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1 INTRODUCTION

The finite element method emerged in the 1950s, driven by a need for accurately solving structural mechanics problems
in the aeronautical industry [6, 29, 33, 61, 113]. The following decades saw the advent of general-purpose finite element
software [17, 48, 57, 78, 108, 110] and more complex features, such as handling time-dependent and non-linear problems,
adaptivity, enhanced user interfaces and input/output-integration [73, 109]. By the 1990s, object-oriented finite element
libraries such as Diffpack and deal.II [7, 14, 24, 72] provided abstractions for finite element concepts, such as meshes
and finite element spaces.

The FEniCS Project [2] pioneered a software pipeline consisting of a domain-specific language for defining weak
forms (Unified Form Language (UFL)) [3], a finite element form compiler for generating low-level finite element code
(FEniCS Form Compiler (FFC)) [76] and an automated finite element problem solving environment (Dynamic Object-
oriented Library for FINite element computation (DOLFIN)) [75]. Higher levels of abstraction became available in other
packages too, such as AceGen, Feel++, NGSolve and Firedrake [2, 3, 45, 55, 69, 70, 75–77, 90, 91, 101] thanks to automatic
code generation. The new levels of abstraction in FEniCS enabled advanced features such as automated adjoints and
derivatives of finite element models [43, 83], automated error control and adaptivity [97], shape optimization [40, 52, 100],
uncertainty quantification [115], reduced order modeling [13], and hybrid finite element and neural network models [84],
to mention but a few.

FEniCS has made a significant impact across fields in engineering and the natural sciences. We can point to examples
in geophysics [114], biomechanics [54], biomedicine [35], structural mechanics [50, 95], fluid mechanics [85], inverse
problems [88] and optimization [39]. In addition, FEniCS has been used as a foundational tool for developing packages for
new numerical approaches, e.g. fictitious-domain finite element methods [25, 41], hybrid particle-mesh methods [79] as
well as for the numerical verification of results from mathematical analysis of new discretization techniques [34, 60, 107]
and preconditioners [21].

Despite these successes, a number of issues became evident with the design of the FEniCS components:
• Age. Parts of the FEniCS software were approaching twenty years old. Design decisions were based on tech-

nologies and software engineering paradigms of the time, with now apparent limitations.
• Maintainability. The FEniCS pipeline was becoming increasingly cumbersome to maintain due to its large code

base, including core and non-core features, and design limitations.
• Extensibility. Overly encapsulated data storage and a lack of fine-grained control made it difficult to extend

FEniCS non-intrusively to new methods when the available abstractions were not sufficient. This also presented
barriers to experimentation on new hardware architectures, e.g. GPUs.

• Performance. Parallelism was not pervasive when DOLFIN was created and parallel support was retrofitted.
Numerous algorithms were either not optimal or not parallel, resulting in an inconsistent user experience and
hindering performance.

We present the finite element library DOLFINx and its context in the revised FEniCS ecosystem (FEniCSx). DOLFINx is
a ground-up redevelopment of DOLFIN using modern C++ and idiomatic Python. The new architecture is fundamentally
data-oriented and functional, rather than relying on object hierarchies and polymorphism. The main design goals are
that DOLFINx should:

• Be suitable for experimental or research work without requiring intrusive extension of the core library with
possibly immature and experimental technologies. This is achieved by ensuring that the library has a stable
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public application programming interface (API) that provides access to low-level data structures alongside the
higher-level functionality that we expect the majority of users will use.

• Integrate seamlessly with modern Python tools such as NumPy [53] and Numba [71] for implementing finite
element kernels, creating meshes and finite element assembly algorithms, without a significant performance
penalty over C++ implementations.

• Be designed for massively parallel computations. To ensure this, we no longer accept contributions that do not
meet this goal.

1.1 Overview of FEniCSx

FEniCSx is composed of four libraries: UFL is a domain-specific language for expressing finite element forms [3]; Basix
constructs finite elements and provides associated functionality [102]; FEniCSx Form Compiler (FFCx) generates C
cell kernels from UFL forms; and DOLFINx manages finite element meshes, assembly over meshes, linear algebra data
structures and solution, and input/output (I/O). UFL and FFCx are written in Python. Basix and DOLFINx are written
in C++ with Python interfaces to the majority of their functionality. These libraries, and the modules of DOLFINx’s
Python interface are summarized in figure 1.

Figure 2 shows how the components of FEniCSx interact when a user develops an application in Python. The user
defines elements with Basix and writes symbolic forms in UFL. The forms are then passed to FFCx which just-in-time
generates element-level kernels that DOLFINx then executes across the mesh. Users can develop application codes in
C++ (see figure 3). In this case, FFCx can be used for ahead-of-time generation of element-level kernels. DOLFINx is
also designed to be used without FFCx generated code. Element-level kernels can be written in C or C++ and executed
via the C++ or Python interfaces of DOLFINx, or written using the Python-based JIT compilation library Numba. A
workflow using Numba is illustrated in figure 4 and discussed in section 8.3.

The layout of this paper is as follows: we introduce a typical application problem in section 2 and discuss the
underlying design principles in section 3. We then cover the main features of DOLFINx, consisting of:

• A design that supports efficient parallel computation (section 4);
• Arbitrary degree finite elements on interval, triangle, quadrilateral, tetrahedral and hexahedral cells, including

unstructured meshes without special ordering [102, 105] (section 5);
• User-defined custom finite elements (section 5);
• Scalable, distributed meshes with flat or curved cells (section 6);
• Parallel I/O with e.g. ADIOS2 [47] and HDF5 [111] (section 6);
• Interpolation of functions between different function spaces built on different finite elements, and on different

(non-matching) meshes, including meshes using non-affine geometry (section 8);
• Code generation for finite element kernels from forms written using UFL [3] (section 8);
• Assembly and solvers using different floating point scalar types (section 8);
• Assembly into blocked and nested matrices, supporting the efficient and scalable [116] implementation of

physics-based block preconditioners [42] (section 8);
• Assembly of custom element kernels written in Python using Numba [71] (section 8);
• Ability to non-intrusively support different linear algebra backends, e.g., NumPy, Portable, Extensible Toolkit

for Scientific Computation (PETSc) [12], Trilinos [112] and Eigen [49] (section 9);

Finally, we provide concluding remarks in section 10.
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FEniCSx

UFL [3]
Unified Form Language

Domain specific language used to describe finite element
forms, plus a set of algorithms related to these forms.

Basix [102]
Basis evaluation library

Library containing definitions of finite elements, and func-
tionality to evaluate them on a reference cell. Includes the

submodule basix.ufl, which can create UFL-compatible elements.

FFCx
FEniCSx Form Compiler

Generates C code that assembles a fi-
nite element form locally on a cell.

DOLFINx

dolfinx.common

General tools for tim-
ing and configuration

dolfinx.fem

Tools for assembling and ma-
nipulating finite element forms

dolfinx.fem.petsc

Assembling forms
into PETSc objects

dolfinx.geometry

Methods for geometric
searches and operations

dolfinx.graph

Graph representations
and operations on graphs

dolfinx.io

Tools for file I/O

dolfinx.jit

Just-in-time (JIT) com-
pilation using FFCx

dolfinx.la

Linear algebra functionality

dolfinx.mesh

Creation, marking and
refining of meshes

dolfinx.nls

Tools for solving
nonlinear problems

Fig. 1. The components that make up FEniCSx, and the Python submodules of DOLFINx.

1.2 Development, license and availability

FEniCSx development takes place at https://github.com/FEniCS. DOLFINx is released under the LGPL version 3 or later
licenses. The other first-party components of the FEniCS Project, namely FFCx and UFL are also released under the
LGPL version 3 or later licenses, while Basix is released under the MIT license. DOLFINx is available as Debian and
Ubuntu packages, via the Conda [32] and Spack [44] package managers and in container images [51].

The DOLFINx codebase is remarkably compact for a finite element library with a wide range of functionality. The
C++ library has approximately 27 000 lines of code. The Python interface has around 3600 lines of nanobind C++ binding
code and 2100 lines of Python, excluding tests. The important dependencies, Basix, FFCx and UFL contain an additional
22 000 lines of C++ and 20 000 lines of Python in total.

The full source code for the code snippets in this paper is available in the supporting material [15].

https://github.com/FEniCS
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Python

C++ C

The majority of the
user-facing functional-
ity is in DOLFINx

Finite element
forms are
written using
UFL

Elements are
defined using
basix.ufl

User application code (Python)

DOLFINx

DOLFINx
Python
interface dolfinx.jit

basix.ufl

Basix
Python
interface

Basix

FFCx

Code generated
by FFCx

UFL

Key
A B A calls functionality from B
A B A outputs B

Main component of FEniCSx
Subcomponent
Other code

Fig. 2. The interdependence of the core components of FEniCSx (DOLFINx, FFCx, Basix, and UFL) in a typical user application code
written in Python.

2 A PROTOTYPE PROBLEM

The design of FEniCSx is centred around the mathematical abstraction of the finite element method. Let Ω be a domain
with boundary 𝜕Ω, and let T be a mesh of the domain. A large class of finite element problems can be formulated as
follows [22]: find 𝑢 ∈ 𝑈 such that

𝐹 (𝑢; 𝑣) = 0 ∀𝑣 ∈ 𝑉 ,

where𝑈 and 𝑉 are finite element spaces and 𝐹 : 𝑈 ×𝑉 → C is a functional. As an example, for the Helmholtz equation
with homogeneous Neumann boundary conditions on 𝜕Ω, we have

𝐹 (𝑢, 𝑣) :=
∫
Ω
∇𝑢 · ∇𝑣 − 𝑘2𝑢𝑣 − 𝑓 𝑣 d𝑥,

where 𝑘 is the wave number, 𝑓 is a prescribed function and 𝑣 denotes the complex conjugate of 𝑣 . Problems that are
(sesqui-)linear in 𝑢 can be rephrased as: find 𝑢 ∈ 𝑈 such that

𝑎(𝑢, 𝑣) = 𝐿(𝑣) ∀𝑣 ∈ 𝑈 ,
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Python C++

C

Finite element
forms are
written using
UFL

Elements are
defined using
basix.ufl

User-provided form file (Python) User application code (C++)

DOLFINx

basix.ufl

Basix
Python
interface

Basix

FFCx
Code generated from
form file by FFCxUFL

Key
A B A calls functionality from B
A B A outputs B

Main component of FEniCSx
Subcomponent
Other code

Fig. 3. The interdependence of the core components of FEniCSx (DOLFINx, FFCx, Basix, and UFL) in a typical user application code
written primarily in C++. The C kernels are automatically generated from the Python UFL form file by FFCx.

where 𝑎 : 𝑈 ×𝑈 → C and 𝐿 : 𝑈 → C, and we have set𝑈 =𝑉 as is typical in the Galerkin method. For the Helmholtz
equation, the bilinear form 𝑎 and linear form 𝐿 are defined by

𝑎(𝑢, 𝑣) :=
∫
Ω
∇𝑢 · ∇𝑣 − 𝑘2𝑢𝑣 d𝑥 and 𝐿(𝑣) :=

∫
Ω
𝑓 𝑣 d𝑥 . (1a)

Figure 5 shows a complete Python solver for this problem using DOLFINx, which is concise and expressive. The mesh
is a unit cube with tetrahedral cells, and we use a degree 3 Lagrange finite element space.

3 DESIGN PRINCIPLES

DOLFINx adopts a data-oriented and functional design philosophy, where data structures are designed to be as simple
and transparent as possible, and operations are implemented as pure functions acting on data. The design is modular,
where high-level functionality is constructed from lower-level functions. The lower-level functions are available to the
user for fine-grained control when required. This is a fundamentally different approach to DOLFIN, which relied heavily
on object-oriented design patterns with deep class hierarchies. The design of DOLFINx is driven by high-performance,
flexibility and usability, support for modern computer hardware (e.g. GPUs), language interoperability, and lessons
learned from the legacy DOLFIN library. DOLFINx is distributed memory parallel from the ground up, with a focus on
scalability and consistent functionality in serial and parallel.



do
i:1
0.
52
81
/z
en
od

o.
18
10
13
07
,v
2,
D
ec

20
25

DOLFINx: The next generation FEniCS problem solving environment 7

Python

C++ LLVM / machine code

The majority of
the user-facing
functionality is in
DOLFINx

Custom ker-
nels can be
written using
Numba

Elements are
defined using
basix.ufl

User application code (Python)

DOLFINx

DOLFINx
Python
interface

basix.ufl

Basix
Python
interface

Basix

Numba

JIT compiled
Numba kernel

UFL

Key
A B A calls functionality from B
A B A outputs B

Main component of FEniCSx
Subcomponent
Other code

Fig. 4. A user workflow when using a custom assembler written in Numba.

3.1 Data-oriented design

DOLFINx’s data-oriented design allows custom, low-level operations to be implemented without intrusive changes to
the core library. This approach also lends itself to extensions to different hardware technologies, e.g. GPUs, without
intrusive changes, since the underlying data can be easily accessed and operated on, with the layout of data described
programmatically. Data encapsulation is used where appropriate, but not dogmatically, and the loss of some data
encapsulation is often of little consequence in scientific computing as performance considerations often place strong
constraints on how data can be stored and accessed.

3.2 Functional-style design

Where possible, DOLFINx favours pure functions over functions that modify their arguments; this aligns with the
mathematical structure that we aim to follow, simplifies reasoning about code, and can have performance benefits
in parallel [19]. Modern C++ features (e.g. move semantics and return value optimization) allow pure functions to
often be used without a performance penalty. Rather than relying on polymorphism and virtual functions to provide
user-defined functionality, DOLFINx instead accepts functions as arguments, leading to simpler and more flexible code,
and consistent interfaces across languages. Both modern C++ and Python provide simple, native support for passing
functions, including with captures.
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1 import numpy as np

2 from mpi4py import MPI

3

4 import dolfinx.fem.petsc

5 from dolfinx import fem , io, mesh

6 from ufl import SpatialCoordinate , TestFunction , TrialFunction , cos , dx, grad , inner

7

8 # Create mesh and define function space

9 msh = mesh.create_unit_cube(MPI.COMM_WORLD , 12, 16, 12)

10 V = fem.functionspace(msh , ("Lagrange", 3))

11

12 # Define variational problem

13 u, v = TrialFunction(V), TestFunction(V)

14 x, y, z = SpatialCoordinate(msh)

15 k = 4 * np.pi

16 f = (1.0 + 1.0j) * k**2 * cos(k * x) * cos(k * y)

17 a = inner(grad(u), grad(v)) * dx - k**2 * inner(u, v) * dx

18 L = inner(f, v) * dx

19

20 # Solve a(u, v) = L(v)

21 problem = dolfinx.fem.petsc.LinearProblem(

22 a,

23 L,

24 petsc_options_prefix="helmholtz_",

25 petsc_options ={"ksp_type": "preonly", "pc_type": "lu", "ksp_error_if_not_converged": True},

26 )

27 uh = problem.solve()

28

29 # Save solution in VTX (.bp) format

30 with io.VTXWriter(msh.comm , "helmholtz.bp", [uh]) as vtx:

31 vtx.write (0.0)

helmholtz.py

Fig. 5. DOLFINx solver for the Helmholtz problem on a unit cube with homogeneous Neumann boundary conditions.

3.3 Minimal code generation

DOLFINx (optionally) leverages code generation for finite element kernels for user-specified problems. In all other areas,
DOLFINx prefers library implementations. A guiding principle is that all operations should be possible with traditional
development techniques, complemented by targeted code generation tools. DOLFIN employed more extensive code
generation e.g. for basis function tabulation, which led to increased library complexity, reduced maintainability, limited
extensibility and customizability, and slowed the rate at which new features and performance improvements could be
made. The DOLFINx design overcomes these issues without loss of the most appealing features of DOLFIN.

3.4 Extensibility

DOLFINx is designed to be extensible, supporting the development of new and experimental features outside of the core
library. Broadly applicable features, once matured, are considered for incorporation into the library. This extensibility
is made possible by the data- and function-oriented design. For example, GPU accelerated finite element operators
implemented outside of the DOLFINx library can access the underlying mesh and degree of freedom (DOF) map data
structures, as demonstrated in [94] for creating a scalable solver for GPU-accelerated supercomputers using HIP, and
shown in a CUDA demo in section 8.3.2.
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3.5 Language interoperability

The core of DOLFINx is written in C++20 [31], with an idiomatic Python interface built using nanobind [63]. Although
most users use the Python interface, the C++ API is feature complete, and thanks to modern C++ features, closely
mirrors the Python syntax.

The data-oriented and functional design of DOLFINx makes language interoperability straightforward. Most core
data structures are based on contiguous arrays with known shape and strides, exposed through a low-level API. This
allows the data to be shared between languages, without copying, as, for example, NumPy arrays in Python, or std::span
or std::mdspan in C++23. Pure functions eliminate most memory management issues when passing data into the C++
library, and the object lifetime support in nanobind [63] supports memory management for data shared into the Python
layer.

Functions can be passed through the Python/C++ language barrier. The user may provide, for example, a graph
partitioning function, a function to interpolate into a finite element space, or a custom finite kernel for assembly. Python
performance limitations can be overcome using NumPy’s [53] vectorised operations, JIT compilation with Numba [71],
or C Foreign Function Interface (CFFI)-compiled C-signature functions.

3.6 Fine-grained control

The legacy DOLFIN library provided mathematically expressive high-level interfaces, but because they were not
constructed from lower-level, fine-grained interfaces, extension to problems that did not match the abstractions could
be challenging. Moreover, their implicit nature could hide performance issues, making it easy for users to inadvertently
write slow code – for example, by creating and destroying non-trivial objects like sparse matrices within a time loop, or
triggering JIT compilation/cache lookups.

The DOLFINx API is designed to (i) expose the lower-level steps in the solution of a finite element problem in a
fine-grained manner and (ii) be explicit rather than implicit, e.g. potentially expensive operations, steps that might not
be required in all cases, or caching of objects, should be explicitly controlled by the user.

High-level interfaces that enhance usability are still used in DOLFINx, but they are composed from granular, low-level
functions and are more explicit for performance transparency. Interfaces that were frequently (mis-)used in ways that
led to poor performance have been removed.

4 PARALLELISM

DOLFINx is designed from the outset to support distributed memory parallelism using the Message Passing Interface
(MPI), and parallel efficiency has been a major consideration in its design. The library has been used to solve problems
with more than 1 trillion cells. MPI neighborhood collectives (or point-to-point operations that replicate neighbor-
hood collectives where they are not supported by an implementation) are used extensively in DOLFINx as they are
naturally suited to finite element computations and sparse linear algebra. Good mesh partitioning and data ordering
strategies [65, 81, 98] keep communication neighborhoods small and independent of problem size and number of MPI
ranks. Sometimes, the complete neighborhood communication graph might not be known i.e. a process might know
which other process holds data that it requires, but not which processes require (some of) its data; for example, this can
occur when constructing a mesh from an external file. When such neighborhood information is not available, we build
the neighborhood communication graphs using the non-blocking NBX consensus algorithm [58]. DOLFINx does not
use any MPI all-to-all communication functions.
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A full description of the parallel design of DOLFINx would require extensive coverage, so we focus on two key
components used throughout DOLFINx: index maps and scatterers.

4.1 Index maps

A common pattern is a range of contiguous indices that is partitioned across parallel processes, with each index having
a global index and a local index, where the contiguous local indices start form 0 on each process. Each index has a
unique owner, but some indices will be present on more than one process (ghost indices). Examples where such index
ranges are useful include mesh entities (which are identified by an index) and degrees of freedom. Mesh vertices on the
partition boundary of a distributed mesh are adjacent to cells on more than one process, and thus will appear on more
than one process.

The parallel layout of index ranges in DOLFINx is described by IndexMap objects. An IndexMap instance partitions a
set of 𝑛𝑔 ∈ N contiguous indices across a set of processes 𝑃 . Each process 𝑝 ∈ 𝑃 owns a contiguous subset of indices
[𝑖𝑝 , 𝑖𝑝 + 𝑛𝑝 ), where the offsets are given by 𝑖𝑝 =

∑𝑝−1
𝑖=0 𝑛𝑝 i.e. the first partition is owned by process 0, the next partition

by process 1, and so on. The union of these owned partitions for a disjoint cover of [0, 𝑛𝑔). An IndexMap also stores ghost
indices and their owning rank. Indices in an index map have a local index, with owned indices numbered first, followed
by ghost indices; the global index for owned entities is simply the local position (index) plus the process offset 𝑖𝑝 , so
storage is very light. Additionally, each process stores lists of ‘source’ and ‘destination’ ranks (processes that own ghost
indices and processes that ghost owned indices, respectively). This data supports the creation of MPI neighborhood
communicators. The use of index maps in the partitioning of meshes is discussed in section 6.1.

4.2 Scatterers

A Scatterer builds upon an IndexMap to communicate data associated with distributed objects. It provides forwards
communication (sending data associated with owned indices to ghosting processes) and reverse communication
(sending data associated with ghost indices to owning processes). An IndexMap only stores information for the reverse
scatter (i.e. communication graph edges to processes that own ghosted indices), whereas a Scatterer has communication
graphs for both forward and reverse communication patterns. Since these communication patterns are sparse (each
process exchanges data with only a small number of other processes), we use MPI neighborhood collectives 1. A
Scatterer also supports any required packing and unpacking operations in-and-out of communication buffers. To
support communication between GPUs, the Scatterer class is templated over the storage type and supports the passing
of custom pack and unpack functions, allowing host/device transfers to be avoided.

We note that other libraries use similar concepts, e.g. index sets (IS) and vector scatters (VecScatter) in PETSc [12].

5 FINITE ELEMENTS AND BASIX

FEniCSx usually uses Basix [102] for finite element definitions. Basix provides a wide range of arbitrary-order finite
elements on different cell shapes, including 𝐻 (div)- and 𝐻 (curl)-conforming elements. It offers fine-grained control
over element construction and supports user-defined elements.

1DOLFINx provides an implementation based on MPI point-to-point communication functions to replicate neighborhood collective functionality for MPI
implementations that do not support neighborhood collectives.
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Element Supported cells Supported degrees

Lagrange interval, triangle, quadrilateral, tetrahedron, hexahedron ⩾ 0

Nédélec first kind (N1) [86] triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1

Raviart–Thomas (RT) [92] triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1

Nédélec second kind (N2) [87] triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1

Brezzi–Douglas–Marini (BDM) [23] triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1

Regge [27, 93] triangle, tetrahedron ⩾ 0

Hellan–Herrmann–Johnson (HHJ) [10] triangle ⩾ 0

Crouzeix–Raviart (CR) [36] triangle, tetrahedron 1

discontinuous polynomial cubical (DPC) [9] quadrilateral, hexahedron ⩾ 0

serendipity [8] interval, quadrilateral, hexahedron ⩾ 1

bubble [67] interval, triangle, quadrilateral, tetrahedron, hexahedron
⩾ 3 (triangles),
⩾ 4 (tetrahedron),
⩾ 2 (other cells)

iso [18] interval, triangle, quadrilateral, tetrahedron, hexahedron ⩾ 1
Table 1. Elements that are supported in Basix and the cells and degrees for which they are supported. Note that we start the
numbering of Raviart–Thomas (RT) and Nédélec first kind (N1) elements from degree 1. The lowest-degree RT elements that we refer
to as RT degree 1 are referred to as RT degree 0 in some sources (for example, [11, 103]).

5.1 Basix supported elements

Basix provides functionality to define finite elements, evaluate basis functions at a set of points, and apply push-forward
and pull-back operations to map between reference and physical cells. Basix also provides information about the layout
of DOFs on each cell. It is written in C++ and includes a Python interface to its public API. Users can choose from a
wide range of built-in elements (see table 1) or define their own custom elements (see section 5.2).

For Lagrange and discontinuous polynomial cubical (DPC) elements, the spacing of the points that define the element
can be controlled. Tensor-product elements typically use the Gauss–Legendre (GL) or Gauss–Lobatto–Legendre (GLL)
points. For non-equispaced simplex cells, Basix can position points using one of three methods: warped points [56],
centroid-based points [20], and Isaac’s method [62]. For elements that are defined using integral moments against
Lagrange or DPC elements, variants control the choice of polynomials. By default, continuous higher-degree Lagrange
elements use GL or GLL points and integral moments are taken with Legendre polynomials.

5.2 User-defined finite elements

Basix allows custom finite elements to be defined through its Python or C++ interfaces. Custom elements integrate
seamlessly with UFL and FFCx in the same way as built-in elements. Before illustrating this with an example, we briefly
recall the Ciarlet definition [28] of a finite element, which Basix follows:

Definition 5.1 (Ciarlet finite element). A finite element is defined by the triplet (𝑅,P,L), where

• 𝑅 ⊂ R𝑑 is the reference cell, usually a polygon or polyhedron;
• P is a finite dimensional polynomial space on 𝑅 of dimension 𝑛;
• L := {𝑙0, . . . , 𝑙𝑛−1} is a basis of the dual space P∗ := {𝑓 : P → R | 𝑓 is linear}.
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Fig. 6. The numbering of local entities on each cell type. These figures are taken from [104].

The basis functions {𝜙0, . . . , 𝜙𝑛−1} of the space P are defined by

𝑙𝑖 (𝜙 𝑗 ) =


1 𝑖 = 𝑗,

0 𝑖 ≠ 𝑗 .
(2)

Each functional 𝑙𝑖 ∈ L is a DOF and is associated with a sub-entity of the cell. The numbering of local entities for a
range of cell types used in Basix is shown in figure 6.

To demonstrate the construction of custom elements, we consider the degree 1 tiniest tensor (TNT) element [30].
The TNT element is defined by:

• 𝑅TNT := [0, 1]2 is the unit square.
• PTNT := span{1, 𝑥,𝑦, 𝑥𝑦, 𝑥2, 𝑥2𝑦,𝑦2, 𝑥𝑦2}.
• LTNT := {𝑙0, . . . , 𝑙7}, where 𝑙0 to 𝑙3 are point evaluations at vertices 0 to 3 and 𝑙4 to 𝑙7 are integrals of the function

on edges 0 to 3. Each functional is associated with the vertex or edge that is used to define it.

The code to create this element in Basix from Python (C++ can also be used) is shown in figure 7. The polynomial space
PTNT is specified by a coefficient matrix expressing a basis of PTNT in terms of a set of orthogonal polynomials on the
quadrilateral. The degree 2 orthogonal polynomials on a quadrilateral are ordered so that the 𝑛th polynomial is in the
span of the first 𝑛+ 1 elements of the set {1, 𝑦,𝑦2, 𝑥, 𝑥𝑦, 𝑥𝑦2, 𝑥2, 𝑥2𝑦, 𝑥2𝑦2}. The order that Basix uses for arbitrary-degree
orthogonal polynomials on any cell type can be found in the Basix documentation. The elements of the dual basis LTNT

that are associated with each sub-entity of the reference cell are defined by providing a set of points and weights. These
define each functional: the functional can be applied to a function by evaluating the function at the points, multiplying
by the corresponding weights, and then summing. For example, functionals 𝑙4 to 𝑙7 use a set of quadrature points and
weights. The Python element is then created with basix.ufl.create_custom_element, and any of the functionality of Basix
or UFL can immediately be used.
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1 import numpy as np

2

3 import basix

4 import basix.ufl

5

6 # Coefficients defining the polynomial space in terms of orthogonal polynomials on the cell

7 wcoeffs = np.eye(8, 9)

8

9 geometry = basix.geometry(basix.CellType.quadrilateral)

10 topology = basix.topology(basix.CellType.quadrilateral)

11

12 # Points and weights used to define functionals on each sub -entity of the cell

13 x = [[], [], [], []]

14 M = [[], [], [], []]

15

16 # Associate one point evaluation with each vertex

17 for v in topology [0]:

18 x[0]. append(np.array(geometry[v]))

19 M[0]. append(np.ones([1, 1, 1, 1]))

20

21 # Associate an integral with each edge

22 pts , wts = basix.make_quadrature(basix.CellType.interval , 1)

23 for e in topology [1]:

24 v0 = geometry[e[0]]

25 v1 = geometry[e[1]]

26 # Map points on the reference interval to each edge of the quadrilateral

27 edge_pts = np.array([v0 + p * (v1 - v0) for p in pts])

28 x[1]. append(edge_pts)

29

30 mat = np.zeros((1, 1, pts.shape[0], 1))

31 mat[0, 0, :, 0] = wts

32 M[1]. append(mat)

33

34 # Associate 0 DOFs with the interior of the cell

35 x[2]. append(np.zeros([0, 2]))

36 M[2]. append(np.zeros([0, 1, 0, 1]))

37

38 tnt_degree1 = basix.ufl.custom_element(

39 basix.CellType.quadrilateral , [], wcoeffs , x, M, 0,

40 basix.MapType.identity , basix.SobolevSpace.H1, False , 1, 2)

basix_element.py

Fig. 7. Creating a degree 1 TNT element in Basix. The polynomial space PTNT is defined by wcoeffs (line 7); in this example wcoeffs is
an 8 × 9 matrix that is an 8 × 8 identity plus an extra column of zeros. The functionals in LTNT are defined by a set of points x and
a 4-dimensional array M for each sub-entity of the cell (lines 13 to 36). The element is initialized in lines 38–40 using Basix’s UFL
submodule; the element can then be used directly with UFL.

6 MESHES

DOLFINx supports distributed, unstructured meshes composed of simplex or tensor-product cells with arbitrary overlaps
(support for mixed-topology meshes and multiple geometric map types is experimental). Local and uniform refinement
of distributed simplex-cell meshes is provided using the algorithm from [89], which relies solely on scalable local
neighborhood communication. ‘Sub-meshes’ can be created from subsets of mesh entities. Since a sub-mesh is a full
Mesh object, any functionality that works on meshes also works on sub-meshes. Sub-meshes are useful for multiphysics
and coupled problems where different fields are defined over different domains (see [37]). Mesh representation follows
the graph-centric approach described in [74] for non-distributed meshes (see also [68]), but the algorithms and data
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structures differ. A full discussion of mesh data structures, algorithms and parallel treatment would require extensive
treatment; we limit our discussion to some main points.

Mesh topology and geometry are separated in DOLFINx; a Mesh consists of (i) a Topology and (ii) a Geometry object. In
its simplest form, a mesh Topology holds the cells of a mesh, with a cell defined by its vertices. Algorithms are provided
that can number (in parallel) entities of other topological dimensions (i.e. edges and faces), which are required when,
for example, creating high-order function spaces. A mesh Topology can also compute and store the connectivity between
entities of different topological dimensions.

A mesh Geometry describes the geometry of the cells; it consists of (i) a finite element (typically Lagrange) that provides
the map for how a cell is transformed from a reference configuration to a physical configuration, (ii) the coordinates of
the geometric DOFs, and (iii) a DOF map that for each cell gives the indices of the geometric DOFs. Geometry is templated
over the float type used to represent the mesh geometry.

6.1 Creating meshes

Distributed meshes can be created through interfaces at different levels of abstraction. At the lowest level, users can
create a Topology and a Geometry directly, but this is uncommon since all partitioning, distribution, separation of geometric
and topological data, and local data reordering for data locality must have already been applied.

Most users instead call the higher-level create_mesh function, which facilitates fully-distributed and memory-scalable
mesh creation. The following C++ example creates a mesh of two quadrilateral cells.

14 auto e = std:: make_shared <basix:: FiniteElement <float >>(

15 basix:: create_element <float >(

16 basix:: element :: family ::P, basix::cell::type:: quadrilateral , 1,

17 basix:: element :: lagrange_variant ::unset ,

18 basix:: element :: dpc_variant ::unset , false));

19 fem:: CoordinateElement <float > cmap(e);

20 std::vector <float > x{0.0, 0.0, 1.0, 0.0, 2.0, 0.0,

21 0.0, 1.0, 1.0, 1.0, 2.0, 1.0};

22 std::vector <std::int64_t > cells{0, 1, 3, 4, 1, 2, 4, 5};

23 mesh::Mesh mesh

24 = mesh:: create_mesh(MPI_COMM_WORLD , cells , cmap , x, {x.size() / 2, 2},

25 mesh:: GhostMode ::none);

mesh.cpp

The float type for the mesh geometry is inferred from the coordinate array x, and embedding dimension is determined
from the coordinate array’s shape (a quadrilateral cell mesh could be embedded in two- or three-dimensions). The input
data may be distributed across any of the MPI processes or reside on one process. Internally, DOLFINx constructs a
distributed dual graph, partitions the cells, reorders them for data locality, and then creates the distributed mesh.

By default, partitioning is handled by a graph partitioning library e.g. PT-SCOTCH [26], ParMETIS [64] or KaHiP [99],
but the functional-oriented design of DOLFINx easily allows users to provide their own partitioning function:

17 auto e = std:: make_shared <basix:: FiniteElement <float >>(

18 basix:: create_element <float >(

19 basix:: element :: family ::P, basix::cell::type:: quadrilateral , 1,

20 basix:: element :: lagrange_variant ::unset ,

21 basix:: element :: dpc_variant ::unset , false));

22 fem:: CoordinateElement <float > cmap(e);
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23 std:: size_t rank = dolfinx ::MPI::rank(comm);

24 std::vector <float > x;

25 std::vector <std::int64_t > cells;

26 // We assign data on only one process

27 if (rank == 0)

28 {

29 x = {0.0, 0.0, 1.0, 0.0, 2.0, 0.0,

30 0.0, 1.0, 1.0, 1.0, 2.0, 1.0};

31 cells = {0, 1, 4, 3, 1, 2, 5, 4};

32 }

33

34 auto part_fn

35 = []( MPI_Comm comm , int nparts , std::vector <mesh::CellType > cell_type ,

36 const std::vector <std::span <const std::int64_t >>& cells)

37 -> graph:: AdjacencyList <std::int32_t >

38 {

39 // Compute destination rank(s) for each cell in cells. Cells sent to

40 // more than one rank will be ghosts on some ranks. Return

41 // destinations for each cell as an adjacency list.

42

43 // Leave cells on current rank

44 std:: size_t num_vertices_per_cell = dolfinx ::mesh:: num_cell_vertices(cell_type.front());

45 std::vector <std::int32_t > dest(cells.front().size()/num_vertices_per_cell , dolfinx ::MPI::rank(

comm));

46 std::vector <std::int32_t > offsets(dest.size() + 1);

47 std::iota(offsets.begin(), offsets.end(), 0);

48 return graph:: AdjacencyList <std::int32_t >(dest , offsets);

49 };

50 mesh::Mesh mesh = mesh:: create_mesh(comm , comm , cells , cmap , comm , x,

51 {x.size() / gdim , gdim}, part_fn);

mesh_custom_part.cpp

Similarly, users can pass custom cell re-ordering functions. The Python interface for creating a mesh and providing
custom partitioning and reordering functions is very similar.

The DOLFINx file input interfaces read topology and geometry data from parallel file formats, with each process
reading a chunk of data, and then call create_mesh. For unsupported formats, users can read the data themselves, apply
any required permutation to match DOLFINx’s conventions, and then call create_mesh. Programmatic mesh generation
libraries, such as Gmsh [46], can also be used for distributed mesh generation without intermediate output to disk.
DOLFINx also provides built-in mesh generators for some simple geometric shapes.

6.2 Arranging and accessing mesh data

A Topology object stores an IndexMap for each created entity type that describes how the entities are numbered and
distributed (see section 4.1). Similarly, a Geometry object has an index map to describe the ownership of the geometry
DOFs across processes. For example, figure 8 shows a mesh distributed across three processes and the index maps for
the cells on each process. Similarly, figure 9 illustrates the distribution of vertices of the mesh and the corresponding
index maps.
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Fig. 8. The cell index map for a mesh of triangles distributed over three processes. Each cell is owned by exactly one process but
may appear as a ghost on other processes. Ghosts are stored at the end of the index map array. Here, cells that are not owned by a
particular process but that share a facet with an owned cell have been added as ghost cells. Color is added as a visual aid to indicate
the process owning each index.
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Fig. 9. The index maps for the vertices of the mesh shown in figure 8. Each process is aware of the vertices of all of the cells in its
index map in figure 8. Color is added as a visual aid to indicate the process owning each index.
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Connectivities (incidence relationships) between entities in DOLFINx follow a graph-centric approach. The (𝑑0, 𝑑1)
connectivity is a bipartite graph linking 𝑑0-dimensional entities to incident 𝑑1-dimensional entities. Adjacency lists
provide a natural data structure for this, which are stored as simply a data array and an array of offsets. This conforms
to our data-oriented approach and allows mesh data to be operated on efficiently and shared between libraries without
overhead. The following example illustrates computing and accessing the vertex-to-cell connectivity data, which could
then be copied to a GPU for on-device computation.

10 auto mesh = dolfinx ::mesh:: create_rectangle <double >(

11 comm , {{{0.0 , 0.0}, {2.0, 1.0}}} , {32, 16}, dolfinx ::mesh:: CellType :: triangle);

12

13 int tdim = mesh.topology ()->dim();

14 mesh.topology ()->create_connectivity(

15 0, tdim); // Connectivity vertices -> cells

16 auto c = mesh.topology ()->connectivity (0, tdim);

17

18 // Access underlying connectivity data

19 std::span <const std::int32_t > c_data = c->array();

20 std::span <const std::int32_t > c_offsets = c->offsets ();

21

22 // Copy data to GPU for operations on the device

23 // ...

mesh_data.cpp

6.3 Cell orientation encoding

A distinguishing feature of DOLFINx is its support for high-order finite element spaces on general unstructured meshes
without requiring special cell orderings. This is enabled by computing, for each cell, the local orientation of each
sub-entity relative to a reference orientation and encoding this information into a single 32-bit integer for each cell. In
DOLFINx, the vertices of a cell each have a local index based on the reference numbering of the cell (see figure 6) and a
global index (the vertex’s index in the mesh topology). Edges are oriented from low-to-high vertex index. We use one
bit per edge to store whether the local and global edge orientations agree. For faces, the lowest-indexed vertex is used
as an origin, and the face is oriented based on the direction towards the next-lowest-indexed vertex connected by an
edge. For each face, two bits encode the number of rotations needed to align the local and global origins, and a third bit
encodes whether a reflection is needed. (For faces with more than four vertices, more than two bits would be required
for rotations.) Tetrahedral, square-based pyramid, triangular prism, and hexahedral cells require 18, 23, 24, and 30 bits,
respectively, to encode this information, and so can be stored in a single 32-bit integer per cell.

7 FUNCTION SPACES, FUNCTIONS, AND INTERPOLATION

DOLFINx supports the creation of arbitrary-degree function spaces for a wide range of finite elements. Functions can
be interpolated into finite element spaces and from one space to another. Moreover, user-defined expressions can be
written in UFL and used to postprocess simulation results.
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7.1 Degree-of-freedom maps

A DOF map specifies which global DOF numbers are associated with the local DOFs on each cell. DOLFINx constructs
distributed DOF maps from the mesh topology and the layout of DOFs on the reference cell. The DOF layout is
element-specific and associates each DOF of an element with either a vertex, an edge, a face, or the cell. This information
is provided by Basix and is encapsulated in the ElementDofLayout class. The mesh topology is used to ensure that the local
DOFs associated with mesh entities that are shared by multiple cells are all assigned the same global DOF number. A
DofMap object stores the DOF map data in an adjacency list.

7.2 Function spaces and finite element functions

Modeling the mathematical structure of a function space, DOLFINx function spaces consist of a mesh (the domain), an
element (the local space) and a DOF map (required global regularity). In the simplest case, a function space is created
from a mesh and a finite element type, e.g. a (continuous) Lagrange space of degree 2 can be created by:

1 msh = mesh.create_mesh (...)

2 V = fem.functionspace(msh , ("Lagrange", 2))

A strength is the capability to create function spaces on mixed elements. The snippet below illustrates the creation of a
mixed finite element space composed of Raviart–Thomas and discontinuous Lagrange spaces.

1 msh = mesh.create_mesh (...)

2 E0 = basix.ufl.element("Raviart -Thomas", msh.basix_cell (), 3)

3 E1 = basix.ufl.element("DG", msh.basix_cell (), 2)

4 E = basix.ufl.mixed_element ([E0, E1])

5 V = fem.functionspace(msh , E)

Mixed elements can be nested arbitrarily. The degree-of-freedom map is constructed from data associated with the
elements. It is also possible to construct a function space with a user-provided DOF map.

A number of operations on function spaces are supported, including extracting subspaces (views) and collapsing
subspaces (creating a new space from a view). One of the most powerful features is interpolation into and between
spaces, which is presented in section 7.3.

Finite element functions can be created on a given function space. A Function is an object that holds a function space
and the DOFs coefficients associated with the function. Functions with different scalar types for the coefficient values
can be created as follows:

1 V = fem.functionspace (...)

2 u0 = fem.Function(V, dtype=np.float64)

3 u1 = fem.Function(V, dtype=np.complex128)

Analogous to function spaces, sub-functions (views) can be extracted and ‘collapsed’, and interpolated to and from.

7.3 Interpolation

DOLFINx supports the interpolation of user-provided expressions into finite element spaces. This builds on the Basix
infrastructure for defining finite elements via the dual basis.

Let 𝑓 be an expression that we want to interpolate into a finite element space. The (local) interpolant of 𝑓 is denoted
by 𝑓 ∈ P and is defined by

𝑓 (𝒙) =
𝑛−1∑︁
𝑖=0

𝑙𝑖 (𝑓 )𝜙𝑖 (𝒙),
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where 𝑙𝑖 ∈ L is the element dual basis and 𝜙𝑖 is the (primal) basis that spans the finite element space P.
The snippet below illustrates the interpolation of the expression 𝑓 (𝑥) = sin π𝑥 sin π𝑦 into a continuous Lagrange

space of degree 3. It also highlights the functional design – the user provides the mathematical expression to apply to
the (coordinate) data. Vectorized evaluation avoids performance issues that can affect interpreted languages, and it also
permits the library to make decisions on how many points should be evaluated each time.

8 V = functionspace(msh , ("Lagrange", 3))

9 u = Function(V)

10 u.interpolate(lambda x: np.sin(np.pi * x[0]) * np.sin(np.pi * x[1]))

7.3.1 Point evaluations versus integral moment definitions of the dual basis. To obtain optimal interpolation accuracy
for elements with integral moment DOFs, DOLFINx uses quadrature evaluation of integral moments by default, rather
than simple point evaluations, as often used in other finite element libraries (see e.g. [4, 38, 66, 82]).

Several finite elements have integral moment DOFs, including N1 [86], Nédélec second kind (N2) [87], RT [92],
serendipity [8], and Brezzi–Douglas–Marini (BDM) [23] elements among others. For example, the DOFs for a degree 𝑝
N1 element on a tetrahedron are:

• on each edge, moments of the tangential components against a basis of the set of degree 𝑝 − 1 polynomials on
an interval;

• (if 𝑝 > 1) on each face, moments of each component against a basis of the set of degree 𝑝 − 2 polynomials on a
triangle;

• (if 𝑝 > 2) on the interior of the cell, moments of each component against a basis of the set of degree 𝑝 − 3
polynomials on a tetrahedron.

In the lowest-order case (𝑝 = 1), the DOFs are simply integral moments against a constant on each edge, so they can be
replaced by point evaluations of the tangential component of the function at the midpoint of each edge. However, for
higher-degree elements, replacing integral moment evaluationwith point evaluations results in sub-optimal interpolation
accuracy. We demonstrate this by comparing the default (integral-moment-based) N1 element in DOLFINx with a
point-evaluation-based N1 element (implemented using Basix’s custom element interface, see section 5.2). We interpolate
the function 𝒈(𝑥,𝑦, 𝑧) = (sin(8𝑥), 2𝑦 cos(3𝑧), 𝑥) and show the interpolation error in figure 10 as a function of both cell
size ℎ and polynomial degree. We see that the integral-moment elements converge at the expected theoretical rate under
ℎ-refinement, whereas point-evaluation elements are sub-optimal by one degree. Moreover, for a given polynomial
degree, integral-moment-based elements are one or two orders of magnitude more accurate.

Despite the added complexity of proper integral-moment functional evaluation, the DOLFINx interface is very
straightforward. For example, a function can be interpolated in a degree 3 N1 space as follows:

121 g_h = dolfinx.fem.Function(nedelec)

122 g_h.interpolate(lambda x: (np.sin(8*x[0]), 2**x[1]*np.cos(3*x[2]), x[0]))

7.3.2 Expressions. Expressions in DOLFINx allow symbolic UFL expressions to be evaluated. This is particularly helpful
when postprocessing simulation data to compute derived quantities, such as the stress or strain from a displacement
field. For example, figure 11 creates an Expression to calculate the von Mises stress, represented in a discontinuous
Lagrange finite element space.
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Fig. 10. The interpolation error when the function 𝒈 (𝑥, 𝑦, 𝑧 ) = (sin(8𝑥 ), 2𝑦 cos(3𝑧 ), 𝑥 ) is interpolated into a space of N1 elements
on a tetrahedron defined using either point evaluation (circles) or integral moment (squares) functionals. The left plot shows the
errors as we increase 𝑝 on a mesh of the unit cube with 750 cells. The right plot shows the errors for a degree 3 element as we decrease
ℎ, where the dashed lines show O(ℎ2 ) and O(ℎ3 ) convergence.

To see how this works, we consider the simpler case of computing the derivative of a linear continuous Lagrange
function 𝑓 ∈ P1 in the 𝑥1-direction, yielding a scalar-valued degree 0 Lagrange function 𝑔 ∈ P0. We have

𝑔(𝒙) = 𝜕𝑥1 𝑓 (𝒙) =
𝑚−1∑︁
𝑖=0

𝜓𝑖 (𝒙)𝑙𝑖

(
𝑛−1∑︁
𝑗=0

𝜕𝑥1𝜙 𝑗 𝑓𝑗

)
=

𝑚−1∑︁
𝑖=0

𝑛−1∑︁
𝑗=0

𝜓𝑖 (𝒙)𝑙𝑖 (𝜕𝑥1𝜙 𝑗 ) 𝑓𝑗 . (3)

Here 𝑙𝑖 are the𝑚 elements of the dual basis of P0 with associated vector-valued basis functions𝜓𝑖 , 𝜙 𝑗 are the 𝑛 basis
functions associated with P1 and 𝑓𝑗 are the coefficients of 𝑓 . Computing 𝑔 (or equivalently, its coefficients 𝑔𝑖 ) requires (i)
the evaluation of the derivatives of the basis functions 𝜙𝑖 at functionals in the dual basis of 𝑔, (ii) their contraction with
the coefficients of 𝑓 , and (iii) assembly into the global vector of coefficients 𝑔𝑖 associated with 𝑔. FFCx can generate a
local expression kernel that performs the first two operations, and DOLFINx provides the necessary routines to execute
expression kernels over cells.

7.3.3 Interpolation between elements. Fast interpolation between different finite element spaces, including to/from
elements with moment functionals, is also supported in DOLFINx. This is useful in a range of applications, including
for visualization. For example, 𝐻 (div)- and 𝐻 (curl)-conforming finite element spaces can be visualized exactly by
interpolating into a sufficiently rich discontinuous Lagrange space prior to visualization.

8 ASSEMBLY

Assembling finite element forms into matrices, vectors, and scalars is central to any finite element library. This
involves iterating over mesh entities, computing the local element tensor using a finite element kernel, and adding the
contributions into the correct locations.

Assembly performance depends heavily on the performance of the element kernel. Since the PDE and element type
determine the kernel, users often need to write problem-specific kernels in traditional finite element libraries.

DOLFINx eases the burden of kernel creation by using a domain-specific language (UFL) and a code generate FFCx to
automatically generate optimised finite element kernels from a high-level, mathematical description. This approach can
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18 def sigma(v):

19 """An expression for the stress given a displacement field v."""

20 def eps(v): return sym(grad(v))

21 return 2.0 * mu * eps(v) + lmbda * tr(eps(v)) * Identity(len(v))

22

23

24 # Define deviatoric and von Mises stress as UFL expressions

25 sigma_dev = sigma(uh) - (1 / 3) * tr(sigma(uh)) * Identity(len(uh))

26 sigma_vm = sqrt ((3 / 2) * inner(sigma_dev , sigma_dev))

27

28 # Interpolate von Mises stress into a finite element space

29 W = fem.functionspace(msh , ("Discontinuous Lagrange", 0))

30 interpolation_points = W.element.interpolation_points

31 sigma_vm_expr = fem.Expression(sigma_vm , interpolation_points)

32 sigma_vm_h = fem.Function(W)

33 sigma_vm_h.interpolate(sigma_vm_expr)

expression.py

Fig. 11. Interpolating a UFL expression of von Mises stress of a continuous vector-valued finite element solution into a discontinuous
scalar-valued finite element space. For brevity, we omit the solution of the linear elasticity problem.

be highly-effective and save time for a wide range of cases. However, we stress that DOLFINx also supports a traditional
workflow where users provide their own element kernel instead of relying on generated code. This is an important
departure from legacy DOLFIN, which also featured automatic kernel generation but could not easily support cases
which fell outside of the abstractions of UFL; requiring code generation can be a significant burden when exploring
novel numerical schemes. By contrast, the data- and functional-oriented design of DOLFINx retains the attractive
features of DOLFIN and overcomes its limitations by supporting a range of kernel creation approaches: generated
kernels (C++ or Python); JIT compiled Numba kernels (Python); and hand-coded, compiled kernels with a C interface
(C++ or Python). Additionally, these approaches can be combined. Novel is the support for custom, performant and
parallel assembly functions in Python using Numba.

8.1 Assembling generated kernels

Finite element forms expressed in UFL can be automatically complied by FFCx and assembled over mesh entities by
DOLFINx into tensors. In C++, the generated code can be compiled into a program. In Python, the code is JIT compiled
using CFFI [96] and passed to a DOLFINx assembly function. The snippet below demonstrates the assembly of a mass
operator into a DOLFINx native distributed sparse matrix using single-precision complex floating point numbers.

1 V = fem.functionspace (...)

2 u, v = ufl.TrialFunction(V), ufl.TestFunction(V)

3 a = ufl.inner(u, v) * ufl.dx

4 a = fem.form(a, dtype=np.complex64) # Compile the bilinear form into a concrete instance

5 A = fem.assemble_matrix(a)

6 A.scatter_reverse ()

In line 3, a is an abstract, symbolic representation of the form. It can be further manipulated using UFL functions. It can
be compiled into a finite element kernel using the form function (line 4). This is made explicit in DOLFINx so that users
can control when JIT compilation occurs to better manage resources. It also avoids opaque memory resource demands,
avoids mutable states that make programs harder to reason with, and discourages user code that introduces repeat
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preprocessing of a UFL form, which can have a non-negligible cost. Users have complete control over compilation
parameters; for example, the same abstract form a can be compiled with different scalar types:

1 a0 = fem.form(a, dtype=np.float32)

2 a1 = fem.form(a, dtype=np.complex64)

We avoid hidden caching or dynamic attaching of data to objects, e.g. the sparse matrix is not attached to the form a,
as this can introduce opaque, and sometimes unnecessary, increases in memory usage. Except in the very highest level
interfaces, DOLFINx does not hide parallel communication steps. Attempting to hide communication steps in many
cases introduces more communication operations than are required as the library cannot anticipate how a user will
next use an object.

The C++ interface code for the same operation is very similar, as shown by the following snippet:

21

22 auto element = basix:: create_element <float >(

23 basix:: element :: family ::P, basix::cell::type::triangle , 1,

24 basix:: element :: lagrange_variant ::unset ,

25 basix:: element :: dpc_variant ::unset , false);

26

27 auto V = std:: make_shared <fem:: FunctionSpace <float >>(

28 fem:: create_functionspace <float >(mesh , std:: make_shared <fem:: FiniteElement <float >>(element)));

29 auto a = std:: make_shared <fem::Form <float >>(

30 fem:: create_form <float >(* form_mass_a , {V, V}, {}, {}, {}, {}));

mass_form.cpp

In this case, form_mass_a is a pointer to a form struct (generated by FFCx) which provides a kernel.

8.2 Local kernel interface

Local kernels that are executed by the DOLFINx assembly functions have the following C signature, as defined in
Unified Form-assembly code for FEniCSx (UFCx) [16]:

1 void kernel(T* restrict A,

2 const T* restrict w,

3 const T* restrict c,

4 const T2* restrict coordinate_dofs ,

5 const int* restrict entity_local_index ,

6 const uint8_t* restrict quadrature_permutation ,

7 void* custom_data);

where T is the data type (e.g. float, double, float, float _Complex or double _Complex), T2 is the geometry data type (e.g. float or
double) and A is the local element tensor (as an in/out argument). The array w contains the coefficients attached to the form.
This coefficient array is a list of finite element coefficient values for the given cell, ordered as (𝑐0, . . . , 𝑐𝑁𝑐−1, 𝑑0, · · · , 𝑑𝑁𝑑−1, . . . ),
where 𝑐𝑖 are the coefficients of a function 𝑐 in a finite element space with 𝑁𝑐 DOFs per cell, and 𝑑𝑖 are from a space
with 𝑁𝑑 DOFs per cell. The array c contains constants (of any rank) attached to the form. The array coordinate_dofs

holds the geometric degrees-of-freedom values for a cell. The integer entity_local_index is the local index (relative to
the cell) of the sub-entity that the kernel is executed over, and quadrature_permutation points to an integer that encodes
how the sub-entity should be permuted to ensure that the orientation of the sub-entity is agreed upon when viewed
from two neighboring cells. The final custom_data argument can be used to pass any additional information into the
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41 @numba.cfunc(c_signature , nopython=True)

42 def tabulate_A(A_, w_, c_, coords_ , entity_local_index ,

43 cell_orientation , custom_data):

44 # Wrap pointers as a Numpy arrays

45 A = numba.carray(A_, (dim , dim))

46 coordinate_dofs = numba.carray(coords_ , (3, 3))

47

48 x0, y0 = coordinate_dofs [0, :2]

49 x1, y1 = coordinate_dofs [1, :2]

50 x2, y2 = coordinate_dofs [2, :2]

51

52 # Compute Jacobian determinant and fill the output array with

53 # precomputed mass matrix scaled by the Jacobian

54 detJ = abs((x0 - x1) * (y2 - y1) - (y0 - y1) * (x2 - x1))

55 A[:] = detJ * M_hat

numba_custom_kernel.py

Fig. 12. A Numba function that captures the already-computed cell mass matrix on the reference cell 𝑅̂ as a compile-time constant
M_hat to compute the cell mass matrix on a physical cell 𝑅.

kernel by casting to a void pointer. For example, this argument may be used if a user is writing updated kernels for
cut finite element methods [25] where custom quadrature rules are needed for each cut cell. Generated or hand-coded
kernels that conform to this interface can exploit the built-in DOLFINx assembly functions. The simplicity of the kernel
interface eases possible integration into other finite element solvers, e.g. [80].

8.3 Custom kernels and assemblers

The data- and function-oriented design of DOLFINx allows users to implement custom operations by either (i) supplying
a custom kernel to the built-in assembly functions, (ii) use their own assembly functions with C kernels generated from
FFCx, or (iii) provide their own kernel and own assembler. These approaches can even be combined within a single
application. In Python, both kernels and assemblers can be written using Numba [71], which JIT compiles a subset of
Python and NumPy code to machine code using LLVM. Alternatively, CFFI can be used to compile C functions that
can be used in Python and called from within the existing DOLFINx C++ assemblers. For all cases, the functionality is
enabled by the data- and function-oriented design of DOLFINx. We demonstrate these features in this section, but for
clarity the examples presented are deliberately simple and could also be implemented using code generation.

8.3.1 Custom kernels. We first consider creating an element matrix kernel using Numba. The high-level workflow is
shown in figure 4. Consider assembling a mass matrix on affine triangles 𝑅 using degree 1 Lagrange basis functions
with local matrix entries A := (𝑎𝑖 𝑗 ) ∈ R3×3 given by

𝑎𝑖 𝑗 =

∫
𝑅

𝜑𝑖 · 𝜑 𝑗 d𝑥 = |det 𝐽 |
∫
𝑅̂

𝜑𝑖 · 𝜑 𝑗 d𝑥 = |det 𝐽 | 𝑚̂𝑖 𝑗 . (4)

The matrix M̂ := (𝑚̂𝑖 𝑗 ) ∈ R3×3 is a mass matrix on the reference triangle 𝑅.
The Numba code for this kernel is shown in figure 12. The c_signature in the decorator has type numba.types and

defines a C interface for the function, which conforms to the interface defined in section 8.2. FFCx contains helper
functions to construct c_signature.
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43 @numba.cfunc(c_signature , nopython=True)

44 def tabulate_A_wrapped(A_, w_ , c_, coords_ , entity_local_index ,

45 cell_orientation=ffi.NULL , custom_data=None):

46 A = numba.carray(A_, (dim , dim))

47

48 # Allocate new Numpy array where temporary tabulation is stored

49 M = np.zeros_like(A)

50

51 w = numba.carray(w_, (dim , ))

52 c = numba.carray(c_, (1, ))

53

54 # Call the compiled kernel (from_buffer is required to extract the

55 # underlying data pointer)

56 ufcx_kernel(ffi.from_buffer(M), ffi.from_buffer(w),

57 ffi.from_buffer(c), coords_ , entity_local_index ,

58 cell_orientation , empty_void_pointer ())

59

60 # Row sum matrix M and store into diagonal of the output matrix A

61 np.fill_diagonal(A, np.sum(M, axis =1))

numba_wrapped_kernel.py

Fig. 13. A Numba kernel that calls an FFCx generated kernel (ufcx_kernel) and applies row sum lumping.

A pointer to the Numba compiled function can then be passed to the Form initializer, creating a form object equipped
with our custom kernel. Any required constants of coefficients can also be passed to the form initializer. Additional
data can also be captured as a compile-time constant from outside of the kernel’s scope.

The code generation capabilities of FFCx can be composed with lower-level Numba operations. A user can compile
UFL forms with the FFCx JIT compiler, and then call that kernel from within a custom Numba kernel. This can be useful
for implementing operations where one may wish to modify or view the output of a standard kernel, e.g. to apply static
condensation, mass matrix lumping or to inspect the local element matrix. Figure 13 shows an example of calling a
FFCx generated kernel from within a Numba kernel. The compiled kernel ufcx_kernel computes the cell mass matrix A.
As an illustrative example, the cell mass matrix is then modified using the method of row-sum lumping. 5

8.3.2 Custom assemblers. The data-oriented approach followed by DOLFINx makes it possible to write complete and
efficient assembly functions in other languages, including Python. The data underpinning key objects, including meshes
and DOF maps, can be easily accessed as C data types and shared across language interfaces.

As an example, in figures 14 and 15 we show a Numba CUDA assembler for the action of the mass matrix 𝑎𝑖 𝑗 on a
vector 𝑓𝑗 into a vector 𝑢𝑖

𝑢𝑖 = 𝑎𝑖 𝑗 𝑓𝑗 , (5)

with 𝑎𝑖 𝑗 defined similarly to section 8.3.1, except that we allow for the Lagrange finite element basis functions to be of
arbitrary polynomial order. This GPU-accelerated kernel could be used inside a Krylov solver to compute the operator
action without explicitly forming the sparse matrix 𝐴. For further details we refer to the figure captions.

8.4 Degree-of-freedom permutations and transformations

For high-degree elements, neighboring cells must agree on the orientation of their shared sub-entities. For meshes of
simplex (i.e. interval, triangle or tetrahedron) cells, this can be achieved by a suitable local ordering of the vertices of
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3 import numba

4 import numba.cuda as cuda

5 import numpy as np

6 from mpi4py import MPI

7

8 import basix

9 import dolfinx

10 import ufl

cuda_assembler.py

16 dtype = np.float32

17

18 mesh = dolfinx.mesh.create_unit_cube(comm , 100, 100, 100,

19 dolfinx.mesh.CellType.hexahedron , dtype=dtype)

cuda_assembler.py

71 # Assemble the action u = Mf

72

73 @cuda.jit

74 def assemble_vector(u, f, dofmap , M_hat , detJ):

75 """Kernel to assemble the mass action u = \\int f v dx.

76

77 - One thread per degree -of-freedom vector

78 - One cell per block

79

80 Args:

81 u: Vector to assemble action into.

82 f: Vector to compute action on.

83 dofmap: cell to degree of freedom map.

84 M_hat: Mass matrix on the reference cell.

85 detJ: Determinant of the Jacobian for each physical cell.

86 """

87 thread_id = cuda.threadIdx.x # Local thread ID (max: 1024)

88 block_id = cuda.blockIdx.x # Block ID (max: 2147483647)

89

90 # f, restricted to element , shared across block (gather)

91 _f = cuda.shared.array(shape=( num_dofs_per_cell ,), dtype=dtype)

92 dof = dofmap[block_id , thread_id]

93 _f[thread_id] = f[dof]

94 cuda.syncthreads ()

95

96 # Each thread computes the dot product of row i of M with _f

97 val = 0.0

98 for i in range(num_dofs_per_cell):

99 val += M_hat[thread_id , i] * _f[i]

100

101 val *= detJ[block_id]

102

103 # scatter val into global u

104 cuda.atomic.add(u, dof , val)

cuda_assembler.py

Fig. 14. Part 1: A custom assembler written using Numba and CUDA. A kernel to compute the action of the mass matrix on a vector
𝒖 = A𝒇 . This kernel is executed in figure 15. For brevity we do not show the computation of | det 𝐽 | via another CUDA kernel.
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106 e = basix.ufl.element("Lagrange", cell_type , degree=5, dtype=dtype)

107 V = dolfinx.fem.functionspace(mesh , e)

108

109 # Function to compute action on

110 f = dolfinx.fem.Function(V, dtype=dtype)

111 f.interpolate(lambda x: x[1])

112

113 # Create quadrature rule of sufficient order

114 pts , wts = basix.make_quadrature(cell_type , e.degree * 2 + 1)

115

116 # Compute mass matrix on reference cell

117 phi = e.tabulate(0, pts)[0, :, :]

118 M_hat = np.asarray(np.einsum("qi,q,qj->ij", phi , wts , phi), dtype=dtype)

119

120 u = dolfinx.fem.Function(V, dtype=dtype)

121

122 # Move required data to the device for assembling action

123 dofmap_d = cuda.to_device(V.dofmap.list)

124 u_d = cuda.to_device(u.x.array)

125 f_d = cuda.to_device(f.x.array)

126 M_hat_d = cuda.to_device(M_hat)

127

128 # Get the number of blocks and threads per block

129 num_dofs_per_cell = e.dim

130 num_blocks = num_cells

131 threads_per_block = num_dofs_per_cell

132

133 # Invoke kernel with the specified grid configuration and arguments

134 assemble_vector[num_blocks , threads_per_block ](u_d , f_d , dofmap_d , M_hat_d , detJ_d)

135 cuda.synchronize ()

cuda_assembler.py

Fig. 15. Part 2: A custom assembler written using Numba and CUDA. The element mass matrix is computed, the necessary data is
transferred to the CUDA device, and the mass matrix action kernel defined in figure 14 is executed. For full discussion of CUDA
execution semantics (grid, block, thread) see e.g. [5].

each cell. An ordering approach can also be used for quadrilateral and hexahedral cells, but the ordering operation is
not local to each cell and is not possible to consistently order all hexahedral cell meshes [1, 59].

To achieve consistent sub-entity orientations in DOLFINx on arbitrary meshes, we use a method of DOF permutations
and transformations [105]. DOF permutations and transformations determine how the local basis functions and DOFs
should be adjusted to account for differences in the orientations of cell sub-entities on the reference cell and the physical
mesh. DOLFINx orients entities as described in section 6.3. DOF permutations and transformations are applied whenever
the reference orientations derived from the local indices do not match the physical orientations derived from the global
indices. This method allow us to use arbitrary degree finite elements on meshes of any cell type.

Consider a Lagrange element. Orientation differences for edges and faces can be accounted for by permuting the
DOF numbering. For example, if the direction of an edge on the reference cell disagrees with the direction of an edge
that it corresponds to in the physical mesh, the difference may be resolved by reversing the order of the global DOF
numbers assigned to each local DOF on that edge. Now consider a more general case, for example N1 elements [86] of
degree greater than one on a tetrahedron, for which the definition of the DOFs on each face includes dot products with
respect to tangent vectors on the face. The face tangent vectors on adjacent cells must be consistently aligned. In this
case, a DOF permutation is not adequate and a more general transformation is required [105].
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Function name Operation

FiniteElement::T_apply TA

FiniteElement::Tt_apply TTA

FiniteElement::Tinv_apply T−1A

FiniteElement::Tt_inv_apply T−TA

FiniteElement::T_apply_right AT

FiniteElement::Tt_apply_right ATT

FiniteElement::Tinv_apply_right AT−1

FiniteElement::Tt_inv_apply_right AT−T

Fig. 16. Summary of Basix DOF transformation functions that apply a transformation operator in-place to A.

8.4.1 Transformation operators. The value of a scalar finite element function 𝑓ℎ at some point within a cell can computed
as

𝑓ℎ = 𝒄T𝝓 = 𝒄̃T𝝓̃, (6)

where 𝒄 is a vector of DOFs (restricted to the cell), 𝝓 holds the basis functions, all relative to the physical cell ordering,
and 𝒄̃ and 𝝓̃ are the equivalents following the reference cell ordering. We encode a transformation in a matrix T such
that

𝝓 = T𝝓̃ .

Inserting this into (6) leads to 𝒄T𝝓 = 𝒄TT𝝓̃ = (TT𝒄)T𝝓̃ = 𝒄̃T𝝓̃, therefore vectors of DOFs transform according to

𝒄̃ = TT𝒄 .

While T is often orthogonal, this not the case for all elements (see [105, section 4.1.4]). It follows straightforwardly
that for an element matrix Ã ∈ C𝑚×𝑛 following the reference cell ordering that the matrix for the physical cell
ordering is A = T1ÃTT

2 , where T1 and T2 are the transformations associated with the test and trial function elements,
respectively. The algorithm used to compute T from the orientation of mesh entities and the definition of the element
degrees-of-freedom is presented in [106].

8.4.2 Transformation and permutation functions. Basix provides functions to apply the transformations from the
preceding section to data in-place. If the transformation is a permutation only, the Basix function FiniteElement::permute

applies the T operation to a vector, and FiniteElement::permute_inv applies the inverse transformation (T−𝑇 , since all
permutation operators are orthogonal). In practice, the permute functions are not called during assembly over cells,
but when constructing a DOF map. For elements that require a more general transformation, transformations must
be applied to cell-wise data, e.g. to restricted DOF arrays, local right-hand side vectors and element matrices. The
Basix-provided functions for applying the transformation T in-place are listed in figure 16.

The Basix permute and transform functions take as arguments the data to permute/transform and a 32-bit unsigned
integer that encodes the orientation of each cell sub-entity relative to the reference cell. Internally, Basix computes
(small) permutation or (small) transformation matrix operators for each cell sub-entity; one for each edge to apply the
effect of reversing an edge direction, and two for each face for applying the effect of rotations and reflections. The
transformations are then applied in-place (see [106]).
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For custom elements implemented using Basix, as presented in section 5.2, Basix determines the required transfor-
mations automatically.

8.4.3 Transformations for interpolation. When interpolating a function 𝑓 ∈ 𝑉 into a finite element space 𝑉ℎ , we get
from Basix the points on the reference cell where 𝑓 needs to be evaluated for interpolation, push these points forward
to the physical cells and then evaluate 𝑓 . The values of 𝑓 at evaluation points are then pulled back to the reference
cell, and we apply an element interpolation matrix to get the local coefficients 𝒄̃ on 𝑉ℎ for each cell. Since 𝒄 = T−T 𝒄̃ ,
we apply the function FiniteElement::Tt_inv_apply to compute 𝒄 . The same approach can be used when interpolating
between different finite spaces.

8.4.4 Transformations for custom kernels and assemblers in Python. For Numba-based custom kernels or assemblers
that require degree-of-freedom transformations beyond simple permutations, and therefore must be applied during
assembly, the submodule basix.numba_helpers provides efficient implementations of T_apply and Tt_apply_right.

9 LINEAR ALGEBRA

There exists a rich range of linear algebra libraries providing data structures and solvers, e.g. PETSc, Trilinos [112]
and Eigen [49]. Our experience is that third-party linear algebra libraries are best supported not through extensive
wrappers, but non-intrusively and allowing users direct access to the complete interface of the 3rd-party library. The
approach we advocate lends itself to sustainability, maintainability and extensibility, with users able to introduce new
linear algebra backends and use all features of the backend without modification of the DOLFINx library. It also avoids
hidden inconsistencies, where different libraries perform nominally similar operations differently.

We will show examples of how the functional and data-oriented interfaces supports such a non-intrusive design.

9.1 Vectors/arrays

DOLFINx provides a distributed vector (array) class (Vector) that builds on the IndexMap and Scatterer functionality
described in section 4. The class is templated over the scalar type and a container type (typically a std::vector);
templating over the container type allows control of where the vector data is placed in memory, e.g. on a host or
on a GPU device. Vectors are an example where performance dictates the storage layout, with the linear memory
model (contiguous) the only reasonable choice. Therefore, we do not encapsulate the storage. To interface with linear
algebra libraries, the DOLFINx Vector data can be wrapped by other libraries, e.g. by PETSc (C++ and Python) or NumPy
(Python).

DOLFINx assemblers for vectors assemble into memory wrapped by a std::span, which allows direct and no-copy
assembly in to any data structure that conforms to the requirements of std::span; examples include DOLFINx Vectors,
NumPy arrays, plain C-style arrays and many other array-like data structures.

9.2 Matrices and solvers

DOLFINx also provides a distributed CSR matrix class (MatrixCSR), which is templated over the scalar type and the
internal storage container types (like for Vector, this allows placement in host or device memory). The underlying CSR
data arrays can be accessed, allowing memory to be shared with other libraries, e.g. to create SciPy sparse matrices that
share data.

In general, sparse matrix data structures are considerably more complex than vectors, with a wide range of storage
formats, interfaces and implementations. Two main requirements are (i) initializing a sparse matrix and (ii) inserting
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into a sparse matrix. For formats that require a priori knowledge of the sparsity pattern, given a bilinear form a, the
code below illustrates how a matrix sparsity pattern can be constructed.

29 auto V = std:: make_shared <fem:: FunctionSpace <float >>(

30 fem:: create_functionspace <float >(mesh , std:: make_shared <fem:: FiniteElement <float >>(element)));

31 auto a = std:: make_shared <fem::Form <float >>(

32 fem:: create_form <float >(* form_mass_a , {V, V}, {}, {}, {}, {}));

33

34 la:: SparsityPattern pattern = fem:: create_sparsity_pattern (*a);

35 pattern.finalize ();

36 auto [nonzeros , row_offset] = pattern.graph();

sparsity_pattern.cpp

The last line above returns the adjacency list data for non-zero entries; nonzeros holds column indices for non-zero
columns and row_offset points to the start of each row in nonzeros. The SparsityPattern holds index map for the rows and
columns that describe the parallel layout and row/column index block sizes, which can also be accessed. By exposing
the sparsity as an adjacency list, a user can use the data to initialize a (distributed) sparse matrix. A native DOLFINx
sparse matrix can be constructed directly from a sparsity pattern, and for convenience native DOLFINx and PETSc
matrix factory functions are also provided:

38 la::MatrixCSR <float > A(pattern);

39 Mat B = la::petsc:: create_matrix(comm , pattern);

sparsity_pattern.cpp

Insertion into a sparse matrix is typically via a library function call. A conventional approach to supporting different
matrix backends is to wrap a linear algebra object with a native library class, possibly derived from a base class, to avoid
exposing the specific linear algebra backend directly across a library. This common pattern was followed by DOLFIN.
It can require a substantial amount of additional code and considerable wrapping of functionality of the third-party
library (which is inevitably never comprehensive), and the use of C++ classes can make working across languages more
difficult. In DOLFINx, different linear algebra libraries are supported by the functional design of DOLFINx assemblers,
with matrix assemblers accepting a function that inserts local contributions into a (sparse) matrix. DOLFINx matrix
assembly functions require an ‘insertion’ function with the following signature to be passed as an argument:

1 std::function <int(std::span <const std::int32_t >, std::span <const std::int32_t >, std::span <const T>)>

where the first two arguments are the row and column indices of the matrix to be added, respectively, and the last
argument holds the values to be inserted with T being a scalar type. Anonymous (lambda) functions make the creation
of insertion functions that require captured data straightforward. For example, to assemble into a PETSc matrix, we can
define:

29 auto V = std:: make_shared <fem:: FunctionSpace <PetscScalar >>(

30 fem:: create_functionspace <PetscScalar >(mesh , std:: make_shared <fem:: FiniteElement <PetscScalar

>>(element)));

31 auto a = std:: make_shared <fem::Form <PetscScalar >>(

32 fem:: create_form <PetscScalar >(* form_laplace_a , {V, V}, {}, {}, {}, {}));

33

34 la:: SparsityPattern pattern = fem:: create_sparsity_pattern (*a);

35 pattern.finalize ();

36 Mat A = la::petsc:: create_matrix(comm , pattern);
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19 V = functionspace(msh , ("Lagrange", 2, (msh.geometry.dim ,)))

20 Q = functionspace(msh , ("Lagrange", 1))

21 W = MixedFunctionSpace(V, Q)

22

23 (u, p) = TrialFunctions(W)

24 (v, q) = TestFunctions(W)

25 a = inner(grad(u), grad(v)) * dx + inner(p, div(v)) * dx + inner(div(u), q) * dx

26 a_blocked = form(extract_blocks(a))

27

28 A = assemble_matrix(a_blocked , kind="mpi")

29 A.assemble ()

blocked_stokes.py

Fig. 17. Snippet showing assembly of mixed discretisation of Stokes operator into a PETSc blocked sparse matrix.

37

38 auto add_vals = [A](std::span <const std::int32_t > rows ,

39 std::span <const std::int32_t > cols ,

40 std::span <const PetscScalar > vals)

41 {

42 PetscErrorCode ierr

43 = MatSetValuesLocal(A, rows.size(), rows.data(), cols.size(),

44 cols.data(), vals.data(), ADD_VALUES);

45 return ierr;

46 };

47

48 // Assemble bilinear form 'a' into matrix 'A'

49 fem:: assemble_matrix(add_vals , *a, {});

assemble_mat_petsc.cpp

In the lambda function syntax, [A] copies A (a pointer in this case) from the outer scope into the scope of the lambda
function. The DOLFINx assembly function calls the add_vals function to perform insertion. If, for example, the PETSc
matrix required a different integer pointer type, the lambda function can capture a memory buffer for copying integer
arrays prior to calling the PETSc function. DOLFINx uses this approach for assembly into its native sparse matrix
format, and for convenience provides insertion functions for PETSc matrices, including blocked and nested formats
appropriate for efficiently storing matrices associated with mixed finite element methods or multi-physics problems. A
simple example for the mixed discretisation of the Stokes problem is given in figure 17.

Assembly into other library formats, e.g. Trilinos or Eigen, is straightforward using the above pattern and in all cases
the core DOLFINx assembly code is unaware of the matrix library interface/implementation.

Once vectors and matrices have been assembled, handles to the underlying liner algebra objects and be accessed and
the full native library interfaces used to solve linear systems. For example, from Python the full petsc4py [12] or SciPy
interface can be used.

10 CONCLUSIONS

We have presented an overview of the design principles and implementation of the DOLFINx finite element library.
DOLFINx inherits the strengths of the earlier FEniCS library DOLFIN in providing a high level of mathematical
abstraction, exploiting code generation techniques for finite element kernels and providing C++ and Python interfaces,
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with the Python interface supported by JIT compilation. DOLFINx overcomes the shortcomings and criticisms of the
DOLFIN approach by following new design principles, leading to much greater extensibility, improved performance
and substantially improved cross-language support. Noteworthy is that DOLFINx is a very compact library, despite the
wide range of functionality that it supports, with the C++ component having fewer than 30 000 lines of code.

11 SUPPLEMENTARY MATERIALS

The source code for the snippets in this paper (MIT license), the source code to the FEniCSx components and a Docker
image containing an environment to run the snippets are available at [15]. The snippets in this paper are compatible
with DOLFINx 0.10.0, Basix 0.10.0, FFCx 0.10.1 and UFL 2025.2.0.
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GL Gauss–Legendre. 11
GLL Gauss–Lobatto–Legendre. 11

HHJ Hellan–Herrmann–Johnson. 11

I/O input/output. 3, 4

JIT just-in-time. 3, 4, 7, 9, 22, 24, 25, 32

MPI Message Passing Interface. 9

N1 Nédélec first kind. 11, 20, 21, 27
N2 Nédélec second kind. 11, 20
NumPy . 9

PETSc Portable, Extensible Toolkit for Scientific Computation. 3, 30, 31

RT Raviart–Thomas. 11, 20

TNT tiniest tensor. 12, 13

UFCx Unified Form-assembly code for FEniCSx. 23
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