (C7) shows that every time the current
IS provides (respectively, extracts) one molecule of S
consumed (respectively, produced) by the effective reaction,
the current INa

extracts (respectively, provides) onemolecule
of Na. This implies that the net stoichiometry of the effective
reaction must be the one represented in Eq. (2).
When the same approach is applied to the (purple)

module e in Fig. 1(a), one observes that

INd
=2 ¼ −INe

; ðC8Þ

which physically means that every time the current INd

provides (respectively, extracts) two molecules of Nd
consumed (respectively, produced) by the effective reac-
tion, the current INe

extracts (respectively, provides) one
molecule of Ne. Thus, the net stoichiometry of the effective
reaction must be the one represented in Eq. (11).
Modules with more than two terminal species may have

many effective reactions. This complicates determining

(a) (b)

(c) (d)

FIG. 9. (a) Elementary and (b) circuit descriptions of the
(orange) module c in Fig. 1 together with a (c) consistent and
(d) inconsistent decomposition in submodules.

CIRCUIT THEORY FOR CHEMICAL REACTION NETWORKS PHYS. REV. X 13, 021041 (2023)

021041-19



their stoichiometry since the exchange currents balance the
variations of the concentrations due to all the effective
reactions. To recognize the contribution of each effective
reaction, we proceed as follows for the (green) module b in
Fig. 1. We group the terminal species in all possible
combinations, which means that we consider all two-
species combinations [i.e., ðNa;NbÞ, ðNa; FÞ, ðNa;WÞ,
ðNb; FÞ, ðNb;WÞ, and ðF;WÞ], all three-species combina-
tions [i.e., ðNa;Nb; FÞ, ðNa;Nb;WÞ, ðNa; F;WÞ, and
ðNb; F;WÞ�, and the only four-species combination [i.e.,
ðNa;Nb; F;WÞ�. We then maintain the concentrations of
only the terminal species belonging to a specific combi-
nation constant. The concentrations of the other terminal
species are free to evolve as they are internal species of the
module. By measuring the exchange currents for every
combination, we can determine whether the corresponding
species are involved in an effective reaction or not, as well
as the corresponding stoichiometry. For the combination
ðNa;NbÞ [illustrated in Fig. 10(a)], the exchange currents
always satisfy

INa
¼ −INb

; ðC9Þ

after a transient dynamics due to the relaxation of the
uncontrolled terminal species to the steady state. As for the
(blue) module a, this means that every time the current INa

provides (respectively, extracts) one molecule of Na con-
sumed (respectively, produced) by an effective reaction, the
current INb

extracts (respectively, provides) one molecule
of Nb. Thus, there is an effective reaction interconverting
Na into Nb with the stoichiometry specified in Eq. (6b). By
repeating the same operation for all the other two-species
combinations, we find that, only for the combination (F, W)
[illustrated in Fig. 10(b)], the exchange currents IF and IW
do not vanish (after a transient dynamics due to relaxation

of the uncontrolled terminal species to the steady state)
and satisfy

IF ¼ −IW: ðC10Þ

Thus, terminal species F and Ware involved in an effective
reaction whose stoichiometry, for the same reasons we
already discussed, is specified in Eq. (6a). The other two-
species combinations are not coupled by an effective
reaction. For the (green) module b in Fig. 1, we have
determined all the effective reactions since the two iden-
tified reactions involve all the terminal species. If this was
not the case, we should have proceeded by analyzing, in the
same way, all the other combinations until we identified a
set of effective reactions involving all terminal species.
For instance, for the (red) module f in Fig. 1, the only
combination of terminal species leading to nonvanishing
exchange currents is ðNd;Ne; PfÞ. The exchange currents
INd

, INe
, and IPf always satisfy

INd
¼ INe

¼ −IPf ; ðC11Þ

which is consistent with the stoichiometry of the effective
reaction given in Eq. (12).

[1] William C. Gardiner, Jr., Combustion Chemistry (Springer-
Verlag, Berlin, 1984).

[2] Chemistry of the Natural Atmosphere, 2nd ed. (Academic
Press, New York, 1999).

[3] Richard P. Wayne, Chemistry of Atmospheres. An Intro-
duction to the Chemistry of the Atmospheres of Earth, the
Planets, and their Satellites, 3rd ed. (Oxford University
Press, New York, 2006).

[4] Harry Y. McSween, Steven M. Richardson, and Maria E.
Uhle, Geochemistry: Pathways and Processes, 2nd ed.
(Columbia University Press, New York, 2003).

[5] D. Voet and J. G. Voet, Biochemistry (John Wiley & Sons,
New York, 2010).

[6] W. H. Schlesinger and E. S. Bernhardt, Biogeochemistry: An
Analysis of Global Change (Elsevier Science, New York,
2013).

[7] E. Smith and H. J. Morowitz, The Origin and Nature
of Life on Earth: The Emergence of the Fourth Geo-
sphere (Cambridge University Press, Cambridge, England,
2016).

[8] J. E. Garvey and M. R. Whiles, Trophic Ecology (CRC
Press, Taylor & Francis Group, London, 2017).

[9] Gonen Ashkenasy, Thomas M. Hermans, Sijbren Otto, and
Annette F. Taylor, Systems Chemistry, Chem. Soc. Rev. 46,
2543 (2017).

[10] Massimiliano Esposito, Open Questions on Nonequili-
brium Thermodynamics of Chemical Reaction Networks,
Commun. Chem. 3, 107 (2020).

[11] Lee A. Segel and Marshall Slemrod, The Quasi-Steady-
State Assumption: A Case Study in Perturbation, SIAM
Rev. 31, 446 (1989).

(a) (b)

FIG. 10. Effective reactions of the (green) module b in Fig. 1 in
a reactor, similar to the membrane reactor used in Ref. [28],
where either the concentrations of (a) Na and Nb or (b) F and W
are controlled by exchange processes whose currents are speci-
fied by INa

, INb
, IF, and IW.

AVANZINI, FREITAS, and ESPOSITO PHYS. REV. X 13, 021041 (2023)

021041-20

https://doi.org/10.1039/C7CS00117G
https://doi.org/10.1039/C7CS00117G
https://doi.org/10.1038/s42004-020-00344-7
https://doi.org/10.1137/1031091
https://doi.org/10.1137/1031091


[12] Chang Hyeong Lee and Hans G. Othmer, A Multi-Time-
Scale Analysis of Chemical Reaction Networks: I. Deter-
ministic Systems, J. Math. Biol. 60, 387 (2009).

[13] Jeremy Gunawardena, A Linear Framework for Time-Scale
Separation in Nonlinear Biochemical Systems, PLoS One 7,
1 (2012).

[14] Jeremy Gunawardena, Time-Scale Separation—Michaelis
and Menten’s Old Idea, Still Bearing Fruit, FEBS J. 281,
473 (2014).

[15] Bernhard Ø. Palsson, Systems Biology: Properties of
Reconstructed Networks (Cambridge University Press,
Cambridge, England, 2006).

[16] Bernhard Ø. Palsson, Systems Biology: Simulation of
Dynamic Network States (Cambridge University Press,
Cambridge, England, 2011).

[17] Bernhard Ø. Palsson, Systems Biology: Constraint-based
Reconstruction and Analysis (Cambridge University Press,
Cambridge, England, 2015).

[18] Artur Wachtel, Riccardo Rao, and Massimiliano Esposito,
Thermodynamically Consistent Coarse Graining of Biocat-
alysts beyond Michaelis–Menten, New J. Phys. 20, 042002
(2018).

[19] Francesco Avanzini, Gianmaria Falasco, and Massimiliano
Esposito, Thermodynamics of Non-Elementary Chemical
Reaction Networks, New J. Phys. 22, 093040 (2020).

[20] Daniel A. Beard, Eric Babson, Edward Curtis, and Hong
Qian, Thermodynamic Constraints for Biochemical Net-
works, J. Theor. Biol. 228, 327 (2004).

[21] Anne Kümmel, Sven Panke, and Matthias Heinemann,
Putative Regulatory Sites Unraveled by Network-Embedded
Thermodynamic Analysis of Metabolome Data, Mol. Syst.
Biol. 2, 2006.0034 (2006).

[22] Joana Saldida, Anna Paola Muntoni, Daniele de Martino,
Georg Hubmann, Bastian Niebel, A. Mareike Schmidt,
Alfredo Braunstein, Andreas Milias-Argeitis, and Matthias
Heinemann, Unbiased Metabolic Flux Inference through
Combined Thermodynamic and 13c Flux Analysis, bioRxiv
(2020), 10.1101/2020.06.29.177063.

[23] Amir Akbari, James T. Yurkovich, Daniel C. Zielinski,
and Bernhard O. Palsson, The Quantitative Metabolome Is
Shaped by Abiotic Constraints, Nat. Commun. 12, 3178
(2021).

[24] Matteo Polettini and Massimiliano Esposito, Irreversible
Thermodynamics of Open Chemical Networks. I. Emergent
Cycles and Broken Conservation Laws, J. Chem. Phys. 141,
024117 (2014).

[25] Riccardo Rao and Massimiliano Esposito, Nonequilibrium
Thermodynamics of Chemical Reaction Networks: Wisdom
from Stochastic Thermodynamics, Phys. Rev. X 6, 041064
(2016).

[26] Francesco Avanzini, Emanuele Penocchio, Gianmaria
Falasco, and Massimiliano Esposito, Nonequilibrium
Thermodynamics of Non-Ideal Chemical Reaction Net-
works, J. Chem. Phys. 154, 094114 (2021).

[27] Nahuel Freitas, Jean-Charles Delvenne, and Massimiliano
Esposito, Stochastic Thermodynamics of Nonlinear Elec-
tronic Circuits: A Realistic Framework for Computing
around kT, Phys. Rev. X 11, 031064 (2021).

[28] Alessandro Sorrenti, Jorge Leira-Iglesias, Akihiro Sato, and
Thomas M. Hermans, Non-Equilibrium Steady States in

Supramolecular Polymerization, Nat. Commun. 8, 15899
(2017).

[29] Robert A. Alberty, Thermodynamics of Biochemical Reac-
tions (Wiley-Interscience, New York, 2003).

[30] Massimiliano Esposito, Stochastic Thermodynamics under
Coarse Graining, Phys. Rev. E 85, 041125 (2012).

[31] George F. Oster, Alan S. Perelson, and Aharon Katchalsky,
Network Thermodynamics: Dynamic Modelling of Bio-
physical Systems, Q. Rev. Biophys. 6, 1 (1973).

[32] Daniel A. Beard, Shou dan Liang, and Hong Qian, Energy
Balance for Analysis of Complex Metabolic Networks,
Biophys. J. 83, 79 (2002).

[33] Hong Qian and Daniel A. Beard, Thermodynamics of
Stoichiometric Biochemical Networks in Living Systems
Far from Equilibrium, Biophys. Chem. 114, 213 (2005).

[34] Sara Dal Cengio, Vivien Lecomte, and Matteo Polettini,
preceding paper, Geometry of Nonequilibrium Reaction
Networks, Phys. Rev. X 13, 021040 (2022).

[35] Gianmaria Falasco, Riccardo Rao, and Massimiliano
Esposito, Information Thermodynamics of Turing Patterns,
Phys. Rev. Lett. 121, 108301 (2018).

[36] Francesco Avanzini, Gianmaria Falasco, and Massimiliano
Esposito, Thermodynamics of Chemical Waves, J. Chem.
Phys. 151, 234103 (2019).

[37] Francesco Avanzini, Gianmaria Falasco, and Massimiliano
Esposito, Chemical Cloaking, Phys. Rev. E 101, 060102(R)
(2020).

[38] Matthias P. Gerstl, David E. Ruckerbauer, Diethard
Mattanovich, Christian Jungreuthmayer, and Jürgen
Zanghellini, Metabolomics Integrated Elementary Flux
Mode Analysis in Large Metabolic Networks, Sci. Rep. 5,
8930 (2015).

[39] Daniele De Martino, Anna M. C. Andersson, Tobias
Bergmiller, Călin C. Guet, and Gašper Tkačik, Statistical
Mechanics for Metabolic Networks During Steady State
Growth, Nat. Commun. 9, 2988 (2018).

[40] Bastian Niebel, Simeon Leupold, and Matthias Heinemann,
An Upper Limit on Gibbs Energy Dissipation Governs
Cellular Metabolism, Nat. Metab. 1, 125 (2019).

[41] George Oster, Alan Perelson, and Aharon Katchalsky, Net-
work Thermodynamics, Nature (London) 234, 393 (1971).

[42] George F. Oster and Alan S. Perelson, Chemical Reaction
Dynamics, Arch. Ration. Mech. Anal. 55, 230 (1974).

[43] Alan S. Perelson and George F. Oster, Chemical Reaction
Dynamics Part II: Reaction Networks, Arch. Ration. Mech.
Anal. 57, 31 (1974).

[44] David Soloveichik, Georg Seelig, and Erik Winfree,DNA as
a Universal Substrate for Chemical Kinetics, Proc. Natl.
Acad. Sci. U.S.A. 107, 5393 (2010).

[45] Yuan-Jyue Chen, Neil Dalchau, Niranjan Srinivas, Andrew
Phillips, Luca Cardelli, David Soloveichik, and Georg
Seelig, Programmable Chemical Controllers Made from
DNA, Nat. Nanotechnol. 8, 755 (2013).

[46] Alec A. K. Nielsen, Bryan S. Der, Jonghyeon Shin, Prashant
Vaidyanathan, Vanya Paralanov, Elizabeth A. Strychalski,
David Ross, Douglas Densmore, and Christopher A. Voigt,
Genetic Circuit Design Automation, Science 352, aac7341
(2016).

[47] Erik Winfree, Chemical Reaction Networks and Sto-
chastic Local Search, in International Conference on

CIRCUIT THEORY FOR CHEMICAL REACTION NETWORKS PHYS. REV. X 13, 021041 (2023)

021041-21

https://doi.org/10.1007/s00285-009-0269-4
https://doi.org/10.1371/journal.pone.0036321
https://doi.org/10.1371/journal.pone.0036321
https://doi.org/10.1111/febs.12532
https://doi.org/10.1111/febs.12532
https://doi.org/10.1088/1367-2630/aab5c9
https://doi.org/10.1088/1367-2630/aab5c9
https://doi.org/10.1088/1367-2630/abafea
https://doi.org/10.1016/j.jtbi.2004.01.008
https://doi.org/10.1038/msb4100074
https://doi.org/10.1038/msb4100074
https://doi.org/10.1101/2020.06.29.177063
https://doi.org/10.1038/s41467-021-23214-9
https://doi.org/10.1038/s41467-021-23214-9
https://doi.org/10.1063/1.4886396
https://doi.org/10.1063/1.4886396
https://doi.org/10.1103/PhysRevX.6.041064
https://doi.org/10.1103/PhysRevX.6.041064
https://doi.org/10.1063/5.0041225
https://doi.org/10.1103/PhysRevX.11.031064
https://doi.org/10.1038/ncomms15899
https://doi.org/10.1038/ncomms15899
https://doi.org/10.1103/PhysRevE.85.041125
https://doi.org/10.1017/S0033583500000081
https://doi.org/10.1016/S0006-3495(02)75150-3
https://doi.org/10.1016/j.bpc.2004.12.001
https://doi.org/10.1103/PhysRevX.13.021040
https://doi.org/10.1103/PhysRevLett.121.108301
https://doi.org/10.1063/1.5126528
https://doi.org/10.1063/1.5126528
https://doi.org/10.1103/PhysRevE.101.060102
https://doi.org/10.1103/PhysRevE.101.060102
https://doi.org/10.1038/srep08930
https://doi.org/10.1038/srep08930
https://doi.org/10.1038/s41467-018-05417-9
https://doi.org/10.1038/s42255-018-0006-7
https://doi.org/10.1038/234393a0
https://doi.org/10.1007/BF00281751
https://doi.org/10.1007/BF00287096
https://doi.org/10.1007/BF00287096
https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1073/pnas.0909380107
https://doi.org/10.1038/nnano.2013.189
https://doi.org/10.1126/science.aac7341
https://doi.org/10.1126/science.aac7341


DNA Computing and Molecular Programming (Springer,
New York, 2019), pp. 1–20.

[48] N. A. Sinitsyn, Nicolas Hengartner, and Ilya Nemenman,
Adiabatic Coarse-Graining and Simulations of Stochastic
Biochemical Networks, Proc. Natl. Acad. Sci. U.S.A. 106,
10546 (2009).

[49] Emanuele Penocchio, Riccardo Rao, and Massimiliano
Esposito, Thermodynamic Efficiency in Dissipative
Chemistry, Nat. Commun. 10, 3865 (2019).

[50] Riccardo Rao and Massimiliano Esposito, Conservation
Laws Shape Dissipation, New J. Phys. 20, 023007 (2018).

[51] Artur Wachtel, Riccardo Rao, and Massimiliano Esposito,
Free-Energy Transduction in Chemical Reaction Networks:
From Enzymes to Metabolism, J. Chem. Phys. 157, 024109
(2022).

[52] H. E. Daly and J. Farley, Ecological Economics: Principles
And Applications, Ecological Economics Textbook Series
(Island Press, Washington, DC, 2004).

[53] G. Svehla, Nomenclature of Kinetic Methods of Analysis
(IUPAC Recommendations 1993), Pure Appl. Chem. 65,
2291 (1993).

[54] S. R. de Groot and P. Mazur, Non-Equilibrium Thermody-
namics (Dover, New York, 1984).
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