DIGIPD: Linking digital markers to molecular markers in Parkinson's disease ﬁt DIG IPD

* Mapping of molecular markers to disease mechanisms
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 Dependencies between molecular mechanisms, DMs, and other data types

Validating DIGltal biomarkers for better
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\

risBrain . Universitatsklinik B— T UNIVERSITE
Z Fraunhofer G27Tniiate  HILII  Eepenteimiva + ‘ @iz (Y2) DF NAMUR

UNIVERSITE DU iﬁsm'
SCAI LUXEMBOURG

ASOCIGGIUN

Portabiles Partinson

HealthCare Technologies

Madrig



Linking DMs to molecular markers & other data types ﬁ’t D | G | PD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

B Overview:

Statistical analyses:

- Pre-processing and filtering of clinical, mMiRNA/mMRNA, epigenetics, metabolomics & digital gait data
- Differential expression/abundance analysis for miRNA (+ target prediction), mMRNA and epigenetics
- Pathway enrichment analyses for miRNA, mRNA, epigenetics and metabolomics data

- Correlation analysis: gait data vs. pathway omics activities (metabolomics & miRNA)

ML analyses:

- Patient unsupervised clustering analyses at baseline (clinical data)

- Supervised cross-validation analysis for ML-based PD vs. Control prediction (all data types)

- Supervised cross-validation analysis of UPDRS 3 total motor scores (all data types)

- Prediction of other non-motor symptoms / co-morbidities (baseline & future visits, all data types)
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Common themes in pathway enrichment analyses gf DIGIPD

®  Overlap across different analyses: personalize treatment of Parkinsons Disease

Shared pathways Top-ranked for which omics data / pathway databases
Endoplasmic reticulum stress PD-map (blood RNAseq, iPSC RNAseq, brain scRNAseq), GO (blood RNAseq)
Mitochondrion / oxidative stress PD-map (blood RNAseq, iPSC RNAseq, brain scRNAseq, brain proteomics)
Cell death / apoptosis PD-map (iPSC RNAseq), KEGG (iPSC RNAseq), KEGG (blood RNAseq)
Glycosylation-related pathways GO (iPSC RNAseq), KEGG (iPSC RNAseq), Reactome (iPSC RNAseq), KEGG (miRNA)
MAPK signaling KEGG (blood RNAseq), BioCarta (blood RNAseq), NeuroMMSig-PD (blood RNAseq)
Ribosomal pathways GO (blood RNAseq), KEGG (iPSC RNAseq)
Nonsense mediated mRNA decay GO (blood RNAseq), Reactome (blood RNAseq), PD-map (brain proteomics)
MTOR/FOXO signaling PD-map (blood RNAseq), PD-map (iPSC RNAseq), KEGG (miRNA)
Synaptic vesicle pathways PD-map (brain scRNAseq, brain proteomics), GO (iPSC RNAseq)
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Linking markers to pathways: Pathway-based prediction gf DIGIPD

Validating DIGIltal biomarkers for better

B Prediction of PD vs. control using median GO set expression (min. 10 personalized treatment of Parkinson’s Disease
mappable genes, 3-fold CV, random equal-sized partitions, iPSC RNAseq RNA-seq)

AUC statistics:

Min. 1st Qu. |Median |Mean 3rd Qu. |Max.
GBM 0.545 0.549 0.552 0.608 0.640 0.727
SVM 0.375 0.528 0.682 0.580 0.682 0.682
ROTF 0.604 0.615 0.625 0.667 0.699 0.773
XGB 0.545 0.616 0.688 0.691 0.764 0.841
DEEP 0.705 0.750 0.795 0.795 0.840 0.885

RF 0.385 0.471 0.557 0.579 0.676 0.795
GAUS 0.188 0.412 0.636 0.517 0.682 0.727
LBOOST 0.344 0.501 0.659 0.611 0.744 0.830

Median AUCs
of 0.6t0 0.8
across different
ML algorithms
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PD vs. control prediction — feature impacts on outcome gf’ DIGIPD

Validating DIGltal biomarkers for better

B Shapley additive explanations (SHAP) value analysis of feature impact personalized treatment of Parkinson's Disease
on outcome
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Prediction of UPDRS 3 total score using pathways “t DIGIPD

Validating DIGIltal biomarkers for better

B Prediction of UPDRS 3 sum > median using GO set expression (min. 10 personalized treatment of Parkinson's Disease
mappable genes, 3-fold CV, random equal-sized partitions, iPSC RNAseq RNA-seq)

AUC statistics:

Min. 1st Qu. |Median |Mean 3rd Qu. |Max.
GBM 0.50 0.56 0.61 0.59 0.64 0.67
SVM 0.50 0.53 0.57 0.59 0.63 0.69
ROTF 0.40 0.55 0.70 0.62 0.73 0.75
XGB 0.42 0.56 0.70 0.65 0.77 0.83
DEEP 0.42 0.44 0.47 0.45 0.47 0.47

RF 0.50 0.50 0.50 0.51 0.52 0.53
GAUS 0.31 0.39 0.47 0.42 0.48 0.50
LBOOST 0.57 0.62 0.67 0.64 0.67 0.68

Median AUCs
of 0.5t0 0.7
across different
ML algorithms
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UPDRS 3 total score prediction — feature impacts on outcome gf’ DIGIPD

B Shapley additive explanations (SHAP) value analysis of feature impact

on outcome
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Integrated ML analysis: eGalT + Metabolomics + Clinical

A DIGIPD

Validating DIGIltal biomarkers for better

B Combine scaled features from eGalT data, filtered metabolomics & clinical data:  cisonaiized treatment of parkinson's disease
—> Prediction PD vs. control (10-fold CV, clinical data: age, gender, BMI, Sniffin Sticks)

AUC statistics:

Min. 1st Qu. |Median |Mean 3rd Qu. |Max.
GBM 0.852 0.895 0.932 0.930 0.966 1.000
SVM 0.716 0.772 0.846 0.837 0.898 0.938 Median AUCs of
ROTF 0.735 0.870 0.944 0.919 0.981 1.000 0.85 t6 0.96
XGB 0.877 0.941 0.951 0.947 0.963 1.000 across different
DEEP 0.877 0.917 0.938 0.940 0.972 1.000 ML algorithms
RF 0.747 0.864 0.963 0.921 0.988 1.000
GAUS 0.593 0.802 0.883 0.857 0.926 1.000
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Integrated ML analysis: SHAP value analysis gt’ DIGIPD

Validating DIGltal biomarkers for better

B Combine scaled features from eGalT data, filtered metabolomics & clinical data personalized treatment of Parkinson’s Disease
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Prediction of comorbidities using eGalT data (follow-up visit)

Analysis: Prediction of further disease-associated outcomes in PD
(Algorithm: XGBoost, 10-fold CV)

AUC statistics:

A DIGIPD

Validating DIGIltal biomarkers for better

personalized treatment of Parkinson’s Disease

\

Outcome Min. 1st Qu. Mean (3rd Qu. |Max.
Cognitive decline (MoCA) 0.400 0.491 0.629 0.759| 0.867
Impulse control disorders (QUIP) 0.192 0.519 0.642 0.817, 1.000 Median AUCs
Depression (BDI) 0.357 0.500 0.575 0.651 0.750 between 53% to
Hallucinations 0.333] 0.444 0536/ 0.573] 0.833 64%, depending
Dyskinesias 0.282] 0.427 0.557 0.646| 0.962 on the outcome
Apathy (Starkstein scale) 0.375 0.481 0.574 0.634, 0.850
Quality of life (PDQ-39) 0.375 0.542 0.593 0.673| 0.729
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Prediction of comorbidities: MoCA example — feature impacts gf DIGIPD

Validating DIGltal biomarkers for better

B Shapley additive explanations (SHAP) value analysis of feature impact personalized treatment of Parkinson's Disease
on outcome
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Prediction of comorbidities: QUIP example — feature impacts }:“ DIGIPD

Validating DIGltal biomarkers for better

B Shapley additive explanations (SHAP) value analysis of feature impact personalized treatment of Parkinson's Disease
on outcome
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Prediction of comorbidities using clinical data (follow-up visit)

Analysis: Prediction of further disease-associated outcomes in PD
(Algorithm: XGBoost, 10-fold CV) using baseline numerical clinical data (no filtering)

AUC statistics:

A DIGIPD

Validating DIGIltal biomarkers for better

personalized treatment of Parkinson’s Disease

\

Outcome Min. 1st Qu. Mean (3rd Qu. |Max.
Cognitive decline (MoCA) 0.496/ 0.535 0.608 0.680, 0.793
Impulse control disorders (QUIP) 0.460, 0.548 0.604 0.662] 0.795 Median AUCs
Depression (BDI) 0.426/ 0.559 0.596 0.644, 0.736 between 53% to
Hallucinations 0.358 0.422 0.536/ 0.624] 0.722 61%, depending
Dyskinesias 0.432] 0.502 0.573 0.658  0.735 on the outcome
Apathy (Starkstein scale) 0.468  0.484 0.546 0.584, 0.646
Quality of life (PDQ-39) 0.5100 0.522| 0.559] 0.588 0.608
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Prediction of comorbidities: MoCA example — feature impacts

B Shapley additive explanations (SHAP) value analysis of feature impact

£ DIGIPD

Validating DIGltal biomarkers for better
personalized treatment of Parkinson’s Disease

on outcome
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Prediction of comorbidities: QUIP example — feature impacts

B Shapley additive explanations (SHAP) value analysis of feature impact
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£ DIGIPD

Validating DIGltal biomarkers for better
personalized treatment of Parkinson’s Disease

Autonomic
dysfunction, blood
pressure, tearful
feeling, sleep scores,
sense of smell score
tend to be predictive
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Prediction of comorbidities using metabolomics (follow-up visit) “f DIGIPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

Analysis: Metabolomics-based prediction of disease-associated outcomes in PD
(XGBoost, 10-fold CV)

AUC statistics:
Outcome Min. 1st Qu. Mean 3rd Qu. |Max.
Cognitive decline (MoCA) 0.435 0.596 0.648 0.714, 0.814
Impulse control disorders (QUIP) 0.161 0.457 0.563 0.721] 0.899 Mean AUCs
Depression (BDI) 0.326 0.487 0.526 0.573] 0.712 between 53% to
Hallucinations 0.399 0.481 0.578 0.642| 0.767 67%, depending
Dyskinesias 0.326 0.548 0.669 0.820, 0.907 on the outcome
Apathy (Starkstein) 0.495 0.552 0.593 0.621 0.718
Quality of life (PDQ-39) 0.401 0.514 0.574 0.628 0.734
Z Fraunhofer ettt WILIN e + T ) I - Portabiles Parkznson

UUUUUUUUUU



Prediction of comorbidities: MoCA example — feature impacts

B Shapley additive explanations (SHAP) value analysis of feature impact

£ DIGIPD

Validating DIGltal biomarkers for better

personalized treatment of Parkinson’s Disease

on outcome
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Prediction of comorbidities: Dyskinesia example gt DIGIPD

Validating DIGltal biomarkers for better

B Shapley additive explanations (SHAP) value analysis of feature impact S b
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Integrated prediction of comorbidities (follow-up visit) “f DIGIPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

Analysis: Combine metabolomics with eGalT data and selected clinical variables
(age, gender, BMI, disease duration, Sniffin Sticks; XGBoost, 10-fold CV)

AUC statistics:
Outcome Min. 1st Qu. |Mean 3rd Qu. |Max.
Cognitive decline (MoCA) 0.240 0.450 0.614 0.745] 0.920
Impulse control disorders (QUIP) 0.250 0.500 0.725 1.000f 1.000 Mean AUCs
Depression (BDI) 0.389 0.479 0.581 0.708 0.861 between 53% to
Hallucinations 0.444 0.771 0.869 1.000 1.000 90%, depending
Dyskinesias 0.500 0.847 0.897 1.000f 1.000 on the outcome
Apathy (Starkstein) 0.167 0.447 0.527 0.600, 0.880
Quality of life (PDQ-39) 0.320 0.562 0.628 0.710, 0.833
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Multivariate analysis of comorbidities in PD gt DIGIPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

B |dentify outcomes with consistent correlations: QoL, Apathy, Hallucination,
Depression, ICD

® Apply multivariate elastic net regression (R-package ‘joinet’, Rauschenberger & Glaab, 2021)

Mean absolute errors:

Method Qol Apathy Hallucination| Depression ICD
o Improvements: green
univariate 0.705 0.763 0.595 0.743 0.569 p. 9
No improvement: red
multivariate 0.719 0.758 0.585 0.725 0.557
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Linking DMs to clinical outcomes, imaging & molecular markers gf DIG IPD

Validating DIGIltal biomarkers for better
personalized treatment of Parkinson’s Disease

B Outlook:

Next steps: 1. Further associative analyses (e.g. canonical correlation analysis)
2. Interpretable rule-based machine learning
3. Network-based machine learning

4. Estimate causal relations (Double ML / causal reasoning analyses)

Correlate PPMI Digital Sensor data from Verily Study Watch (sensor-based smart watch)

against other molecular data?
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