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Abstract

In the classical discrete-time mean-variance context, a method for
portfolio optimisation using conditioning information was introduced in
2001 by Ferson and Siegel ([1]). The fact that there are many possible
signals that could be used as conditioning information, and a number of
empirical studies that suggest measurable relationships between signals
and returns, causes this type of portfolio optimisation to be of practical
as well as theoretical interest.

Ferson and Siegel obtain analytical formulae for the basic unconstrained
portfolio optimisation problem. We show how the same problem, in the
presence of a risk-free asset and given a single conditioning information
time series, may be expressed as a general constrained infinite-horizon
optimal control problem which encompasses the results in [1] as a special
case. Variants of the problem not amenable to closed-form solutions can
then be solved using standard numerical optimal control techniques.

We extend the standard finite-horizon optimal control sufficiency and
necessity results of the Pontryagin Maximum Principle and the Mangasar-
ian sufficiency theorem to the doubly-infinite horizon case required to
cover our formulation in its greatest generality. As an application, we
rephrase the previously unsolved constrained-weight variant of the prob-
lem in [1] using the optimal control framework. Finally, we provide an
illustration involving numerical solution of the resulting optimal control
problem to assess the extent to which the use of conditioning information
brings about practical improvements in the field of portfolio optimisation.

Keywords: Optimal Control, Portfolio Optimization
JEL Codes: C02, C61, C65, G11
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1 Introduction

The present section introduces the problem of conditioned mean-variance portfo-
lio optimisation and provides a brief survey of the existing literature. A number
of indicators that could serve as conditioning information are briefly referenced
and the GRAI indicator used in the later numerical illustration is discussed in
slightly greater depth. Finally, the plan for the remaining sections of the paper
is set.

1.1 Problem history

Early discussions of the mean-variance portfolio optimisation problem with sig-
nalling were largely theoretical and based on asset pricing models such as pro-
posed by Lucas ([2]), in which accumulating information known to the agents
is part of the makeup of market-clearing equilibrium prices. This type of setup
was discussed using functional analysis tools in a 1987 paper by Hansen and
Richard ([3]), who distinguish in particular between the classical unconditional
efficient frontier and the (”conditional”) efficient frontier involving mean and
variance estimates conditioned on the available market information. The au-
thors then show that any return on the unconditional frontier will be located on
the conditional frontier as well (that is, that any unconditionally efficient port-
folio is conditionally efficient), but that the converse is not in general true. This
result then suggests that, even in the presence of information, it is preferable
to optimise the mean-variance tradeoff between unconditional moments as the
resulting portfolios will be efficient in both domains.

The discussion in [3], although far-reaching, is given from an asset pricing
point of view and does not yield concrete optimal portfolio weights for the type
of problem examined. The paper assumes that a conditional efficient frontier
can be built and focuses on its relationship to the classical frontier; it does not
interest itself in how both frontiers could be built so as to take conditioning
information into account.

That additional step was taken by Ferson and Siegel in [1]. The authors
add a financial interpretation to the theoretical preference for continued use of
unconditional moments shown in [3]: indeed this is placed within the frequently
encountered context of an uninformed investor paying a portfolio manager, who
may have access to additional information, to manage their investments. The
uninformed investor will then gauge their manager’s investment performance
using only the basic (unconditioned) information available to them. In this
constellation, it is advisable for the manager to ensure that their portfolio choices
will be efficient in the classical unconditional manner as investors will otherwise
regard them as inferior to portfolio managers who choose not to use conditioning
information. This abets the theoretical conclusion of [3] and leads Ferson and
Siegel to aim for a conditioned optimisation of unconditional portfolio moments.

The way in which [1] introduce conditioning information is very generic and
the present paper will thus emulate it. The article exists within a discrete-time
myopic investment world, such that only two time instants are considered - an
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initial time t, at which the investment choice is made, and a final time t+ 1, at
which the investment returns are examined. The authors assume the existence
of a vector of signals s; what makes these signals interesting to the portfolio
manager is that there exists some measurable relationship µ(s) between the
signal as observed at the initial time and the return as revealed at the final
time.1 The fundamental signal-return relationship is then

rt+1 = µ(st) + ε, (1)

where the time indices on r and on s will be suppressed in what follows. Here
ε is a noise term whose conditional mean given s is assumed to be zero. There
is no specific requirement on the functional form of µ(s). Note that, with this
model,

E[r|s] = µ(s) + E[ε|s] = µ(s)

and that µ(s) is regarded as deterministic once s is known i.e. contributes
nothing to the conditional variance of returns.

Ferson and Siegel then obtain expressions for unconditional portfolio mean
and variance given the signal-return relation (1) holds, and prove that the
optimal portfolio weights in the presence of n risky assets and a risk-free asset
with return rf equal

u′(s) =
µP − rf

E[(µ(s)− rfe)′Λ(s)(µ(s)− rfe)]
(µ(s)− rfe)′Λ(s), (2)

where µP is the required expected unconditional portfolio return, e is an n-
vector of ones and Λ(s) = [(µ(s) − rfe)(µ(s) − rfe)′ + Σ2]−1: here Σ2 (which
may in its greatest generality be a function of s) is the conditional covariance
matrix E[εε′|s].

Although the proofs given in [1] are nonconstructive, the results can be
obtained through a variational argument from first principles. Examples of such
arguments, which use stochastic Lagrange multipliers as analysed in [5], [6], are
given by Chiang in [7], which obtains closed-form expressions for optimal weights
within benchmark tracking variants of the basic mean-variance optimisation
problem considered in [1]. Chiang also reports the results of an empirical study
in the currency markets, using pure macroeconomic conditioning information
such as forward premia or depreciation rates, and obtains marked improvements
with respect to the classical solutions; however, a short exercise covering US
equity markets yields less convincing figures.

Zhou ([8]) applies the analysis from [1] and [7] to Grinold’s fundamental law
of active portfolio management ([9]) which, as is pointed out, implies a context
in which managers attempt to maximise conditional value-added through use
of the information to which they have access. [8] obtains an alternative value-
maximising solution for unconditional value added and provides a numerical

1Note it is this lagged relationship, with the optimisation opportunities it entails, which
constitutes the principal fundamental difference between the present setup and market factor
models such as the APT ([4]).
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illustration showing improvement with respect to the classical strategy derived
in [9].

In an empirical paper, Basu et al. ([10]) condition on both business cycle
predictors (such as treasury bill rate or credit spread) and pure investor senti-
ment indicators (obtained from a regular survey carried out by the University of
Michigan) to optimise portfolios of trading strategies. Both market timing and
momentum-based strategies are used and the results are tested, in particular,
with respect to the October 1987 and post-Internet bubble stock market crashes.
The authors find that the strategies do manage to signal position reductions in
times of crisis, but that this is only the case if the full set of signals are used.
A companion paper ([11]) carries out a similar study involving, in the role of
portfolio assets, the S&P500 and US treasury indices, gold and the federal rate
as a risk-free proxy. Conditioning information is provided by the VIX volatility
index (see e.g. [12]) and futures data for each of the portfolio assets. Results
are entirely compatible with those mentioned for [10].

Another study on optimisation of a portfolio of trading strategies is carried
out by Luo et al. ([13]), who do not use the Ferson and Siegel result, but
optimise expected quadratic utility, from which they subtract an additional term
that introduces a penalty for investment gearing and is specified as a function
of the signal. The resulting strategy, at the very least related to that of [1],
is then applied to a portfolio of trading strategies in the FX markets with a
signal obtained through PCA reduction of indicators taken from various asset
markets. As a result, improved performance is again seen with respect to the
benchmark, which is made up of an equally weighted basket of the strategies in
the portfolio.

1.2 Possible indicators

There is intuitive appeal in the definition or construction of indices that may
be seen to represent the attitude of investors in the widest sense. The above
literature review gives a good indication of the scope of different indicators
that could meaningfully be used in the role of the conditioning signal. Some
research literature focusing exclusively on the elaboration of such indices also
exists. The angle is then generally not one of portfolio optimisation, but a
more economic one in which it is attempted (for its own sake) to separate the
different but related factors of overall market risk levels, investor risk aversion
and (more short-term) investor sentiment: see e.g. [14]. The resulting task of
separating different types of psychological motivation of market participants is
very difficult, especially as the terminology is not entirely unambiguous: for
instance, risk aversion is considered constant through time in classical finance
theory (see e.g. [15]). The paper [16] offers a useful survey of indices fitting
within this research strand and tests various indices for their power in predicting
financial crises.

A number of indices are formulated in ways that could perhaps best be
labelled as ad hoc. These either directly consist of individual macroeconomic
quantities chosen for an intuitive link they may have to a certain type of risk, or
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some aggregation of several such quantities through either an averaging scheme
or an application of principal components analysis. Good examples of such
indices are given by the PCA index used by Luo et al. in the study [13] cited
above, as well as a PCA indicator proposed by Deutsche Bundesbank.

Theoretically motivated indices tend to belong to one of two strands. On
the one hand, there are indices that use the implied option volatility quoted
in the markets in some way. The predominant approach here is to extract
the risk-neutral distribution of future returns from the quoted volatility surface
and then to compare its expectation of extreme returns with that obtained
econometrically from historical returns data, see [14] for a discussion of this
type of index.

On the other hand and based on an earlier industry paper by Persaud, Kumar
and Persaud ([17]) introduced a type of risk aversion index which was subse-
quently labelled as global risk aversion index, or GRAI. The intuition behind
this is that it is possible to distinguish between price changes due to changes
in ”global” (overall market) risk and price changes due to changes in investor
risk aversion, the first being directly proportional to the change in overall risk
and the second, proportional to the risk of each individual asset. Accordingly,
the rank correlation between (current) price changes and (previous) asset risk is
expected to be significant when risk aversion has changed, but negligible when
the root cause of the changes is a change in overall market risk.

The discussion by Misina (see [18], [19]) formalises the theoretical motivation
given in the original paper by attempting to fit the developments within the
framework of a CAPM market model. It finds that this is only possible when
independence of returns is assumed, such that any cross-correlations between
assets are eliminated. This is a significant assumption and [19] attempts to
justify it by describing a data normalisation procedure.

Thus the theoretical solidity of the GRAI model may be imperfect. How-
ever, it is certainly the case that the elaboration of an unassailable theoretical
foundation to justify the separation of market time series into factors subject to
different psychological drivers is a very difficult, if not impossible project. Ac-
cordingly, the intuitive appeal behind GRAI has led to a number of researchers
and financial organisations building their own versions of the index. In par-
ticular, a variant of GRAI which uses the coefficient of the regression between
price changes and risk (as expressed using volatility) has become known as risk
aversion index or RAI; [16] report that this variant was originally proposed by
Wilmot et al. when establishing a risk appetite index for Crédit Suisse in 2004.
The State Street investor confidence index (ICI) can also be seen as a type of
RAI since it is theoretically constructed using a CAPM foundation similar to
that referenced above; the main difference is that the ICI focuses on changes in
investor holdings as well as in prices, and thus presupposes access to relevant
data.
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1.3 Plan

The remainder of this paper is structured as follows. Section 2 establishes the
generic extensions to standard results in the contingent fields of the calculus of
variations and optimal control that are needed to support the general, doubly
infinite signal support version of the conditioned optimisation problem. Section
3 uses these results to replicate results previously obtained by Ferson and Siegel
([1]), and to obtain a new open-loop expression for the specific problem of con-
strained conditioned portfolio optimisation in the presence of a risk-free asset.
Section ?? reports the setup of a numerical illustration that was carried out,
and gives the results obtained. Section 4 concludes.

2 Theoretical background

The present section introduces notation and shows how the classical optimal
control results of the Pontryagin Minimum Principle and the Mangasarian suf-
ficiency theorem can be extended to a problem domain that is doubly infinite.
For a textbook treatment of the calculus of variations and optimal control, see
e.g. [20].

A typical optimal control problem on a fixed finite interval IS = [s−, s+]
takes on the following format:

minimise JIS
(x(s), u(s)) =

∫ s+

s−
L(x(s), u(s), s)ds (3)

subject to ẋ(s) = f(x(s), u(s), s), (4)

x(s−) = x−, x(s+) = x+, (5)
and u(s) ∈ U ∀s ∈ IS , (6)

where x ∈ (C[s−, s+])m, both (L(x(s), u(s), s) and f(x(s), u(s), s)) are jointly
continuous with respect to both x(s) and u(s) and the control constraint set
U ⊆ Rn is convex (and constant in s). The functional JIS

(x, u) is often called the
cost function. Note the cost function notation is parameterised by the interval
on which the function applies: this will be important to develop the limit case.

One notion relevant to the type of control problem discussed in this paper
is that of autonomousness:

Definition 2.1 Consider the type of optimal control problem defined by (3),
(4), (5) and (6) above. The problem is said to be autonomous if none of the
state differential equation component functions fi(x(s), u(s), s), i ∈ {1, . . .m},
depend explicitly on s.

Remark Clearly, any non-autonomous problem can be transformed into an
autonomous one by defining an additional state xm+1(s) such that xm+1(s−) =
s− and ẋm+1(s) = 1: thus xm+1(s) = s ∀s ∈ IS . This shows that problem
autonomousness is largely a question of problem formulation, and that any
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results for autonomous problems apply to non-autonomous problems as well, as
long as the additional transformation state xm+1(s) is kept in mind.

At this point it is assumed that the interval IS = [s−, s+] is closed with both
s− and s+ finite, and that the problem as given above is not to be understood as
the restriction of a similar problem set over an infinite interval of the indepen-
dent variable. Then any pair of state variable and control variable (x(s), u(s))
which verifies the problem constraints (4), (5) and (6) is called an admissible
pair. Clearly, the optimal pair (x∗(s), u∗(s)) which minimises (3) and solves
the optimal control problem will be chosen from the set of admissible pairs for
the given independent variable boundary points s− and s+. We denote this
set by AIS

, where the definition of IS determines whether the relevant problem
domain is closed or not.

Typically, the independent variable s is taken to denote time, in which case
one usually sets s− = 0. It is necessary to introduce two new quantities before
giving the classical formulation of necessary optimality conditions for the finite
horizon case. First, associate one costate variable (sometimes called an adjoint
variable) to each state variable in the problem. Each costate variable is a func-
tion of the independent variable s and noted λi(s) for i ∈ {1, 2, . . .m}. The col-
umn vector whose components are the costates is noted λ(s) = (λ1(s), . . . λm(s))
and called the costate vector. Costates are then used to define the Hamiltonian
function as

H(x(s), u(s), λ0, λ(s), s) = λ0L(x(s), u(s), s) + λ(s) · f(x(s), u(s), s),

where · denotes the Rm-scalar product and λ0 is a scalar constant.
It can be proved that the following holds:

Theorem 2.2 [First-order (Euler-Lagrange) necessary conditions, finite hori-
zon]

Consider the previous problem (3), (4), (5) and (6), with unconstrained
controls such that U = Rn and problem domain IS = [s−, s+]. Let (x∗(s), u∗(s))
be an admissible pair for this problem. If this pair minimises the cost functional
in (3), there exists a constant λ∗0 and a continuously differentiable costate vec-
tor function λ∗(s) = (λ∗1(s), . . . λ∗m(s)) ∈ (C1[s−, s+])m such that the quadruple
(x∗(s), u∗(s), λ∗0, λ

∗(s)) satisfies the system

ẋ∗(s) = f(x∗(s), u∗(s), s) with x∗(s−) = x− and x∗(s+) = x+, (7)

λ̇∗(s) = −Hx(x∗(s), u∗(s), λ∗0, λ
∗(s), s) and (8)

Hu(x∗(s), u∗(s), λ∗0, λ
∗(s), s) = 0, (9)

with (λ∗0, λ
∗(s)) 6= (0, · · · 0), for all s ∈ IS.

Proof See e.g. [21]. The proof generalises that of the equivalent result in the
calculus of variations in that admissible variations εh(s), for which the problem
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conditions (4), (5) and (6) continue to be verified, are added to the control
function, following which the cost functional Gâteaux derivative

δJIS
(x(s), u(s)) = lim

ε→0

d

dε

(
JIS

(x(s), u(s) + εh(s))
)

is calculated and set to zero. Clearly, in variational calculus, variations are
applied to the state rather than the control; otherwise this variational procedure
has been left unchanged. Given this context, the theorem conditions are often
called the Euler-Lagrange equations for optimal control.

Finally, note that the condition on (λ∗0, λ
∗(s)) 6= (0, · · · 0) is not given in

the classical variational theory but implied by the later statement of the Euler-
Lagrange conditions for a doubly infinite horizon (theorem 2.15) as obtained
from the corresponding Pontryagin result.

Note the above are necessary but not sufficient conditions. They are also
of first order and thus determine stationary candidate functionals only, without
indicating wheter the functional concerned implies a minimum or a maximum
of the objective function. In this context, the Legendre-Clebsch condition gives
a second order result analogous to the finite-dimensional case.

Theorem 2.3 [Second-order (Legendre-Clebsch) necessary conditions, finite hori-
zon]

Consider the previous problem (3), (4), (5) and (6). Let (x∗(s), u∗(s)) be
an admissible pair for this problem. If this pair minimises the cost functional in
(3), the matrix of second derivatives of the problem Hamiltonian with respect to
the controls and at the optimal pair is positive semi-definite:

z′
(
Huu(x∗(s), u∗(s), λ∗0, λ

∗(s), s)
)
z ≥ 0,

for all s ∈ [s−, s+] and for all z ∈ Rn.

Proof Again, see e.g. [21].

Remark For λ∗0 = 0, the problem is called singular ; for λ∗0 = 1, it is called
regular. The singular case arises when the first-order stationarity condition
is trivially satisfied by any admissible control on some nonempty subinterval
(θ, ψ) ⊆ [s−, s+]. This corresponds to the case where the matrix Huu is singular
over (θ, ψ), as can directly be proven by contradiction: note that this case is not
excluded by the classical Legendre-Clebsch requirement of positive semidefinite-
ness given above. In this situation, the cost function L(x(s), u(s), s) is irrelevant
as far as necessary optimality conditions are concerned and hence it is possible
to assume λ∗0 = 0. This situation implies the existence of singular arcs and can
lead to complicated discussions: see [22] for a survey. The possibility of deal-
ing with a singular problem cannot in general be evaluated a priori except in
specific cases (e.g. if both cost function integrand and state equation are linear
in the controls, see [20] or [22]) and this question thus needs to be resolved on
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a case-by-case basis. This is often possible by assuming that λ∗0 = 0 and then
checking whether this necessarily entails λ∗(s) = 0 ∀s ∈ IS , in which case the
problem is shown to be regular by contradiction with the necessity conditions.

In the applications found in the present paper, the independent variable s
corresponds to an observed signal (rather than time) and the domain boundaries
s− and s+ may in the general case correspond to −∞ and +∞ so as to generate
expectation integrals over probability distributions whose support is typically
the entire real line. This situation does not typically occur in time-based optimal
control problems given that such problems are always initiated at a certain point
in time, which can in each case be made to correspond to the time t = 0, without
loss of generality, by appropriate definition of the time axis.

However, optimal control problems with a terminal point at infinite time
(infinite horizon problems) have naturally arisen in various disciplines such as
continuum mechanics [23], advertising expenditure models (for an overview, see
e.g. [24], [25]) or economics, where an early consumption optimisation problem
over an infinite horizon was introduced by Ramsey in 1928 [26]. The following
will justify the extension of various necessity and sufficiency results linked with
this infinite-horizon case to the doubly infinite horizon case which covers the
type of problem under discussion to the greatest required level of generality.

To this end, initially extend the ideas of admissible pairs and optimality to
the doubly infinite horizon case. First describe the corresponding version of
the previous optimal control problem set by (3), (4), (5) and (6). Based on
previous parameterised notation for the cost function JIS

, where the interval IS
may be finite, infinite at one end or doubly infinite, the infinite horizon problem
(P) is to

optimise JIS
(x(s), u(s)) =

∫ s+

s−
L(x(s), u(s), s)ds as s− → −∞, s+ → +∞

(10)

subject to ẋ(s) = f(x(s), u(s), s) ∀s ∈ IS , (11)

lim
s→−∞

x(s) = x−, lim
s→+∞

x(s) = x+, (12)

and u(s) ∈ U ∀s ∈ IS . (13)

Remark 1) The above formulation only allows for the most straightforward
type of boundary conditions: thus it is assumed that both state variable limits
exist and that they verify equality relationships. Note that, for the doubly infi-
nite case, existence of an initial boundary limit value and an equality condition
for that same boundary are both imperative if the problem is to be meaning-
ful. However, more general terminal conditions could be applied to some of the
states; typically these would include weaker restrictions that have to be verified
for ’large’ values of s only, or they might leave some variables free. See e.g.
[27], [28]. Still, it is suggested that the portfolio type problems discussed in this
paper do not require conditions of this type. Indeed, any portfolio optimisation
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will involve either minimising an undesirable (risk metric) quantity (such as
variance (e.g. [29]), kurtosis (e.g. [30])) subject to another quantity (typically
desirable, such as expected return (e.g. [29]) or skewness (e.g. [31]) being held
fixed or vice versa. In each case, a problem setting of this type necessitates the
existence of a limit terminal condition, verified either as an equality or possibly
as an inequality (for instance, one could require expected return to reach at least
a minimum level): hence all more general terminal condition types are discarded
for the purpose of the present work. Inequality conditions are not considered
as they will not change the problem with respect to equality conditions for any
plausibly shaped efficient frontier.

2) Note that the definition of admissible pairs, given above for the finite
problem domain case, directly generalises to the infinite domain.

In the discussion of the infinite-horizon problem which follows, the above
version of the control problem will be used as a referential point and referred
to as the generic problem, (P). This means that, in the doubly infinite-horizon
context, both finite-horizon problems and problems of the singly infinite-horizon
type (which initiate at a finite point θ) are regarded as restrictions of the general
problem given above. That perception slightly modifies these problems with
respect to their standalone versions since boundary conditions at finite points
no longer hold ex ante, but only once an optimal state is given. Accordingly the
classical definition of admissible pairs has to be adapted so as to eliminate the
requirement for boundary conditions at finite points:

Definition 2.4 Consider the restriction of the generic optimal control problem
(P) given by (10), (11), (12) and (13) to any interval I ⊆ R. Let (x(s), u(s))
be any pair of state and control variables defined on I, with x(s) absolutely
continuous on I and u(s) measurable on I. If the pair (x(s), u(s)) verifies both
the differential equation (11) and the condition that u(s) ∈ U ∀s ∈ I, it is called
an admissible pair for the I-restricted problem if lims→−∞ x(s) = x− in case I
has no finite lower bound, and lims→+∞ x(s) = x+ in case I has no finite upper
bound. The set of admissible pairs for the I-restricted problem is noted ArI .

Remark 1) Note that admissible pairs (x(s), u(s)) for the full problem (10),
(11), (12) and (13) continue to correspond to the original definition and need
to verify the problem’s initial and terminal limit conditions given in (12). Thus
the set of admissible pairs in this case is indifferently noted as either A(−∞,+∞)

or Ar(−∞,+∞).
2) As defined, (x(s), u(s)) ∈ A(−∞,+∞) implies that both (x(s), u(s)) ∈

Ar(−∞,θ] and (x(s), u(s)) ∈ Ar[θ,+∞) ∀θ ∈ R but not the converse. This is
because admissibility for the (−∞, θ]- and the [θ,+∞)-restricted problems does
not require the relevant state variables to take any specific value at θ and so
we may have (x1(s), u1(s)) ∈ Ar(−∞,θ] and (x2(s), u2(s)) ∈ Ar[θ,+∞) for which
x1(θ) 6= x2(θ).

The problem goal has been kept vague in (10) as it is necessary to be careful
regarding its specification. Indeed it is not legitimate to simply adapt the finite-

10



horizon goal (3) by letting the interval limits s− and s+ tend to −∞ and +∞
respectively as the improper integral given by the cost function limit

J(−∞,+∞)(x(s), u(s)) = PV

∫ +∞

−∞
L(x(s), u(s), s)ds

may not be defined for all admissible pairs: here, as for all integrals with double
infinite limits that appear in the present paper, the integral is valued by its
Cauchy principal value - see e.g.[32] for details. Clearly, the transition to an
infinite horizon problem is simplest if this is the case as the previous control
problem can then directly be rephrased; however making this assumption does
not lead to a sufficiently general theory. Analogously to [33] and [28], it is
necessary to introduce different criteria for infinite horizon optimality over the
full real line. To this end introduce the cost function surplus

∆(θ, ψ) =
∫ ψ

θ

L(x∗(s), u∗(s), s)ds−
∫ ψ

θ

L(x(s), u(s), s)ds, (14)

with (x(s), u(s)) ∈ A(−∞,+∞) any admissible pair and (x∗(s), u∗(s)) ∈ A(−∞,+∞)

the candidate pair for optimality. Note that the aim is to look for candidate
pairs which make the cost function surplus negative in various meaningful ways.
In increasing order of strength, the following definition proposes two of the four
optimality criteria given in [28], followed by the criterion applicable when the
cost function limit J(−∞,+∞)(x(s), u(s)) exists: this is called strong optimality
in [33]. These definitions are now restated for reference.

Definition 2.5 [Optimality criteria, singly infinite horizon]
(i) Let IS = [θ,+∞) the signal support, and ψ > θ any real number. Let

I = [θ, ψ] ⊂ R. An admissible pair (x∗(s), u∗(s)) ∈ A[θ,+∞) is said to be finitely
optimal if every admissible pair (x(s), u(s)) for the I-restricted problem which
satisfies x(ψ) = x∗(ψ) causes the inequality

JI(x∗(s), u∗(s)) ≤ JI(x(s), u(s))

to be verified.
(ii) An admissible pair (x∗(s), u∗(s)) ∈ A[θ,+∞) is said to be optimal ac-

cording to the overtaking criterion (OT-optimal) if there exists ψ ≥ θ such
that,

∀s+ > ψ,∆(θ, s+) ≤ 0.

(iii) An admissible pair (x∗(s), u∗(s)) ∈ A[θ,+∞) is said to be strongly opti-
mal if the corresponding improper integral converges, i.e.∣∣∣ ∫ +∞

θ

L(x(s), u(s), s)ds
∣∣∣ < +∞

and, given any other admissible pair (x(s), u(s)) ∈ A[θ,+∞),

lim
s+→+∞

∆(θ, s+) ≤ 0.

11



The above definitions adapted to the case of a doubly infinite horizon are as
follows.

Definition 2.6 [Optimality criteria, doubly infinite horizon] (i) Let I = [θ, ψ] ⊂
R, where −∞ < θ < ψ < +∞, be any finite real interval. An admissible pair
(x∗(s), u∗(s)) ∈ A(−∞,+∞) is said to be finitely optimal if every admissible pair
(x(s), u(s)) for the I-restricted problem which satisfies both x(θ) = x∗(θ) and
x(ψ) = x∗(ψ) causes the inequality

JI(x∗(s), u∗(s)) ≤ JI(x(s), u(s))

to be verified.
(ii) An admissible pair (x∗(s), u∗(s)) ∈ A(−∞,+∞) is said to be optimal

according to the overtaking criterion (OT-optimal) if there exist θ, ψ ∈ R such
that θ ≤ ψ and

∀s− < θ, s+ > ψ,∆(s−, s+) ≤ 0.

(iii) An admissible pair (x∗(s), u∗(s)) ∈ A(−∞,+∞) is said to be strongly
optimal if the corresponding improper integral converges, i.e.∣∣∣PV ∫ +∞

−∞
L(x(s), u(s), s)ds

∣∣∣ < +∞

and, given any other admissible pair (x(s), u(s)) ∈ A(−∞,+∞),

lim
θ→+∞

∆(−θ, θ) ≤ 0.

Remark 1) As with all improper integrals with double limits, the limit on ∆
above is interpreted using the Cauchy principal value convention.

2) Note that, in the finite optimality case, initial and terminal conditions for
x(s) are obtained from the values of x∗(s) and not known independently. Finite
optimality means that an optimal pair is not dominated on any finite segment
of the real axis by any other pair admissible for the corresponding restriction
of the problem: this suggests the Bellman optimality principle, which will be
discussed in more detail below.

3) For strong optimality, the limit on ∆(−θ, θ) clearly exists if J(−∞,+∞)

absolutely converges.
4) The two remaining types of optimality discussed in e.g. [34] involve the

lim sup and lim inf of cost functions for which the limit may not exist. These
offer a level of generality which is thought unnecessary for the type of portfolio
problem examined in what follows.

The statement about the increasing order of strength implied by the above
definitions of optimality can be formalised directly:

Proposition 2.7 In the context of the above generic optimal control problem,
consider an admissible pair (x∗(s), u∗(s)).

If (x∗(s), u∗(s)) is strongly optimal for the given problem, it is also OT-
optimal. Additionally, OT-optimality implies finite optimality.

12



Proof Consider any optimal control problem admissible pair set by (10), (11),
(12) and (13), and consider a pair (x∗(s), u∗(s)), which is both admissible and
strongly optimal for this problem.

Then (x∗(s), u∗(s)) is OT-optimal for the same problem, as can be seen
directly from the definition of OT-optimality and the definition of the double
limit.

Next, assume that (x∗(s), u∗(s)) is OT-optimal for the given problem. As-
sume for a contradiction that (x∗(s), u∗(s)) is not finitely optimal for the same
problem. Then, for any θ, ψ ∈ R, there exists I = [θ, ψ] ⊆ R such that θ < θ,
ψ < ψ and a pair (x̂(s), û(s)), admissible for the I-restricted problem corre-
sponding to the original problem, such that∫ ψ

θ

L(x∗(s), u∗(s), s)ds−
∫ ψ

θ

L(x̂(s), û(s), s) = ε > 0 (15)

with the boundary conditions x̂(θ) = x∗(θ) and x̂(ψ) = x∗(ψ). Now define

(x̃(s), ũ(s)) =

{
(x̂(s), û(s)) for s ∈ [θ, ψ]
(x∗(s), u∗(s)) for s ∈ R\[θ, ψ].

Then (x̃(s), ũ(s)) is an admissible pair: the boundary conditions on x̂(s) ensure
that x̃(s) is continuous on R and that the state equations (11) are verified
on the whole of R. Also, the boundary conditions on x∗(s) remain valid and
ũ(s) ∈ U on the entire real axis. Thus, since it was assumed that (x∗(s), u∗(s))
is OT-optimal, ∃θ, ψ such that, ∀s− < θ and ∀s+ > ψ,∫ s+

s−
L(x∗(s), u∗(s), s)ds−

∫ s+

s−
L(x̃(s), ũ(s), s)ds ≤ 0. (16)

But θ and ψ are finite so choose s− = min(θ, θ) and s+ = max(ψ,ψ) in the
above and decompose the integrals to obtain

(16)⇔
∫ θ

s−
L(x∗(s), u∗(s), s)ds+

∫ ψ

θ

L(x∗(s), u∗(s), s)ds +∫ s+

ψ

L(x∗(s), u∗(s), s)ds−
∫ θ

s−
L(x∗(s), u∗(s), s)ds −∫ ψ

θ

L(x̂(s), û∗(s), s)ds−
∫ s+

ψ

L(x∗(s), u∗(s), s)ds ≤ 0

⇔
∫ ψ

θ

L(x∗(s), u∗(s), s)ds−
∫ ψ

θ

L(x̂(s), û∗(s), s)ds ≤ 0.

This constitutes a contradiction with respect to (15). Hence it can be concluded
that the initial assumption (of (x∗(s), u∗(s)) not being finitely optimal) must
be rejected, and thus the required implication has been shown.

13



Extending the classical singly-infinite problem class to a doubly-infinite hori-
zon will involve partitioning the real axis so the doubly-infinite problem is de-
composed into a pair of singly-infinite ones. To complete the set of necessary
definitions, it is necessary to spell out the meaning of optimality for the doubly-
infinite problem restricted to (−∞, θ] for any θ ∈ R.

Definition 2.8 Let (x∗(s), u∗(s)) ∈ Ar(−∞,θ] be any admissible pair for the
(−∞, θ]-restricted problem. Now introduce a change of variable τ = −s and
define mirrored state and control variables

x̄∗(τ) = x∗(s)
ū∗(τ) = u∗(s),

such that

˙̄x∗(τ) =
dx̄∗(τ)
dτ

=
dx∗(s)
dτ

=
dx∗(s)
ds

ds

dτ
= −ẋ∗(s)
= −f(x̄∗(τ), ū∗(τ),−τ)

and
x̄∗(−θ) = x∗(θ).

Clearly, (x̄∗(τ), ū∗(τ)) is admissible for the (P)-related problem (P̄ ) defined over
the interval ĪS = [−θ,+∞):

optimise JĪS
(x(τ), u(τ) =

∫ τ+

−θ
L(x(τ), u(τ),−τ)dτ as τ+ → +∞ (17)

subject to ẋ(τ) = −f(x(τ), u(τ),−τ) ∀τ ∈ ĪS , (18)

lim
τ→+∞

x(τ) = lim
s→−∞

x(s) = x−, x(−θ) = x∗(θ), (19)

and u(τ) ∈ U ∀τ ∈ ĪS . (20)

Then the admissible pair (x∗(s), u∗(s)) ∈ Ar(−∞,θ] is said to be optimal if and
only if the P̄ -admissible pair (x̄∗(τ), ū∗(τ)) is.

Note the independent argument used in non-autonomous problem expres-
sions is −τ = s rather than τ : this is necessary for invariance of later results
with respect to the orientation of the axis, as will become clear. The change
of sign seen in the state equations reflects the fact that x(s) has been mirrored
with respect to the vertical axis and has thus been made into an even function
for the purpose of the ĪS-restriction.
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In the above the variational (Euler-Lagrange) set of necessity conditions
adapted to optimal control (theorem 2.2) was presented and the problem con-
text extended to the infinite domain case. The next subsection will discuss
the necessity theorem which is perhaps the most natural for optimal control
problems with control constraints, i.e. the Pontryagin Minimum Principle.

2.0.1 The Pontryagin Minimum Principle.

It has been seen that the Euler-Lagrange equations taken from the calculus of
variations can be transposed to the more general case of optimal control prob-
lems. However, their suitability for optimal control problems that go beyond
the sort of problem expressible using the calculus of variations is naturally lim-
ited. One type of optimal control problem which cannot generally be treated
in the classical framework arises when the control constraints embedded in (6)
are activated, i.e. U is defined as a proper subset of IRn. Looking at the Euler-
Lagrange equations, it is immediately clear that the condition on Hamiltonian
derivative with respect to the controls being zero need no longer hold as the
extremum may be reached on the boundary of the admissible control set. In
connection with this, Pontryagin ([35]) points out that closed admissible con-
trol sets, in particular, are of great interest in practice, and that the pertinent
problems often lead to optimal controls on the set boundary. The Pontryagin
Minimum Principle (PMP) provides a generalisation of the classical conditions
which can still be used with constrained control sets.

As for the Euler-Lagrange equations, the initial formulation of the PMP
covered a problem formulated over a closed finite interval IS = [s−, s+].

Theorem 2.9 [Pontryagin Minimum Principle, finite horizon]
Consider the previously given finite horizon optimal control problem (3),

(4), (5) and (6).
Let (x∗(s), u∗(s)) be an admissible pair for the above problem: thus u∗(s) is a

measurable control defined on IS = [s−, s+] with associated optimal path x∗(s).
If (x∗(s), u∗(s)) solves the above problem i.e. is optimal, there exist a constant
λ∗0 and and a continuous and piecewise continuously differentiable costate vector
function λ∗(s) = (λ∗1(s), . . . , λ∗m(s)) such that, ∀s ∈ IS,

(λ∗0, λ
∗
1(s), . . . λ∗m(s)) 6= (0, 0, . . . 0) and

u∗(s) minimises the Hamiltonian H(x∗(s), u(s), λ∗0, λ
∗(s), s) for u(s) ∈ U , i.e.

H(x∗(s), u∗(s), λ∗0, λ
∗(s), s) ≤ H(x∗(s), u(s), λ∗0, λ

∗(s), s) ∀u(s) ∈ U, s ∈ IS .

The costates λ∗i (s), for i ∈ {1, 2, . . .m}, verify

λ̇∗i (s) = −∂H
∂xi

except at any points of discontinuity for u∗(s).
Finally, scaling always offers the possibility to normalise λ∗0 so either λ∗0 = 1 or
λ∗0 = 0.
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Proof See [35].

Remark 1) The given version of the PMP diverges from its original formulation
in ([35]), where a cost function is to be minimised but the attached condition
requires maximising the Hamiltonian. In each case, the ’maximum’ or ’mini-
mum’ qualifier refers to the maximisation or minimisation of the Hamiltonian,
rather than the intended type of optimisation. All four possible formulations of
the PMP are equivalent; for instance, Seierstad [34] presents the maximisation
formulation of the principle attached to a maximisation optimal control prob-
lem. In each case, it is simple to switch between formulations by noticing that
maximisation of JI corresponds to minimisation of −JI , and that any attached
discussion of sufficiency conditions (see below) may require switching convexity
for concavity and vice versa.

2) For the problems under consideration, it has been suggested that fixed end
point values will always be required. If this is not that case, the end point state
values need to be optimised as well: this leads to an additional type of equation
in the PMP, called a transversality condition and again directly generalising an
equivalent condition found for purely variational problems with free end point.
See [36] for a classic discussion of transversality conditions in the infinite-horizon
context.

The original discussion of the Minimum Principle [35] only briefly mentions
the infinite-horizon case. The authors conclude that the result not only holds
over the half-line [0,+∞), but over the entire line (−∞,+∞): this corresponds
to the case required for the problems in the present discussion. Given the extent
to which practical control problems have required the full half-line (as before,
see e.g. [26], [24], [25]), more detailed proofs of the Principle for this specific
case have been proposed. See in particular Halkin [37] for an early generic
infinite-horizon proof and [38] or [39] for examples of proofs of stronger results
for specific problem classes. The original infinite-horizon formulation of the
PMP then appears as follows:

Theorem 2.10 [Pontryagin Minimum Principle, real half-line to +∞]
Consider the previously given optimal control problem (3), (4), (5) and

(6) with a terminal horizon, s+, at infinity, that is a problem domain of IS =
[s−,+∞):

optimise J(u) =
∫ +∞

s−
L(x(s), u(s), s)ds

subject to ẋ(s) = f(x(s), u(s), s),

x(s−) = x−, lim
s→+∞

(x(s)) = x+

and u(s) ∈ U ∀s ∈ IS ,

where s− is fixed and finite, L and f are jointly continuous in x(s) and u(s),
and u(s) is a piecewise continuous function defined on IS.
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Let (u∗(s), x∗(s)) be an admissible pair for the above problem: thus u∗(s) is
a measurable control defined on [s−,+∞) with associated optimal path x∗(s).
If (u∗(s), x∗(s)) solves the above problem i.e. is optimal, there exist a constant
λ∗0 and a continuous and piecewise continuously differentiable vector function
λ∗(s) = (λ∗1(s), . . . , λ∗m(s)) such that, ∀s ≥ s−,

(λ∗0, λ
∗
1(s), . . . λ∗m(s)) 6= (0, 0, . . . 0) and

u∗(s) minimises the Hamiltonian H(x∗(s), u(s), λ∗0, λ
∗(s), s) for u(s) ∈ U , i.e.

H(x∗(s), u∗(s), λ∗0, λ
∗(s), s) ≤ H(x∗(s), u(s), λ∗0, λ

∗(s), s) ∀u(s) ∈ U, s ∈ IS .

The costates λ∗i (s), for i ∈ {1, 2, . . .m}, verify

λ̇∗i (s) = −∂H
∂xi

except at any points of discontinuity for u∗(s).
Finally, scaling always offers the possibility to normalise λ∗0 so either λ∗0 = 1 or
λ∗0 = 0.

Proof See [37]: this treats the maximisation version of the problem but, from
the preceding discussion, the two formulations can be reconciled by a change of
sign in λ∗0, which has no impact on the result as it involves a normalisation of
λ∗0 in any case.

The proof is in two steps, of which the first proves that optimality involving
a lim sup-based criterion implies what the present work calls finite optimality.
The second step then involves a limit argument based on an infinite sequence of
domain endpoints si which has since become somewhat standard: for instance,
Aseev et al. refer to it as the method of approximations ([40]). As such, it
may be observed that Halkin’s proof really covers the case of finite optimality
even though it is formulated in terms of the previously mentioned lim sup-based
criterion. This is of significance as the chain of optimality implications shown
in proposition 2.7 entails that the PMP then holds for a pair which is optimal
according to any of the three criteria introduced in definition 2.6.

In line with the previous argument, it is necessary to generalise the previous
version (theorem 2.10) of the Pontryagin Minimum Principle to the full real
axis (−∞,+∞). This initially requires an extension of the well-known Bellman
optimality principle ([41]) to the full real axis.

Theorem 2.11 [Bellman Optimality Principle, real half-line to +∞]
Let (x∗(s), u∗(s)) ∈ Ar[θ,+∞) be an admissible pair for the [θ,+∞)-restricted

problem based on the generic problem, ∀θ ∈ R.
If (x∗(s), u∗(s)) is optimal according to any applicable optimality criterion,

then let x∗[θ,ψ](s) be the restriction of x∗(s) to the closed interval [θ, ψ] for any
finite ψ ≥ θ, and u∗[θ,ψ](s) be the restriction of u∗(s) to the same interval [θ, ψ].

The pair (x∗[θ,ψ](s), u
∗
[θ,ψ](s)) now minimises the restriction of the problem’s

cost function J[θ,ψ](x, u) on the set Ar[θ,ψ) of admissible pairs (x(s), u(s)) for
which the initial and final conditions x(θ) = x∗(θ) and x(ψ) = x∗(ψ) hold.
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Proof This proof can essentially be found in Carlson and Haurie [33]. Note
that the authors examine the maximisation problem, such that inequalities need
to be reversed. Also, a slightly more general definition of the infinite horizon
problem as starting from any point θ ∈ R (and not necessarily at 0) is used
in the present work. Accordingly all occurrences of the problem origin in the
original proof have to be replaced by θ, and the initial condition, in particular, is
now a function of the optimal path (i.e. x(θ) = x∗(θ)) rather than exogenously
specified for every possible θ.

See the later proof of the Principle in the doubly infinite case for an adapted
version of the same argument.

Remark Here the possible ’applicable optimality criteria’ are those proposed
for singly-infinite problem domains (see definition 2.5).

Based on these two versions, an extension of the Bellman Optimality Prin-
ciple to the full real axis by the adaptation of existing proofs is straightforward
enough. The proof strategy involves a decomposition of the optimality concept
on (−∞,+∞) by means of optimality on real half-lines as defined above.

Theorem 2.12 [Bellman Optimality Principle, full real axis]
Let (x∗(s), u∗(s)) ∈ A(−∞,+∞) be an admissible pair for the generic optimal

control problem set in (10), (11), (12) and (13).
If (x∗(s), u∗(s)) is optimal according to any of the optimality criteria given

in definition 2.6, then let x∗(−∞,θ](s) be the restriction of x∗(s) to the interval
(−∞, θ] for any finite θ, and u∗(−∞,θ](s) be the restriction of u∗(s) to the same
interval (−∞, θ]. Furthermore let x∗[θ,+∞)(s) be the restriction of x∗(s) to the
interval [θ,+∞) and u∗[θ,+∞)(s) be the restriction of u∗(s) to the same interval
[θ,+∞).

Then both of the pairs (x∗(−∞,θ](s), u
∗
(−∞,θ](s)) ∈ A

r
(−∞,θ] and

(x∗[θ,+∞)(s), u
∗
[θ,+∞)(s)) ∈ A

r
[θ,+∞) are finitely optimal.

Proof Notice initially that (x∗(−∞,θ](s), u
∗
(−∞,θ](s)) ∈ A

r
(−∞,θ] and

(x∗[θ,+∞)(s), u
∗
[θ,+∞)(s)) ∈ A

r
[θ,+∞) directly from the definition, and that the fi-

nite optimality mentioned involves the definition applicable to the singly-infinite
horizon: see definition 2.5.

Assume for a contradiction that the above result is not true. Then, for
one of the two half-lines involved at least, the pair (x∗(s), u∗(s)) is not finitely
optimal. Say, without loss of generality, that (x∗(s), u∗(s)) is not finitely optimal
on [θ,+∞) for some θ ∈ R. Then, from 2.11, one has for some ψ ≥ θ and for
some (x̂(s), û(s)) ∈ Ar[θ,ψ] that∫ ψ

θ

L(x̂(s), û(s), s)ds <
∫ ψ

θ

L(x∗(s), u∗(s), s)ds

with x̂(θ) = x∗(θ) and x̂(ψ) = x∗(ψ). There thus exists some ε > 0 such that∫ ψ

θ

L(x̂(s), û(s), s)ds <
∫ ψ

θ

L(x∗(s), u∗(s), s)ds− ε. (21)
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Following a standard pattern, now assemble the pair

(x̃(s), ũ(s)) =

{
(x̂(s), û(s)) for s ∈ [θ, ψ]
(x∗(s), u∗(s)) for s ∈ (−∞, θ) ∪ (ψ,+∞).

Now x̃(s) is continuous on (−∞,+∞) since both x̃(θ) = x̂(θ) = x∗(θ) and
x̃(ψ) = x̂(ψ) = x∗(ψ). Also ũ(s) ∈ U a.e. on (−∞,+∞) since both û(s) ∈ U
and u∗(s) ∈ U a.e. Finally the original admissible pair (x∗(s), u∗(s)) is retained
in both limits: it can be concluded that (x̃(s), ũ(s)) ∈ A(−∞,+∞).

But finite optimality of (x∗(s), u∗(s)) on (−∞,+∞) has been assumed.
Hence there exist θ̂ < θ and ψ̂ > ψ such that, using the previous value of
ε, ∫ ψ̂

θ̂

L(x∗(s), u∗(s), s)ds <
∫ ψ̂

θ̂

L(x̃(s), ũ(s), s)ds− ε

2

=
∫ θ

θ̂

L(x∗(s), u∗(s), s)ds+
∫ ψ

θ

L(x̂(s), û(s), s)ds+∫ ψ̂

ψ

L(x∗(s), u∗(s), s)ds+
ε

2

<

∫ ψ̂

θ̂

L(x∗(s), u∗(s), s)ds− ε

2
by (21).

However, this is contradictory. Accordingly, it can be concluded that (x∗(s), u∗(s))
must be optimal on [θ,∞) for any θ ∈ R. Using a similar argument, it can be
shown that (x∗(s), u∗(s)) additionally has to be optimal on (−∞, θ] at the same
time. Hence the required result has been proven.

Remark The given optimality requirements involve finite optimality both (through
the chain of implications given in proposition 2.7) in the theorem precondition
and (explicitly) in the result. This is sufficient for the present purpose, which
is to prove the necessity result of the PMP.

The availability of theorems 2.10 and 2.12 then allows for an easy generali-
sation of the Pontryagin Minimum Principle to the doubly-infinite horizon case.
The only open question to solve before proceeding to the proof is whether the
relations obtained in the infinite-horizon case (theorem 2.10) are invariant for
the restricted problem over the half-line to −∞. This can be answered in the
affirmative.

Lemma 2.13 Let (x∗(s), u∗(s)) ∈ Ar(−∞,θ] be an admissible pair for the re-
stricted problem on (−∞, θ]. If (x∗(s), u∗(s)) is optimal, the relations given in
Pontryagin’s Minimum Principle for the positive half-line (theorem 2.10) remain
true.
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Proof Assume that (x∗(s), u∗(s)) ∈ Ar(−∞,θ] is optimal. Then, using the def-
inition of optimality (Definition 2.8) and its attached notation, (x̄∗(τ), ū∗(τ))
is both admissible on the linked problem P̄ (given by (17), (18), (19) and
(20)) and optimal. Application of theorem 2.10 thus justifies the existence of a
nonnegative λ0 and a continuous and piecewise continuously differentiable vec-
tor function λ(τ) = (λ1(τ), . . . λm(τ)) for which the following set of relations is
verified:

(i)(λ0, λ1(τ), . . . λm(τ)) 6= (0, . . . 0) ∀τ ∈ [−θ,∞);

(ii)
(∂λ̄
∂τ

)
(τ) = ˙̄λ(τ) = − ∂

∂x̄
H(x̄∗(τ), ū∗(τ), λ̄0, λ̄(τ),−τ) a.e. on [−θ,∞);

and

(iii)H(x̄∗(τ), ū∗(τ), λ̄0, λ̄(τ),−τ) ≤ H(x̄∗(τ), ū(τ), λ̄0, λ̄(τ),−τ) ∀τ ∈ [−θ,∞),∀ū(τ) ∈ U.

Now define λi(s) = −λ̄i(τ), i ∈ {1, 2, . . .m} and λ0 = λ̄0: as will be seen, this
asymmetry is required to absorb the negative sign of f in (P̄ ). Additionally
recall the relations x̄(τ) = x(s) and ū(τ) = u(s). Finally note that the use of
−τ in the Hamiltonian is justified as the problem being looked at is obtained
from the restriction of a problem with domain R and so both f(x(s), u(s), s)
and L(x(s), u(s), s) are defined on R.
To first verify (ii), write out

˙̄λ(τ) = − ∂

∂x̄

[
λ̄0L(x̄(τ), ū(τ),−τ) + λ̄(τ) · (−f(x̄(τ), ū(τ),−τ))

]
= −λ̄0

∂

∂x̄
L(x̄(τ), ū(τ),−τ) + λ̄(τ) · ∂

∂x̄
f(x̄(τ), ū(τ),−τ).

Then
˙̄λ(τ) =

dλ̄(τ)
dτ

= −dλ(s)
dτ

= −dλ(s)
ds

ds

dτ
= λ̇(s)

and

− λ̄0
∂

∂x̄
L(x̄(τ), ū(τ),−τ) + λ̄(τ) · ∂

∂x̄
f(x̄(τ), ū(τ),−τ) =

− λ0
∂

∂x
L(x(s), u(s), s)− λ(s) · ∂f

∂x
(x(s), u(s), s)

such that

λ̇(s) = −λ0
∂

∂x
L(x(s), u(s), s)− λ(s) · ∂

∂x
f(x(s), u(s), s)

=
∂

∂x
H(x(s), u(s),−λ0,−λ(s), s),
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that is

λ̇(s) = − ∂

∂x
H(x(s), u(s), λ0, λ(s), s).

This shows that (ii) is invariant to the given change of variable given λ0 is the
Hamiltonian function constant and λ(s) is the costate vector obtained from the
Maximum Principle.
For (iii), write

H(x̄∗(τ), ū∗(τ), λ̄0, λ̄(τ),−τ) ≤ H(x̄∗(τ), ū(τ), λ̄0, λ̄(τ),−τ)

⇔ λ0L(x̄∗(τ), ū∗(τ),−τ) + λ(τ) · (−f(x̄∗(τ), ū∗(τ),−τ)) ≤
λ0L(x̄∗(τ), ū(τ),−τ) + λ(τ) · (−f(x̄∗(τ), ū(τ),−τ))

⇔ λ0L(x∗(s), u∗(s), s) + λ(s) · f(x∗(s), u∗(s), s) ≤ λ0L(x∗(s), u(s), s) + λ(s) · f(x∗(s), u(s), s)
⇔ H(x∗(s), u∗(s), λ0, λ(s), s) ≤ H(x∗(s), u(s), λ0, λ(s), s).

Thus (iii) is also invariant to the change of variable given. Clearly, since λ0 = λ̄0

and λ(s) = −λ̄(τ), (i) translates to

(λ0, λ(s)) 6= (0, 0, · · · , 0)

as well.
Thus the required invariance result has been shown.

It is now straightforward to prove

Theorem 2.14 [Pontryagin Minimum Principle, full real axis]
Consider the previously given generic optimal control problem on a doubly-

infinite horizon (10), (11), (12) and (13).
Let (x∗(s), u∗(s)) be an admissible pair for the above problem: thus u∗(s) is a

piecewise continuous control defined on IS = (−∞,+∞) with associated optimal
path x∗(s). If (x∗(s), u∗(s)) solves the above problem i.e. is optimal, there exist
a constant λ∗0 and a continuous and piecewise continuously differentiable costate
vector function λ∗(s) = (λ∗1(s), . . . , λ∗m(s)) such that, ∀s ∈ (−∞,+∞),

(λ∗0, λ
∗
1(s), . . . λ∗m(s)) 6= (0, 0, . . . 0) and (22)

u∗(s) minimises the Hamiltonian H(x∗(s), u(s), λ∗0, λ
∗(s), s) for u(s) ∈ U , i.e.

H(x∗(s), u∗(s), λ∗0, λ
∗(s), s) ≤ H(x∗(s), u(s), λ∗0, λ

∗(s), s) ∀u(s) ∈ U, s ∈ IS .
(23)

The costates λ∗i (s), for i ∈ {1, 2, . . .m}, verify

λ̇∗i (s) = −∂H
∂xi

(24)

except at any points of discontinuity for u∗(s).
Finally, scaling always offers the possibility to normalise λ∗0 so either λ∗0 = 1 or
λ∗0 = 0.
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Proof Let (x∗(s), u∗(s)) ∈ A(−∞,+∞) be an optimal pair for the generic prob-
lem on (−∞,+∞) according to any of the optimality modes given in defini-
tion 2.6. The previous Bellman Optimality Principle result (theorem 2.12) en-
tails that (x∗(s), u∗(s)) remains finitely optimal for the problem restrictions
to both I− = (−∞, θ] and I+ = [θ,+∞), ∀θ ∈ R. Trivially, the restric-
tions of x∗(s) to I− and I+ continue to be continuous and differentiable, with
lims→θ− x

∗(s) = lims→θ+ x
∗(s).

Then, from theorem 2.10, the Pontryagin conditions hold separately for both
I− and I+, with separate Hamiltonian constants λI−0 and λI+0 as well as separate
costate vectors λI− : (−∞, θ] → R and λI+ : [θ,+∞) → R. From the theorem,
both λI−(s) and λI+(s) are continuous piecewise differentiable for all θ.

Also, lemma 2.13 indicates that the costate differential equation and Hamil-
tonian maximisation conditions (23) and (24) of the PMP are separately true on
both I− and I+. It remains to show that λI−0 = λ

I+
0 and that λI−(θ) = λI+(θ)

so as to verify the required continuity conditions.
Successive application of the Bellman Optimality Principle on doubly-infinite

and infinite horizons (theorems 2.12 and 2.11) allows for the definition of three
separate Hamiltonians, each of which verifies the Minimum Principle:

HI− = λ
I−
0 L(x∗(s), u∗(s), s) + λI−(s) · f(x∗(s), u∗(s), s) on I− = (−∞, θ]

HI+ = λ
I+
0 L(x∗(s), u∗(s), s) + λI+(s) · f(x∗(s), u∗(s), s) on I+ = [θ,+∞)

H[θ−α,θ+α] = λ
[θ−α,θ+α]
0 L(x∗(s), u∗(s), s) + λ[θ−α,θ+α](s) · f(x∗(s), u∗(s), s) on [θ − α, θ + α]

Thus, on s ∈ [θ, θ + α], the latter two Hamiltonians give
λ
I+
0 L(x∗(s), u∗(s), s) + λI+(s) · f(x∗(s), u∗(s), s) ≤

λ
I+
0 L(x∗(s), u(s), s) + λI+(s) · f(x∗(s), u(s), s)

λ
[θ−α,θ+α]
0 L(x∗(s), u∗(s), s) + λ[θ−α,θ+α](s) · f(x∗(s), u∗(s), s) ≤

λ
[θ−α,θ+α]
0 L(x∗(s), u(s), s) + λ[θ−α,θ+α](s) · f(x∗(s), u(s), s)

∀s ∈ [θ, θ + α],∀u ∈ U and ∀L ∈ C1(−∞,+∞), ∀f ∈ (C1(−∞,+∞))m. Equiva-
lently,

λ
I+
0

(
L(x∗(s), u∗(s), s)− L(x∗(s), u(s), s)

)
≤

λI+(s) ·
(
f(x∗(s), u(s), s)− f(x∗(s), u∗(s), s)

)
λ

[θ−α,θ+α]
0

(
L(x∗(s), u∗(s), s)− L(x∗(s), u(s), s)

)
≤

λ[θ−α,θ+α](s) ·
(
f(x∗(s), u(s), s)− f(x∗(s), u∗(s), s)

)
.

Given this needs to hold ∀L ∈ C1(−∞,+∞) and ∀f ∈ (C1(−∞,+∞))m, the
above inequality shows that, necessarily, λI+0 = λ

[θ−α,θ+α]
0 and λI+(s) = λ[θ−α,θ+α](s)

∀s ∈ [θ, θ + α].
By similarly exploiting the overlap between [θ − α, θ + α] and I−, it is clear

that λI−0 = λ
[θ−α,θ+α]
0 and λI−(s) = λ[θ−α,θ+α](s) ∀s ∈ [θ − α, θ].
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Hence λI−0 = λ
I+
0 and λI−(θ) = λI+(θ). Thus a single scalar λ∗0 = λ

I−
0 = λ

I+
0

applies to the doubly-infinite problem. Also, the set of resulting costates

λ∗(s) =

{
λI−(s) for s ∈ (−∞, θ]
λI+(s) for s ∈ [θ,+∞)

is continuous and piecewise differentiable on (−∞,+∞).
Thus all the assertions of theorem 2.14 have been proven.

2.0.2 The Euler-Lagrange equations in an optimal control context.

By carrying out a derivation based on variational arguments but starting from
a generalised problem of the optimal control type (3), (4), (5) and (6), an
optimal control equivalent of the Euler-Lagrange equations is obtained: see e.g.
[20] or [21] for a variational proof of the below theorem in its finite-horizon
version. However, having established theorem 2.14, the below conditions can
be more directly obtained as a subset of the conditions given by the Pontryagin
Principle.

Theorem 2.15 [First-order (Euler-Lagrange) and second-order (Legendre-Clebsch)
necessary conditions, full real axis]

Consider the previously given generic optimal control problem on a doubly-
infinite horizon (10), (11) and (12). The admissible control domain is taken
to be unconstrained in (13): thus U = Rn.

Let (x∗(s), u∗(s)) be an admissible pair for the above problem, with u∗(s) ad-
ditionally continuous: thus u∗(s) is a continuous control defined on (−∞,+∞)
with associated optimal path x∗(s), and the pair (x∗(s), u∗(s)) satisfies (11)
and (12). If (x∗(s), u∗(s)) solves the above problem i.e. is optimal, there
exists a constant λ∗0 and a continuously differentiable costate vector function
λ∗(s) = (λ∗1(s), . . . λ∗m(s)) such that the quadruple (x∗(s), u∗(s), λ∗0, λ

∗(s)) satis-
fies the system (11), (12),

λ̇∗(s) = −Hu(x(s), u(s), λ∗0, λ
∗(s), s) and (25)

Hu(x(s), u(s), λ∗0, λ
∗(s), s) = 0 (26)

and, ∀s ∈ (−∞,+∞),

(λ∗0, λ
∗
1(s), . . . λ∗m(s)) 6= (0, 0, . . . 0).

Additionally, the matrix of second derivatives of the problem Hamiltonian
with respect to the controls at the optimal pair remains semi-definite positive:

z′
(
Huu(x∗(s), u∗(s), λ∗0, λ

∗(s), s)
)
z ≥ 0,

for all s ∈ R and for all z ∈ Rn.
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Proof Existence of costates meeting the necessary requirements directly fol-
lows from the Pontryagin Principle (theorem 2.14). If u∗(s) is continuous (as
required), the Principle specifies the costate equations which are now verified on
the whole of R since discontinuous controls are excluded. Thus, on R, the λ∗i (s)
are solutions of the ordinary differential equation (25) and thus continuous and
piecewise continuously differentiable: see e.g. [42].

Additionally, the Pontryagin condition

H(x∗(s), u∗(s), λ∗0, λ
∗(s), s) ≤ H(x∗(s), u(s), λ∗0, λ

∗(s), s)

entails that the first-order condition

∂H
∂u

= 0

is verified as long as the optimal control u∗(s) is in the interior of the control
region U i.e. its components remain finite ∀s ∈ R, which is the case for any
non-degenerate problem for which there exists at least one feasible solution.

The Pontryagin condition given above also entails verification of the second-
order condition given the Hamiltonian is minimised by the optimal pair.

Finally, note that the condition on (λ∗0, λ
∗(s)) not being null is inherited

from the formulation of the Principle and carries over to the finite-horizon Euler-
Lagrange conditions given in theorem 2.2.

Thus all the theorem relations are verified on the whole of R.

2.0.3 The Mangasarian sufficiency theorem.

The previous sections have extended well-known necessity results for optimal
control problems to the doubly-infinite context. These results justify the type of
problem formulation used in this paper, and may lead to a number of candidate
solutions for a particular problem’s optimal pair. However, they do not allow
for the conclusion that any of the candidate pairs do in fact correspond to the
optimal pair. To draw such a conclusion with certainty, a sufficiency result
is necessary. In the literature, two classical sufficiency results are given by the
Mangasarian and Arrow sufficiency theorems (see [43] and [44]); in what follows,
the Mangasarian result will be generalised to the current doubly-infinite context.

The Mangasarian conditions are related to those seen in the Pontryagin
Principle. Sufficiency is achieved largely through the additional requirement
that the Hamiltonian H(x(s), u(s), λ(s), s) be convex, or concave if the problem
requires maximisation of the cost/benefit function. In the finite horizon case,
their formulation is as follows:.

Theorem 2.16 [Mangasarian sufficiency conditions, finite horizon]
Consider the previously given finite horizon optimal control problem (3),

(4), (5) and (6).
Let (x∗(s), u∗(s)) be an admissible pair for the above problem: thus u∗(s) is a

measurable control defined on IS = [s−, s+] with associated optimal path x∗(s).
Additionally suppose that u∗(s) ∈ U ∀s ∈ IS, with U a convex subset of Rn, and
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that the partial derivatives of both L(x(s), u(s), s) and the fi(x(s), u(s), s), i ∈
{1, 2, . . . n}, with respect to both x and u exist and are continuous.

Suppose there exists a vector of costate functions λ∗(s) = (λ∗1(s), . . . , λ∗m(s))
∀s ∈ IS and let λ∗0 be a constant. Introduce the alternative notation H∗ =
H(x∗(s), u∗(s), λ∗0, λ

∗(s), s) for simplicity. Suppose that the following conditions
are satisfied ∀s ∈ IS with λ∗0 = 1:

λ̇∗i (s) = −∂H
∗

∂xi
∀i ∈ {1, 2, . . . n}

H(x(s), u(s), λ∗0, λ
∗(s), s) is jointly convex in (x(s), u(s))

n∑
j=1

∂H∗

∂uj

(
u∗j (s)− uj(s)

)
≤ 0 ∀u(s) ∈ U.

Then the pair (x∗(s), u∗(s)) solves the problem (3), (4), (5) and (6).
If H(x(s), u(s), λ∗0, λ

∗(s), s) is strictly convex in x(s) and in u(s), the pair
(x∗(s), u∗(s)) constitutes the unique solution to the problem.

Proof A proof built using the maximisation version of the problem is given in
[28]; this can easily be adapted by a judicious swapping of inequalities, and of
concavity for convexity.

Moving to problem domains with a doubly infinite horizon is then simple
given only boundary conditions involving limit equalities are considered.

Theorem 2.17 [Mangasarian sufficiency conditions, doubly infinite horizon]
Consider the previously given generic optimal control problem on a doubly-

infinite horizon (10), (11), (12) and (13).
Let (x∗(s), u∗(s)) be an admissible pair for the above problem: thus u∗(s) is a

measurable control defined on IS = R with associated optimal path x∗(s). Addi-
tionally suppose that u∗(s) ∈ U ∀s ∈ [s−, s+], with U a convex subset of Rn, and
that the partial derivatives of both L(x(s), u(s), s) and the fi(x(s), u(s), s), i ∈
{1, 2, . . . n}, with respect to both x and u exist and are continuous.

Suppose there exists a vector of costate functions λ∗(s) = (λ∗1(s), . . . , λ∗m(s))
∀s ∈ [s−, s+] and let λ∗0 be a constant. Suppose that the following conditions are
satisfied ∀s ∈ R with λ∗0 = 1:

λ̇∗i (s) = −∂H
∗

∂xi
∀i ∈ {1, 2, . . . n}

H(x(s), u(s), 1, λ∗(s), s) is jointly convex in (x(s), u(s))
n∑
j=1

∂H∗

∂uj

(
u∗j (s)− uj(s)

)
≤ 0 ∀u(s) ∈ U.

Then the pair (x∗(s), u∗(s)) solves the problem (10), (11), (12) and (13), with
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1. finite optimality if, for any admissible x(s) and any real interval I = [θ, ψ]
with −∞ < θ < ψ < +∞,

∆(θ, ψ) ≤ 0;

2. OT-optimality if, for any admissible x(s), ∃θ, ψ ∈ R such that θ < ψ,

λ∗(s) · (x(s)− x∗(s)) ≥ 0 ∀s ∈ (−∞, θ] and (27)
λ∗(s) · (x(s)− x∗(s)) ≤ 0 ∀s ∈ [ψ,+∞). (28)

3. strong optimality if, for any admissible pair (x(s), u(s)), the improper in-
tegral

PV

∫ +

−∞
∞L(x(s), u(s))ds (29)

converges and each costate component is bounded, i.e. ∃Ai ∀i ∈ {1, . . . n}
such that

|λ∗i (s)| ≤ Ai ∀s ∈ IS . (30)

If H(x(s), u(s), λ∗0, λ
∗(s), s) is strictly convex in x(s) and in u(s), the pair

(x∗(s), u∗(s)) constitutes the unique solution to the problem.

Proof First note that, for any s−, s+ ∈ R such that s− < s+,

∆(s−, s+) ≤ λ∗(s+) ·
(
x(s+)− x∗(s+)

)
− λ∗(s−) ·

(
x(s−)− x∗(s−)

)
(31)

from a proof for the finite-horizon case as given in [28].
The given condition for finite optimality directly corresponds to the defini-

tion.
For OT-optimality, assume given θ and ψ ∈ R such that the relations (27)

and (28) are verified. Choose any s− ≤ θ and s+ ≥ ψ. Then (31) holds, with
both terms on the right-hand side of the inequality negative by assumption.
Accordingly ∃θ, ψ ∈ R such that ∆(s−, s+) ≤ 0 for any s− < θ and any s+ > ψ:
thus (x∗(s), u∗(s)) is OT-optimal.

For strong optimality, assume that the relations (29) and (30) are verified.
Then the double limit

lim
s→+∞

∆(−s, s) ≤ 0

exists and is finite as a difference of convergent integrals. It is then possible to
take limits in (31); this leads to

lim
s→+∞

∆(−s, s) ≤ lim
s→+∞

(
λ∗(s) ·

(
x(s)− x∗(s)

))
+

lim
s→+∞

(
− λ∗(−s) ·

(
x(−s)− x∗(−s)

))
.

Now let A = max(Ai : i ≤ n): then the previous expression becomes

lim
s→+∞

∆(−s, s) ≤ A
[

lim
s→+∞

(
x(s)− x∗(s)

)
+

lim
s→+∞

sgn
(
x(−s)− x∗(−s)

)(
x(−s)− x∗(−s)

)]
,
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where sgn represents the signum function.
But both lims→+∞

(
x(s)−x∗(s)

)
and lims→+∞

(
x(−s)−x∗(−s)

)
exist and

are equal to zero given the equality boundary condition specified for the generic
control problem (10), (11), (12) and (13); also, the modulus of sgn is bounded.
Hence

lim
s→+∞

∆(−s, s) ≤ 0,

which shows that the pair (x∗(s), u∗(s)) is strongly optimal.

3 The mean-variance problem with signalling in
the presence of a risk-free asset

This section initially uses the tools developed in the previous section to confirm
Ferson and Siegel’s results in an optimal control context. It then introduces an
empirical illustration carried out to examine the performance of the conditioned
optimisation portfolio strategy when applied to real-world data. First the data
set used and the parameters of the backtesting experiment are described. Then
ex ante and ex post strategy results are described, and the overall performance
with respect to classical (Markowitz) strategies commented on.

3.1 The unconstrained case

The presentation now proceeds to recover the results from [1] using the optimal
control tools discussed in the previous section. The version of the problem
examined here is that in which a risk-free asset, with a known return of rf , is
available in the market.

In order to rewrite this problem in an optimal control context, it is ini-
tially imperative to decide how to map state and control variables, respectively.
The given problem involves minimisation of the expected unconditional variance
subject to a constraint on the expected return. Since both of these quantities
correspond to expectations, the variables used need to correspond to the inte-
grands involved in the corresponding expectation integrals. The obvious choice
for the controls are the portfolio weights, while the expected value constraint
can most simply be implemented as a state variable x1(s). Thus it becomes
necessary to optimise the Lagrange cost functional2

JIS
(x(s), u(s)) =

1
2

∫ s+

s−
u′(s)

[
(µ(s)− rfe)(µ(s)− rfe)′+ Σ2

ε

]
u(s)pS(s)ds (32)

over the signal support IS and given the state trajectory

ẋ1(s) = u′(s)(µ(s)− rfe)pS(s) (33)

2Note a cost functional factor of 1/2 has been added to simplify the following calculations.
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with initial and final constraints x1(s−) = 0 and x1(s+) = µp − rf . Here pS(s)
is the signal probability density function (pdf).

With this notation, there is no additional terminal (Mayer) cost term. Notice
that the signal has in this case taken on the role normally reserved for time in
optimal control problems. With respect to the discussion in section 2, the most
important result in connection with the problem in this subsection is that the
core relations implied by the Euler-Lagrange equations do not change, whether
the problem horizon is finite or infinite.

Remark 1) For most distributions, the support corresponds to the full real axis
and thus the expectation integral end points s− and s+ are equal to −∞ and
+∞, respectively, with initial and final constraints expressed as limits at infinity.
For full theoretical generality and as discussed in section 2, it may be imprudent
to focus purely on the minimisation of an improper integral which need not
converge, and the desired optimisation paradigm should be chosen from the set
given in definition 2.6. Even so, all objective function integrals that appear
using the present formulation will involve the probability density factor pS(s).
A defining factor of any pdf is that it integrates to unity over its support IS :
thus

∫ s+
s−

pS(s)ds = 1 and so any non-pathological case will present negligible
probability mass at extreme values of the signal. In that case, the standard
Cauchy criterion for convergence of JIS

(x(s), u(s)) will be verified and, as a
consequence, strong optimality will be the applicable optimality criterion in any
practical context. Also, in what follows, it will be assumed that s− = −∞, s+ =
+∞ and boundary conditions are lims→−∞ x1(s) = 0 and lims→+∞ x1(s) =
µP − rf , respectively: finite domain intervals then constitute a simpler specific
case of the problem examined.

2) Clearly, probability density functions pS(s) are not in general convex
in s. Note, however, that this affects neither the convexity requirements of
Mangasarian-like theorems (such as theorem 2.17), which require convexity of
the Hamiltonian in both the state and the control, nor those of finite-dimensional
optimisers used to numerically solve the discretised problem.

Now define Λ−1(s) = (µ(s)− rfe)(µ(s)− rfe)′ + Σ2
ε for simplicity: thus

J(u) = 1/2
∫ s+

s−
u′(s)Λ−1u(s)pS(s)ds.

The following result will be helpful.

Proposition 3.1 Let Λ−1(s) be the n×n matrix as defined above. Then Λ−1(s)
is symmetric, positive definite, invertible and diagonalisable.

Proof Immediate.

Then and assuming the problem is regular (so λ0 = 1 can be chosen), the
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problem Hamiltonian function H corresponds to

H(x(s), u(s), λ0, λ(s), s) = H(u(s), 1, λ(s), s)
= L(u(s), s) + λ(s) · f(u(s), s)

=
1
2
u′(s)Λ−1u(s)pS(s) + λ(s)u′(s)(µ(s)− rfe)pS(s),

(34)

where the costate λ(s) is scalar given the state variable is one-dimensional.
This leads to the Euler-Lagrange equations verified ∀s− ≤ s ≤ s+:

ẋ = ẋ1 = ∂H
∂λ = u′(s)(µ(s)− rfe)pS(s)

λ̇ = − ∂H
∂x1

= 0
∂H
∂u =

[
Λ−1(s)u(s) + λ(s)(µ(s)− rfe)

]
pS(s) = 0.

The solution for the costate equation λ̇ = 0 is λ(s) = λ = constant ∀s ∈ IS .
As suggested in section 2, it is necessary to exclude the possibility that the

problem is singular: this is easy at this stage. So assume that λ0 = 0. Then the
Hamiltonian is

H(x(s), u(s), 0, λ(s), s) = λ(s)u′(s)(µ(s)− rfe)pS(s)

and the first-order optimality condition is

∂H
∂u

= λ(µ(s)− rfe)pS(s) = 0,

where it is noted that λ is still scalar. Since (µ(s) − rfe)pS(s) 6= 0 in general
and outside of null sets, this implies that λ(s) = λ = 0, which violates the PMP
requirement that (λ0, λ1, . . . λm) 6= (0, . . . 0). Thus the problem is regular and
it can be assumed that λ0 = 1.

However, the scalar λ is still unknown. The local optimality condition on
Hu now yields

Λ−1(s)u(s) + λ(µ(s)− rfe) = 0
⇔ u(s) = −λΛ(s)(µ(s)− rfe), (35)

where the transition to the second line uses the fact that Λ−1 is invertible from
proposition 3.1. The proposition additionally shows that Λ−1 is positive definite
and, as a consequence and given that pS(s) ≥ 0 ∀s ∈ IS ,

Huu = Λ−1(s)pS(s) is positive semidefinite ∀s.

Accordingly, the candidate value for u(s) found above is indeed a candidate for a
possible portfolio variance minimum as per the Legendre-Clebsch second-order
condition (theorem 2.15). Next, replace (35) in the problem state equation
(33) to get

ẋ1(s) = −λ(µ(s)− rfe)′Λ(s)(µ(s)− rfe)pS(s) :
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clearly, Λ(s) = Λ′(s) given the symmetry of Λ(s).
For clarity, define ḟ(s) = (µ(s)− rfe)′Λ(µ(s)− rfe)pS(s) such that ẋ1(s) =

−λḟ(s). Note that the initial condition lims→s− x1(s) = 0⇔ lims→s− f(s) = 0
is automatically verified by construction. The terminal condition can then be
examined to obtain a value for the Lagrange multiplier λ:

lim
s→s+

x1(s) = µp − rf = −λ lim
s→s+

f(s)

⇔ λ = − µp − rf
lims→s+ f(s)

. (36)

Given that IS represents the support of the signal probability density pS , lims→s+ f(s) =
E[ḟ(s)], leading to

u∗(s) = −Λ(s)

(
− µp − rf
E[ḟ(s)]

)
(µ(s)− rfe)

= (µp − rf )Λ(s)

(
µ(s)− rfe

E[(µ(s)− rfe)′Λ(s)(µ(s)− rfe)]

)
, (37)

which corresponds to the original Ferson-Siegel result given in [1] and quoted as
(2).

3.2 The weight constrained case

In practice, additional constraints are often added to the portfolio optimisa-
tion problem discussed in the previous section. In particular, negative portfolio
weights correspond to short sales of the underlying assets. It is generally un-
realistic to assume that short positions can be entered at no extra cost; this is
especially true for naked short positions which correspond to a short sale of a
security without borrowing the asset at the same time. Additionally, a signif-
icant proportion of investors either want to avoid the unlimited downside risk
associated with shorting or, as in the case of pension funds, may be prohibited
by regulators from entering uncovered investments: see e.g. [45] for the situ-
ation in Luxembourg. Clearly, ignoring these restrictions is even less realistic
when dealing with less liquid assets such as investment funds.

Another realistic constraint on invested weights would limit them to a certain
interval often centred on zero, such as [−a, a] for a ∈ R, so as to avoid enter-
ing excessively large positions in particular assets and thus incurring excessive
undiversified risk.

For the traditional Markowitz problem, the introduction of portfolio weights
constraints of any kind means a closed-form solution is no longer available, and
a numerical algorithm such as a quadratic programming solver (e.g. [46]) or
the Markowitz critical line algorithm detailed in e.g [47] has to be used. The
situation in the presence of conditioning information is comparable, but the
optimal control formulation of the problem introduced in the previous section
allows for a numerical solution using the full set of available methods.
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As before, the chosen problem involves optimisation of the unconditional
moments as observed by an uninformed investor. Thus, the full optimal control
problem has to be solved: this then leads to optimal weights as functions of the
signal value. Only once this full solution has been obtained, ensuring that the
unconditional expected variance is minimised and the expected value constraint
is respected over the full signal space, may the portfolio manager apply their
privileged information by using the observed signal value with the postulated
signal-return relationship when evaluating a portfolio strategy.

Introducing portfolio weight constraints leaves the same optimisation prob-
lem as described by (32) and (33), except that the control constraint set U ⊆ Rn
is now considered a proper convex subset of Rn for all values of s, subsuming
the previous formulation.

Thus the investor aims to optimise, over the signal support domain IS ,

JIS
(x(s), u(s)) =

1
2

∫ s+

s−
u′(s)Λ−1(s)u(s)pS(s)ds (38)

given the state trajectory

ẋ1(s) = u′(s)(µ(s)− rfe)pS(s)

with initial and final constraints lims→s− x1(s) = 0 and lims→s+ x1(s) = µp−rf
and such that u(s) ∈ U ∀ s ∈ IS . Note that the control constraint set U remains
convex even if different per-control maxima and minima are specified: thus quite
general constraints of the form

∀ i ∈ {1, . . . n}, u−i ≤ ui(s) ≤ u
+
i ∀s ∈ IS

are supported.
The resulting problem is an infinite-horizon variation of a classical optimal

control problem often called a minimum-energy problem. We now move on to
an empirical illustration of the optimal control solution technique.

3.3 Empirical illustration

3.3.1 Data set

The data set used collects eleven years of daily returns data chosen to represent
a market relevant to domestic EUR investors. This market is made up of ten
different funds3 chosen across both equity and fixed income markets as well
as Morningstar style classifications. Here, funds rather than individual assets

3AXA L Fund Equity Europe (AXA), Credit Suisse Bond Fund Management Company
Luxembourg Small (CSU), Dekalux Midcap TF (DEK), Dexia Luxpart C (DEX), DWS Euro
Bonds Long (DWS), Fidelity Funds Euro Bond Fund A Global Certificate (FIB), Fortis L
Fund Equity Socially Responsible Europe (FOB), Invesco Pan European Small Cap Equity
Fund Lux (INV), KBC Money Euro Medium Cap (KBC) and Morgan Stanley European
Currencies High Yield Bond (MSE). In every case the reinvesting variant of the fund was
picked.
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were chosen given they provide a level of built-in diversification and a ten-asset
market composed of funds is thus seen as more realistic as an equivalent equity
market; additionally, interest-rate exposure is easily achieved through funds. All
funds involved provide EUR return quotes and manage at most a proportion
of 30% in non-EUR assets so as to prevent currency risk from representing too
important a factor in the analysis. The data covers business days from January
1999 to February 2010: in total, each series contains 2891 returns.

As a proxy to an idealised risk-free asset, the EURIBOR interbank rate with
a 1 week tenor was chosen. The intention at this stage is to provide a numerical
illustration of the previous theory and, consequently, the only signal used was
the Kumar and Persaud currency-based GRAI ([17]) as described in section 1
- checks were made using GRAI indices built using forward rates both with
1 month and 3 month tenors; differences were found to be negligible and the
results reported apply to a GRAI built using 3 month tenors. The currency
pairs used involved the currencies AUD, CAD, CZK, EUR, HKD, JPY, NZD,
NKR, PLN, SGD, ZAR, SKR, SFR and GBP with respect to USD; although
this was not seen as an ideal choice with respect to a EUR-centric investment
universe, this selection (based on available data) is still thought a reasonable
approach to representing risk as visible throughout the major global currency
markets.

3.3.2 Approach

The numerical illustration was set up as a backtesting experiment. Given that
the obvious strategy benchmark for the conditioned optimal portfolio is set by
its Markowitz equivalent, both strategies were executed side by side over the
data period. Portfolios were rebalanced each business day, with unconditional
moment, signal-return relationship and signal kernel density estimates carried
out over a rolling window of sixty business days i.e. three months. The resulting
out-of-sample backtesting run thus starts three months after the first available
data point.

The simplest case of a linear form µ(s) = a+ bs was assumed for the lagged
relationship (1); as a consequence, µ(s) was estimated by a simple linear re-
gression. For each business (rebalancing) day, a 20 point efficient frontier was
then built, requiring the solution of 20 separate optimisation problems. In the
presence of a risk-free asset, problems were solved using a direct numerical
method. Direct methods to solve optimal control problems have evolved from
the original Euler discretisation of variational calculus problems and the adjec-
tive (as opposed to indirect) is used for algorithms which directly discretise the
problem instead of working with relations extracted from the Euler-Lagrange
or Pontryagin conditions. The particular transcription scheme used discretises
both state variable and controls: such schemes tend to require the state dif-
ferential equations to be verified at specified collocation points and are thus
often known as direct collocation methods, see e.g. [50]. The implementation
realises a piecewise constant discretisation for the control variables and a first-
order linear polynomial discretisation for the state variables, as discussed, for
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instance, in the PhD thesis of von Stryk ([51]). Note that this discretisation
mode is the simplest that is meaningful as the state variables need to verify the
state differential equations. A direct solver algorithm of this type, especially
for a reasonably fine discretisation grid, is computationally quite heavyweight;
however, it is also entirely general and can be used on further problem variants
not amenable to closed-form or quasi-closed-form solutions.

Following the computation of an efficient frontier, quadratic utilities were
then computed for various risk aversion coefficients over the entire spectrum
from 0 to 10.4 Here a value of 0 corresponds to risk neutrality, which is not
helpful in a portfolio optimisation context as a risk neutral investor would ig-
nore the risk-return tradeoff and pursue the greatest possible expected return
that market rules and the investor’s finances would allow them to pursue. At
the other end, an upper coefficient boundary of 10 is thought sufficient to cover
the realistic range. For each risk aversion coefficient covered, the optimal utility
point on the frontier was then computed and the optimal position, obtained
by computing the optimal weights functional values for the observed value of
the signal, entered accordingly. At the end of each investment interval, the ac-
tual investment returns on all portfolios, obtained given the observed historical
returns, were evaluated.

3.3.3 Results

Figure 1 shows optimal weight functionals for the ten risky assets obtained as
the solution to a typical problem. Similarly, figure 2 shows optimal weight
functionals obtained for the same problem but with the weights constrained to
exclude the possibility of short sales.

Figure 1: Typical unconstrained weight functionals.

4Note the use of quadratic utilities makes sense if investors are concerned only with the first
two moments of returns, which any mean-variance optimisation process implicitly assumes.
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Figure 2: Typical weight functionals obtained with short-selling constraint.

It can be seen that the constrained solution does not simply constitute a
truncated version of the unconstrained solution. This is the case even though
the overall appearance of the functionals is not dissimilar - notice in particular
that positive weight investments found in the absence of weights constraints
tend to be accentuated when short sales are excluded. This observation also
corresponds to theoretical discussions in the calculus of variations, an instance
of which is [52].

To evaluate the effectiveness of the conditioned strategy with respect to
classical Markowitz optimisation, the respective Sharpe ratios were compared,
giving an a priori performance comparison accessible to investors without access
to the conditioning information. The Sharpe ratio expression used was

SRP =
E[P ]− rf

σP
,

where E[P ] denotes the unconditional expected portfolio return, rf the risk-
free rate of return and σP the unconditional ex ante portfolio return standard
deviation.

As regards portfolio weights, three different constraint types were set. The
case where portfolio weights are unconstrained corresponds to the problem anal-
ysed by Ferson and Siegel. The remaining two constraint types correspond to a
prohibition on short positions, frequently used by investment funds as discussed
previously, and to a limitation on position size regardless of its sign, which is
another plausible type of constraint designed to limit maximum portfolio risk.

A typical pair of unconditional efficient frontiers obtained is given in Figure
3. Note that it is legitimate to directly juxtapose efficient frontiers in this way
given that unconditional moments are used in both cases. The improvement
obtained through the use of conditioning information is substantial and this is,
on average, the case over the entire data set, as Table 1 shows.
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Figure 3: Example efficient frontiers for conditioned and Markowitz strategies
with short-selling constraint.

Unconstrained (Ferson-Siegel) [−1, 1] [0,+∞)
Markowitz 0.563 0.524 0.326
Conditioned 0.721 0.694 0.426
Improvement 28.07% 32.38% 30.79%

Table 1: Sharpe ratios obtained for Markowitz and conditioned strategies for
different weight constraints; relative Sharpe ratio improvement.
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Clearly, the absolute performance seen degrades significantly for the short
sales constraint given that this limits portfolio possibilities very significantly.
The degradation seen for the limit in absolute position size is much smaller
given that the allocated interval is sufficient to cover most of the efficient fron-
tier regions computed. Importantly, it can be seen that the relative a priori
improvement seen with respect to the Markowitz strategy is essentially con-
stant regardless of the constraint mode chosen.

Figure 4: Relative additive excess returns of variously constrained investments
with respect to their Markowitz equivalents.

Along with these ex ante considerations, the backtesting results were com-
puted to examine the quite separate a posteriori question of the respective
performances achieved. Figure 4 shows overall excess returns of conditioned
optimisation strategies with respect to their Markowitz equivalents subject to
the same portfolio weight constraints.

It is apparent that the improvements shown ex post (and detailed in table
2) by the conditioned strategies are somewhat disappointing with respect to the
ex ante improvements seen in the respective Sharpe ratios. In particular, in-
vestors with strong risk appetites find that the classical Markowitz optimisation
has outperformed conditioned optimisation for the given data set. For all other
cases, including the important case of short sales prohibition over the entire
range of risk aversion coefficients, a relative improvement of typically around
8% is obtained. However, considering the risk-return tradeoff provided in each
case, it is still noticeable that the conditioned approach may be of interest in
most cases. In particular, conditioned optimisation standard deviations are sig-
nificantly lower than their Markowitz equivalents for low levels of risk aversion.
This reflects the form of weight functionals optimal in the conditioned context,
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which decrease leverage for extreme signal values - see [1] for the unconstrained
weight closed form function, whose properties appear to carry across to the
numerical cases.

It is further noticeable that the standard deviation risk metric shows rela-
tively higher risk levels for the conditioned strategy as risk aversion increases.
Whether this is positive or negative for an individual investor depends on their
attitude toward the (lower) absolute risk levels seen for those risk aversion cat-
egories. It is, however, true that, as for return improvements, the relative levels
of risk seen are significantly more attractive from the conditioned viewpoint
for the case where short sales are prohibited compared to the other two cases.
Whether this is generally the case, or specific to the problem setup used, is a
topic for further research.

4 Conclusion

The present paper has started by discussing the family of portfolio problems
conditioned on signalling information. The corresponding setup is intuitively
appealing and has generally yielded excellent results in previous empirical stud-
ies. The theory of Section 2 allows for the optimal control interpretation
of conditioned optimisation problems. This is translated to the case of the
mean-variance optimisation problem, with weights both constrained and uncon-
strained, in Section 3, which then gives a numerical illustration of the algorithm
on real-world data. This shows that the approach gives measurable improve-
ments in a somewhat realistic context involving any type of weights constraints
used in practice, and that the set of available numerical methods for the reso-
lution of optimal control problems can be applied. It is argued that the ex post
improvements, although disappointing with respect to the ex ante increase in
the Sharpe ratios, are nevertheless interesting for any investor accepting of the
conventions of the Markowitz framework, and that larger improvements can be
expected if either other signals more adapted to the market are used or a more
accurate model of the signal to returns relationship is introduced. However, the
purpose of the present application was merely to illustrate the functionality of
the approach. As such, further investigations will be left to a future empirical
paper.

We underline that the numerical problem solution described is largely generic
when using a direct method. Thus the optimal control formulation given can be
used to obtain solutions to a number of variations of the basic mean-variance
problem in their conditioned guise: in this way it provides a framework for
conditioned portfolio optimisation problems regardless of whether a closed-form
solution for those problems exists. To our knowledge, such a framework was not
available before, and the interest of this theoretical innovation will be explored
in our future research.
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