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Abstract

Classical many-body systems out of thermal equilibrium exhibit a wealth of
collective behaviours without equilibrium equivalents. Whilst such collec-
tive behaviours are often seen as the linchpin towards understanding many
processes of living matter, they can hardly be directly predicted from the
particle-based dynamics of each constituent. Models specifying the dynamics
at individual level can be developed for numerical simulations to reproduce
those collective behaviours. Such particle-based models promote the effi-
ciency of simulations, whilst also capturing the most relevant model ingredi-
ents causing the collective behaviours of interest. Since collective behaviours
often occur at a length scale significantly larger than a single particle and
a time scale clearly slower than single-particle fluctuations, they are often
described by field theories, which involve only a small number of free param-
eters and neglects the details of single-particle dynamics.

In this thesis, we are interested in two typical collective behaviours in bio-
physical context: contraction wave propagation as a dynamical pattern and
transient liquid-liquid phase separation. For both collective behaviours, we
propose models of dense assemblies of deforming spherical particles. Based
on those particle-based models, we carry out particle-based simulations that
show the corresponding collective behaviours and measure their dependence
on control parameters. Furthermore, we derive field theories through system-
atic coarse-graining and analyse the collective behaviours at field-theoretic
level. In the first part of the thesis, we report our results on pulsating active
matter which shows contraction wave patterns. We show a phase diagram
highlighting the conditions for such patterns to occur and investigate the na-
tures of phase transitions involved. We also derive a noisy field theory that
leads to the same phases in the same parameter space as in particle-based
simulations. In the second part of the thesis, we report our results on a
particle-based model allowing transient liquid-liquid phase separations. We
investigate the relaxation towards steady states and the influence of control
parameters on steady states. We also derive a field theory that maps the
model to an effective equilibrium, and therefore analyse the field theory in a
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free-energetic approach.
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Introduction

Soft matter physics is known for its mesoscopic scale of description, which
is much larger than atoms and molecules but yet much smaller than macro-
scopic material pieces [1]. Tt encompasses physical processes carried by soft,
mechanically deformable matter under thermal fluctuations. It is closely re-
lated to the physics of living matter, such as living cells and living tissues [2].
Living tissues are composed of living cells featuring organised biochemical
processes fueling their active deformations. The active deformations of living
cells, with finite lengths of spatial correlations, lead to collective behaviours at
larger scales, such as tissue expansion [3] and migration [4]. Such collective
behaviours are amongst the central processes of morphogenesis and therefore
deserve further rational understanding.

A simple approach towards a theoretical understanding begins with micro-
scopic models mimicking the dynamics of living cells. In this direction, vertex
models have been shown to be effectively reproducing tissue dynamics driven
by living cells [5-8] and are thus intensively studied. An essential advantage
is that in vertex models, simple dynamical rules can be readily applied to
mimic the dynamics of a large number of living cells, thus providing a plat-
form to study the collective behaviours at “many-cell” level.

Not every single ingredient involved in the dynamical rules of each single
cell independently contributes to the formation of collective behaviours at
“many-cell” level. A drastic reduction in the number of free parameters
should therefore be considered in the framework of continuum theories. Ide-
ally, each of the remaining free parameters should be essential enough to
fully highlight an independent aspect of the contribution to the formation of
the collective behaviour of interest. For instance, the continuum limit of a
vertex model can lead to a field-theoretic description which involves only a
small set of ingredients [9].

Field theories are known for describing collective behaviours of systems with
enormous degrees of freedom [10]. Their simpler formulation allows easier
further analytical treatments and/or cheaper numerical simulations. In the
context of pattern formation, a well-known example is the complex Ginzburg-
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Landau equation which describes the formation of Turing patterns with a
single deterministic partial differential equation [11]. In the context of phase
ordering kinetics [12, 13], model A and model B are known as universal de-
scriptions for non-conserved and conserved dynamics respectively, encoded
in an underlying (effective) free energy functional describing a field theory.
Although being simple yet powerful, field theories do not guarantee that
the collective behaviours they describe can be realised in practice. Indeed,
many field theories are postulated only based on macroscopic symmetries,
without referring to any microscopic details. Consequently, finding quanti-
tative connections between coupling coefficients in field theories and micro-
scopic parameters often turns out to be intractable. Alternatively, obtaining
field theories by coarse-graining microscopic models explicitly maintains such
macro-micro connections.

As is suggested by Manning [14], particles should be deformable in order to
mimic deforming living cells. In order for particle deformation to play a cen-
tral role, the particle assemblies should be dense [14]. In this context, the
fluctuating internal degrees of freedom determining the shapes of particles are
expected to collectively carve new classes of large-scale phenomenologies [14].
In fact, even deforming spherical particles subject to forces and fluctuations
contain a rich source of novel behaviours [15, 16]. These novel behaviours
should be relevant since dense assemblies of deforming spherical particles are
expected to mimic the behaviours of living biological tissues [17]. Studying
such models can build up the new physics describing the biophysical pro-
cesses those living biological tissues undergo.

This thesis aims at proposing two particle-based models using deforming
spherical particles. The first model represents a novel class of active matter:
the pulsating active matter, in which particles actively deform. The second
model, featuring a confining one-body potential landscape where each lo-
cal minimum represents a specific species, reproduces species interconversion
through particle deformation. Such a model provides a scheme of transient
liquid-liquid phase separations(LLPS) via species interconversion, which is
based on recent observations of intracellular LLPS [18, 19]. Based on both
models, we perform systematic particle-based simulations for quantitative
measurements of their collective behaviours, and derive field theories via
standard coarse-graining procedures [20]. The obtained field theories are
studied numerically and analytically to recover the observations in particle-
based simulations.

This thesis is organised as follows: in Chapter 1, we review the state of the
art of relevant studies and the methodologies used in this thesis. In Chapter
2, we present the results of our work on pulsating active matter. In Chapter
3, we present the results of our work on realising transient LLPS via species
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interconversion.
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Chapter 1

Stochastic Dynamics of Soft
Systems: Individual and
Collective Behaviours

In this chapter, we present the necessary techniques and motivations for
the works described in this thesis. In Section 1.1, we describe the general
motivations of the work. We begin with the state of the art of various fields
of research related to this thesis, including active matter, tissue models,
deforming particles and pattern formation. In Section 1.2, we introduce
the standard coarse-graining method and numerical techniques used in this
thesis.

1.1 State of the art

In this section, we review the scientific background of the work presented
in this thesis. The background is covered by three aspects. In Subsection
1.1.2, we review the well-known models of active matter. In Subsection 1.1.3,
we present existing particle-based and continuum models models for tissue
dynamics. In Subsection 1.1.4, we introduce a model of deforming particles
in the context of glassy dynamics.

1.1.1 Brownian motion

In 1827, Robert Brown, a scottish botanist, observed the “jittery” leaping be-
haviour of amyloplasts and spherosomes, minute particles ejected from pollen
grains, when looking at the pollen of Clarkia pulchella through a micro-
scope [21]. By replacing those particles in pedesis with inorganic particles,
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he confirmed that this behaviour is not life-driven. Due to this experimental
discovery, this random motion is later known as Brownian motion.
Although being baptised with his name, R. Brown was not the first to no-
tice this type of motion. As early as in the first century B. C., pedesis was
already mentioned in De rerum natura, a didactic poem by Lucretius, a Ro-
man poet and philosopher, in order to convince his Roman audience of the
existence of atoms. Small suspended dust particles, continuously hit by their
neighbouring air molecules, becomes a perfect example of pedesis following
the description in the poem. This example further suggests the mechanical
origin of Brownian motion, since dust particles are usually seen as chemically
inert. In 1785, Jan Ingenhousz observed similar behaviour of dust particles
suspended in alcohol [22], four decades prior to Brown’s discovery.

Theories illustrating the mechanical origin of Brownian motion were first
probed by Albert Einstein in 1905 [23]. In his work, assuming that the mo-
tion of each suspended particle is independent from other suspended particles
and each time interval of observation is independent, Einstein demonstrated
that Brownian motion is the microscopic origin of diffusion. In a continuous
liquid, Einstein recovered the diffusion equation based on the assumptions
above by deriving the diffusion coefficient D = £ [, %@(A) dA, where ¢(A)
is the probability density of particle displacement A within time 7.

Slightly later, in 1908, a particle-based approach to treat Brownian motion
was adopted by Paul Langevin [24]. A Brownian particle at position r is
considered to be damped by its surrounding fluid with a strength ~. To
maintain its random motion, a random force B should exist to account for
the frequent collisions. By simply applying Newton’s second law, one may
write down the one-body equation of motion

mi(t) = —vi(t) + B(¢) (1.1)

where m is the mass of the Brownian particle. To satisfy the assumptions by
Einstein, the random force should be a Gaussian white noise, i.e.

(B(t)BP(t")) = 27ykgT6P5(t — t'), (1.2)

where «, 8 € {x,y,...} represent Cartesian components, §(¢) is the delta
distribution of time and (-) is the noise average. At temperature 7" of the
surrounding environment, the noise has a strength 2vkgT where kg is the
Boltzmann constant. Using (1.2), one can also calculate the mean-squared
displacement in the long-time limit

(x(t) - £(0))%) = 2d7kg T, (13)

which recovers the result from the diffusion equation and build a relation
D = ~vkgT. For simplicity, in the following, we set kg = 1.
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Figure 1.1: Trajectories of colloidal particles of radius 0.53 pm measured in
experiments by Jean Perrin. The particle positions were recorded every 30s.
The background grids have a uniformed mesh size 3.2 ym. Taken from [25]

In the same year, Jean Perrin reported his experiments using colloids for
refined observations of Brownian motion [26]. Thanks to the more advanced
optical tools, he managed to record the trajectories of the colloidal parti-
cles with an improved accuracy, up to the time resolution he had access to,
as is shown in Figure 1.1 [25]. The theoretical description amounts to the
overdamped regime of (1.2), namely the overdamped Langevin equation

t(t) = —udU + V2DE(2), (1.4)

which neglects the inertial effect m¥, with (£, (£)€x (t')) = daa0(t —t'). Here
p = 1/~ is the mobility and U is the external potential.

Alternatively, one can adopt a probabilistic approach in order to calculate
ensemble-averaged macroscopic observables. This is achieved by Fokker-
Planck equations. One may start from the time-dependent probabilistic dis-
tribution in configuration space P(r,t) and write down the time-evolution
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equation it satisfies
0P =0 (uo,UP + DO, P) (1.5)

known as the Fokker-Planck equation. The stationary solution of (1.5) can
be formally found to be the Boltzmann distribution

Py(r) o exp[—-pU(r)], (1.6)

where = 1/T is the inverse temperature [27].

1.1.2 Active matter

Particles in Brownian motion, namely Brownian particles, are considered in-
ert. Brownian particles are passively, yet ceaselessly hit by the underlying
solvent molecules in thermal motion, such that the pedesis of Brownian par-
ticles is sustained. In contrast, active particles sustain their motion actively
by individually consuming external energy to generate driving forces. An
assembly of active particles compose active matter [28]. The open-system
nature of active matter gives rise to novel emergent phenomena on large
scales, which is potentially capable of modelling the behaviours of living
matter such as biological organisms [29]. Typical novel phenomena in active
matter without equilibrium equivalents include the motility-induced phase
separation (MIPS) [30], flocking [31], rachet [32], active turbulence [33], etc.
For physicists, the clear non-equilibrium nature of active matter motivates
the development of a novel toolbox of statistical mechanics beyond its success
in equilibrium systems. Several classes of models for active matter have been
proposed to produce the above-mentioned non-equilibrium phenomena with
minimal setups, such that the essential pieces constituting the phenomenolo-
gies are preserved and concentrated on. Meanwhile, these models of active
matter are simple enough for further investigations in terms of statistical
mechanics. Two main classes of models are listed and introduced below in
chronological order.

Aligning active matter: Flocking transition Before the birth of the
concept “active matter”, self-driven particles have already been found to
exhibit the flocking transition, a novel, kinetic phase transition that is analo-
gous to the spatial ordering in equilibrium [34]. However, the flocking transi-
tion has recently been found to have a different nature from spatial ordering
in equilibrium [35]. Examples of its applications range from bird flock and
fish schools to vehicular traffic [36].

Essentially, the Vicsek model may be seen as a “mobile XY model”. In Vicesk
model, each moving agent carries an XY-spin value indicating the direction of
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its velocity. The simplest setup is composed by polar particles described by
its position r(¢) and its velocity v(t), with v = ||v|| being a fixed parameter.
The direction of v is determined by the “spin” value 6(¢) which is updated
in time. The dynamics takes place over discrete time t € Z. The rules of
update read

ri(t+1) =r;(t) + v;(¢)
(1.7)
Oi(t +1) = (0(1)), + &(t),
where the average direction (-), denotes the average over particles within a
circle of radius r (Here we set r = 1 for convenience, as the unit measuring
the system size), including the particle 7 itself. Here the average direction is
defined as (6(t)), = arctan((sinf(t)),/(cosf(t)),). A random number &(t)
also contributes to the update of 6; as a deviation from the short-range aver-
age. To play the role of a noise, it takes a value from a uniform distribution
over a fixed interval [—n/2,n/2]. Therefore another parameter n > 0 mea-
sures the noise strength. Besides v, 7, the number density p measuring the
size of the particle crowd is the only remaining parameter determining the
large-scale dynamics.
With the setup described by (1.7), Vicsek et al. carried out the simulations
in a system of N point particles living in a square box of size L with periodic
boundary conditions in both dimensions, such that p = N/L? The speed v
only determines the moving distance by a single update. It should be finite
in order to move the particles, whilst not too large compared to r, in order
to avoid large numerical errors. Within this range, the speed v was found
not to affect the results. Hence the control parameters become the number
density p and noise strength 7.
Figure 1.2 (a)-(d) visualise the results from particle-based simulations, where
the instantaneous velocities on particles were indicated by an arrow, forming
a velocity field. The short curve segments attached to the arrows demonstrate
the trajectories in the past 20 timesteps. The initial configurations at ¢ = 0
were always chosen to be disordered, as is shown in (a). (b)-(d) show the
different steady states resulting from different magnitudes of p and . When
both p and 7 are small, the particles form clusters moving randomly and “co-
herently” [34]. See Figure 1.2 (b). When both p and 7 are large, it is random
motions of particles with “some correlations” [34] that was observed. See
Figure 1.2 (c). The flocking takes place at large p and small 7. In this case,
the velocity field becomes globally ordered up to local fluctuations, which is
analogous to the spontaneous symmetry breaking in equilibrium continuous
ferromagnetic transitions. This kinetic phase transition is possible due to
the lack of total momentum conservation, since the particles are driven by
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Figure 1.2: Simulation results of Vicsek model. Starting from a disordered
configuration (a) of {#;(0)}, the simulations lead to different steady states
(b)-(d). (b) Low density p together with weak noise 7 leads to clusters
of random coherent motion. (c) High density p together with strong noise
1 leads to random motion of particles with weak spatial correlations. No
clusters are formed. (d) High density p together with weak noise 7 leads
to global flocking with the particle velocities being globally ordered. Taken
from [34].
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active velocities. This flocking transition exhibits a long-range order, which
is forbidden in equilibrium by the Mermin-Wagner theorem [37, 38].

Upon observing the flocking transition, Vicsek et al. assumed it continuous
and measured the critical exponents around the flocking transition. The or-
der parameter characterising the flocking transition is chosen to be the norm
of the normalised averaged velocity

N

S vl

=1

1

- — (1.8)

Vq

The order parameter v, ranges from 0 to 1. The closer v, is to the unity,
the more ordered the velocities are. In the work by Vicsek et al, the critical
exponents in the power-law decays

va o [1e(p) — )%, va o [p — pe(n)]’ (1.9)

were considered. The two exponents were measured to be § = 0.45+0.07,0 =
0.35 £ 0.06.

Later, Toner and Tu proposed a field-theoretic description allowing the flock-
ing transition, namely the Toner-Tu equation [39-41]

(B 4+ AV - 0.)v + 0.P = (a — blv|*)v + D1d2v
+ D0 (0 - V) + Da(v - 0,)*v + f, (1.10)
Op+ 0 - (pv) =0,

where f is a Gaussian random noise satisfying

(fulr,t) (", 1) = A0 (x —x')o(t — 1), (1.11)

with A being constant and u,r the Cartesian components. In Equation
(1.10), the coefficient b along with all diffusion coefficients , Dy o 1, is positive.
a > 0 leads to the ordered phase and a < 0 results in the disordered phase.
The pressure P is a function of local density p.

The Toner-Tu equation (1.10) in its complete form is built without referring
to microscopic details, containing all terms obeying the macroscopic symme-
tries. As a result, the large number of parameters in Equation (1.10) can
hardly be connected to particle-based models [35]. So far, no simulations
of the Toner-Tu equation (1.10) without simplification have been reported.
Still, under the framework of Toner-Tu equation, the dynamical renormalisa-
tion group (RG) analysis set constraints between critical exponents existing
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in the approximated RG-flow equations near the fixed point of the flocking
transition [39]. The constraints refer to the values of those critical exponents
in terms of spatial dimensions d. Nevertheless, later quantitative insights into
flocking transition indicate discrepancies from the measurement by Toner and
Tu in 1995 [42].

Still, numerical evidences are indispensable. Instead of simulating Equation
(1.10), Chaté simulated equations reminiscent of (1.10) derived through sys-
tematic coarse-graining [35]. There, based on Vicsek class models, which be-
longs to a broader class called Dry Aligning Dilute Active Matter (DADAM),
Chaté simulated the hydrodynamic equations

Op = — R‘e{gfl}a

1.12
Oufr+ k11O f1 + k10 f1 = [u(p) — ELAPLA — %3P+D35f17 (112
where p is the real-valued density field over a complex plane Z, f; = p(v,+ivy)
is the pv-field of Equation (1.10) but over a complex plane, & = 9,,0 = 0s
are partial derivative operators with respect to complex coordinates z =
r +iy,zZ = x — iy. Instead of a disorder-order transition scheme, flocking
is considered under a liquid-gas transition scheme, which is of first order
instead of second order. See Figure 1.3. Indeed, flocking entails a spatial
separation between a dense region and a dilute region, as is shown in Figure
1.2. Between the gaseous and liquid configurations, the flocking transition
goes through a coexistence region featuring multiple chaotic bands of high
densities, which is reproduced as a solution of the hydrodynamic equation
(1.12). See Figure 1.4.

Repulsive active matter: Motility-induced phase separation The
flocking transition observed in Vicsek Model requires a pivotal role of align-
ments between active velocities. This interaction is non-conservative, as the
neighbours of each particle change in time. This non-conservative alignment
interaction is another element causing the non-equilibrium nature. In fact,
a simpler model of active matter may be achieved by reducing the weight of
alignment in the model, or even neglect it. In those models without align-
ment, isotropic active particles repel each other upon overlapping. Such a
non-interacting limit is sufficient for non-trivial density profiles to be ob-
served as steady states in experiments using synthetic active colloids [30].

One potential theoretical model is to consider self-propelled spheres with
isotropic interactions between them. These isotropic interactions, without
alignment between active velocities, may be repulsive or attractive, short-
range or long-range, etc. A physically novel case is to apply only repulsive
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Figure 1.3: (a) Phase diagram involving the flocking transition of Vicsek-
type models and its hydrodynamics (1.12). Clearly, a coexistence region
containing multiple chaotic bands highlights the first-order nature of the
transition. (b) Snapshot from simulation of Vicsek model showing a single
band travelling along the red arrow, which exists in the disordered liquid
phase. Taken from [35].

short-range interactions between particles, after which a liquid-gas phase
separation can exist as a steady state. This is clearly unimaginable in equi-
librium, without active velocities—how can particles condensate into clusters
without attractive or effectively attractive interactions?

Such a condensation featuring a liquid-gas phase separation hence results
from active driving velocities. This mechanism enables the phase separation
by departing from equilibrium, known as mobility-induced phase separation
(MIPS). In MIPS, the system density p and the active speed v become con-
trol parameters. In a regime where the speeds of particles drastically fall
due to strong repulsion from crowding particles, a liquid-gas phase separa-
tion becomes stable. Such MIPS has been observed both experimentally and
theoretically, see Figure 1.5.

Constructing a model to realise MIPS then requires using motile particles
as building blocks. Two limiting cases are run-and-tumble particles (RTPs),
which swim persistently and tumble suddenly in discrete time spots at a
rate «, and active Brownian particles (ABPs), which swim at a fixed speed
but in directions subject to noises in continuous time, i.e. rotational dif-
fusions [30, 44]. Both RTPs and ABPs can lead to MIPS, although having
different swimming schemes at microscopic level, see Figure 1.6. In fact, once
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Figure 1.4: (a)-(c) Snapshots showing the band chaos in nematic DADAM
models within the coexistence region of Figure 1.3 (a), where the flocking
bands endlessly bend, split and merge with each other. (d),(e) Snapshots

showing the spatiotemporal band chaos solutions of hydrodynamics. Taken
from [35].
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Figure 1.5: MIPS observed in experiments (left) and simulations (right).
Turning off the light in experiments removes the active velocity of colloidal
particles, leading to a homogeneous density distribution. (lower left) In sim-
ulations, this is achieved by reducing or removing the active velocities of
particles (lower right). MIPS occurs when the light is on, due to sufficient
self-propulsion of collidial particles (upper left). This is realised in simula-
tions by assigning a strong enough active velocity to each particle. (upper
right) Taken from [43].
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(b)

r
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Figure 1.6: Schemes of run-and-tumble particles (RTPs) (a) and active Brow-
nian particles (ABPs) (b). The reorientations of RTP are jump events in
discrete times, whilst ABP reorientate via rotational diffusion in continuous
time. Taken from [30, 44].

the swimming speeds v and tumbling rate « are isotropic, in a superposition
between RTPs and ABPs in a d-dimensional space, an exchange between «
and (d — 1)D, keeps the orientational relaxation time 7 invariant. Here D,
is the angular diffusion coefficient of ABPs. This is explicitly shown by

T '=a+(d-1)D,. (1.13)

Compared to the Vicsek model, RTPs and ABPs are defined on continu-
ous time instead of discrete time. Therefore, explicit stochastic differential
equations can be used to describe RTPs and ABPs. With continuous-time
descriptions, tools treating continuous-time random walks (CTRWs) can be
applied to investigate the first-passage time statistics [45], thus allowing one
to consider treating trapping problems of RTPs and ABPs [46] analytically.

1.1.3 Models of tissues

We switch our scope from a group of individuals to a piece of biological tissue.
Living biological tissues are well-organised clusters of living cells carrying life
activities. Similar to living bacteria, living cells are driven by internal bio-
chemical processes to perform active motions individually. Their motions
are organised to allow collective dynamics of tissues, such as wound healing,
morphogenesis, cancer invasion, etc [47]. These intrinsically non-equilibrium
processes have been studies in vitro using epithelial monolayers as a model
system for tissues [3, 4, 48-50]. They have been found to mechanically drive
plenty of collective dynamics under classes of collective migration, glass tran-
sition, active turbulence, etc [51]. The richness in non-equilibrium collective
dynamics has motivated theoretical studies using different models for this
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type of active matter. Prior to this thesis, most theoretical studies were
based on vertex models and/or continuum models. Here we review some
already existing models of biological tissues.

Vertex models To simplify the description of epithelial monolayers and
reduce the computational cost, epithelial cells can be represented by poly-
gons, often produced by Voronoi division of space. Edges and vertices are
shared between neighbouring polygon cells. A bidimensional vertex model
usually models a single cross section of an epithelial monolayer, but contains
all essential descriptions for its tridimensional dynamics [7].

Under this setup, specific dynamics can be defined by applying rules to the
motion of vertices

where the position of vertex i varies according to the total force F; exerted
on it, up to a mobility coefficient p. Current models can be divided into two
classes, based on the arguments deriving the components of F;, as is shown
in Figure 1.7. From a force-based approach first derived by Weliky and Os-
ter [7, 52], models can be derived with membrane tensions uf, v{* exerted
by a neighbouring cell « along its two shared edges associated with vertex
7. Besides, the “cortical pressure”, i.e. the difference between the osmotic
pressure and the restraining elastic pressure, contributes an off-edge force
component f)f .

The force-based approach is handy when all force components are known.
Quite often, these cases are far from equibrium, with all force components
contributing to vertex ¢ being localised. In contrast, when studying the re-
laxation towards equilibrium, the driving forces are often not well specified.
Here, the energy-based approach, which is more intuitive, may be adopted [6,
7]. In this approach, instead of specifying forces on vertex i, one calculates
the total force as the negative gradient F; = —0,,U of an underlying potential
energy U of the whole system. In the example depicted in Figure 1.7, the
contribution to the gradient force F; by a single neighbouring cell a can be
separated into two off-edge components with clear physical interpretations.
One component varies the area A, of cell a to approach an ideal area A&O),
whereas the other component tunes the perimeter P, of cell a.

The computation power of such vertex models has been revealed by mimick-
ing several typical cell dynamic behaviours, including neighbour exchange,
vertex merging, cell removal, cell division, etc. See Figure 1.8.
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Vertex i

Perimeter F,

Figure 1.7: Schemes of force assignment in vertex models. The force contri-
butions to a vertex are based on its neighbouring cells. Based on a single
neighbouring cell «, the phenomenological scheme (a) explicitly assigns forces
ud, v& (blue) for perimeter contraction along the two neighbouring edges, and
an off-edge cortical pressure f)g (red), whilst the energy-based approach com-
putes an off-edge force based on the gradient of an underlying potential U,
and decomposes the force into contributions based on their physical inter-

pretations. Taken from [7].

Continuum models Vertex models as models defined in discrete space
have been successful in mimicking several microscopic behaviours of epithe-
lial cells. These microscopic behaviours can potentially give rise to macro-
scopic patterns that can be simulated with vertex models, which is useful in
linking certain collective behaviours to their microscopic origins. However,
the underlying macroscopic instabilities behind those collective behaviours,
especially the relevant factors leading to them, may be implicit in vertex
models.

At multicellular level, several continuum models have been developed, de-
pending on the application scenarios. In the context of morphogenesis, es-
pecially wound healing, models focusing on the collective migration of cells,
which are driven by cell activities, often centre on velocity fields [1, 53]. Be-
sides collective migrations, the mechanochemical coupling in living tissues,
by forming a feedback loop between mechanical stress and biochemical reg-
ulations, is in fact responsible for an abundance of collective behaviours [51,
53].

In particular, to describe the experimentally observed wave propagation
driven by local cell contractions triggered by a protein known as ERK (Fig-
ure 1.9) [50], a continuum model was derived and investigated by Boocock
et al [51]. Taking the continuum limit transforms the set of equations of
motion of vertices into a system of partial differential equations about the
displacement r of a vertex, cell length Iy and ERK activity E at position x
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Figure 1.8: Types of vertex dynamics mimicking cell dynamic processes. (a)
edge reorganisation through vertex merging via edge shrinkage followed by
the birth of a new edge from the merged vertex. (b) cell removal mimicking
apoptosis. (c) vertex creation via vertex-edge intersection. (d) Cell division
by adding a pair of vertices bonded with a new edge. (e) Multicellular edge
reorganisation. Taken from [7].
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Figure 1.9: Cell contraction waves carried by circular deformation of cells
driven by the activity of ERK, independent of systematic cell migration. The
snapshot (top) of experimental observation highlights the ERK activity using
FRET techniques, with light colours representing high ERK activity and
consequently, extended cells. The scheme of such a wave propagation (below)

shows the mechanism of ERK activity propagation via cell-cell couplings.
Taken from [50].
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and time t. After redefining lg — [y — s, E — Eg, where “st” means values
in the steady state, one obtains

o (x,t) = 02,1(x,1) — Oxlo(x, 1)
TiOlo(x,t) = —lo(x,t) — aF(x,t) (1.15)
TEOLE(x,t) = —E(x,t) + fokr(x,1).

In Equations (1.15), the first equation describes the motion of the vertex at
position x and time ¢. On the right hand side (RHS), the first term describes
vertex diffusion, whilst the second term sets a drift driven by the cell length
relaxation at position x and time ¢. The second equation then describes the
relaxation of cell length at position x and time . On the RHS, the first term
assigns a restoring force following the Hook’s law, whilst the second term is
the contribution from the ERK activity at position x and time ¢. The third
equation then describes the evolution of ERK activity at position x and
time ¢, with the first term on the RHS being restoring and the second term
couples to cell length, as Or is proportional to the average length claimed
by a cell and thus inversely proportional to vertex density. Notably, all three
equations are fully local, enabling a pointwise analysis.

The above system (1.15) clearly has a homogeneous fixed point which is
static. In this steady state, there is no pattern. Patterns such as wave
propagation should arise as instabilities of homogeneous fixed points, where
nonzero ERK activity E drives cell deformation 0;ly, as was shown in the
experiment. The conditions for instabilities should be found out by using
linear stability analysis on Equation (1.15). The result should be presented as
a dispersion relation in Fourier space. Such a dispersion relation should then
admit instabilities at strong enough coupling strengths a8 > (af3). between
ERK activity and cell length. This predicts the length scale and frequency of
patterns. From the length scale and frequency of patterns, one can conclude
that the critical shape of patterns is determined by the relaxation time scales
Te, 71, TE- These predictions were further confirmed by numerical simulations
in [51]. Similar strategies of modelling patterns produced by cell contraction
have also been adopted in [54-56], etc. The derivation of such continuum
models from vertex models was systematically discussed on in [57].

1.1.4 Deforming particles

Vertex models are successful in that they resemble biological tissues com-
posed of cells, while being simple enough to allow dynamic rules to be imple-
mented. In particular, as particle-based models, vertex models can lead to
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continuum models at field-theoretic level, which ease the studies of macro-
scopic patterns as collective behaviours. Instead of looking into microscopic
details, continuum models describe their behaviours using a reduced number
of macroscopic parameters.

In fact, each vertex may be seen as a particle, the interaction range of which
is defined through the shapes and sizes of its neighbouring cells. In this sense,
vertices should be seen as deforming particles, since the cells are usually de-
forming. Between these deforming particles, the interactions are anisotropic,
which is an origin of the large amount of microscopic details. Besides taking
the continuum models directly from those vertex models, another approach
of simplifying the model is to make the interactions isotropic, i.e. to consider
spherical particles. With the shape being constraint to spheres, the only
degrees of freedom for deformation become particle sizes, i.e. the radii of
spherical particles.

An advantage of such a simplification is that particle deformation is explicitly
separated from particle displacement [17]. Particle positions can be captured
by the positions of their centres of mass, whilst their shapes are described
only with their radii. These two quantities are well distinguished from each
other, allowing the dynamic rules on displacement and deformation to be
separately applied, such that their contributions towards the formation of
patterns can be further clarified. As a comparison, in vertex models, the
dynamic rules moving the vertices translate and deform the particles simul-
taneously, which is more intuitive and phenomenological but hinders further
scrutiny into their respective roles.

Taking advantage of this separation, the physical origins of macroscopic be-
haviours of dense living tissues can be studied in detail. As an example, in
[17], a model composed of a dense assembly of actively deforming particles is
proposed, aiming at describing dense biological tissues. The particle-based
equations of motion read

i =—p Y OnU(ry)
i (1.16)
oi(t) = 0?1 + acos(wt + ;)]

In this model, particle radii are driven to oscillate, whilst particles are not
self-propelled, such that the effect of actively driven deformation could be sin-
gled out. Here the repulsive harmonic potential U (r;;) = 5(1—ry;/04;)*O (04—
1;;) has a restricted range defined by a Heaviside kernel ©, which allows the
repulsion to be turned on only when the involved particles overlap. Between
particles i and j, the two-body distance r;; = |r; — r;| is compared to the sum
of their radii 0;; = 0; 4 0; in order to determine whether they overlap or not.
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The radius o; of each particle i is driven individually to oscillate around o)
with an amplitude a, at a frequency w, up to a random phase 1; that keeps
the total packing fraction ¢ = ), 72722 almost constant. With this setup,
the solid-liquid transition of this assembly is investigated. The amplitude a,
chosen as the main control parameter, determines the largest possible size
difference between particles, measuring the effect the active drive w brings
to the system. It was found that the solid-fluid transition occurs at a critical
amplitude a., below which the assembly remains solid and each particle stays
around its original position in the steady state. At large amplitude a > a,
particles are allowed to perform large irreversible displacements that allow
local rearrangements of particles. This is clearly a feature of fluids. See Fig-
ure 1.10. This result indicates that the active deformations of cells alone are
sufficient to realise a solid-fluid transition of dense biological tissue.

Beyond active deformations, the Kuramoto-type interactions [58] can bring
spatial correlations propagated via synchronisation between nearest neigh-
bours, such that the effect of local active deformation can potentially lead
to large-scale patterns. This was first proposed by Togashi [16] aiming at
modelling the crowds of (bio-)molecular machines such as enzymes, the de-
formations of which are driven by chemical reactions. Here, the chemical
reactions are modelled as synchronisation between neighbouring molecules,
with the corresponding chemical changes of each molecule described by the
deformation of a spherical particle. The model reads

B =—p Y 0 U(rij) + \/2uT&(t)
J#i

éi =w + Z[S sin(Qj — 92)@(0'1] — rij) — MgagiU(’f’ij)] + Q}LQTUZ(t)
A

(1.17)

Compared to the model in [17], there are several differences and extensions
in the model (1.17):

e The simulations are carried out at finite temperature 7.
e The repulsion U has a direct impact dy,U on particle deformation.

o Neighbouring particles are encouraged to be synchronised in their sizes
via esin(f; — 0;).

Besides, here the WCA repulsion U(’f’ij) = [(Tij/O'ij>l2—(7’ij/0'ij)6+ ]./4]@(0’23—
r;;) is used, instead of a harmonic potential. The effect of finite temperature
exists as zero-mean Gaussian white noises &;(t),n;(t) with amplitudes mea-
sured by diffusion coefficients D = pT" and Dy = pueT respectively. With
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Figure 1.10: Solid-fluid transition realised in a dense assembly of actively
deforming particles. (a) Snapshots over a single cycle of active deformation,
where a highlighted deforming particle ¢ (black) in the dense assembly moves
along the short trajectory marked in green, leading to a displacement d;(t) =
r;(t + 1) — r;(t) marked in blue. (b) Snapshots of the dense assemblies in
steady states, with subcritical (left) and supercritical (right) deformation
amplitudes a. Each blue arrow shows the displacement of a particle within
a single active deformation cycle. When a < a. (left), the displacements are

tiny, whereas when a > a. (right), systematic displacements occur in a cycle.
Taken from [17].
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Figure 1.11: Wave propagation via particle deformation observed in particle-
based simulations. A cyclic colour scheme is used to denote particles of
cyclically changing sizes, which mimics a reaction cycle of enzymes (top).
This setup allows the emergence of contraction waves from an almost homo-
geneous background (¢ = 4, 16, 18,22). Taken from [16].
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this setup, at a strong enough synchronisation strength ¢, a dense assembly
can exhibit wave propagation originating from a point source. See Figure
1.11. This wave propagation is carried by continuous changes in particle size
instead of systematic migration of particles, which resembles the contraction
wave patterns in biological tissues reported in [50] and [51].

1.2 From particles to fields

In this Section, we review the analytical and numerical methods used through-
out the work in this thesis. In Subsection 1.2.1, we demonstrate the use of
field theories in describing collective behaviours, in particular phase transi-
tions. In Subsection 1.2.2, we show a systematic way of deriving field theories
from microscopic models through coarse-graining.

1.2.1 Field theories from symmetries

In general, statistical field theories span an important framework of methods
treating systems with large or infinitely large number of interacting degrees of
freedom [10]. The application of field theories has permeated into statistical
physics [59], condensed matter physics [60], random geometry [61], etc. In all
these applications, collective modes dominate the system behaviours. The
aim of applying field theories is to understand those behaviours, such as phase
transitions, in terms of a small number of principles. A simple field-theoretic
description usually should be local and is described in terms of an effective
free energy

BF = / dx[{p(x)}]. (1.18)

with the WU-functional explicitly independent of x.

Landau-Ginzburg field theory The form of the functional ¥ of fields
{#(x)}, to be made simple, should be a polynomial expansion of fields and
their gradients {Jy¢(x)} [59]. Based on symmetry arguments, one may con-
struct a field theory by keeping only lowest-order terms satisfying the under-
lying microscopic symmetries. An example is the renowned scalar Landau-
Ginzburg (L-G) theory of phase transitions based on Zs-symmetry. Due to
the Zo-symmetry, the U-functional in L-G theory contains only terms of even
powers in fields or their gradients. An isotropic L-G theory thus should bear
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the form

K

Wlo(e)) = 5 (BO0)? + 5000 +ud(x) +O(¢°)  (119)

In fact, to reveal phase transitions, a cutoff at ¢*-term is sufficient, thus
rendering the L-G theory a so called ¢*-theory. Such a ¢*-theory contains
only 3 coupling parameters K, ¢, u linked to microscopic details. Fixing the
3 parameters then fully characterises an L-G theory. To bound the value
of ¢, the ¢*-coupling parameter u has to be positive. Also, inhomogeneities
penalises the effective free energy by contributing a positive gradient term
and thus should be removed to minimise the effective free energy. It is then
the sign of ¢, the quadratic coupling parameter, that determines the number
of minima in the effective free energy. Continuously tuning t-value across 0
leads to a second-order phase transition featuring a change in the number of
minima in F. In the picture of a classical magnet system, where the field ¢
measures the global order, the splitting of the minimum at ¢ = 0 into two
minima at |¢| > 0 signals a spontaneous ordering without the help of ex-
ternal fields. Such a spontaneous ordering breaks the underlying symmetry
of F and is thus known as the spontaneous symmetry breaking (SSB). See
Figure 1.12 (a).

The presence of an external field h(x) amounts to adding a linear term
h(x)p(x) to the L-G functional ¥U[p(x)]. In the SSB regime, ie. t < 0,
the external field A determines the preferred direction of order. In the ab-
sence of inhomogeneities, a positive h stabilises the ordering in the negative
direction, whilst a negative h promotes the ordering in the positive direction.
Tuning h across 0 leads to an exchange between stabilities of the two minima
in F. This is interpreted as a first-order transition. See Figure 1.12 (b).
The L-G theory was first proposed to describe superconductivity transi-
tions [62-64] from a macroscopic point of view, in contrast to the BCS-
theory dedicated to microscopic details. In fact, it provides an effective
field-theoretic description of a wide class of systems. In general, L-G the-
ory does not have to be a scalar field theory. It also allows vector fields [64],
tensor fields [65], etc. A scalar L-G theory describes liquid-gas transitions, bi-
nary mixtures and uniaxial magnets, whilst a vector L-G theory can describe
superconductivity, superfluidity, planar magnets and classical magnets, de-
pending on the dimension of vector fields [59]. Notably, the correspondence
between an L-G theory and an Ising model can be explicitly built via a
Hubbard-Stratonovich transform of the partition function of Ising model with
a cutoff at ¢*-order [10].
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Figure 1.12: Effective free energies F of homogeneous fields ¢ and their global
minima. (a) ¢ determines the positions of minima ¢,. When t < 0, ¢pin’s
are always finite. When t > 0, ¢, is zero. (b) When ¢ < 0, the external
field determines the sign of ¢nin. When h > 0, ¢, is negative. When h < 0,
Gmin 1s positive. (c¢) t determines the number of minima. When ¢ < 0, two
minima in F exist (red). When ¢ > 0, only one single minimum occurs in F.
(d) When ¢ < 0, the external field h determines the relative stabilities of the
two minima. When A > 0, the minima at ¢ < 0 is more stable. When A < 0,
the minima at ¢ > 0 becomes the global minimum.
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Non-conserved and conserved dynamics: Model A and Model B
There are two main classes of models describing the phase ordering kinetics
of field theories [13]. They can be derived from a coarse-grained free energy
F. One is Model A describing non-conserved field dynamics

+/2M($)TA(r, 1), (1.20)

v
at¢<r7 t) = _M((b)%

b(r,t)

with A being a scalar field of Gaussian white noise satisfying (A(r,t)A(r',t)) =
d(r —1')(t —t') and M(¢) being the field-dependent mobility. The other is
Model B describing the dynamics of a conserved field

) fo,WIM@Tn@ ), (121)

OF

Dho(x.1) = 0, (M@s)a%

b(rt)

with 17 being a vector field of Gaussian white noise satisfying (n*(r,¢)n"(r',t'))
0" o(r—r')o(t —t'). In Model B, the field ¢ can be any local order parameter
field, such as the local density difference between species in a binary alloy
or the local magnetisation in a spin model. Notably, in Model B, the noise
field is a vector field, whilst in Model A, the noise field is a scalar field. In
both classes of models based on the free energy JF, the probability measure
of a field configuration ¢ in equilibrium is formally given as a Boltzmann
distribution

P[p] o< ™77, (1.22)

where again § = 1/T is the inverse temperature.

Pattern formation in field theories 'The collective macroscopic be-
haviours emerging from an assembly of microscopic units are often seen as
dynamical patterns. The formation of these dynamical patterns exists in
many contexts, including morphogenesis [66], colony growth [67], etc. The
controls over those patterns are often interesting topics for understanding
life processes.

Many patterns can be interpreted as instabilities of reaction-diffusion sys-
tems, namely the Turing patterns [68]. Turing patterns are common in
chemistry and chemical engineering. For instance, in Prigogine’s Brusselator
model, the autocatalytic reactions give rise to Turing patterns [69]. In fact,
autocatalysis often leads to chemical oscillations, namely chemical waves as
an example of Turing pattern. A typical setup for chemical oscillations is the
Belousov—-Zhabotinsky (B-Z) reaction [70, 71|, whose mechanism been inten-
sively studied [72, 73].

In a more general context, the class of reaction-diffusion systems enabling
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Figure 1.13: Snapshots of the amplitude field|A|(r, ) (a) and the phase field
arg A(r,t) (b) showing spiral wave patterns. The topological defects feature

vanishing amplitude of A and are thus located at dark points in (a). Here
b= —3.5,c = 0.44. Taken from [74].

patterns similar to chemical oscillations in the B-Z reaction can be captured
under the framework of the complex Ginzburg-Landau equation (CGLE) [11].
The CGLE bears the general form

A=A+ (1+b)PA— (1+d)|AlA, (1.23)

where A is a complex-valued field defined on continuous space and time and
b,c € R. In a bidimensional space with periodic boundary conditions in both
dimensions, the nonlinear partial differential equation (PDE) (1.23) can lead
to spiral wave patterns in the phase field of A [74]. See Figure 1.13.

The spiral wave patterns in Figure 1.13 exhibit topological defects around
which the contour integrals § df (r) of local phase increments df are nonzero.
The existence of such topological defects in fact has its origin in the spon-
taneous breaking of U(1) symmetry A — Ae'® of Equation (1.23). The
spontaneous breaking of such a symmetry allows metastable interpolations
between degenerate vacua distributed along the U(1) group, which are topo-
logical defects [75].

38



Stochastic Dynamics of Soft Systems

1.2.2 Field theories via coarse-graining

Besides the approach adopted in the derivation of L-G theory, there is an ex-
act derivation of field theories from particle-based models, namely a bottom-
up approach, using the systematic coarse-graining approach d la Dean [20].
For simplicity, we begin with the Langevin equation (1.4) describing the
motion of an overdamped particle in a many-body potential

£i(t) = —ude, U + V2DE(t), (1.24)

where U = 37> V[ri(t) — r;(t)] and &; is the noise of the i-th particle
satisfying
(& (O (X)) = 0i;0770(t —t') dt (1.25)

where «a,y denotes the vector components of the noise. Also, there is no
self-interaction, i.e. V = 0 whenever ¢ = j.

To find an exact equation describing the dynamics of the stochastic density
field p(r,t), we start with an empirical distribution

szrt pi(r,t) = 8(r —r;(t)). (1.26)

To find the differential equation of p, one has to look at a static macroscopic
observable O(r) as a compactly supported, smooth test function. One may
find the time derivative of O(t) = [dr p(r,t)O(r), the average value of O
measured by p

= (p.0) = Z(pz,ré’ Olr—,)
_Z(pz, —1Y OV —r;(t)] - 8.0 + DO )+\/ﬁ2(pi,&0)-£i,

J#i
(1.27)

where (A,B) = [dr A ) is the functional inner product between inte-
grable functions A(r), B( ) and the last term is interpreted with It6 conven-
tion. Using integration by part we transfer the derivatives onto p:

0= Z ([,u@r{pi > 0V —r;(t)]} + Dpi| — V2D Si,O). (1.28)

JF
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Another representation of 0 formally involves the time derivative of p:
O = (0, 0) (1.29)

A simple comparison between (1.28) and (1.29) leads to

Dip = uar{p / dR p(R, 1),V (r — R)} +Ddp—2D Z Be- (pi&i). (1.30)

The closure of (1.30) entails further treatment on the noise term which still
contains information at single-particle level. Hence we define the noise field

- Z&« pir, )&l (1.31)

Clearly, the noise defined in (1.31) is Markovian. This is shown in its corre-
lation function

(A(x,t) - AR, ) = 6(t —t') ZafR pi(r, 1) pi(R, 1)]
= 5(t —t)o% sz

We then define another noise field

N =0, - [€(r. t)p2 (r,1)] (1.33)

where &(r,t) is a spatially uncorrelated white noise

(1.32)

(€ (r, )& (R, t")) = 0"76(t —t')o(r — R) (1.34)

One can immediately find that (A(r,t)A(R,t")) = (A'(r,t)A' (R, 1)), ie. A
and A’ have identical spatio-temporal correlation functions. Thus they are
equivalent at hydrodynamic level and are interchangeable. To close the hy-
drodynamic equation (1.30), one apply the hydrodynamic noise defined in
(1.33) to arrive at

Op = <,uar{,0 / dR p(R,1)0,U(r — R)} + D@frp) +V2DN(r,t). (1.35)

Equation (1.35) is a stochastic differential equation of density field p, which
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is known at Dean’s equation. The underlying free energy functional of Dean’s
equation (1.35) can be written as

Flp| = %/drdRp(r,t)U(r —R)p(R,t) + T/dr p(r,t)Inp(r,t), (1.36)

up to a constant. In terms of the free energy F, the Dean’s equation (1.35)
can be rewritten as

OF

atp(ra t) = Mar : (,O(I', t)ar%

) + V2D, - (E(x,p(r,D)F),  (1.37)

p(r;t)

which immediately reveals the conservation of particle number. In com-
parison to the conserved dynamics (1.21), one may readily identify that
M (p) = pup and recover the Boltzmann distribution (1.22) of the field config-
urations of p. In fact, the probability measure (1.22) can be obtained as the
stationary solution of the Fokker-Planck equation of p-field configurations.

1.3 Numerical techniques

1.3.1 Particle-based many-body simulations

For each particle, we assume its state is described by a series of variables
{sa(t)},a = 1,2,.... Each variable of the i-th particle is updated according
to an equation of motion

ds® (t) = Fo({s¥(t)}) dt + V2D AW . (1.38)

On the right-hand side, one calculates the deterministic contribution within
dt as the first term. The noise contribution within dt¢ is calculated by ran-
domly picking a unit-variance, zero-mean Gaussian random value g(t) ~
N(0,1), such that dW® = g¥(t)V/dt. To efficiently simulate the dynamics
without inappropriately large time step dt, we apply an adaptive criterion
for the choice of dt: a threshold value A, is chosen such that

N (1.39)

m POy else

m_{%mt ifmax,; F*({s2()}) dt < A,

In practice we take dtinpue = 0.005, A, = 0.1.
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Force calculation During each step of update (1.38), the assignment of
forces F({s(t)}), especially its two-body part, claims the most computa-
tional cost. To improve the efficiency, we divide the simulation box into
square grids, and count only the interactions between particles in the same
grid or in nearest-neighbouring grids, since the interactions are short-ranged.
To ensure that no interactions are missed, two criteria should be satisfied by
the grids:

« Each grid should be able to cover the largest particle existing during
the simulation, taking into account that particle radii evolve in time.

o The simulation box should be splitted into identical grids.

To safely optimise the simulation performance, we chose the smallest integer
[ € N, that is no smaller than the largest possible particle radius and a
simulation box size L € N, that is divisible by this integer, i.e. [ = 0
mod L). Here and below, we assume a square simulation box. With the grid
splitting above, the grids can be organised into an n X n matrix, where n =
L/, such that each position (z,y) in the simulation box can be classified into
a grid indexed by (I, J), where (I, J) = (|z/l|, |y/l]),1,J =0,1,2,....n—1.
In this way, each particle p;(z;, y;) belongs to a grid g(;, J;), i.e. pi(x;,y;) €
9(1;, J;), and the whole simulation box becomes a set of grids {g}. The
counting of pair interactions can then be demonstrated in Algorithm 1. By
doing this the complexity is reduced to O(N In N) instead of O(N?) where
N is the number of particles in the simulation box [76]. See Figure 1.14.

1.3.2 Field simulations

We consider a reaction-diffusion system composed of hydrodynamic fields
{fi(r,t)} living on a bidimensional flat torus T?

Ofi = DiO%fi + Ri({f;}),i = 0,1, ... (1.40)

At each position r, the value of f; at time ¢ should be updated by f;(r, t+dt) =
fi(r,t) + Oy f;dt. Here we adopt the pseudo-spectral method, namely the
spectral method on a torus, by splitting the timestep dt into two halves. In
the first half d¢ /2, we consider the diffusion part in Fourier ¢g-space using the
semi-implicit method.

. dt, - fila.t) + fila,t + %) dt
fila,t + =) = fila,t) — Dig? @) ( 2) dt

2 2 2

which leads to f;(q, t+dt /2) = 4-Digrdt fi(q,t). Then we consider the reaction

4+D¢q2dt
parts in real space, using the field configurations at time ¢ + d¢ /2. See

Algorithm 3.

(1.41)
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Figure 1.14: Schematic illustration of force assignment in each step of
particle-based simulations. The simulation box is divided into identical
square grids, which are larger than the largest particle existing during the
whole simulation. Complete assignment of pair forces is realised by looping
over the grids. For instance, on each particle in the blue grid, pair forces
are exerted by particles in half of the neighbouring grids (red) and the other
particles in the same grid (blue).
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Algorithm 1: Counting of pair interactions

Data: null
Result: Pair interactions {F;;}
/* Initialise all pair interactions with zeros */
{Fijt < {0}
/* Iterate over grids */
for (g(1,J) € {a}) {

/* Iterate over particles in the grid g(/,J) */

for (pi e g(l,J)) {

/* Iterate over other particles in the same grid */

/* The subset {p;} should be adapted to avoid repeated

counting */
for (p; € {p;} Ca(l,J)) {
| Update F; ; // See Algorithm 2

}

/* Iterate over particles in the right neighbouring grid */

for (pjeg(l+1,J)) {
| Update F; ; // See Algorithm 2

}

/* Iterate over particles in the lower-right neighbouring

grid */
for (pjegl+1,J+1)) {
| Update F; ; // See Algorithm 2

}

/* Iterate over particles in the lower neighbouring grid */

for (p;eg(l,J+1)) {
| Update F; ; // See Algorithm 2

}

/* Iterate over particles in the lower-left neighbouring

grid */
for (pjegl—-1,J+1)) {
| Update F; ; // See Algorithm 2

}
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Algorithm 2: Updating F;;

Data: Di, Dy, E]
Result: F;;
r%-é—-(ay —-15)2 +—(yi-—-yj)2; // Calculate the pair distance
if (Rz =+ RJ)Q Z T’?j then
Fij < ]ij-+-f(ju,zy); // Calculate the contribution f(p;,p;) iff
the particles overlap

else
| continue;

end

Algorithm 3: Updating {f;(r,t)}

Data: {f;(r,t)}
Result: {f;(r,t +dt)}

/* First halfstep: update with the diffusion parts in g-space x/

for ( fi e {fi} ) {
]fi(q, t) < [ dr fi(r,t)e_i‘{r;
Filat +dt /2) « 52298 f(q 1);
filr,t +dt /2) « [ dq fi(q, t + dt /2)elsT;

}

/* Second halfstep: update with the reaction parts in real space */

for ( fie {fi}){
| file,t+dt) « fi(e,t +dt/2) + R;({fi(x, t +dt /2)}) dt /2;

}
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Chapter 2

Pulsating Active Matter

In this chapter, we propose a new class of active matter, namely pulsating
active matter (PAM), as a particle-based scheme that mimics the behaviours
of biological cells in living tissues. Being alive, those biological cells repet-
itively deform, driven and sustained by ATP hydrolysis [77]. In addition
to individual deformations, living cells interact with each other, resulting in
macroscopic patterns such as contraction waves propagated by cell defor-
mations without prerequisiting significant displacement of cells [9, 50]. We
therefore consider a dense assembly of soft repulsive disk particles. Those
soft particles are individually driven to deform through their activities. The
active drive in particle motility is neglected in our model. Our particle-
based simulations reveal that in a dense assembly, the competition between
repulsion and size synchronisation between neighbouring particles yields dy-
namical patterns including planar waves, circular waves, spiral waves and
defect turbulence, which are then propagated by active periodic deformation
of particles. We investigate the underlying mechanism of these patterns’
emergence together with the nature of transitions in detail. In the contin-
uum limit, we systematically derive a field-theoretic description and compare
it to reaction-diffusion systems (RDS).

This Chapter is organised as follows: in Section 2.1, we introduce the back-
ground of this work. In Section 2.2, we describe our particle-based model. In
Section 2.3, we present the dynamic patterns and quantitative measurements
in particle-based simulations. In Section 2.4, we derive our field theory and
present the results of field-theoretic analysis. In Section 2.5, we discuss our
results and provide future extensions of our work.

This work is reported in arXiv:2208.06831
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Pulsating Active Matter

2.1 Introduction

Active matter is a class of systems in non-equilibrium statistical mechanics
that is well-known for the energy input that drives the individual members
at a microscopic level [29]. The individual activities give rise to interacting
many-body dynamics, leading to a non-equilibrium regime where unique col-
lective behaviours emerge, which are not observed in equilibrium.

Very often, activity is interpreted as self-propulsion, where each particle is
driven to undergo translational motion. These self-propelled particles can
exhibit various collective behaviours such as flocking [34] and/or MIPS [44],
to name a few. In dense systems, self-propulsion is found to shift the glass
transition [78, 79]. In cellular tissue models, the solid-fluid transition is also
regulated by the self-propulsion activities, with the area of each cell being
constrained [5, 80].

In biological tissues, unlike bacteria, living cells consume energy for deforma-
tion and migration. Through these active deformations, cell sizes repetitively
grow and shrink within a bounded range. These deformations are locally cor-
related: within a short range, cell sizes tend to be close to each other and
change over time collectively [48, 81]. In compact spaces, the close packing
of cells results in the coexistence of expansion and contraction: Whilst in
some regions cells’ sizes decrease, in other regions cells have to grow larger.
With this origin, contraction waves propagate in living tissues, as have been
observed experimentally both in vivo [82-84] and in witro [3, 4, 48, 50, 51,
81, 85, 86].

Indeed, contraction waves play a crucial role in biology. During the early
stages of embryonic development, morphogenesis is driven by contraction
waves, which result from mechanochemical coupling [87-89]. In cardiac tis-
sues, cell contractions triggered by electric signals lead to self-organised pat-
terns facilitated by mechanical interactions [90-92]. Some of these patterns
are associated with arrhythmogenesis [93, 94|, which is crucial for medical
practitioners. In uterine tissues, such contractions occur during labour and
are regulated by electromechanical couplings [95, 96]. Understanding the
emergence and control of the contraction-induced patterns hence provides a
basis for developing advanced techniques of treatment for the corresponding
health issues.

Our approach to understanding these patterns involves proposing a simple
yet effective model. Indeed, various models have been developed to study
these patterns, such as particle-based [54, 86] and continuum [55, 56] models.
However, assigning activity drives to both translation and active deformation
of cells is non-intuitive, since in a dense tissue, cells seldom migrate. Some
preliminary efforts have explored assigning activities to particle deformations
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to achieve novel phenomenologies distinct from self-propelled particles [15—
17, 97, 98]. These studies indicate that active deformation plays a crucial
role in the emergence of collective patterns in living tissues. In our work, we
introduce a new class called pulsating active matter (PAM) as an extension
of existing active matter classes. Our results reveal that active pulsation at
individual level creates a plethora of dynamical patterns.

2.2 Model description

In this work, a dense assembly of N deforming spherical particles in a bidi-
mensional square box of size L with periodic boundary conditions in both
dimensions is considered. Each particle is characterised by its position r
together with its phase €, an internal state. The size o of each particle is
determined by its phase 6

1+ Asiné

o(0) = o9 Ty (2.1)
where 0, A > 0 are input parameters defining the upper bound and range of
possible particle sizes respectively.
These particles are subject to short-range two-body repulsions U and syn-
chronisations 7 with cutoffs being determined by particle sizes. We then
consider a locally rescaled dimensionless two-body distance a;; between par-
ticles ¢ and j

ri — 1

o(0) +o(0;) (2:2)

aij =

Locally, between particles ¢« and j, the two-body interactions composed of
repulsion and synchronisation, are turned on iff they share a non-vanishing
overlap, i.e. a;; < 1, see Figure 2.1. With this criterion, the particle-based
equations of motion can be written down

N
j=1
| ! (2.3)
i =w—Y_ [T(aijy 0; —0;) + NGaGiU<aij)} + V20T,
=1

in which particle translation follows an overdamped Langevin equation with
a unit-variance, zero-mean Gaussian white noise & on each particle. More
ingredients exist in the phase dynamics where, besides the contribution from
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a;; > 1 a;; <1

Figure 2.1: Scheme of two particles 7 and j showing the implications of a;;
values. a;; < 1iff particles ¢ and j overlap with each other, which is sufficient
and necessary for them to interact with each other.

pair repulsion  _; 199, U (a;;) and a unit-variance, zero-mean Gaussian white
noise 7, there are synchronisations 7 (a,;, §; — ;) driven by phase differences
between neighbouring particles ¢ and j, which is intrinsically non-equilibrium
since the neighbours alter in time. In this work, the synchronisation bears
the form

T (ai;, 0 — 0;) = esin(0; — 0;)0(1 — ajj), (2.4)

such that it encourages the synchronisation in particle sizes o(6;) and o(6;).
Notice that 7 = 0 whenever i = j, since there is no self-interaction. The
intensity of synchronisation is measured by an input parameter €. The in-
teraction range is defined by the Heaviside kernel ©.

Besides, it is the active drive w exclusively in phase dynamics that highlights
the novelty of this class of active matter. As an input parameter, it is in this
work fixed and identical for all particles. It is immediate from (2.1) that the
active drive w encourages periodic deformation of particles within a bounded
interval [og(1 — X\)/(1 4+ ), 0¢).

Based on such a setup, the particle-based simulations are performed. Here
the Weeks-Chandler-Andersen (WCA) potential is adopted as the pure re-
pulsive potential U in the model

U(a) = Up(a™? —2a"%)0(1 — a), (2.5)
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U(aij)

O O

repulsionr no interaction

0 1

Figure 2.2: Schematic illustration of the WCA potential U(a;;). Effectively,
its is the repulsive part of a 12-6 Leonard-Jones potential achieved by cutoff
at its minimum. This cutoff is set to a;; = 1 such that the two particles are
just in contact with each other. When the two particles ¢ and j overlap, i.e.
a;; < 1, they reduce the overlap by both repelling each other and reducing
the sizes. When the two particles do not overlap, i.e. a;; > 1, there are no
interactions between them.

where Uy measures the strength of repulsion as an input parameter. See Fig-
ure 2.2. Again, U(a;) = 0 for all ¢ such that self-interactions are exempted.

2.3 Patterns and phase diagrams

Beyond the initial observation of contraction wave propagation in [16], 4
classes of wave patterns in all are observed in simulations as steady states,
see Figure 2.3. The defects are defined as points in space around each of
which % 390 df (r) = £1, with C being any single-loop contour containing no
other defect points and (r) the local average phase of particles in the vicin-
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Figure 2.3: A dense assembly of particles with pulsating sizes can yield 4
classes of contraction wave patterns: (a) planar waves, (b) spiral waves,
(c) circular waves and (d) turbulent waves. The depicted waves propa-
gate in the directions of black arrows. The underlying particle-based sim-
ulations are carried out in a square box of edge length L = 1000y, with
pw=1,u=1,T=1,w=10,00 = 1,Uy = 1. The parameter values {po, e, A}
for the snapshots are (a) {1.7,10,0.05}, (b) {1.6,10,0.1}, (c) {1.65,10,0.1}
and (d) {1.8,16,0.1}. The particle-based systems are all initialised with
uniformly distributed particle positions in [0, L] x [0, L] and uniformly dis-
tributed particle phases in [—m, 7].

ity of r. The defects here do not characterise the number of neighbouring
particles. Amongst the 4 classes, two of them (planar, circular) are defect-
less. The spiral waves originate from one defect (source) and are absorbed
by the other (sink). In a steady state featuring spiral waves, only a pair de-
fects exist, carrying opposite topological charges, such that they sum up to
zero, as is required on a compact surface without boundary. The turbulent
waves, unlike the spiral waves and defectless waves, are composed of short
wave segments. These wave patterns realised with our model extends the
observations by Togashi [16]. Recently, the emergence of wave patterns via
mechanochemical coupling are also realised using self-propelled vertex mod-
els [9], in which the planar waves are also observed.

These patterns are reminiscent of those in reaction-diffusion systems (RDS),
but with a major difference: unlike in RDS, in our model, the wave patterns
have only mechanical origin, independent of chemical reactions. In fact, from
the particle-based description (2.3) of the model, one can clearly see that the
repulsion U reduces the overlap between particles. In the equation of par-
ticle positions, it reduces the overlap by driving the overlapping particles
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to enlarge the distance between them. In the equation of particle phases,
it impedes particles’ growth when they are in direct contact. These effects
are particularly significant in a dense assembly, where the majority of par-
ticles overlap with each other. Whilst synchronisations 7 contribute to the
unification of particle sizes, the repulsion U would charge the global synchro-
nisation of particle sizes a considerable energy cost if all particles were driven
to reach their maximal size oy. To reduce the repulsive energy cost to a rea-
sonable level, a compromise that allows partial synchronisation of particle
sizes within a finite length scale is reached. This compromise actually leads
to wave patterns. The propagation of these wave patterns are driven by w
which leads to the periodic and locally synchronous deformation of particles.
In this way, the particles "take turn to grow” instead of growing together.
What are the conditions for this to happen? Answering this question entails
exploring the phase diagram. The first phase diagram is measured in terms
of the synchronisation order parameter r defined as

N

E eiej )

Jj=1

(2.6)

r=—

N

This order parameter is analogous to the magnetisation moment in spin mod-
els, and is broadly used in Kuramoto-type models [58, 99]. In the phase
diagram, the averages (r) of the synchronisation order parameter are mea-
sured in steady states of different input parameters. The main controlling
parameters here are the synchronisation strength € and the number density
of particles py.

The results of measurement are shown in Figure 2.4. In Figure 2.4 (a), the
phase diagram is composed of 4 regions as the result of varying the con-
trol parameters €, pg: two regions with (r)-value close to 1, indicating highly
ordered phases [(high €, low py) and (high €, high py)], one region with (r)-
value close to zero, corresponding to a disordered phase (low e, low py), and
one region with intermediate (r)-values, accounting for wave phases (high
e, medium pg). In the context of this model, this intermediate value of r
between 0 and 1 means wave propagation which demonstrates local order yet
lack of global order.

At low density (typically po < 1.4) and strong synchronisation strength (typ-
ically € > 10), the highly ordered phase with (r)-value close to unity features
globally synchronised cycling of particle deformation. Driven by a uniform w,
all particles in a dense assembly grow and shrink collectively. This globally
ordered cycling phase may be broken by increasing the density py. In this
way, the system becomes more packed, with the repulsive energy cost for a
globally collective growth of particles being dramatically increased. Besides,
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the cycling phase may be reached at low density py from the disordered phase
by simply increasing the synchronisation strength ¢.

The region of the globally cycling phase has a boundary that is non-monotonic
in density po, see the dark red and dark blue lines in Figure 2.4 (a). Dur-
ing the transition from the cycling phase to the phase allowing propagat-
ing waves, the competition between synchronisation and repulstion plays
the major role. To make qualitatively comparison, one may scale U ~
p8, T (ai;,0; — 6;) ~ £ to reach a qualitative comparison ¢ ~ pf that in-
dicates a sharp monotonic increase in py, which is the case for the phase
boundary. See the dark red line in Figure 2.4 (a).

At low density, where particle overlaps are minor, the transition between the
disordered phase and the cycling phase is the result of the competition be-
tween synchronisation and noise. From the equation of motion of phases in
Equation (2.3), one may extract a rough scaling argument » . T (as;, 0;—0;) ~
gpo to be compared with the noise, the effect of which is measured by T
The comparison pg ~ g1 qualitatively recovers the monotonically decreas-
ing shape of the phase boundary at low density. See the dark green line in
Figure 2.4 (a).

With a further increased density (typically p > 1.85), the particle assembly
becomes globally ordered again. Unlike the cycling phase, here the cyclic
deformations of particles are completely hindered by the strong repulsion
between neighbouring particles, due to deep overlaps between them. Syn-
chronisation here helps maintain the order by suppressing the effect of noise
on particle deformations. This phase is arrested. To achieve this phase,
any synchronisation strengths above a low threshold value can be sufficient,
regardless of the density values as long as the assembly is packed enough.
This explains the almost vertical shape of the phase boundary of the arrested
phase. See dark blue line in Figure 2.4 (a).

Beyond displaying the phases, we investigate the orders of phase transitions.
With different monotonicities of the phase boundary, the underlying mech-
anisms of transitions are not identical. At high &, the transition breaking
the global order is clearly discontinuous. In Figure 2.4 (b), the probabil-
ity distribution P of synchronisation order parameter r in steady states are
measured for different e-values across the phase boundary at a fixed density
po = 1.3. Around the phase boundary, there are clear bimodal patterns in
P(r), indicating the dynamic coexistence of the cycling phase and the wave
phase as steady states of different realisations. The discontinuous nature is
further confirmed by the strong hysteresis when crossing the phase boundary
by slowly tuning ¢ in steady states. In contrast, at py = 0.8, the phase tran-
sition is continuous, since the unimodel shape of P(r) is maintained during
the transition and no hysteresis exists during the transition. See Figure 2.4
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Figure 2.4: Phase diagram and phase transitions in particle-based dynamics.
(a) Phase diagram of the synchronisation order parameter (r) as a function
of synchronisation strength ¢ and particle number density pg. The (r)-value
at each point is an average over 100 fully relaxed trajectories. Two highly
ordered phase with (r) close to 1 are detected, with the rest part being
disordered or partially ordered. Three phase boundaries are drawn as ap-
proximate positions of phase transitions, and are marked in different colours.
The propagating wave patterns shown in Figure 2.3 exist between the dark
red boundary and the dark blue boundary at high . (b) Probability distri-
butions P of steady-state synchronisation order parameters r at pg = 1.3.
During the transition by tuning €, bimodal shapes of P(r) exist around the
dark red phase boundary. The hysteresis during the transition [inset] further
confirms that this transition is discontinuous. (c) Probability distributions
P of steady-state synchronisation order parameters r at pg = 0.8. During
the transition by tuning e, unimodal shapes of P(r) are maintained when
crossing the dark green phase boundary. The lack of hysteresis during the
transition [inset] further confirms that this transition is continuous. All mea-
surements are performed in a square box of edge length L = 1000y with the
other parameter values fixed at u = 1,9 = 1,7 = 1,w =10,00 = 1,Uy =1
and A = 0.05. The particle-based systems are all initialised with uniformly
distributed particle positions in [0, L] x [0, L] and uniformly distributed par-
ticle phases in [—7, 7], and relax for at least ty,; = 5 x 10° dt. For each point
in (a), the (r)-value is averaged over at least 20 trajectories with a length of
8 x 10* dt each. Close to the phase boundaries, the averages are over at least
100 trajectories. In (b) and (c), each P(r) is averaged over 400 trajectories
and the hysteresis curves are averaged over 10 long trajectories for each di-
rection.
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(c).

The synchronisation order parameter r, as an analogy to magnetisation mo-
ment in spin models, characterises only the averaged order of steady-state
configurations with a fixed setup. Beyond the ordering, a dimensionless cur-
rent v is defined to measure the average instantaneous phase speed

u(t) = ﬁ PACH (2.7)

Following the definition of current (2.7), one may plug in the equation of
motion of phase to obtain

( =1-— Z Z a’l]7 - ) + MHaGiU(az] 2N0

||Mz

(2.8)

N N
=1 2 e VWzm
i=1 j=1 =1

where we utilise 7 (a;;,60; — 6;) = —T (aj;,0; — 0;). From Equation (2.8),
it is straightforward that the current magnitude is only influenced by the
repulsion between particles. In fact, at low densities where the repulsion is
not major, the average values of current are all close to unity, no matter the
configuration is ordered or disordered. It is only when the particle assembly
becomes highly crowded that the average current becomes lower. In the
arrested phase where the system is tightly packed, the average current is
reduced to zero. These observations agree with Equation (2.8) in terms of
the hindering effect of repulsion U on current. See Figure 2.5.

To extract further insights into the current v, one may apply the product
rule on 0y, U by introducing the global packing fraction

o=ry (12) 29
j=1
as an intermediate variable, such that

.U ~ (95,0)(0,U). (2.10)

At mean-field level, which is a reasonable approximation in the cycling phase,
the factor 0,U can be approximated to be {6;}-independent, and is clearly
positive definite. Considering the definition of ¢ and ¢ in Equations (2.9)
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Figure 2.5: Phase diagram of the average current (v) as a function of syn-
chronisation strength € and particle number density py. The (v)-value at
each point is an average over 100 fully relaxed trajectories. In the arrested
phase, the (v)-value is close to 0. In other phases, (v)-value is close to
1. Entering the arrested phase features a monotonic gradual decrease in
(v)-value with increasing density po. All measurements are performed in a
square box of edge length L = 1000y with the other parameter values fixed
at u=1pup=1,T=1w=10,00 = 1,Uy = 1 and A = 0.05. The particle-
based systems are all initialised with uniformly distributed particle positions
in [0, L] x [0, L] and uniformly distributed particle phases in [—m, 7], and
relax for at least ti,; = 5 x 10° dt. For each point , the (v)-value is averaged
over at least 20 trajectories with a length of 8 x 10*d¢t each.
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Figure 2.6: (a) Plots of measured current v (blue) and global packing frac-
tion ¢ (red) in time in a cycling steady state reached by a point on the phase
boundary [red diamond in panel (c)] in a single trajectory. (b) Plots of mea-
sured current v (blue) and global packing fraction ¢ (red) in time in a steady
state with waves reached by a point on the phase boundary [red diamond in
panel (c)] in a single trajectory. (c) Phase diagram of Var(v). In both (a)
and (b), both v and ¢ are oscillating, with a phase shift around 7/2 between
them. The oscillation amplitudes in a cycling steady state (a) are larger than
in a partially ordered steady state (b). Both (a) and (b) are measured at a
same point (red diamond) in the phase diagram (c). In the phase diagram
(c), y/Var(v) changes abruptly across the phase boundary (dark red) be-
tween the cycling phase and the partially ordered phase. All measurements
are performed in a square box of edge length L = 1000y with the other pa-
rameter values fixed at p = 1, up = 1,7 = 1,w = 10,09 = 1,Uy = 1 and
A = 0.05. The particle-based systems are all initialised with uniformly dis-
tributed particle positions in [0, L] x [0, L] and uniformly distributed particle
phases in [—, 7], and relax for at least ti,; = 5 x 10° dt. For each point in
(c), the y/Var(v)-value is averaged over at least 20 trajectories with a length
of 8 x 10*dt each. Close to the phase boundaries, the averages are over at
least 100 trajectories.
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and (2.1) respectively, one can find that 0p,U effectively becomes a peri-
odic function of 6;. The noise term being neglected, the product rule (2.10)
together with the mean-field approximation leads to

w?

DU 0,U
v(t) ~1— ’““’T*ﬂg;agiwz 1 - 0% (2.11)

Here we also approximated 9y, ~ (1/N)¢/6; at mean-field level, with 6,
being approximated to w at the zeroth order.

Equation (2.11) can be used to explain the results on current v shown in
Figure 2.6. In Figure 2.6 (a)(b), currents of a cycling steady state (a) and a
steady state (b) in which waves emerge are plotted together with the corre-
sponding global packing fractions as functions of the rescaled dimensionless
time wt/2m. In both steady states, both v and ¢ are oscillating, with an
almost constant phase shift of 7/2 between them. This agrees with the lin-
ear relationship between v(t) and ¢. Moreover, when ¢ is increasing, the
repulsion hinders its growth by reducing the current v, leading to v-values
below 1. This is reflected in Equation (2.11) since whenever ¢ > 0, v(t) < 1.
On the contrary, the reduction of ¢ is always encouraged by repulsion U in
that it accelerates the shrinkage by increasing the current v. This is also
reflected in Equation (2.11) since whenever ¢ < 0, v(t) > 1.

Between Figure 2.6 (a) and (b), the most distinguished differences lie in the
oscillation amplitudes of v and . Whilst the average values are almost iden-
tical, a cycling steady state leads to significantly higher oscillation amplitudes
of v and ¢. Indeed, in a cycling phase, the globally synchronised growth and
shrinkage of particles maximises the difference in ¢ at different times, whilst
during the wave propagation a compromise is reached to allow the spatial
coexistence of particles’ growth and shrinkage, such that less changes in ¢
are observed. Due to the reduced magnitudes of ¢, the deviation of v from
unity is also systematically reduced.

It is then reasonable to regard the oscillation amplitude of v as a discrimi-
nating criterion between the cycling phase and the partially ordered phase.
The oscillation amplitude can be captured by the current variance Var(v) =
(v?) — (y)2, the square root of which, i.e. the standard deviation, is propor-
tional to the oscillation amplitude of v up to zero-mean noises. In Figure 2.6
(¢), a phase diagram in terms of the standard deviation y/Var(v) is measured
using the same method as in Figure 2.4(a). An abrupt change in y/Var(v)
is observed along the boundary between the cycling phase and the partially
ordered phase.
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2.4 Field-theoretic treatment

2.4.1 Coarse-graining a la Dean

Following the procedures of Dean [20], as has been discussed in Subsec-
tion 1.2.1, a continuum description of PAM is achieved through coarse-
graining the particle-based model (2.3). The empirical distribution of parti-
cles f(r,0,t) = Zjvzl d[r—r;(t)]6[0 —0;(t)] in the composed space of position
r € T? and phase § € R becomes the central object of the continuum de-
scription.

The derivation starts from the effective particle-based dynamics
r; = V2DE;
éi =w + 7T0'§ Z |:8 sin(Hj — 01) — [Lg(a¢U)(69]§0) (5(1‘1 — I'j) + 2D977i,

J

(2.12)

where we neglect the contribution from repulsion U to the overdamped
Langevin dynamics of {r;} since its effect of homogenising the particle po-
sitions can be fully covered by the noises {§;}. In the equations of {6;},
we again approximated {Jy,U} by using the product rule (2.10), with an
insertion of the global packing fraction ¢ defined in Equation (2.9). This
approximation, after applying Equation (2.1), leads to

r; = V2D§;
0, =w + Z [ésin(Hj —0;) —ccosb; — %C sin(26;) [0(r; —r;) + \/2Dgn;,
J
(2.13)

where & = woge, ¢ = pgA(woo(0)/L)*(0,U).
Coarse-graining Equation (2.13) via the procedures in Subsection 1.2.1 yields
the exact field equation

O f = —0y [f(r, 0,t) (w + ZJ: [ésin(ej —0) — ccosb; — % sin(26;)

(2.14)

Equation (2.14) is a stochastic partial differential equation (SPDE) of a den-
sity field f on space r and phase 6, based on which a direct interpretation
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is hardly achievable. Technically, such an SPDE is difficult for analytical
treatment on its original form. In the following, we further process Equation
(2.14) via mode expansion and approximations in order to obtain a closed
set of simpler equations.

2.4.2 Derivation of field equations

Since f(r,0,t) is periodic in #, one may perform a Fourier-mode expansion

fr,0,t)=> " fulr,t)e™, (2.15)

such that one may achieve a hierarchy of equations for each mode

ne

2
) A

—inc [Re(fl) + §Im<f2> fn+ A, (2.16)

A, = Z elndi [ — @5 - 0p0(r —1;) +iny/2Dgn;0(r — rz)} )

i

8tfn = (inw—D9n2+Dar2r)fn+ (_fn—i-lfl*"i_fn—lfl)

In the hierarchical set of equations (2.16), each mode n is coupled to its
nearest-neighbouring modes n + 1 and n — 1, along with the modes fi, fo.
In fact, from the definition of modes one may immediately notice that Vn €
Z, -, = f; and the first two non-negative modes fy, f1 are the local density
and the local synchronisation order parameter respectively. The dynamics
of fi is the central object of interest since it indicates the phases. We write
down the equations of the modes around f;

atf[) = Dafran

0ufy = (1w — Dy + DORV + 5~ fofi + fofi) — ie[Re(f) + ST £)] i,

Oyfo = (2iw — 4Dy + D2V fo + E(— fofr + f2) — 2ic [Re( fi)+ %Im( f2)] fo.
(2.17)

These equations are not closed as fs, f3 are involved. What we aim at is
a closed equation of f;. To this end, one should close the equation for f;
by truncating the hierarchy (2.16) in the noiseless limit (Vn € Z,A,, = 0).
Following the scaling Ansatz [35]

anXnaat Nafr NX2> (218)
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where y < 1, the equations in (2.17) are of x2-,x3- and x*-orders. We then
truncate the hierarchy (2.16) at y3-order. After setting all O(x*)-terms to
zero, one solves f5 in terms of f;

eff

f2= 22Dy — i)’ (2.19)

Plugging Equation (2.19) back into the equation for f; in (2.17) yields the
noiseless equations

Ocfo = D3 fo

~ (Epo . 2 hlA?
8tf1 = (7 - Dg + 1w + D83r> fl - 4(2D9 — 1w) (220>

Since fy is purely diffusive without the influence by fi, in a steady state it
should always be homogeneous Vr € T?, fo(r,t) = po. Denoting A = f; we
arrive at a single equation

= =2 2
9,A = (’gﬂ — Dy +1w+Dafr)A— AP
2 4(2Dy — iw) 2.21)
P\ A? '

Equation (2.21) is formally close to the well-known CGLE (1.23) with a
real-valued diffusion coefficient. Nevertheless, unlike CGLE, our Equation
(2.21) explicitly breaks the U(1) symmetry A — Ae'® ® € R due to the
term proportional to c¢. Since ¢ is the only parameter that contains the
information of repulsion U and is proportional to d,U, one can argue that it
is the repulsion U that breaks the U(1) symmetry.

Besides, under the framework of CGLE, a real-valued diffusion coefficient
denies the possibility of exhibiting patterns. See [11] for the comprehensive
discussion. Therefore, the field-theoretic description of our wave patterns
should not be found within standard CGLE-classes, but should rather be
considered as stemming from the breaking of U(1) symmetry by repulsion.
In the following Subsection, we analyse Equation (2.21) and show the results
of numerical simulations.

2.4.3 Analysis and simulations

Homogeneous solutions Analysing the homogeneous steady states re-
quires an amplitude-angle decomposition A = Re'¥ with R > 0,1 € R. This
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leads to
_(Epo Dye*R?
atR_( 2 D9>R 2(4D2 4 w?)’
we? R3 AeR?(2Dy sin(2¢)) + w cos(2¢)))
Ratw—WR—m—CR[COS¢+ 4(4D§—|—w2> .

(2.22)

The steady state requires 0; R = 0, leading to two non-negative roots: R, =0
or Ry, =& '/ (epo/Dy — 2)(4D} + w?), corresponding to a disordered config-
uration and an ordered configuration respectively. The stability of the two
fixed points are probed by a linear perturbation R = Rj, + d R. This leads to

£po ) 3Dy’ R26R
O0R = (=50 = Dy + DOZ)oR — S 2.23
' 2 0+ Bl 2(4D2 + w?) (2.23)
In Fourier g-space it reads
d - ~ o 3Dy’ R2 5
@ _ == _Dy———— " __ Dg* 2.24

The disordered configuration R = 0 is stable iff 5% — Dy < 0, since in this
case o(q) < 0 for all g. This agrees with the scaling argument obtained in the
analysis of particle-based simulations that explains the monotonic decreasing
shape of the boundary between the disordered phase and the cycling phase.
See the red dotted line in Figure 2.7 (a) and the dark red line in Figure
2.4 (a). The nonzero root Ry is possible iff %20 — Dy > 0 since a positive
argument is needed under a square root. In this case we plug in the nonzero
Ry, into o(q) to get

£p
a(q) = — (70 - Dg) — D¢”. (2.25)
Again, o(q) is negative definite for all ¢, indicating that the nonzero home-
geneous Ry, is linearly stable against any linear perturbations.

In an ordered phase R;, > 0, the equation of homogeneous collective phase
1 becomes

b = Q= V' (¢n), (2.26)
with
0_ w(% _ ﬂ)
- T\2 4Dy (2.27)
V=c {Rh sin vy, + 2—);<1 — 28—209) (2Dg cos(2¢,) — wsin(24p,)) |-
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When the tilted potential V' (¢,,) — Q4y, is strictly monotonic in vy, the or-
dered phase is cycling. In the cycling phase, the global drive {2 determines
whether the cycling is clockwise (€2 > 0) or counter-clockwise (2 < 0). The
counter-clockwise cycling requires €p > 6Dy which has no equivalent in the
particle-based dynamics. This regime is too far away from the disorder-order
transition, around which the coarse-grained description of the particle-based
dynamics is effective. Indeed, Equation (2.19) can be regarded as an expan-
sion to the lowest order in f7.

When a local minimum of V' (¢,) — Qu)y, exists, one obtains an arrested phase.
To leading order in A, one finds

2} (r —3)* - B*(z — 1) <0, (2.28)
with
€Po CpPo w \2
— P g o)y (— . 2.2
YT 9Dy w { * DOH (2:29)

To leading order in B ~ O(A), the solution to (2.28) reads

5 5
3—§B<x<3+%3. (2.30)

This criterion is depicted with the black dashed line in Figure 2.7(a). In the
limit of small pg, the interval (2.30) converges to a single point x = 3, which
agrees with the condition épy = 6Dy leading to 2 = 0.

The stability of homogeneous v, is demonstrated by a linear perturbation
¥ = 1y, + 0. In Fourier g-space, knowing that Rj, is anyway linearly stable,

this results in
d

dt”
where v(q) = —=V"(¢3) — Dg*. According to Equations (2.23) and (2.31), the
linear stability around a homogeneous solution depends only on o(q), v(q).
At a local minimum vy, V" (1) > 0. Therefore Vg € R,v(q) < 0. Hence the
arrested phase at the local minimum ), of the tilted hydrodynamic potential
V — Q) is always linearly stable. In fact, the existence of a stable arrested
phase is caused by the term proportional to ¢ in Equation (2.21). This term
explicitly breaks the U(1) symmetry. Since ¢ o< 0,U is the only source of
repulsion in Equation (2.21), it is the repulsion between particles that lifts the
U(1) symmetry. This physical interpretation is immediately clear in particle-
based dynamics. Indeed, a globally synchronised growth of all particles leads
to a higher repulsive energy cost than a globally synchronised shrinkage.

01y = t0R, + v(q)0¢y, (2.31)
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Figure 2.7: (a) Phase diagram of the noiseless continuum dynamics (2.21)
obtained with A being initialised in homogeneous ordered state. Four homo-
geneous phases are observed in steady states: disordered phase (D), clockwise
cycling phase (CW), counter-clockwise cycling phase (CCW) and arrested
phase (A). The boundary between the cycling phase and the arrested phase
(black dashed) is recovered analytically by (2.30). The boundary between
disordered phase and ordered phases (red dotted) is described by £py = 2Dy
obtained from linear stability analysis. (b,c) Dynamical patterns with motile
defects realised by adding a noise to (2.21) at a point in a cycling phase (red
diamond) obtained with A being randomly initialised. Both the amplitude
(b) and the phase (c) of the local synchronisation order parameter A show
such dynamical patterns that are reminiscent of defect turbulence in Figure
2.3(d). All simulations are performed with the other parameter values being
fixed at ¢ = Api?/(1 + A)?, D = 4000, Dy = 1, w = 10, A = 0.05,dt = 0.01.
Each trajectory relaxes during t,; = 4 x 10*dt.
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Noise fields All the analytical analysis in terms of linear stabilities of
homogeneous solutions successfully agrees perfectly with the observations in
numerical simulations of Equation (2.21) with homogeneous initial config-
urations. The phase diagram is then measured in terms of the stationary
values of Ry, and the existence of stationary iy, based on Equation (2.26).
See Figure 2.7(a). However, no inhomogenities are involved here, allowing no
room for wave patterns. Further numerical simulations show that the lack of
inhomogeneities holds true even with truncations of the hierarchy (2.16) at
higher orders in y. To open a window for wave patterns between the cycling
phase and the arrested phase, introducing the noise fields is necessary.
Here, only the noise A; on the mode f; is considered. To further constrain
the role of noise, the contribution from D, i.e. the noise in translation, is
neglected. Hence according to Equation (2.16) one can write

Al =\ 2D9(U1 + iUl), (232)
with [ug,v1] = Y _,[sin6;, — cos 6;]n;0(r — r;). The noise components {uy,v;}
are Gaussian and have zero means, with spatio-temporal correlations

<[U1, Ul]T(I' t)[ul, vl](r' t,)>

Z sin(6 sm(Qk( ")) —sin(0;(t)) cos(O(t))
N —cos(0;(t))sin(0x(t'))  cos(8;(t)) cos(bx(t))
o(r — rj(t))5(r - rk(t ) (1 (E)mi(t))

1 , , cos(20; — sin(20;(t
= 30 -l ‘“Zj: [ —sm(éﬁ (é)))) 1 +Co£(29§-(3€§)] e = x;{t)
L s — ¢y | folest) = Re{fo(r, )} —Im{ fo(r,?)})
= 30lr—r)ot—¢) [ —Tm{fo(r, 1)} fo(r,t)+Re{f2(r,t)})j | |
2.33

For simplicity, the fs-contribution to the noise is neglected. In this way there
is no cross correlation between u; and v;. Noticing that in the steady state
fo = po everywhere, one may arrive at a diagonal correlation matrix

(ui(r, O)ur (v, ) = (i (r, t)ui (v, 1)) = 'OU d(r—r)o(t —t). (2.34)

Such a correlation, according to Equation (2.32), should be realised by a
noise term /poDyA(r,t) added to the RHS of the noiseless equation (2.21)
which leads to

E2A|A|?
42Dy — iw)

: EX A?
—icA {Re(A) + Zlm<2D9 )} + v/ poDoA\,

0,A = (650 Dy + iw + D82>
(2.35)
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with
A =u—+iv, (u(r,t)u(r’,t')) = (v(r, t)o(r', ') = %5(1‘ —r)o(t—1t). (2.36)

In the presence of noise at continuum level, between the cycling phase and the
arrested phase in Figure 2.7(a), a window accommodating steady states with
dynamical patterns emerges, with examples shown in Figure 2.7(b)(c). With
the noisy continuum description (2.35), only these dynamical patterns asso-
ciated with the birth and merging of motile defects can be realised, which are
reminiscent of the defect turbulence observed in particle-based simulations
shwon in Figure 2.3(d). The other wave patterns without motile defects are
not observed at continuum level. Remembering that the dynamical patterns
at continuum level are realised only by adding an approximated additive
noise to the noiseless dynamics of the model f; with a constant density in
steady states, one may expect the missing dynamical patterns to be stabilised
by recovering the fluctuations in density field in steady states.

2.5 Discussions and outlooks

In this work, PAM is proposed as a novel class of active matter that leads to
patterns at continuum level that are similar to RDS. This is striking as PAM
is based on a minimised setup that does not even include reactions, whilst
spatial diffusion is suppressed at high densities where wave patterns exist.
Although in [16], the individual pulsations of particles were seen as mimick-
ing chemical reactions, with particle phases being reaction coordinates, our
work extends its description power to include non-reactive processes such as
cell deformation. With this non-reactive setup, contractile wave propagation
in biological tissues as dense assemblies of cells is mimiced as a compromise
between particle size synchronisation and inter-particle repulsion.

At the continuum level, the two-body interactions introduce nonlinearities
in Equations (2.21) and (2.36). Specifically, the nonlinear A|A|*~term intro-
duced by a nonzero g, preserving the U(1) symmetry, stabilises the ordered
cycling phase. On the other hand, the nonlinear term introduced by ¢ breaks
the U(1) symmetry and fixes the ordered phase to a preferred collective phase
Wy, relative to a tilted potential. All the essential elements play their respec-
tive roles correctly, even in the continuum model, although an intermediate
phase with dynamical patterns between the cycling phase and the arrested
phase was absent in the noiseless limit. Further refinements of the contin-
uum description, such as incorporating fluctuating density, local coupling
between density and order, etc., can be pursued to more accurately capture
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the phenomenologies observed in particle-based simulations. Additionally,
the detailed role of noise in the formation of wave patterns, which is cur-
rently absent in this study, warrants further investigation. All these efforts
can contribute to the development of a class of field theories for pulsation
waves.

In general, the paradigm of deforming spherical particles is a powerful tool for
simulating complex many-body structures with changing interaction ranges
between nearest neighbours, such as biological tissues. Compared to mod-
els of spherical particles with fixed sizes, the deforming particles introduce
polydispersity to a particle assembly that enlarges the range of potential
phenomenologies in a spherical particle assembly.

Using such powerful yet simple models, one can expect to describe further
real systems beyond epithelial tissues. In our model, the existence of different
wave patterns is shown to be controllable by system density and synchronisa-
tion strength. This warrants further investigation, as in cardiac tissues, spiral
waves and turbulence are also propagated through cell deformation without
significant cell migration, resulting in fibrillation, a fatal pattern of cardiac
dynamics that disrupts the directional pumping of blood [93]. Clinically,
defibrillators are used in first-aid to apply high voltages to the living heart to
eliminate such disruptive wave patterns, although such drastic treatment can
cause damage. Current ongoing studies are exploring gentle treatments that
can mitigate fibrillation [100, 101] without significant side effects. In this
context, it would be interesting to explore the crossover between different
wave patterns in relation to the work presented in this Chapter.

To this end, one may consider introducing further elements to engineer the
wave patterns. For instance, to mimic fibrillation, one could consider incorpo-
rating inhomogeneities in particle size intervals or adjusting the active drive
w. Nonetheless, the current piece of work takes the initial step in understand-
ing the mechanism of the emergence of different wave patterns. Within this
framework, an immediate extension to our work would be the examination
of defect statistics. For example, conducting systematic investigations into
the number of defects and the typical distances between defects as functions
of system size L, density py and synchronisation strength ¢ would contribute
to a deeper understanding of the emergence and disappearance of defects.
Also, the interplay between the defects defined in this work and structural
defects defined as irregular number of neighbouring particles in a crystallised
region would deserve further scrutiny.
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Chapter 3

Species Interconversion
through Particle Deformations

In this chapter, we investigate the emergence of transient liquid-liquid phase
separation (LLPS) resulting from particle conversions. We propose a model
that comprises a dense assembly of repulsive deforming particles. The sizes
of these particles are determined by their internal states subject to a one-
body potential landscape and non-equilibrium synchronisation interactions.
The one-body potential features three local minima, classifying the particles
into three distinct species based on their internal states. One of the three
species is metastable. We report in this Chapter the conditions for tran-
sient LLPS between two species. Besides, via the systematic coarse-graining
procedures and various approximations, we obtain a Model-A-type contin-
uum description and subsequently investigate the continuum model. We find
that the numerically measured phase diagram based on the continuum model
qualitatively captures the phenomenologies of the particle-based model. In
addition, we clarified the different natures of transitions via a free-energetic
approach.

This Chapter is organised as follows: in Section 3.1, we introduce the back-
ground of this work. In Section 3.2, we describe our particle-based model.
In Section 3.3, we present the relaxation procedures observed in particle-
based simulations with a symmetric one-body potential. In Section 3.4, we
measure the phase diagrams as functions of different asymmetric one-body
potentials. In Section 3.5, we derive the field theories and present the re-
sults of field-theoretic studies. In Section 3.6, we summarise the work in this
Chapter.
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3.1 Introduction

Liquid-liquid phase separations (LLPS) occur in liquid mixtures in which the
affinity between different components is weak compared to that within the
same component [102], such as water-oil mixtures [103] in equilibrium. In a
reactor, where chemical reactions take place at a large scale, however, the
chemical composition of the liquid mixture is altered constantly, which is
described in terms of RDS [104].

As has been mentioned in Chapter 2, RDS are known for exhibiting a richness
of patterns and have been intensively studied. Besides dynamical patterns
such as B-Z chemical oscillations, many stationary patterns are also found to
exist in the framework of RDS. These stationary patterns are sometimes con-
sidered as phase separations. The phase-separated configuration may have
multiple regions rich in one species or the other. In this case, such phase sep-
arations are known as microphase separations. Examples include the stripe
patterns on animal skins [105], block copolymers [106], etc. When the phase-
separated configuration features only two regions rich in different species,
the phase separation is seen as macroscopic. Examples include the phase
separation between water and oil, the phase separation between species in
auto-catalysed electrochemical processes [107], etc. Recently, such station-
ary patterns have been systematically discussed in terms of instabilities in
non-ideal RDS [108]. In those discussions, phase separations are classified
into two types of instabilities. Either it is the intermolecular interactions
that leads to a macrophase separation, or the multimolecular reactions out
of equilibrium cause microphase separation [108].

Binary mixtures are widely found across different domains, from natural sci-
ence, such as metallic [109-111] and glassy [112, 113] alloys, copolymers [114,
115] and curved biomembranes as lipid mixtures [116-120], and social sci-
ence, such as human populations [121]. This minimal setup encompasses a
broad range of features of mixtures, including phase separations. Yet, phase
separations in mixtures include much more than the equilibrium water-oil
separation. In fact, using the agent-based Schelling’s segregation model, one
may obtain a phase separation between communities of agents holding dif-
ferent stances, which mimics the political polarisation [122] in real world. In
non-reactive mixtures, the phase separation upon temperature quench has
typically been ascribed to spinodal decomposition [123], as a result of the
miscibility gap between the two components and thus the instability of the
monophase configuration. Later studies on reactive binary mixtures added
chemical conversions into the framework of spinodal decomposition [124—
128]. In living biological cells, membraneless organelles self-organise via
phase separation to constrain biochemical processes spatially [18, 129, 130].
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The classical Ising model, although initially motivated for studying ferro-
magnetism in solid crystals [131], is a paradigmatic model of binary mixtures
exhibiting phase separations. Within the framework of finite-sized systems,
in Kawasaki dymamics, a conserved global magnetisation maintains a phase
separation as the steady state [132], whereas in Glauber dynamics, starting
from a disordered configuration, transient phase separations occur en route
towards fully ordered steady states [133]. These phase separations are in-
duced purely by spin flips on immobile regular lattice points.

An example of off-lattice dynamics akin to the Ising model is the study on
the chiral symmetry breaking (CSB) in a binary mixture of enantiomers [134].
In such a system, the interconversion between enantiomers are mimicked
with mechanical deformations of simplified molecules composed of rods and
spheres. A degenerate double-well potential landscape is used to accommo-
date enantiomers with different chiralities and the transition state conforma-
tions between them. Starting from a disordered configuration, the relaxation
of the binary mixture experiences a transient phase separation between do-
mains of different chiralities, which finally disappears to realise a complete
CSB.

Beyond a single elementary reaction, many chemical reactions, especially
biochemical processes involving a plethora of species, contains extensive el-
ementary reactions organised into chemical reaction networks (CRNs) [135—
137]. CRNs capture essential dynamical properties, such as steady states
(number and stabilities) [138, 139], initial reactants’ persistence [140], peri-
odicity [141], to name a few, using simple descriptions [142, 143]. However, a
complete CRN-description of a complex reaction system is hardly achievable,
due to unknown elementary reactions involved and difficulties in measuring
all rate constants experimentally. Furthermore, not all details in a CRN
are relevant for the features of interest. Intensive effort has thus been paid
towards reducing CRNs for a renormalised simpler descriptions with less
building blocks whilst still capturing essential properties [144-151].

Whilst for reactive dynamics, the non-conservation of total particle number
is common in open systems, it is difficult to implement for diffusive dynam-
ics. Typically, one has to model the “void states” mimicking the particle
number reduction during a reaction collision. Such void states exist in an
extensive class of lattice-based models capturing the non-equilibrium physics
of systems, which can be regularised into field theories [152, 153]. In particu-
lar, the “A+B— @”-type models allows particle annihilation upon collision,
which effectively introduces an absorbing particle reservoir. In such models
at criticality, particle numbers decay with time, following a universal power
law in the late stage in particular. Some of such models allow both particle
creation and annihilation, motivated by surface catalysis [154] where a solid
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catalyst is placed in a reaction system to reversibly absorb and desorb reac-
tants and products.

In our work, we consider using point particles with vanishing size to effec-
tively represent the void states in diffusive systems. Particles can in general
change their sizes, and are subject to a one-body potential which constrains
size fluctuations. This one-body potential contains multiple minima asso-
ciated to distinct “species”, thus playing the role of an effective reaction
landscape. The void state is placed in one of our one-body potential wells
as a metastable state. We find multi-step relaxation processes leading to ho-
mogeneous steady states containing only one species. We add asymmetries
to the one-body potential and find the steady states depend on these asym-
metries. Like in the “A+B— @”-type models, we derive a field-theoretic
description of our diffusive model. Our field-theoretic description involves a
mapping towards an effective equilibrium, and turns out to be a Model-A-
type field theory. We perform further analysis using tools from equilibrium
field theories. In the framework of field theories, we predict the steady states
associated to given asymmetries in the one-body potential.

3.2 Model description

In this work, we consider a dense assembly composed of N deforming soft
disks at temperature 7" in a bidimensional square box of edge L, with periodic
boundary conditions being applied in both dimensions. These deforming
soft disks repell each other and homogenise their sizes via synchronisation.
The dynamics of this many-particle assembly is described by the following
particle-based equations of motion

N
P = —MZ&ZU aij) +/2uT &;,

J (3.1)
&i = Z |: azj7 05 — Ui) + ,uaaaiU(aij)] - NUV/(O—i) + 2IUUT771"

J=1

where 1, j1, are spatial mobility and o-mobility respectively, V'(o;) = dV /do
U is the WCA repulsive potential with the form in Equation (2.5) taking the
rescaled distance a;; as the argument, 7 is the synchronisation interaction
and V' is the one-body potential in o-space. The translation of particles still
follows overdamped Langevin dynamics similar to PAM. Both {r;} and {o;}
carry zero-mean, unit-variance Gaussian white noises {£;} and {n;} respec-
tively. To avoid self-interactions, 7 and U are both zero whenever i = j.

%)
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In a dense assembly, the two-body repulsion U and synchronisation 7 have
major effects on particle sizes due to strong overlap between particles. Similar
to PAM, the two-body interactions have short interaction ranges restricted
by a Heaviside kernal O(1 — a;;), where the rescaled dimensionless distance
between particles ¢ and j is measured as

W = Tl
Y ol oyl

(3.2)

i.e. the interparticle distances are rescaled with the sum of the sizes of the
two particles. Unlike PAM, here the synchronisation 7 bears the form

T(aij, 0 — O'i) = €(O'j — 0',)@(1 — aij), (33)

i.e. instead of synchronising particle sizes, T synchronises the reaction coor-
dinates of two overlapping particles.

Again, similar to PAM (see Section 2.2), each particle is described by its
position r and an internal state . The internal state o, unlike that in PAM,
determines the particle size with its absolute value |o|. Thus in principle,
a particle in our model can be as small as a point particle with vanishing
size, or infinitely large. Compared to Equation (2.3), there is no active drive
in the dynamics of the internal state in Equation (3.1), whilst a one-body
potential V' exists to set a soft bound for particle sizes from above. The
one-body potential in fact mimics a chemical reaction landscape with the
internal state o; being a reaction coordinate of particle . We adopt here
a triple-well potential V' with point particles ¢ = 0 being metastable. The
metastability of the state o = 0 is supposed to make point particles mimic
a particle reservoir. We begin with a symmetric potential such that two de-
generate local minima lie in 40, with oy > 0 being the stable particle size.
See Figure 3.1 for a schematic example. A polynomial realisation of such a
potential entails a o%-model with the shape

V(o) = vo(c® — ao* + bo?), (3.4)

with vy > 0 measuring the intensity of V. The parameters a, b are determined
by the stable particle size oy and the unstable particle size o as the local
maximum between 0 and 0. In such a scheme, one may classify the particles
into 3 species based on their o-values: A-particles (¢ > o0.), B-particles
(0 < —o4) and @-particles (—ox < 0 < 0y).

Knowing that V'(£0g) = V/(£o,) = 0, one has

60p — 4acy + 2bog = 0

3.5
60;1 — 4aai +2bo = 0. (3.5)
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Solving Equation (3.5) leads to

3
a= 5(03 +02),b=3050%. (3.6)

Moreover, to ensure that +o0( are local minima and £o0 are local maxima,
one should have V" (£oq) > 0,V"(+0,) < 0. This leads to

3005 — 18(0p + 0% )og + 60402 > 0

3.7
3003& — 18(og + 035)‘73& + 603035 <0, (3.7)

which is automatically satisfied by 0 < 0 < 0y. Importantly, to ensure that
o = 0 is metastable, one should ensure V(xo.) > V(0) > V(z£op). This
leads to

3 3
ai - 5(03 + Ji)ai + 3080i > 0> 05 — 5(0(2) + ai)aé + 30303&. (3.8)

Solving the Inequality (3.8) gives
302 < o} (3.9)

Inequality (3.9) sets a tighter upper bound for o which is 0. < 0¢/+/3. This
condition may be further checked by the metastability coefficient defined as

_ V(ep) ~V(0)
V(o2) — Vo)
1

= 1—37
1 y
+ 372 7,},3

(3.10)

with v = 0% /05. The range (3.9) clearly ensures a < 1.

3.3 Relaxation towards steady states

3.3.1 The role of the particle reservoir: insights from
equilibrium (e = 0)

The synchronisation 7 between neighbouring particles is the only non-conservative
interaction in our model, since the neighbours a particle synchronise with
change in time. Turning off the synchronisation by setting ¢ = 0 makes the
steady states of the model (3.1) in equilibrium. The resulting equilibrium
configurations are disordered mixtures of particles with different o-values.
In particular, in the absence of repulsion, i.e. U = 0, the distribution of
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T T T T T
—00 —0% 0 O£ o)

Figure 3.1: Symmetric triple-well one-body potential V' (o), with o = 0 being
metastable and |o| = 0y being stable. The local maxima +o divide the o-
values into 3 regions corresponding 3 species: A-particles (red, o > o),
B-particles (blue, 0 < —0) and @-particles (gray, |o| < o)

o-values P|o]| exactly follows the Boltzmann distribution with respect to the
one-body potential V
Plo] o< e V), (3.11)

as is reflected in Figure 3.2, since in this special case the model (3.1) has
been reduced to N decoupled one-body dynamics. When U > 0, in a dense
assembly the @-particles are overpopulated. This overpopulation increases
with density p, as is shown in Figure 3.2, since higher densities lead to more
repulsive energy costs, driving more particles to the metastable state. It is
then tempting to regard the metastable state as an effective particle reservoir
in contact with A- and B-particles. Indeed, in a dense assembly the repulsion
U also contributes to changes in o-values of particles, since more particles’
being converted to & reduces the repulsive energy cost.

3.3.2 Relaxation towards non-equilibrium steady states
in multiple steps (¢ > 0)

Turning on the synchronisation makes the model (3.1) out of equilibrium.
With significant synchronisation between neighbouring particles, a disor-
dered configuration can no longer be maintained since large difference in
o-values between neighbouring particles is not favoured. As a result, the
steady states have to be homogeneous, containing only one single species.
Whether a steady state is composed of A-, B- or @-particles depends on the
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Figure 3.2: Negative log statistical distributions — InP[o] (solid lines) of o-
values in fully-relaxed configurations at ¢ = 0. At U = 0, an exact match
between —InPo| (black) and V(o) (blue dashed line) is reached up to an
inverse temperature prefactor § and a global shift. At U > 0, —InP|o]
deviates from V(o) by overpopulating @. Increasing the density (yellow,
red, brown) leads to larger populations of @ amongst a fixed total number
N of particles. All measurements are performed in a square box of edge size
L = 1000y with oy = 1,0+ = 0.409,v9 = 60,7 = 5, = 1,4, = 0.1. For
U >0, up = 0.0001.
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relative stabilities of those species and the relaxation process.

Under a symmetric one-body potential V' (o), the probabilities of relaxing to-
wards the steady state full of A-particles and that full of B-particles should
be degenerate. However, a strong metastability leads to a steady state full
of @-particles due to strong synchronisation. Starting from disordered initial
configurations composed of equal number of A- and B-particles, the relax-
ation following Equation (3.1) leads to a steady state full of A- or B-particles
at low a-values, typically @ < 0.34. Above that value of «a, there starts to
be a significant probability that the steady state may be full of @-particles.
In particular, at large a-values, especially those close to unity, the steady
state full of @-particles is more probable to exist. In fact, strengthening the
metastability makes @-particles the third stable species, which is difficult to
escape from under strong synchronisation. In the following discussions, we
will be focusing on small a-values that will not lead to a steady state full of
g-particles. See Figure 3.3.

At small a-values, the relaxation starting from a disordered mixture has
three stages: (I) Shrinkage: particles of different species overlapping with
each other are both quickly converted into @-particles, leading to a configu-
ration with most particles being @ and an acute drop in the global packing
fraction-Figure 3.4 (a,b). (II) Domain growth: the remaining tiny clusters
of A- and B-particles surviving the shrinkage grow into large homogeneous
domains by converting their neighbouring @-particles into the species in the
clusters. This leads to a growth in the global packing fraction and finally
a phase-separated configuration with @-particles only surviving between the
domains of different species-Figure 3.4 (b,c,d). (III) Coarsening: one of
the two species forming domains in phase separation is converted to the
other, finally leading to a homogeneous steady state containing only one sin-
gle species, either A- or B-particles. The timescale of relaxation and the
steady state depends on the shape and topology of the transient phase sep-
aration. The species in a bubble will not survive during the coarsening and
is quickly converted to the species outside-Figure 3.4 (d,f), while bands are
long-lived and give no predictions on the species in the steady state-Figure
3.4 (c,e,f). During coarsening, the fraction of @-particles gradually decrease
due to shrinking domain boundaries.

Since only the synchronisation 7 is non-conservative, its non-conservative
work leads to irreversibility of the relaxation. The non-zero non-conservative
work keeps the system out of equilibrium. We therefore use the non-conservative
work rates {(3;)} as measures of irreversibilities [155, 156] at single-particle
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Figure 3.3: Average fractions of @-particles as functions of time under differ-
ent metastabilities measured as over 100 trajectories for each a-value. Small
a-values ensure that the steady state are not full of @-particles. Start-
ing from o = 0.36, there can be trajectories leading to the steady state
full of @-particles. Our scope of binary mixtures is therefore restricted to
a < 0.34. All measurements are performed in a square box of edge size
L = 1000 initialised with equal amount of particles with ¢ = £1 uniformly
distributed in the square box in the absence of particles of other o-values,
with o9 = 1,04 = 0.400,p = 1.4,v9 = 60,7 = 5,0 = 1,4, = 0.1 and
ug = 0.0001.
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50

Figure 3.4: 3 stages of the relaxation following (3.1) starting from a dis-
ordered initial configuration (a): (I) Shrinkage: particles with opposite o
signs overlapping with each other are both quickly converted into @-particles
due to synchronisation, resulting in a configuration (b) with most parti-
cles belonging to @ and a sharp drop in number fractions of A and B(g);
(IT) Domain growth: The point particles are converted back to A- and B-
particles if they are immediately neighbouring to the clusters of surviving
A- and B-particles, finally leading to a phase-separated configuration (c)
or (d) with point particles only living on domain boundaries. The number
fraction of @ decreases to reach a level close to 0; (III) Coarsening: The
phase-separated configuration relaxes to a homogeneous steady state (e) or
(f). Phase separation with a band shape (c¢) is long-lived and may end up
with either (e) or (f) after a long relaxation, while the phase separation
with B-particles in a bubble immediately leads to the steady state (f) full
of A-particles. All simulations are performed in a square box of edge size
L = 1000 initialised with equal amount of particles with ¢ = +1 uniformly
distributed in the square box in the absence of particles of other o-values,
with 09 = 1,0+ = 0.400,p = 14,099 = 60,7 = 5,4 = 1,, = 0.1 and
uo = 0.0001.
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level

<Zz> = <Fnc,i o U@> = <,LLUFnC,i(Fnc,i + Fc,i) + DaaaiFnc,i> )

Fnc,i = ZT(GU,%‘ - Ui) )
oy (3.12)
Foi==>Y 0,Ulay) = V'(cy) ,
J#i

where o is the Stratonovich product, D, = u,T is the diffusion coefficient
in o-space and the noise in o; contributes to the non-conservative work rate
on particle ¢ in the form of an Ito-term proportional to the number of its
neighbours:

DoaaiFnc,i = Doaai E T(aij7 05 — Ui) = _SDani
J#i

J#i

(3.13)

During a phase separation, particles on the domain boundaries often carry
higher non-conservative work rates since the differences between o-values of
neighbouring particles are more likely to be larger than within homogeneous
domains, i.e. stronger synchronisation occurs on domain boundaries. To
demonstrate this, we calculate the non-conservative work rates in a phase-
separated configuration with a band shape. The non-conservative work rates
in the unit of D, are shown in Figure 3.5 (b) as average values of {(3;)}
along the y-direction in the continuum limit

_ Jdyp(z,y)¥(z,y)

Jdyp(z,y) (3.14)

where p(z, 1) is the probability of finding a particle at (z,y) and X(z,y) is
the non-conservative work rate there, such that the average non-conservative
work rate S(z) is a function of z, the horizontal dimension in Figure 3.5
(a), a snapshot of a phase-separated configuration. A comparison between
Figure 3.5 (a),(b) immediately shows that in z-direction, the averaged non-
conservative work rate S(z) shoots up around the two domain boundaries.
Besides, the averaged non-conservative work rates in the homogeneous re-
gions are negligible compared to the boundaries, but are nonzero, since the
non-conservative synchronisation maintains the homogeneity within the do-
main in the presence of noise.
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Figure 3.5: Non-equilibrium nature of phase separation: the non-conservative
synchronisation creates and maintains a phase separation at transient level
as a result of species interconversion through particle deformation during
the domain growth procedure, see (a). The non-equilibrium nature is mea-
sured with the local non-conservative work rate S(z,y) at each point (z,v)
in space. In (b), we show the rescaled average non-conservative work rate
S(x)/eD, over y as a function of x, the horizontal dimension in (a). Clearly,
on the boundary of phase separation, one observes ultrahigh positive non-
conservative work rate as a result of strong local synchronisation between
particles carrying drastically different o-values.
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3.4 Asymmetric V(0): non-equilibrium phase
diagrams

Having known the 3 stages of the relaxation from a disordered initial con-
figuration, one would be interested in the effect of an asymmetric one-body
potential on each relaxation stage and thus the steady state. Under strong
synchronisation between neighbouring particles in the presence of repulsion
between them, it is the shape of the one-body potential V(o) that determines
the steady states. A simple way of tuning the shape of V(o) is to introduce
asymmetries by rescaling. Instead of the symmetric one-body potential V (o),
in the following the rescaled asymmetric potential

V(o) o<0

3.15
)\Vv(/\ad) oc>0 ( )

V)‘V7>\O‘ (U) = {

is applied in the model (3.1). Its shape is shown in Figure 3.6. In V), 5, (o),
the stable radius and energetic stability of A-particles are made different
from those of B-particles by simply setting A\, # 1 and Ay # 1 respectively.
Amongst the 3 stages of relaxation, we observe from simulations that both
domain growth and coarsening are affected by the asymmetries in Vj, »,,
leading to preferences for different steady states.

3.4.1 Domain growth: Kramer’s escape

As is shown in Figure 3.7, during the domain growth stage, clusters of A-
and B-particles expand without splitting or systematic displacement. Clearly,
the dynamics in o-space is much faster than particle displacement. In this
context, we assume the dynamics in o-space to be predominant and model
the domain growth converting @-particles to either A- or B-particles using
Kramers’ escape problem [157, 158].

With fixed rescaling factors Ay, A,, one may compare the net conversion rate
from @-particles to A-particles kg4 — kagy with that to B-particles kyp — kpg
by calculating the ratio

koa —kag _ /Foawzae Vo) —  fgiy gem A aTVA)
kop —kao  opRzpe T — JUREpe AT
V2(oo/o P —1] e favavize)
V2[(00/7,)7 —1] — e Ve

— /\V/\?;e_ﬁAV(/\v_l)
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Figure 3.6: (a) Two examples of the asymmetric one-body potential Vy,, »,
with rescaling factors Ay = 0.9, A, = 0.9 (dotted) and A\y = 1.3,\, = 1.1
(solid). The reversible conversion between @-particles and A- or B-particles
during domain growth is modelled using classical Kramer’s escape problem.
The asymmetry in V), », creates a difference between the net rates of con-
version to A- and B-particles, leading to a bipartite schematic phase diagram
(¢c). During coarsening, the energetic advantage created by Ay # 1 together
with the advantage of large particles resulting from A, # 1 leads to another
bipartite schematic phase diagram (b). The spring represents the effective
restoring force in o-dynamics, due to synchronisation of o-values between
neighbouring particles: the strength of this force depends on the location
difference between the minima in the one-body potential landscape Vy,, », -
The combination of schemes (b) and (c) is expected to qualitatively reproduce
the shape of the phase diagram and understand the effect of asymmetries in

VAV 7A0 ‘
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Figure 3.7: Snapshots (a)-(d) during the domain growth stage. Clusters of
A- and B-particles grow without splitting or significant migration.

where
7 o)) "
WA = V)\V,)\a )\_ ) Wp = V)\V,)\J<_UO)7
woa=Va, (04),  wop=Vi . (00), (3.17)
7 g 7
W= Vi, (f)v W+£,B = VAV,)\U(_U;é)v
and
o
V#,A = V)\\/,)\a- ()\_;A)) V#,B = V)\V:)m'(_o-?é)?
00
Vo = V/\V,AU(O), Va= V,\v,,\o (/\—>7 (3-18)
31)00'3‘

VB = V)\V,)\J(_U())’ AV = Vg — VB =

5 (05 — 30%).

The calculation of the ratio (3.16) between net conversion rates leads to
a qualitative phase diagram Figure 3.6 (¢). On the gray hyperbola, the net
conversion rates kya—kag, ko —kpg are equal. This hyperbola separates the
phase diagram into two regions. Above the hyperbola, the net conversion rate
to A-particles is larger than to B-particles, whereas below is the conversion
to B-particles relatively faster. The slower the conversion is, the more likely
the final species will be in a bubble, which is expected to be unstable under
the symmetric one-body potential V.

3.4.2 Coarsening: stabilising bubbles

Interestingly, the instability of bubbles can be lifted by asymmetries in Vy, », .
This involves the coarsening stage into the determination of steady states, as
now bubbles are no longer necessarily unstable. Also, while bands are long-
lived under symmetric one-body potentials, they can be short-lived when
asymmetries occur in Vjy,, », .
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To examine the stability of bubbles, we perform particle-based simulations
starting from phase-separated configurations. In each of these initial con-
figurations, a bubble of an initial radius Rj,; exists to contain A-particles
(resp. B-particles). Outside the bubble are B-particles (resp. A-particles).
Through such simulations, the stabilities of bubbles of different sizes under
different asymmetries are investigated by measuring the probability of dif-
ferent steady states respectively.

Figure 3.8 depicts the results of those simulations. By tuning A, with A\, =1
being fixed, one can easily tell from Figure 3.8 (a,b) that energetic advan-
tage can stabilise bubbles. When Ay < 1, B-particles are energetically more
stable, enabling large bubbles of B-particles to expand by converting the A-
particles and @-particles outside the bubble into B-particles. When Ay > 1,
A-particles are energetically more stable, driving the expansion of sufficiently
large bubbles of A-particles. In both cases, [A\y — 1| measures the deviation
from energetic degeneracy between A- and B-particles. The larger its value
is, the more energetic difference there is and a smaller radius is required,
above which the bubbles can be stable and expand.

Moreover, fixing A,y = 1, simulations at different \,-values show an unex-
pected effect: the advantage of larger particles that can stabilise bubbles. As
is shown in Figure 3.8 (c,d), when A\, > 1, B-particles are in general larger
than A-particles, which can stabilise a sufficiently large bubble of B-particles
by making it expand. When A\, < 1, A-particles are in general larger than
B-particles, allowing sufficiently large bubble of A-particles to expand and
not to shrink. This advantage of larger particles has its origin in the strong
synchronisation 7. On the domain boundary, the @-particles bear synchro-
nisation interactions from particles inside and outside the bubble. Since the
magnitude of synchronisation interaction is proportional to the difference in
o-values, larger particles can exert stronger synchronisation interaction on
J-particles, making them more likely to be converted into the species with
larger stable size.

Unlike the effect of energetic advantages, the effect of the advantage of larger
particles is not symmetric with respect to the symmetric one-body potential.
More specifically, when A\, < 1, this effect can saturate and thus become
non-monotonic. See Figure 3.8 (d). Since the advantage of larger particles
is induced by synchronisation, converting @-particles into the species with
a larger stable size increases the global packing fraction and thus leads to a
higher repulsive energy cost, which is unfavoured. Since A\, only controls the
stable size of A-particles, the global packing fraction is higher at A, < 1 than
at A\, > 1. A higher global packing fraction enlarges the effect of repulsion
in hindering the advantage of larger particles.

Based on the above results about the effect of asymmetric energetics (Ay # 1)
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Figure 3.8: Fractions of trajectories in which bubbles expand. (a,b) Bub-
bles of energetically favoured particles with radii larger than a critical radius
become stable with A\, = 1 being fixed. (c,d) Besides, bubbles of parti-
cles with larger stable sizes can be stable if they are sufficiently large, with
Ay = 1 being fixed. Such an advantage of large particle can be hindered by
large repulsive energy cost, thus can reach a saturation when A\, < 1. All
measurements are performed in a square box of edge size L = 1000 ini-
tialised to be phase-separated, with bubbles containing only particles with
(a,c) 0 = =1 (b,d) ¢ = 1 and particles of (a,c) 0 = 1, (bd) 0 = —1

outside the bubbles, in the absence of particles of other o-values, with
oo =1,0,=0400,p=14,v9=60,T =5, =1, 1, =0.1 and uy = 0.0001.
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Figure 3.9: Phase diagram measured by particle-based simulations in terms
of the fraction of trajectories (¢4) ending up with a steady state full of A-
particles. Each point is measured as an average over 100 trajectories with
identical setup. A convex phase boundary (black dashed) separates the phase
diagram into a phase favouring the steady state full of B-particles (left, blue)
and a phase favouring the steady state full of A-particles (right, red). All
measurements are performed in a square box of edge size L = 1000y initialised
with equal amount of particles with ¢ = +1 uniformly distributed in the
square box in the absence of particles with other o-values, with oy = 1,0, =
0.400,p = 1.4,v9 = 60,7 = 5, = 1,4, = 0.1 and uy = 0.0001. Here
a=0.12.

and the advantage of larger particles (A, # 1), a qualitative phase diagram
Figure 3.6 (b) can be sketched. This phase diagram features a tilted gray line
separating the phase diagram into two regions. Above this line, sufficiently
large bubbles of B-particles can be stable, whereas below this line, sufficiently
large bubbles of A-particles can expand. This phase diagram sketches the
effect of coarsening on determining the steady states.

3.4.3 Phase diagrams of steady states

A combination of the two phase diagrams Figure 3.6 (b,c) should in principle
qualitatively predict the shape of the phase diagram measured by particle-
based simulations. To confirm this, a phase diagram is measured at o = 0.12,
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which is shown in Figure 3.9. This phase diagram features a phase boundary
separating the two phases. On the right of the boundary, A-particles are
more likely to be in the steady state, whereas on the left, steady states full
of B-particles are more probable. The shape of this phase boundary can
be understood as a combination of the phase boundaries in Figure 3.6 (b,c).
The comparison shows that the upper half is mainly controlled by coarsening,
whilst the lower half is predominantly controlled by domain growth. Since
the advantage of larger particles can saturate when A\, < 1, the weight of
coarsening in determining the steady state should be reduced in the lower
half. In the upper half, bubbles can be stable even at very small sizes under
strong asymmetries, thus coarsening outweighs domain growth there.

The role of metastabilities: varying o Within the regime of binary
mixtures (o < 0.34), the influence of different metastabilities is another
essential aspect of the one-body potential, since the stability of @-particles
measures the strength of absorption of the effective particle reservoir. To
probe its effect, a phase diagram is measured with particle-based simulations
at o« = 0.23, see Figure 3.10 (a). Clearly, the upper half of the phase boundary
is shifted to higher \,-values and lower \y-values, whilst the lower half rises
to higher A\,-values. It is natural to investigate how a higher a-value impacts
domain growth and coarsening. The effect of higher a-values on domain
growth can be read off from Equation (3.16). Plugging larger a-values into
Equation (3.16) recovers the rise of the lower half of the phase boundary.
Besides, the effect of larger av on coarsening is reflected by the stability of
bubbles at o = 0.23 in comparison to that at o = 0.12, see Figure 3.10 (b,c).
Again, energetic difference and the advantage of larger particles can stablise
bubbles, with critical radii almost unchanged. To maintain a compromise
with domain growth, the upper half of the phase boundary has to be shifted
towards higher \,-values.

3.5 Field-theoretical treatment

3.5.1 Effective dynamics via mean-field approximations

Like for PAM (see Section 2.4), one should work with an effective model of
particle-based dynamics, which is an approximate model of (3.1), in order to
circumvent the WCA-type repulsion U.

Starting from (3.1), the contribution from U to particle translation is ne-
glected, as it homogenises the configuration like a zero-mean noise does. The
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Figure 3.10: (a) Phase diagram measured by particle-based simulations in
terms of the fraction of trajectories (¢4) reaching a steady state full of
A-particles. Each point is measured as an average over 100 parallel tra-
jectories. A phase boundary (black dashed) separates the phase diagram
into a phase favouring the steady state full of B-particles (left, blue) and
a phase favouring the steady state full of A-particles (right, red). All
measurements are performed in a square box of edge size L = 1000 ini-
tialised with equal amount of particles with ¢ = +1 uniformly distributed
in the square box in the absence of particles with other o-values, with
op = 1,0 = 0.4500,p = 14,099 = 60,7 = 5,p = 1,u, = 0.1 and
up = 0.0001. Here o« = 0.23. (b) Fractions of trajectories (¢4) reaching
a steady state with A-particles over 100 parallel trajectories for each initial
radius of bubble composed of A-particles at Ay = 1.5, A\, = 1, showing the
stabilities of bubbles with different initial radii composed of energetically
favoured particles. (c) Fractions of trajectories (¢4) reaching a steady state
with A-particles over 100 parallel trajectories for each initial radius of bubble
composed of B-particles at Ay = 1, )\, = 1.5, illustrating the stabilities of
bubbles with different initial radii composed of larger particles. Both the
energetic preference and advantage of larger particles are almost unchanged
by stabilising @-particles.
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resulting particle translation thus becomes purely noisy

i, = /2uTé:. (3.19)

On the other hand, the contribution of U to particle deformation should be
approximated using the product rule, such that one obtains

Za Ulay) ~ (8 U)Z(@Jgp)@(l—aij), (3.20)

where ¢ = 7Y, 07/L? is the packing fraction. In a dense synchronised as-
sembly, like in PAM, the factor 0,U may be approximated to be a constant.
Also, 0,,p brings a o;-linear factor. By evaluating 0,,¢ at particle j’s posi-

tion, we arrive at
> 0,,U(as;) CZUJ — ag) (3.21)
J

with C' = 279,U/L? being a constant factor. Applying the approximated
contribution (3.21) of U to the model (3.1) leads to the following dynamics

Zug[ ;= 0;) Caj]@(l — a;j)
e (3.22)

d
MUEVAV,AJ (03) + v/ 2p0 T

In the continuum limit, the Heaviside kernel may be approximated by a delta-
kernel §(r; —r;). We here define two hydrodynamic fields that are central to
the continuum model

(3.23)

namely the local density field p and the local magnetisation field @. The
approximation in Equation (3.21) in fact maps the dynamics into an effective
equilibrium

Z Uo |E [ ; C’a]] d(r; —r;)
J#i

d

- /’LUd_O_iV)\Vy)\U (O-Z) + 21LL0'T772 (324)

d
= o [5(5 — po;) — 05] - Maav/\v,/\[,(ai) + V2.
= _,uaaai ‘7)\\/,)\0 (0’1, 5) + QMJTTH;
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which is subject to an effective one-body potential

Vs (73) = Vi, (0) + Z0* = (e = C)ro. (3.25)

In the following, the particle-based model (3.19),(3.24) in an effective equi-
librium is coarse-grained to achieve a continuum description.

3.5.2 Derivation of field equations

Similar to the coarse-graining procedure of PAM, we introduce an empirical
distribution
flr,ot) = 6(r—r;(t))5(c — oi(t)) (3.26)

as the central object of a continuum description. The equation it satisfies
should be derived systematically a la Dean[20]. The resulting equation reads

atf(rv 07 t) = :uUaU [faUV)\V,)\a (07 E)] + MI‘Tal-Qrf + MUTa(sz

+ 0 - [V 2u:T fAL] + O [/ 26T f A5

To follow the line of mean-field dynamics, one should neglect the noises A,, A,
here, rendering Equation (3.27) deterministic:

(3.27)

Ouf(r,0,t) = o0, [faaf/kv)\a (0;0)] + ,UrTarQrf + UaTagaf (3.28)

In a continuum model, the hydrodynamic fields defined in Equation (3.23)
are recasted in terms of f:

pz/dof(r,a,t),

(3.29)
E:/daaf(r,a,t) .

Plugging the definitions (3.29) into the noiseless hydrodynamic equation
(3.28) gives the field equations
0ip = DOpp

@tﬁ = Dafra - Hfo'aav)\\/)uﬂ

where D = uT is the diffusion coefficient and O = [do Of(r,0,t) for a
generic observable O. The density field obeys purely diffusive dynamics
without coupling with other fields. In a steady state it should be seen as ho-
mogeneous and takes the system density value everywhere. Hence only the
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field equation of @, which is explicitly of non-conserved type (Model A, see

Subsection 1.2.1), deserves further attention. The reaction term 8U‘7AV7AU,
however, involves the information about higher moments 0">1, keeping the
field equation unclosed. Closing the field equation through truncation would
at least require a non-vanishing o5-field to be involved in order to preserve
the triple-well shape of V), »,. This would be computationally expensive,
whilst still not ensured to be effective.

Remembering that the particle-based model have been mapped to an effective
equilibrium before coarse-graining, one may apply a biased local-equilibrium
Ansatz

f ~ Z—l(E)Q—ﬁ(f/)\VAU(U;E)—/\(E)a)

Z(o) = /da e_B(VAV,)\O.(O';E)—/\(E)O—)7 (3.31)

in which the empirical distribution f bears the form of a Gibbs measure with
respect to Vy,, », linearly biased by A\(@)o. Through this Ansatz, one writes
down a self-consistent definition of &

o = Zil(ﬁ) /dO’ Ueiﬁ(VAV‘XU(U;E)i/\(E)U)a (332>

through which the shape of (@) is implicitly determined.
Applying this Ansatz to the evaluation of the reaction term 0017,\% A, gives

m - /da 85 Vay 2, 271 (@) e Vav e (00 2@0) — (), (3.33)

which fully closes the field equation of &
0;0 = DOAT — 11 \(7), (3.34)

The fully closed field equation (3.34), A(g) being determined by Equation
(3.32), gives the field dynamics to be examined in the following free-energetic
analysis.

3.5.3 Effective free energy

In an effective equilibrium, the field equation (3.34) indicates an underlying
effective free energy of Model-A type

Flo] = /dr (22(&6)2 + F(E)). (3.35)

o
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By penalising inhomogeneties, the Model-A-like free energy (3.35) promotes
homogeneous steady-state configurations. Hence only the homogeneous free
energy F(7) should be investigated for steady states.

This homogeneous free energy F', compared to the field equation (3.34), is
exclusively determined by A(7)

F@) = / " M) do (3.36)

—00

Knowing that the steady states are homogeneous, analysing the field equa-
tion (3.34) is then reduced to analysing the shape of F(7). This requires
the determination of A(¢) beforehand, which can be done numerically using
Equation (3.32).

At each G-value, the solution starts with an initial guess A\ = A\g. Through
a standard Gradient Descent (GD) Algorithm 4, the bias A\, — A,41 should
be updated. A cost function £, is calculated to quantify the distance of the
o-value computed with A away from the true value of . This iterative pro-
cess stops when A reaches the true A(7)-value at the given @-value through
gradient descent, up to a small threshold of the cost function, 7.e. when
L < Linreshold- At @ = 0, the effective potential V is an even function of o.
Immediately, one knows A(0) = 0. Therefore, at small @, one may start the
numerical iteration from Ay = 0. Assuming the continuity of A\(7), we use the
final value of A computed at @ as the initial guess at @+ da. Looping over all
o-values in a chosen range determines the shape of A\(7) in the corresponding
o-interval. Integrating the obtained A(@) according to (3.36) gives the shape
of the homogeneous free energy F.

3.5.4 Phase transitions

The shape of F'is subjected to the asymmetries in V. In terms of global min-
ima o, = argmin F'(7), which is a function of the rescaling factors Ay, A,
a phase diagram is plotted at & = 0.12. Remarkably, the phase diagram Fig-
ure 3.11 (a) qualitatively reproduces the shape of the phase diagram Figure
3.9 measured by particle-based simulations, with A-rich and B-rich phases
corresponding here respectively to o, > 0 and o, < 0.

Based on the phase diagram, the natures of transitions across different seg-
ments of the phase boundary can be investigated, since the number of local
minima in F' can be readily seen. This is done by measuring the shapes of F
at the points along a line across the phase boundary. The results are shown
in Figure 3.11 (b,c). Along the red arrow, the transition is clearly discontinu-
ous in opyi,-value, as the homogeneous free energy F' has two minima around
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Figure 3.11: (a) The underlying phase diagram of Equation (3.34) at & = 0.12
in terms of the global minimum ,,;, of the homogeneous free energy F (o)
as a function of rescaling factors Ay, \,. Here, circles and squares refer to
effective free energies with single or double local minima. The dashed line
separates the region of 7, > 0 from G, < 0. (b) Homogeneous free
energy plots F'(@) of points in the phase diagram (a) along the red arrow.
(c) Homogeneous free energy plots F'(7) of points in phase diagram (a) along
the blue arrow. All predictions are performed with oy = 1,0, = 0.40¢,C =
0,e =1,v9 =60, and p, = 0.1.
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Algorithm 4: GD algorithm determining \(7)
Data: ¢
Result: \(7)
0 < 0,
A )\0,
Ly + 1;
while £ > Lipreshola do
A=A — CY@A,CA;
2\  [doe V)20,
(o) « Z1 [do ge BV(e:d)=2a).
Ly + 5((o) = 7)%
end
AT) < A

the phase boundary and their relative stabilities exchange when crossing the
phase boundary-Figure 3.11 (b). In contrast, along the blue arrow, the shape
of F'is convex, featuring a single minimum which changes its sign across the
phase boundary via continuous shifts-Figure 3.11 (c). This is quantitatively
reflected by the smooth evolution of ,,;,-value along the blue arrow in the
phase diagram.

Similar to the L-G scheme discussed in Subsection 1.2.1, the transition along
the red arrow featuring a discontinuous shift in &,;,-value should be first-
order, since the underlying double-well homogeneous free energy F' undergoes
an exchange of local minima stabilities. Such a scheme of transition occurs
across the phase boundary in the region where F' has two local minima. This
region is upper-bounded in the positive 7, region and lower-bounded in
the negative 7, region. Beyond this upper- and lower-bounded region F'
has only a single minimum. The upper- and lower-boundaries of the region
allowing double minima in F' merge at a critical point. See Figure 3.12.
From Figure 3.11 (a) one may roughly recognise that this point lies around
(Av, As) = (1.05,0.8). Locating the point more precisely requires a zoom-
in of the phase diagram. Here, the region [1.0,1.1] x [0.7,0.9] is chosen for
finer measurement, see Figure 3.12. In this region of phase diagram, a re-
gion featuring double minima in F' is lower- and upperbounded, with the
two boundaries approaching each other. The intersection point of these two
boundaries closes such a region, and thus is the critical point being looked
for, which is located at (Ay, A,) = (1.025 £ 0.005, 0.869 + 0.007).
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Figure 3.12: Zoom-in of the phase diagram Figure 3.11 (a) in the region
[1.0,1.1]x[0.7,0.9]. First-order phase transitions are observed only within the
region in which the homogeneous free energy F(¢) has two minima (square
points). This region is closed at (Ay,A,) = (1.025 £ 0.005,0.869 £ 0.007)
where its upper and lower boundaries (black dashed lines) intersect at a
critical point. All predictions are performed with og = 1,0 = 0.40¢,C =
0,e =1,v9 =60, and p, = 0.1.

96



Species Interconversion

—1 0 1
| I a—— | Umm/UO
Aa oa)o o o o o o of “[B
o o o o o o o o
1840 o o o o o o o003
o o o 0o o o o o
o o o o o o o o
o o o o o o o o
440 o o o o o 0.0 (g2
o o o o o.-e-"o o
o o o 9,/6 o o o
o o o, o o o o
1.0q0o o &« o o o o o 01
0o o ozNO O o o o]l
0O 0 O N._0 0 o o
o o0 o 0o O TU~o--v
0640 o o o o o o o
T T T T 0.0
0.8 1.0 1.2 1.4 Av 0 4 8 12 €

Figure 3.13: (a) The underlying phase diagram of Equation (3.34) at o = 0.3.
The rise of the lower branch of the boundary together with the reduced slope
of the upper branch makes the region favouring &,,;,, > 0 narrower compared
to a = 0.12. The first-order phase transition disappears within the range of
this phase diagram. (b) Colour map of the linear coefficient F”(0) = \'(0)
of as a function of € and a measured numerically at C' = 0. In the bounded
region where F”(0) < 0, the free energy F' has two local minima. Outside this
region, the free energy has only one single minimum. The points satisfying
F"(0) = 0 spans the boundary line which is a critical line (white). It is clear
that large o and large ¢ both lead to positive F”(0). At a = 0.12 (black
dashed line), F”(0) < 0 roughly within 2 < e < 6. At a = 0.3 (gray dashed
line), the range of € allowing double minima in F is closed. All predictions
for a = 0.3 are performed with oy = 1,0, = 0.4730¢,C = 0,e = 1, v, = 60,
and p, = 0.1.

3.5.5 The role of metastability

In the context of field theories, we are also interested in the effect of changing
a-values, in parallel with particle-based simulations. The change it brings
to the phase diagram measures the descriptive power of the field-theoretic
model. In Figure 3.13 (a), a phase diagram is measured at a = 0.3, a higher
a-value. One may still claim that it qualitatively recovers the phase diagram
of particle-based simulations. In particular, the rise of the lower branch of
the boundary agrees with the observation in particle-based simulations when
strengthening the stablising @-particles. However, the upper branch of the
boundary in Figure 3.13 (a) has a reduced slope compared to o = 0.12,
which does not agree with the observations in particle-based simulations.
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Moreover, within the range of Ay under investigation, F' is always convex,
i.e. only crossovers take place.

Understanding the disappearance of first-order phase transitions entails fig-
uring out the conditions of double minima in F'. For simplicity, the discussion
is restricted to the symmetric one-body potential with Ay = A\, = 1. Under
this condition, one can immediately find a root A(0) = 0 of the self-consistent
relation (3.32) analytically using symmetry arguments. Thus @ = 0 is a sta-
tionary point of F'. To allow double minima, it has to be a local maxima,
ie. F”(0) = MN(0) <O0.

To find the conditions for \'(0) < 0, the effective equilibrium potential in the
Ansatz (3.31) should be regrouped:

‘71,1(0;5) —AN@)o =V.(0) —v(T)0, (3.37)

where an effective o-symmetric potential

2

V.(0) = Via(o:7) + 22 (3.38)
is introduced, such that A(@) is linearly biased to be
v(e) =A@)+ (e = C)o. (3.39)

We plug Equation (3.37) into the self-consitent definition (3.32) of @ to obtain

[ do ge=BV=0)—v(@)o)

77 Tdo e poev@e) (3.40)
Around @ = 0, the above equation can be further linearised into
Fg)eBVe(o)
7~ ff ddaaa((ll :;,,V//(Eg?ag)f - (3.41)
Since V. is symmetric in o, the integrals can be easily reduced to
7~ g (o)) 977 (3.42)

g fdo' e*ﬁve(g)

Since N'(0) = F"(0) = /(0) — (¢ — C), v(7) can be linearly approximated
around o = 0 to be

v(o) ~ [F"(0) — (e — C)]g + O(3?). (3.43)

98



Species Interconversion

This approximation leads to

F(0) = 19 e Vele)

= G oot 79 (3.44)

which allows the numerical measurement of the range of ¢ satisfying F”(0) =
N(0) < 0 at a given constant parameter C' according to Equation (3.44).
The result is shown in Figure 3.13 (b). From there, at & = 0.12, one may
read off an approximate range 2 < £ < 6 allowing double minima in F.
If the synchronisation is too weak, the system should be kept disordered
with a global magnetisation close to 0, thus leading to a single minimum
corresponding to a crossover scheme. If the synchronisation is too strong, the
effect of the one-body potential Vy, », should be diluted, with @-particles
being predominant in steady states due to difficulties with domain growth.
This is also hindering the double-minima scheme. This can also be caused
by increasing «, which is shown in Figure 3.3 and is reflected in field theories
by (3.25), in that both ¢ and « stabilise the minima of the o-symmetric
potential V.(o) at 0 = 0. The larger « is, the smaller the range of ¢ allowing
a double-well F' is.

3.6 Summary and outlooks

Above, we discussed the rich phenomenologies encoded in the proposed particle-
based model (3.1) which includes particles’ inter-conversion through their de-
formations. The one-body potential V), »,, which mimics a chemical reaction
landscape, tunes the probabilities of different steady states via its asymme-
try in the presence of synchronisation between the reaction coordinates of
neighbouring particles and the effect of repulsion on reaction coordinates.
Although the steady states are always homogeneously ordered, the transient
phase separation induced by particle deformation is non-trivial. We mea-
sured phase diagrams of steady states via particle-based simulations, which
were later qualitatively recovered and further investigated at hydrodynamic
level.

In fact, the probabilities of a steady state at different points in a phase di-
agram indicates the tendency of coarsening there. A higher probability of
the steady state full of A-particles (B-particles) shows that the domain of
A-particles (B-particles) are promoted during coarsening. In this sense, it
is the transient LLPS that is under scrutiny, in that in a phase diagram
we actually summarised the tendencies of spontaneous relaxations of phase-
separated configurations under different asymmetric one-body potentials. In
particular, under a symmetric V', the topology and shape of transient LLPS
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determine the relaxation and the steady states: Bands are long-lived, whilst
bubbles are unstable and shrink quickly to vanish. Under an asymmetric V,
sufficiently large bubbles in which particles benefit from either energetic ad-
vantage or size advantage, which is due to stronger synchronisation by larger
particles in the bubble, may be stable, and expands to dominate the steady
state configuration.

As a motivation of our approach towards LLPS, recent studies have shown
that phase separations between liquid components in biological cells may
probably be transient states maintained by environments that periodically
change in time rather than steady states [19]. In the framework of our work,
the periodically changing environment may be mimicked by time-periodic
changes of the asymmetries of the one-body potential. Our phase diagram,
by indicating the fates of phase-separated configurations under different one-
body potentials, provides a reference for potential ranges of rescaling factor
pairs (Ay, A,) involved in protocols of their time-periodic changes to be de-
signed in the future, which bound the bubble sizes both from bottom and
above.

Besides, rational insights into the maintained transient LLPS, in particular
the evaluations of the future control protocols, entails a field-theoretic de-
scription framework. Since the phase separation in our scope is not steady,
no conservation of global order (magnetisation) is needed. Being analogous
to the Ising model with Glauber dynamics, our framework uses a Model-A-
type field theory, which finally leads to homogeneous configurations as steady
states. Without changes of rescaling factors Ay, A, in time, our approach of
analysing the field theory is limited to qualitatively reproducing the phase
diagrams and understanding the stabilities of different homogeneous steady
states by analysing the shape of the homogeneous part of the effective free
energy F'(7) along with its minima. Future evaluations of control proto-
cols maintaining LLPS, in contrast, must consider inhomogeneities, i.e. the
(0;7)*-terms should be included into the free energy being considered.
Moreover, by mapping the synchronisation interaction, the only source of
non-equilibrium nature in our model, to an effective equilibrium, our mean-
field approach has wiped out the entropy productions in a homogeneous block
being maintained. This is not true in particle-based simulations as the order-
ing is due to the non-equilibrium synchronisation. The absence of entropy
production is the consequence of a plethora of approximations we made dur-
ing the derivation of the field theory. Substantially recovering this feature
requires further refinement of our field theory.

Despite the limitations, we have still provided new theoretical possibilities
that use Model A for maintained transient LLPS, in contrast to the usual ap-
proaches for steady-state LLPS conserving the global order (magnetisation),
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such as Model B and its extensions [12, 159-161], and thus treating LLPS as
steady states in an static environment. By introducing time-periodic control
protocols to the asymmetric one-body potential, the LLPS achieved via par-
ticle inter-conversions can potentially be maintained in a periodically driven
steady state, which is important for reactive systems.
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Conclusion

Many-body dynamics often exhibits collective behaviours that are less sensi-
tive to microscopic details than to some “collective modes” in larger scales.
This fact motivates the use of field theories, which are meant for systems with
a large number of degrees of freedom, as simplified models with a drastically
reduced number of relevant degrees of freedom. In the framework of field
theories, a richness of collective behaviours, such as pattern formation, de-
fect formation, phase separation, etc., can be systematically studied or even
predicted. For instance, the Turing patterns in various different contexts
may be universally realised by the CGLE, as is shown in Chapter 1.

An advantage of using field theories often lies in their simple construction.
Quite often, based on phenomenologies of collective behaviours, especially
symmetries, one can argue for the relative terms in a field theory. For in-
stance, as is shown in Chapter 1, the ¢*-form of the L-G theory is constructed
via removing all odd order terms of ¢ due to the Zs-symmetry and keeping
the ¢*-term with positive coefficient to bound the ¢-values whilst allowing
phase transitions by changing the coefficient of the ¢>-term. This simplest
construction, without being extended to higher orders of ¢, has already been
sufficient for describing a wide range of phase transitions.

However, many patterns of biological relevance, such as contraction wave
propagation, do not have clear symmetries, and are therefore difficult to be
captured by simple field theories constructed via the top-down approach like
in the L-G theory. Studies on these patterns should then start from reproduc-
tions of these patterns using microscopic models. In Chapter 2, we propose
a simple model effectively reproducing the propagation of contraction waves
in living biological tissues, which goes beyond former realisations by other
researchers using vertex models [9]. The use of deforming spherical particles
in our model replaces the cells in vertex models to mimic living biological
cells. This replacement reduces the complexity of vertex models coming from
irregular shapes of cells, thus enabling further extensive studies of our model
as a novel class of active matter, namely PAM.

Further studies on PAM may propose lattice-based models that reproduce
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the travelling contraction waves in our particle-based simulations and deriv-
ing a field theory via coarse-graining of the proposed lattice models. With
a comparison to our field theory, the essential parts and their roles in wave
pattern formation may be identified. Also, more details about wave patterns
in particle-based simulations, such as defect formation and motility, deserve
further attention.

Inspired by the patterns in PAM, in Chapter 3, we extend the model to allow
particle sizes to vanish in order to realise LLPS. We remove the activity and
bound the particle sizes with a triple-well one-body potential. By regarding
the particles whose internal states are in different one-body potential wells
as different species, we build a particle-based model of dense assemblies ac-
commodating LLPS. Using particle-based simulations, we observe that the
LLPS occuring in our model is a transient state during a multistep relax-
ation towards a homogeneous steady state. The transient LLPS is formed by
species interconversion from a disordered initial configuration, and coarsens
into a homogeneous steady state. By adding asymmetries to the one-body
potential, we find that steady states of different species exist with different
probabilities. This is caused by the impact of asymmetries in the one-body
potential on the formation of transient LLPS and the coarsening of LLPS.
Like for PAM, we systematically coarse-grain the particle-based model allow-
ing transient LLPS into a field theory of Model-A type, which is consistent
with the transient nature of LLPS in our particle-based model. This field
theory maps our model to an effective equilibrium. Tuning the asymmetries
in the one-body potential leads to a qualitatively similar shape of the phase
diagram to that in particle-based simulations. In the framework of field theo-
ries, we investigate the phase transitions when tuning the asymmetries in the
one-body potential via a free-energetic approach. Based on our systematic
study on the impact of asymmetric one-body potentials, future efforts can
be devoted to designing control protocols over asymmetries in the one-body
potential to maintain a transient LLPS [19].

In this thesis, we present two examples of the use of deforming spherical par-
ticles to compose particle-based models giving rise to collective behaviours
induced by particle deformation. Based on these models, field theories can
be subsequently derived to indicate the essential ingredients of a field theory
giving rise to such collective behaviours. Finding convincing links between
models of deforming spherical particles [15, 16, 162], and vertex models [6, 7,
9, 163] would be an expected further extension. Also, one may take inspira-
tion from our field theories to try building simpler field-theoretic descriptions
via a top-down approach. Overall, reliably reproducing and understanding
collective behaviours in experiments and building up simple yet effective field
theories should be the long-standing goal of the research work in our line.
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