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A CMOS-based implementation of an autonomous Maxwell’s demon was recently proposed [Phys. Rev. Lett.
129, 120602 (2022)] to demonstrate that a Maxwell demon can still work at macroscopic scales, provided that
its power supply is scaled appropriately. Here we first provide a full analytical characterization of the nonau-
tonomous version of that model. We then study system-demon information flows within generic autonomous
bipartite setups displaying a macroscopic limit. By doing so, we can study the thermodynamic efficiency of
both the measurement and the feedback process performed by the demon. We find that the information flow
is an intensive quantity and that, as a consequence, any Maxwell’s demon is bound to stop working above a
finite scale if all parameters but the scale are fixed. However, this can be prevented by appropriately scaling the
thermodynamic forces. These general results are applied to the autonomous CMOS-based demon.
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I. INTRODUCTION

A Maxwell’s demon is an agent or mechanism able to
make a system behave in a way that seems to contradict the
second law of thermodynamics [1]. It achieves that by gain-
ing information about the system via measurements, based
on which it performs a feedback on the system. In an ideal
situation, the feedback control must not provide any energy
to the system [2]. Maxwell’s demon models come in two
flavors: nonautonomous ones where the feedback is modeled
as a parametric time dependence on the system’s dynamics,
and autonomous ones, where the mechanism of the demon
coupled to the system is explicitly modeled and the system-
demon dynamics is homogeneous in time.

Many implementations of these ideas have been provided.
over recent years [3–17]. An electronic implementation of an
autonomous Maxwell’s demon fully based on CMOS technol-
ogy (the same used to build regular computers) was recently
proposed in Ref. [18]. Its distinctive feature is that it can
be made to work at different physical scales. This scale, �,
is controlled by the size of the MOS transistors involved in
the proposed circuit. It was shown that when all the other
parameters are fixed, the rectification effects associated with
the action of the demon disappear above a finite scale �∗.
However, when the powering available to the demon to per-
form its functions is appropriately scaled with �, the demon
can in principle continue to work at any scale. In that case, the
price to pay is a decreasing thermodynamic efficiency, that
was shown to scale as η ∝ 1/�2 log(�).

In Sec. II we start by studying a nonautonomous version
of the CMOS demon proposed in Ref. [18]. This enables an
exact analytical treatment of the rectification and captures the
essential features of the demon mechanism. In Sec. III we
revisit (in more mathematical detail) the autonomous imple-
mentation proposed in Ref. [18] and compare the results with

those of the nonautonomous version. In Sec. IV we turn to
the most important part of the paper: The general analysis of
autonomous Maxwell demons displaying a macroscopic limit
in terms of the information thermodynamics theory developed
in Refs. [19,20]. This allows us to study the information flows
between the demon and the system and to define independent
thermodynamic efficiencies for the measurement and feed-
back processes performed by the demon. We derive general
scaling laws for the information flows and the thermodynamic
efficiencies. In particular, we find that if all extra parameters
are fixed, then the information flow is scale invariant for any
autonomous bipartite system with a macroscopic limit and, as
a consequence, any autonomous Maxwell’s demon will stop
operating above a finite scale. Scaling power is thus essential
to produce macroscopic Maxwell demons.

II. NONAUTONOMOUS CMOS-DEMON

In this section we show how a simple feedback control
protocol in the CMOS inverter can make the electrical current
through it flow against the powering bias. As shown in Fig. 1,
a CMOS inverter is composed of an nMOS transistor and a
pMOS transistor. We will consider the subthreshold operation
of these devices [21]. In a three-terminal nMOS transistor,
electrical conduction between gate and source terminals is en-
hanced when the gate-source voltage is positive and reduced
when that voltage is negative. This relation is reversed for
pMOS transistors: conduction is enhanced (reduced) for neg-
ative (positive) gate-source voltages. As a consequence, when
a voltage bias is applied by connecting the drain terminals
to voltage sources V1 = −V2 = �VS/2 > 0, the input-output
transfer function of the inverter has the typical shape shown
in Fig. 1(b). For positive values of the input, conduction
through the nMOS transistor dominates and the output voltage
approaches V2. The situation is reversed for negative input
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FIG. 1. (a) Common implementation of a NOT gate with CMOS
technology. (b) Deterministic output voltage as a function of the
input (for V1 = −V2 = �VS/2 > 0)

voltages, and the output voltage approaches V1. Let us first
consider the situation where no bias is applied: V1 = V2 = 0.
In that case the circuit will attain thermal equilibrium, and the
steady-state fluctuations in the output voltage v will be given
by the Gibbs distribution Peq(v) ∝ e−βU (v), where β = 1/kbT
is the inverse temperature, and U (v) = v2/2C is the electro-
static energy for a given value of voltage (C is the output
capacitance of the inverter). In the following, all voltages will
be expressed in units of the thermal voltage VT = kbT/qe,
where qe is the positive electron charge. Let us now consider
the following feedback protocol: At time t the output voltage
v is measured and a voltage vin = −αv is applied to the input,
with α > 0. Thus, if a positive fluctuation v > 0 is observed
at time t , then at subsequent times conduction through the
upper pMOS transistor will be enhanced with respect to con-
duction through the nMOS transistor (since the input voltage
at the gates will be negative). Therefore, the excess charge
will be most likely dissipated through the pMOS transistor,
generating a net upward current. In a similar way, when a
negative fluctuation v < 0 is observed, it will most probably
be compensated by conduction events through the bottom
nMOS transistor, also generating a net upward current. Thus,
by the repeated application of the feedback protocol, charge
can be made to flow in the upward direction, in absence of a
voltage bias. A net upward electric current could also be ob-
served even if a small downward bias V1 − V2 = �VS > 0 is
applied. This is indeed confirmed by numerical results shown
in Fig. 2. We see that as we increase the biasing voltage VS ,
a higher amplification factor α is required by the feedback
protocol in order to reverse the direction of the current. When
that happens, the entropy production rate �̇ = �VS〈IS〉/T
is actually negative (〈IS〉 is the average steady-state electric
current through the inverter, and therefore �VS〈IS〉 is the rate
of heat dissipation). According to the second law of thermody-
namics, and the modern understanding of Maxwell’s demons
and information engines, that negative entropy production
must be compensated by a positive entropy production in
the system implementing the feedback control protocol. This
was studied in the autonomous implementation proposed in
Ref. [18], which is detailed in the next section. Before that,
we review the deterministic description of the CMOS inverter
in subthreshold operation and also its stochastic counterpart
leading to the exact results in Fig. 2.

FIG. 2. Average electric current 〈IS〉 at steady state for the
feedback-controlled CMOS inverter as a function of the voltage
bias �VS and the feedback parameter α (ve = 0.1, n = 1). Negative
values (blue) correspond to a current flowing against the voltage bias
or, equivalently, in the upward direction. The dashed line marks the
boundary between the two phases and is given by Eq. (19).

A. Deterministic dynamics

The deterministic circuit analysis of the inverter in Fig. 1(a)
leads to the following dynamical equation for the output
voltage v(t ):

Cdtv(t ) = Ip(v(t ), vin; �VS ) − In(v(t ), vin; �VS ), (1)

where In/p(v, vin ) is the current through the n/p transistor for
given values of v and vin and C is the output capacitance of
the inverter (or the effective capacitance including the one of
the next stage to which the inverter is connected to). In the
subthreshold regime of operation, the currents are given by:

Ip(v, vin; �VS ) = I0e(�VS/2−vin−Vth )/n[1 − e−(�VS/2−v)] (2)

and In(v, vin; �V ) = Ip(−v,−vin; �V ). In the previous ex-
pression, Vth (the threshold voltage) and n � 1 (the slope
factor) are phenomenological parameters characterizing the
transistors. The deterministic output voltage v∗ for a given vin

are found by solving dtv(t ) = 0 or, equivalently, Ip(v∗, vin ) =
In(v∗, vin ). An explicit expression for v∗(vin) can be obtained
from (for n = 1):

ev∗−vin =
√

1+e�VS [cosh(vin) − 1]/2 − e�VS/2 sinh(vin). (3)

In general, we always have V1 > v∗ > V2 and v∗ → 0 for
vin → 0. From the first property it follows that both currents
are positive for any value of vin. Then, no inversion of the cur-
rent is possible at the deterministic level. The second property
justifies performing a series expansion in both v and vin for
vin � 1. Doing that, it is easy to see that the gain for small
inputs is

αS = ∂v∗

∂vin

∣∣∣∣
vin=0

= (1 − e�VS/2)/n. (4)
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Also, we note that v∗ is independent of the parameters I0 and
Vth, since they only fix the global timescale,

τ0 = (I0e−Vth/n/qe)−1, (5)

and do not affect the steady-state solution.
The deterministic output voltage v∗ is always unique for

a given fixed value of vin. This is not anymore the case for
the feedback protocol mentioned above. We assume that the
repeated application of the protocol (that is, the measurement
of the output voltage v and the subsequent adjustment of the
input voltage as vin = −αv) is sufficiently fast compared to
the timescale τ0. Then the steady-state output voltage can be
obtained by solving Ip(v∗,−αv∗; �VS ) = In(v∗,−αv∗; �VS ).
This equation has v∗ = 0 as the single solution for α � αc ≡
n/(e�VS/2 − 1). For α > αc, two additional symmetric solu-
tions v∗

± appear and the solution v∗ = 0 becomes unstable.
Thus, under the feedback control protocol, the system be-
comes bistable when the amplification factor is above the
critical value αc. Note that the condition α > αc can be in-
terpreted in the following way: The product of the inverter
gain |αS| in Eq. (4) and the amplification factor α of the
feedback protocol must be greater than 1. The electric current
is also positive in any of the solutions of the bistable phase, so
rectification is still not possible at the deterministic level.

B. Stochastic dynamics

Conduction through the MOS transistors is not determinis-
tic. The number of charges transported through the channel of
a MOS transistor during a given time interval is a stochastic
quantity that, in the subthreshold regime of operation, dis-
plays shot noise [22]. This can be described by an effective
model that assigns two Poisson processes to every transis-
tor, corresponding to elementary conduction events in the
forward and backward directions [23]. The rates that must
be assigned to the two Poisson processes can be computed
from the I-V curve characterization of the device and the
requirement of thermodynamic consistency, as explained in
Ref. [23]. Then the stochastic dynamics of a given circuit can
be mapped to a Markov jump process in the space of possible
circuit states, and the probability distribution over those states
evolves according to a Markovian master equation. For the
CMOS inverter, the master equation reads:

dt P(v, t ) =
∑

ρ

λρ (v − �ρve)P(v − �ρve, t )

− λρ (v)P(v, t ), (6)

where v is the output voltage (that can only take discrete
values spaced by the elementary voltage ve = qe/C), and
the index ρ runs over all the possible jump processes, with
Poisson rates λ

n/p
± (v, vin ). For example, the rates λ

p
±(v, vin )

correspond to conduction events through the pMOS transistor,
for which v → v ± ve, while the rates λn

±(v, vin ) are associ-
ated conduction events through the nMOS transistor, where
v → v ∓ ve. The numbers �ρ indicate the change in v/ve for
each jump, and therefore we have �

p
± = ±1 and �n

± = ∓1.

In order to ensure thermodynamic consistency, the Poisson
rates must satisfy the local detailed balance (LDB) condition,

log
λρ (v)

λ−ρ (v + �ρve)
= σρ/kb, (7)

according to which the log-ratio of forward and backward
rates corresponding to a given transition equals the entropy
production σρ during that transition. For this kind of electronic
circuits, the entropy production can be computed as σρ =
−Qρ/T , where Qρ = U (v + �ρve) − U (v) + Wρ is the heat
provided by the thermal environment during the transition
[U (v) is the electrostatic energy and Wρ the nonconservative
work performed by the voltage sources during the transition].
The Poisson rates λ

n/p
± (v, vin ) can be determined from the I-V

curve characterization of the transistors in Eq. (2) and the
LDB condition in Eq. (7). For the pMOS transistor, they read:

λ
p
+(v, vin ) = τ−1

0 e(�VS/2−vin )/n

λ
p
−(v, vin ) = λ

p
+(v, vin ) e−(�VS/2−v) e−ve/2,

(8)

while for the nMOS transistor we have λn
±(v, vin ) =

λ
p
±(−v,−vin ).

We are interested in obtaining the steady-state solution of
Eq. (6). Since this is a one-dimensional problem, the steady-
state distribution is fully characterized by the condition that
the total rate of transitions v → v + ve must balance the total
rate of the reverse transitions v + ve → v. This condition can
be expressed as the recurrence relation

Pss(v) = λ
p
+(v − ve, vin ) + λn

−(v − ve, vin )

λ
p
−(v, vin ) + λn+(v, vin )

Pss(v − ve), (9)

that can be solved to find Pss(v). So far we have considered
the input voltage vin to be fixed. The steady state Pfb

ss (v)
attained under the action of the idealized feedback protocol
described above can be found by just replacing vin → −αv in
the previous expressions.

Once the steady state is determined, the average values
of the net electric current through both transistors can be
computed as〈

In/p
〉 = qe

∑
v

Pfb
ss (v)[λn/p

+ (v,−αv) − λ
n/p
− (v,−αv)]. (10)

Since the two transistors are connected in series, at steady
state we have 〈In〉 = 〈Ip〉 ≡ 〈IS〉. This is how the results in
Fig. 2 were obtained.

C. Macroscopic limit

We will now study what is the stochastic behavior of the
CMOS inverter at different scales. For this, we will ana-
lyze how the parameters entering the problem are modified
as the physical dimensions of the transistors are increased.
There are two relevant length scales: the width W and the
length L of the conduction channel in each transistor [24].
For fixed L, both the parameter I0 appearing in Eq. (2)
(that enter the Poisson rates through the timescale τ0) and
the output capacitance C are proportional to W . Thus, the
Poisson rates λ

n/p
± (v) increase as W , while the elementary

voltage ve = qe/C decreases as W −1. From these two ob-
servations it follows that the probability distribution P(v, t )
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satisfies a large deviations (LD) principle in the limit W → ∞
[25,26]. This means that fluctuations away from the deter-
ministic behavior are exponentially suppressed in W . Taking
� ≡ v−1

e ∝ W as a scale parameter, the LD property is ex-
pressed mathematically as the existence of the limit f (v, t ) =
limve→0 −ve log[P(v, t )] or, equivalently,

P(v, t ) �
ve→0

e−[ f (v,t )+o(ve )]/ve , (11)

where f (v, t ) is the rate function (it gives the rate at which
the probability of fluctuation v decreases with v−1

e ). Indeed,
plugging the previous ansatz in the master equation (6) and
keeping only the dominant terms in ve → 0, we find that the
rate function must satisfy the evolution equation:

dt f (v, t ) =
∑

ρ

ωρ (v)[1 − e�ρdv f (v,t )], (12)

where ωρ (v) = limve→0 veλρ (v) are the scaled Poisson rates.
The minimum v(t ) of the rate function f (·, t ) at time t is
the most probable value, and it can be seen that it evolves
according to the closed deterministic dynamics of Eq. (1). In
this way we see how the deterministic dynamics emerges from
the stochastic one.

From Eq. (12), the steady-state rate function fss(v) satis-
fies:

e−dv fss (v) = ω
p
+(v, vin ) + ωn

−(v, vin )

ω
p
−(v, vin ) + ωn+(v, vin )

. (13)

Note that this equation can also be obtained as the ve → 0
limit of the recursive relation in Eq. (9). Again, the steady-
state rate function f fb

ss (v) corresponding to the application
of the feedback control protocol satisfies a similar equa-
tion where vin is replaced by −αv. Solving for dv f fb

ss (v) and
integrating in v, it is possible to obtain the following explicit
expression (up to an arbitrary constant):

f fb
ss (v) = v2 + v�Vs

2
+ n

n + 2α
[L(v,�VS ) − L(v,�VS )],

(14)

where L(v,�V ) = Li2{− exp[�V/2 + v(1 + 2α/n)]} and
Li2(·) is the polylogarithm function of second order.

We can use the previous result to compute the average
currents according to Eq. (10), which for ve � 1 can be
approximated as:

〈IS〉 �
∫

dv
e−v−1

e f fb
ss (v)

Zss
qe[λp

+(v,−αv) − λ
p
−(v,−αv)]︸ ︷︷ ︸

I (v)

,

(15)

where Zss = ∫
dv exp[−v−1

e f fb
ss (v)]. For ve � 1 only small

fluctuations around the minimum of the rate function will
contribute to the integral, and for α < αc that minimum is
v = 0. Expanding the function I (v) defined above around
v = 0, we obtain (using the fact that the distribution of v is
symmetric around v = 0):

〈IS〉 � I (0) + I ′′(0)〈v2〉/2. (16)

Also, a Gaussian approximation to the steady state for α < αc

can be obtained by expanding the rate function to second order

FIG. 3. CMOS implementation of an autonomous Maxwell’s de-
mon. If we break the left-right symmetry of the circuit by choosing
powering biases V3 − V4 > V1 − V2, then we can consider that the
right inverter monitors the thermal fluctuations in the output of the
left inverter and, by appropriately acting back on its input, can make
the electric current IS to flow against the bias V1 − V2. For simplicity,
all transistors are assumed to have identical parameters.

in v. That expansion reads (again up to a constant):

f fb
ss (v) = 1 − α/αc

1 + eVS
v2 + O(v3). (17)

Therefore, the steady-state voltage variance is

〈v2〉 � ve(e�VS/2 + 1)

2(1 − α/αc)
. (18)

From Eqs. (18) and (16) and the definition of I (v) in Eq. (15)
one can obtain an exact expression for the steady-state current,
valid to first order in ve, which is, however, not very simple.
To lower order in �VS it reduces to (neglecting terms propor-
tional to �VSve)

〈IS〉 � qe

τ0
(�VS/2 − αve/n). (19)

Thus, the minimum value of the amplification factor needed
for the average current to flow against the applied bias is
αm = n�VS/2ve. We note that αm → ∞ in the macroscopic
limit ve → 0. Thus, to reverse the current is increasingly hard
as one goes deeper in the macro limit. This is natural, since
the rectification strategy exploits the fluctuations in the output
voltage, and these fluctuations are negligible in the macro
limit [their variance scales as ve, see Eq. (18)]. As we will
see in the next section, the demon or agent implementing the
feedback protocol must invest an increasing amount of energy
in order to achieve higher amplification factors.

III. AUTONOMOUS CMOS DEMON

A feedback protocol similar to the nonautonomous one
can be implemented using an additional inverter (see Fig. 3),
which plays the role of a Maxwell’s demon monitoring the
state of a system (the output of the first inverter) and perform-
ing some feedback on it (by changing the input voltage). The
second inverter is powered by voltages V3 = −V4 = �VD/2.
Thus, the bias �VD controls the power available to the demon.
We consider for simplicity that the two transistors of the first
inverter are equivalent to the two transistors of the second
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inverter. Thus, the only asymmetry between system and de-
mon is introduced by the different biasing voltages �VS and
�VD. As we explain below, it is possible to compute the
steady-state distribution of the two degrees of freedom of
the circuit, v and vin, from which average currents can be
obtained. In that way we obtain the results of Fig. 3. We see
that if the bias �VD applied to the demon is sufficiently high,
then its action is able to reverse the direction of the electric
current through the system. Before further analyzing the per-
formance of this autonomous implementation of an electronic
Maxwell’s demon, we explain how to model the dynamics
of the circuit in Fig. 3, again both at the deterministic and
stochastic levels. It is important to note that this autonomous
model automatically takes into account some realistic ef-
fects that were not considered in the previous nonautonomous
implementation, namely the intrinsic noise affecting the mea-
surement and feedback processes and the delay between them.

A. Deterministic dynamics

The deterministic equations of motion for the voltages v

and vin are

Cdtv = Ip(v, vin; �VS ) − In(v, vin; �VS )

Cdtvin = Ip(vin, v; �VD) − In(vin, v; �VD).
(20)

Close to thermal equilibrium (that is, for low biases �VS

and �VD), the previous deterministic dynamics has the
unique fixed point v = vin = 0. However, the system becomes
bistable when αSαD > 1, where αS/D ≡ (1 − e�VS/D/2)/n is the
gain of each inverter, given by Eq. (4). The bistability can be
exploited to store the value of a bit, and in fact for symmetric
powering �VS = �VD = �V the circuit in Fig. 3 is the typ-
ical CMOS implementation of SRAM memory cells [2]. In
that case, also assuming n = 1, the bistability is achieved for
�V > 2 log(2).

B. Stochastic dynamics

The master equation describing the stochastic evolution of
the circuit in Fig. 3 is constructed in the same way as for the
simpler implementation of the previous section. It reads

dt P(v, t ) =
∑

ρ

λρ (v − �ρve)P(v − �ρve, t )

− λρ (v)P(v, t ), (21)

where now v = (v, vin ) is a vector with the two degrees of
freedom of the circuit, and the vectors �ρ encode the change
in v for each jump. For example, for forward transitions
through the pMOS and nMOS transistors of the first inverter,
we have �ρ = (1, 0) and �ρ = (−1, 0), respectively. The
transition rates λ(v) are obtained in the same way as before
[see Eq. (8)] and satisfy the LDB conditions ensuring thermo-
dynamic consistency.

In this case, the determination of the steady state Pss(v) is
not as straightforward as before. Since the voltages v and vin

take only discrete values spaced by the elementary voltage ve,
the steady state can be found numerically by truncating the in-
finite state space to a finite space with max(|v/ve|, |vin/ve|) �
N , for sufficiently large N . Then the master equation can be

FIG. 4. Average electric current 〈IS〉 at steady state for the au-
tonomous circuit of Fig. 3 as a function of the voltage biases �VS

and �VD (ve = 0.1, n = 1). Negative values (blue) correspond to
a current flowing against the voltage bias of the first inverter. The
dotted line indicates the actual boundary between positive and nega-
tive currents. The solid black line shows the approximation given by
Eq. (32), while the dashed black line shows the estimation of Eq. (22)
based on the nonautonomous model.

written as dt |P(t )〉 = W |P(t )〉, where the probability vector
|P(t )〉 has (2N + 1)2 components and the generator W is
a matrix of dimensions (2N + 1)2 × (2N + 1)2. The steady-
state vector |Pss〉 is given by the right eigenvector of W with
zero eigenvalue. Since the matrix W is sparse, that computa-
tion can be done efficiently. Typical steady-state distributions
for different values of α2 are shown in Fig. 5.

The results of the above procedure are shown in Fig. 4. We
see that if VD/VS is sufficiently high, then the current through
the first inverter is effectively reversed. The boundary between
positive and negative values of that current can be estimated
in the following way. In the nonautonomous implementation,
a minimum amplification factor αm = nVs/qe was required for
the inversion of the current. From Eq. (4), we know that the
second inverter can provide that minimum amplification factor
if the biasing voltage VD is above

�V m
D = 2 log(1 + n2�VS/2ve). (22)

The previous result is plotted with a dashed line in Fig. 4,
where we see that it underestimates the minimum value of
VD required for inversion. The reason is that the previous
estimation does not consider the intrinsic noise and delay in
the demon side. An improved estimation is obtained below.

C. Macroscopic limit

The solution to Eq. (21) also satisfies an LD principle,

P(v, t ) �
ve→0

e−[ f (v,t )+o(ve )]/ve , (23)
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FIG. 5. Histograms of the steady-state distribution Pss(v) for
ve = 0.1, �VS = 0.4 and (a) �VD = 2 (α2 < 1, monostable phase),
(b) �VD � 3.415 (α2 = 1, critical point), and (c) �VD = 5 (α2 > 1,
bistable phase). Lateral and upper plots show the partial distributions
for v and vin, respectively. The arrows indicate the direction and
magnitude of the flow u(v) = ∑

ρ �ρ ωρ (v)Pss(v) at each point in
the state space.

where the rate function f (v, t ) evolves according to

dt f (v, t ) =
∑

ρ

ωρ (v)[1 − e�ρ ·∇ f (v,t )], (24)

but in this case the steady-state rate function fss(v) cannot be
computed exactly. One can still perform a Gaussian approxi-
mation. Thus, in the monostable phase where the minimum of
the rate function is v = 0, we have:

fss(v) = vT C−1v/2 + O(|v|3), (25)

where the matrix C is the solution of

0 = CA + AT C + B, (26)

and the matrices A and B are given by

{A}i j =
∑

ρ

∂viωρ (0)(�ρ ) j (27)

and

{B}i j =
∑

ρ

ωρ (0)(�ρ )i(�ρ ) j . (28)

Solving Eq. (26) one finds the following correlators:

C11 = 1 + e�VD/2 + e�VS − e(�VD+�VS )/2

2[e�VD/2 + e�VS/2 − e(�VD+�VS )/2]

C22 = 1 + e�VD + e�VS/2 − e(�VD+�VS )/2

2[e�VD/2 + e�VS/2 − e(�VD+�VS )/2]

C12 = C21 = e(�VD+�VS )/2 − 1

2[e(�VD+�VS )/2 − e�VS/2 − e�VD/2]
.

(29)

As in the previous section, the average steady-state current
through the first inverter can be computed as

〈IS〉 �
∫ ∫

d2v
e−v−1

e f fb
ss (v)

Zss
qe

[
λ

p
+(v) − λ

p
−(v)

]
︸ ︷︷ ︸

I (v)

� I (0) + Tr[H I (0)〈vvT 〉]/2, (30)

where H I (v) is the Hessian of I (v) and 〈vvT 〉 = veC is the
covariance matrix of the Gaussian fluctuations around the
fixed point (in the second line we have assumed that the
distribution of v is symmetric on the point reflection v → −v,
and therefore all odd moments vanish). We can then obtain
an analytical expression for the average current 〈IS〉, valid
to lower nontrivial order in ve → 0, which is, however, too
complicated to show here (see the Supplementary Material in
Ref. [18]). To lower order in VS it reduces to (neglecting terms
proportional to �VSve)

〈IS〉 = qe

2τ0
[�VS − ve(e�VD/2 − 1)]. (31)

From the previous result it follows that the minimum value of
�VD required for inversion is

�V m
D = 2 log(1 + �VS/ve), (32)

which differs from Eq. (22) by a factor 2 accompanying �VS .
This is shown with a solid line in Fig. 4. Alternatively, from
Eq. (31) we can say that inversion is impossible above a
maximum scale,

v∗
e
−1 = |αD|/�VS. (33)

Whenever the action of the demon manages to make the
current IS to flow against the voltage bias �VS , heat is ex-
tracted from the environment of the first inverter and work
is realized on the sources fixing the voltages V1 and V2.
In that case the entropy production rate at the system side
is �̇S = 〈IS〉�VS < 0. As we have seen, for that to happen
energy needs to be consumed by the second inverter, and
therefore the entropy production rate at the demon side is

014136-6



INFORMATION FLOWS IN MACROSCOPIC MAXWELL’S … PHYSICAL REVIEW E 107, 014136 (2023)

�̇D = 〈ID〉�VD > 0. We can then define the efficiency of the
demon as the ratio:

η = − �̇S

�̇D
= − �VS

�VD

〈IS〉
〈ID〉 � 1. (34)

The last inequality follows from the fact that the total en-
tropy production rate �̇ = �̇S + �̇D is always positive. The
thermodynamic efficiency defined in Eq. (34) allows to char-
acterize the performance of the demon at a global level and
can be evaluated for different parameters using the above
results. However, it is also possible to introduce detailed
thermodynamic efficiencies characterizing the measurement
and feedback processes independently, providing additional
insight. Then, the net efficiency in Eq. (34) is recovered as
the product of the detailed efficiencies. To see this, we review
in the following the basic theory of information flows as
developed in Refs. [19,20] and adapt it to Gaussian states.

IV. INFORMATION THERMODYNAMICS

The thermodynamics of measurement and feedback pro-
tocols in bipartite systems can be understood in terms of
information flows which, as explained in Refs. [19,20], enter
as additional terms in the entropy balance of each subsystem.
In this section we compute those information flows for general
bipartite systems displaying a macroscopic limit and then
apply it to our autonomous CMOS demon. For this, in the
sake of clarity, we will adopt a slightly different notation. We
assume that we are dealing with a system with two degrees
of freedom x and y (v and vin in our example). The Poisson
rates λρ (x|y) associated to jumps x → x + δxρ depend on the
variable y, and in the same way the Poisson rates λρ (y|x)
associated to jumps y → y + δyρ depend on the variable x. In
our circuit, this corresponds to the fact that the Poisson rates
associated to the transistors in the first inverter (which modify
the voltage v) depend on the voltage vin (this is the feedback
process in which the demon controls the system), while the
rates of the transistors in the second inverter (which modify
vin) depend on the voltage v (this is the measurement process
in which the demon acquires information about the state of the
system). The jump sizes δxρ and δyρ are ±ve in our case, with
the sign depending on the transition.

The mutual information between x and y is defined as

I =
∑
x,y

Pt (x, y) log
Pt (x, y)

Pt (x)Pt (y)
, (35)

where Pt (x, y) is the time-dependent global probability distri-
bution, while Pt (x) and Pt (y) are the corresponding reduced
distributions for x and y. The time derivative of the mutual
information accepts the following decomposition [19]:

dtI = İx + İy, (36)

where

İx =
∑
x,y

∑
ρ>0

jρ (x|y) log

[
Pt (y|x + δxρ )

Pt (y|x)

]

İy =
∑
x,y

∑
ρ>0

jρ (y|x) log

[
Pt (x|y + δyρ )

Pt (x|y)

] (37)

are the contributions due to jumps x → x + δxρ and y →
y + δyρ , respectively. In the previous expressions, jρ (x|y) ≡
λρ (x|y)Pt (x, y) − λ−ρ (x + δxρ |y)Pt (x + δxρ, y) is the net cur-
rent along transition x, y → x + δxρ, y, and jρ (y|x) is defined
similarly. Note that at steady state we have dtI = 0 and
therefore İx = −İy.

We will now evaluate the steady-state information flows
İx/y in the macroscopic limit. Under a Gaussian approxima-
tion like the one used previously, the log-ratio of conditional
probabilities appearing in the equations above can be written
as (for simplicity we assume 〈x〉 = 〈y〉 = 0):

log

[
Pt (y|x′)
Pt (y|x)

]
= 〈xy〉

〈xx〉〈yy〉−〈xy〉2

×
[

y (x′−x)− 〈xy〉
〈xx〉 (x′2−x2)/2

]
, (38)

where the averages are computed for Pt (x, y). It follows that
the information flow İx can be rewritten as:

İx = 〈xy〉
〈xx〉〈yy〉 − 〈xy〉2

[
〈y d̄t x〉 − 〈xy〉

〈xx〉 dt 〈x2〉/2

]
, (39)

where

〈y d̄t x〉 =
∑
x,y

∑
ρ>0

jρ (x|y) y δxρ

dt 〈x2〉 =
∑
x,y

∑
ρ>0

jρ (x|y)
(
2x δxρ + δx2

ρ

)
.

(40)

The bar in d̄t denotes that it is not a total derivative. The last
term in Eq. (39) vanishes at steady state. Then, at the Gaussian
level the steady-state information flows read:

İx
ss = 〈xy〉〈y d̄t x〉

〈xx〉〈yy〉 − 〈xy〉2 and İy
ss = 〈xy〉〈x d̄t y〉

〈xx〉〈yy〉 − 〈xy〉2 .

(41)
Note that İx

ss + İy
ss ∝ 〈x d̄t y〉 + 〈y d̄t x〉 = dt 〈xy〉 = 0 in

steady-state conditions, as discussed above. A calculation
similar to the one in the Sec. III C shows that to first nontrivial
order in the macroscopic limit:

〈y dt x〉 = 〈xy〉
∑
ρ>0

[∂xλρ (x|y)|0,0 − ∂xλ−ρ (x|y)|0,0]δxρ

+ 〈yy〉
∑
ρ>0

[∂yλρ (x|y)|0,0 − ∂yλ−ρ (x|y)|0,0]δxρ.

(42)

Recalling that in the macroscopic limit we have the scal-
ings λρ ∝ � and δxρ, 〈xx〉, 〈yy〉, 〈xy〉 ∝ 1/� with respect to
a scale parameter �, we see that 〈y dt x〉 ∝ 1/�. Therefore,
the information flows İx/y

ss are scale independent.
For the kind of bipartite systems we are considering, it was

shown in Ref. [19] that when the information flows are taken
into account in the entropy balance of each subsystem, then
the following extended local second laws hold (we assume
isothermal settings at temperature T ):

�̇i
x = dt Sx + �̇x − kbİx � 0

�̇i
y = dt Sy + �̇y − kbİy � 0,

(43)
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where �̇i
x/y, Sx/y, �̇x/y are, respectively, the total irreversible

entropy production, the internal entropy, and the entropy flow
into the environment of each subsystem. Since Sx/y are the en-
tropies associated to the reduced distributions Pt (x) and Pt (y),
we see that by adding the two previous equations we recover
the usual global second law �̇i = �̇i

x + �̇i
y = dt S + �̇, where

�̇ = �̇x + �̇y and S = Sx + Sy − I is the entropy of the full
distribution Pt (x, y).

A. Efficiency of information creation or consumption

We will now compute the information flows for the elec-
tronic Maxwell demon based on the previous result, taking
x = v (the output voltage of the first inverter) and y = vin (the
output voltage of the second inverter). Thus, x represents the
system S and y the demon D. Then, when evaluated at steady
state, the inequalities in Eq. (43) reduce to

�̇i
S = �̇S + kbİ � 0

�̇i
D = �̇D − kbİ � 0,

(44)

where İ = −İS
ss = İD

ss is the steady-state information flow. As
we will see, İ is positive, which means that the dynamics of
the demon produces correlations that are then consumed at the
system side. This allows the entropy flow �̇S to be negative
while still respecting the first inequality in Eq. (44).

Evaluating Eq. (42) for our circuit we obtain:

〈ydt x〉 = 〈xy〉[∂xI p
S |0,0 ve + ∂xIn

S |0,0(−ve)
]
/qe

+ 〈yy〉[∂yI p
S |0,0 ve + ∂yIn

S |0,0(−ve)
]
/qe

= (2ve/qe)
[〈xy〉∂xI p

S |0,0 + 2〈yy〉∂yI p
S |0,0

]
= −2ve

τ0
[〈xy〉 + 〈yy〉(e�VS/2 − 1)], (45)

where In/p
S (x, y) = qe[λn/p

+ (x, y) − λ
n/p
− (x, y)] is the electric

current through the (p/n)MOS transistor in the first inverter,
and in the second line we have used the fact that ∂x/yI p

S |0,0 =
−∂x/yIn

S |0,0. Combining Eqs. (41) and (45) and the expression
for the correlators in Eq. (29), we find that the information
flow is given by:

İ = 2ve

τ0

[1 − e(�VS+�VD )/2](e�VS/2 − e�VD/2)

1 + e�VS/2 + e�VD/2 + e�VS + e�VD − e(�VS+�VD )/2
+ O

(
v2

e

)
, (46)

which is indeed scale invariant (recall that τ0 ∝ ve ∝ 1/�), as
discussed above.

As already mentioned, the information flow İ is created
by the dynamics of the demon, which also has an associated
dissipation �̇D. Thus, one can define the thermodynamic effi-
ciency for the creation of correlations as

ηD = kbİ
�̇D

. (47)

According to the second inequality in Eqs. (44), ηD � 1. Also,
according to the first inequality in Eqs. (44), a positive infor-
mation flow might be employed to compensate for a locally
negative entropy production �̇S � 0. In those situations, the
following thermodynamic efficiency can be assigned to that
process:

ηS = − �̇S

kbİ
, (48)

and we also have ηS � 1. Note that the net thermodynamic
efficiency defined in Eq. (34) is just η = ηSηD.

B. Scaling laws of information flows and efficiencies

We now discuss how the different flows and efficiencies
scale with respect to the scale parameter � = v−1

e . All other
parameters fixed, we know that entropy flows �̇S/D are ex-
tensive quantities [since the rates λ

n/p
± (v) are extensive and

therefore the electric currents are]. Also, we have seen that the
information flow İ is intensive. This means that the efficiency
ηD scales as 1/�. It also means that �̇S must become posi-
tive above some value of �, since otherwise we would have
ηS > 1, violating the first inequality in Eq. (44). As we have
shown, this is indeed what happens in our electronic demon:
Rectification is impossible above a certain scale [see Eq. (33)].

It was shown in Ref. [18] that a way around the previous
limitation is to make the voltage biases �VS and �VD to be
scale dependent. In particular, if we take �VS = cve ∝ 1/�,
and �VD = 2 log(1 + 2α2/cve) ∝ log(�), then we obtain that
�̇S is scale independent and that �̇D ∝ �2 log(�). Thus, the
demon continues to work for any scale parameter but with
a net efficiency that decreases as η = 1/�2 log(�). It is in-
teresting to note, from Eq. (46), that even under this scaling
strategy the information flow remains intensive, reaching the
value İ = 2ve/τ0 for ve → 0 (recall that τ0 ∝ ve). Then the
efficiency ηS is also intensive an attains the limiting value:

lim
ve→0

ηS = α2

2
, (49)

as can be seen from Eqs. (46) and (31). In contrast, the effi-
ciency ηD continuously decreases as ηD ∝ 1/�2 log(�). The
behavior of the information flow İ under the scaling strategy
above is shown in Fig. 6, where the analytical result in Eq. (46)
is compared to numerical results obtained by computing the
steady-state distribution as in Sec. III B and using Eq. (37)
for the information flows. The numerical results are limited
to low values of the scale parameter, since otherwise the
exact computation of the steady-state distribution becomes
too expensive. We see that the analytical result of Eq. (46)
is only accurate for low values of α2. The reason is that the
information flows are highly sensitive to the non-Gaussian
nature of the exact steady-state distribution.

In relation to this last observation, it is important to discuss
the role that the LD principle plays in our calculation and how
is it affected by the previous scaling strategy. The LD princi-
ple and the associated rate function was only employed here
as a computational tool to extract the Gaussian covariance
matrix. It provides the correct Gaussian moments (related to
the curvature of the rate function around its minimum) for
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FIG. 6. Information flow as a function of the scale parameter
� = v−1

e for the scaling strategy �VS = cve and �VD = 2 log(1 +
2α2/cve), for different values of α2. The solid lines show the an-
alytical result of Eq. (46), while the points show numerical results
obtained from the steady-state distribution and Eq. (37).

arbitrary parameters �VS and �VD (as long as α2 < 1 and
the scale parameter is large enough). However, one should
note that the LD principle ceases to be valid for the scaling
strategy �VS ∝ 1/� and �VD = log(�), since the transition
rates are no longer extensive. One way to see this is to note
that the variance of the voltages does not scale as 1/�, which
is the central limit theorem scaling expected from the LD
principle. A related consequence is that a Gaussian approxi-
mation (that is, the truncation of − log[Pss(v)] to second order
around its minimum) is not justified anymore in the limit
� → ∞, except if other conditions (α2 � 1 in our case) are
met. This explains the discrepancies in Fig. 6.

Finally, we note that we have only considered the situation
in which system and demon have the same scale. This is nat-
ural in this setting, since the output capacitance of the system
(demon) inverter is dominated by the gate-body capacitance
of the transistors in the demon (system) inverter. A similar
analysis holds for the case in which only the demon inverter
is scaled up. If the system is scaled up, while the demon scale
is held constant, then the demon power still needs to be scaled
up in order for it to be able to drive the input capacitance of
the system inverter. In other words, when the demon is small
compared to the system, the feedback process becomes the
limiting factor in our circuit.

V. CONCLUSION

We have presented a in-depth study of the electronic im-
plementation of an autonomous Maxwell’s demon proposed
in Ref. [18]. We have adapted the thermodynamic theory of
information flows developed in Ref. [19] to systems display-
ing a macroscopic limit and applied it to the electronic demon.
This allowed us to define detailed thermodynamic efficien-
cies for the processes creating and consuming correlations
between system and demon, in terms of an information flow
that was explicitly computed. Also, we have shown that the
information flow is an intensive quantity in any autonomous
bipartite system with a macroscopic limit, which implies that
any such system will stop working as a demon above a finite
scale. Implications in chemical and biological systems [27]
will be explored elsewhere.
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