

Functional PLS regression with functional response

C. PREDA¹, J. SCHILTZ²

¹Ecole Polytechnique Universitaire de Lille/ INRIA Lille Nord Europe, France

²Luxembourg School of Finance, University of Luxembourg, Luxembourg

Introduction

Predictor : $X = \{X_t, t \in \mathcal{T}_X\}$ $X_t : \Omega \rightarrow \mathbb{R}$,

Response : $Y = \{Y_t, t \in \mathcal{T}_Y\}$ $Y_t : \Omega \rightarrow \mathbb{R}$.

Hypothesis :

- $E(X_t^2) < \infty, E(Y_t^2) < \infty$,
- X and Y are L_2 -continuous,
- $\forall \omega \in \Omega :$
 $\{X_t(\omega), t \in \mathcal{T}_X\} \in L_2(\mathcal{T}_X), \{Y_t(\omega), t \in \mathcal{T}_Y\} \in L_2(\mathcal{T}_Y)$,
- $E(X_t) = 0, \forall t \in \mathcal{T}_X, E(Y_t) = 0, \forall t \in \mathcal{T}_Y$.

The linear model is written as

$$Y(s) = \int_{\mathcal{T}_X} \beta(s, t) X(t) dt + \varepsilon_t, \quad s \in \mathcal{T}_Y,$$

where β is the coefficient regression function and $\{\varepsilon_t\}_{t \in \mathcal{T}_Y}$ are the residuals.

Least squares criterion : Wiener-Hopf equation :

$$Cov(Y(s)X(t)) = \int_{\mathcal{T}_X} Cov(X(t), X(r)) \beta(s, r) dr, \quad s \in \mathcal{T}_Y,$$

In general, no unique solution !

Solutions :

- Functional Principal Components
- Basis expansion approximation (Malfait and Ramsay (2003))
- Penalized functional linear model (Harezlak et.al (2007), Eilers and Marx (1996))

Partial Least Squares : Tucker criterion

$$\max_{\substack{w \in L_2(\mathcal{T}_X), \|w\|_{L_2(\mathcal{T}_X)} = 1 \\ c \in L_2(\mathcal{T}_Y), \|c\|_{L_2(\mathcal{T}_Y)} = 1}} Cov^2 \left(\int_{\mathcal{T}_X} X_t w(t) dt, \int_{\mathcal{T}_Y} Y_t c(t) dt \right).$$

$$\mathbf{C}_{XY} : L_2(\mathcal{T}_Y) \rightarrow L_2(\mathcal{T}_Y) :$$

$$\mathbf{C}_{XY}(f)(t) = g(t) = \int_{\mathcal{T}_Y} \mathbb{E}(X_t Y_s) ds, \quad f \in L_2(\mathcal{T}_Y), t \in \mathcal{T}_X$$

$$\mathbf{C}_{YX} : L_2(\mathcal{T}_X) \rightarrow L_2(\mathcal{T}_X) :$$

$$\mathbf{C}_{YX}(g)(t) = f(t) = \int_{\mathcal{T}_X} \mathbb{E}(Y_t X_s) ds, \quad g \in L_2(\mathcal{T}_X), t \in \mathcal{T}_Y$$

$$\mathbf{U}_X = \mathbf{C}_{XY} \circ \mathbf{C}_{YX} : \quad \mathbf{U}_X w = \lambda w.$$

$$\mathbf{U}_Y = \mathbf{C}_{YX} \circ \mathbf{C}_{XY} : \quad \mathbf{U}_Y c = \lambda c.$$

First PLS component :

$$t_1 = \int_{\mathcal{T}_X} X_t w(t) dt.$$

Escoufier's operators :

$$W^X Z = \int_{\mathcal{T}_X} \mathbb{E}(X_t Z) X_t dt, \quad \forall Z \text{ r.r.v.}$$

$$W^Y Z = \int_{\mathcal{T}_Y} \mathbb{E}(Y_t Z) Y_t dt, \quad \forall Z \text{ r.r.v.}$$

$$W^X W^Y t_1 = \lambda_{\max}^{(1)} t_1$$

PLS iteration :

Let $X_0 = \{X_{0,t} = X_t, \forall t \in \mathcal{T}_X\}$ and $Y_0 = \{Y_{0,t} = Y_t, \forall t \in \mathcal{T}_Y\}$.

Step h , $h \geq 1$:

$$\mathbf{W}_{h-1}^X \mathbf{W}_{h-1}^Y t_h = \lambda_{\max}^{(h)} t_h.$$

Simple linear regression on t_h :

$$X_{h,t} = X_{h-1,t} - p_h(t)t_h, \quad t \in \mathcal{T}_X,$$

$$Y_{h,t} = Y_{h-1,t} - c_h(t)t_h, \quad t \in \mathcal{T}_Y.$$

Proposition.

- a) $\{t_h\}_{h \geq 1}$ forms an orthogonal system in the linear space spanned by $\{X_t\}_{t \in \mathcal{T}_X}$,
- b) $Y_t = c_1(t)t_1 + c_2(t)t_2 + \dots + c_h(t)t_h + Y_{h,t}, \quad t \in \mathcal{T}_Y,$
- c) $X_t = p_1(t)t_1 + p_2(t)t_2 + \dots + p_h(t)t_h + X_{h,t}, \quad t \in \mathcal{T}_X,$
- d) $\mathbb{E}(Y_{h,t}t_j) = 0, \quad \forall t \in \mathcal{T}_Y, \forall j = 1, \dots, h,$
- e) $\mathbb{E}(X_{h,t}t_j) = 0, \quad \forall t \in \mathcal{T}_X, \forall j = 1, \dots, h.$

$$\hat{Y}_t = c_1(t)t_1 + c_2(t)t_2 + \dots + c_h(t)t_h = \int_{\mathcal{T}_X} \beta_{PLS(h)}(t, s)X(s)ds.$$

PLS and basis expansion.

$$X(t) \approx \sum_{i=1}^K \alpha_i \phi_i(t), \quad \forall t \in \mathcal{T}_X,$$
$$Y(t) \approx \sum_{i=1}^L \gamma_i \psi_i(t), \quad \forall t \in \mathcal{T}_Y,$$

Metrics :

$$\Phi = \{\phi_{i,j}\}_{1 \leq i,j \leq K}, \phi_{i,j} = \langle \phi_i, \phi_j \rangle_{L_2(\mathcal{T}_X)}$$

$$\Psi = \{\psi_{i,j}\}_{1 \leq i,j \leq L}, \psi_{i,j} = \langle \psi_i, \psi_j \rangle_{L_2(\mathcal{T}_Y)}$$

Coefficients :

$$\Lambda = \Phi^{1/2} \alpha, \quad \Pi = \Psi^{1/2} \gamma$$

Equivalence with finite dimensional PLS regression

- i) The PLS regression of Y on X is equivalent to the PLS regression of Π on Λ in the sense that at each step h of the PLS algorithm, $1 \leq h \leq K$, we have the same PLS components for both regressions.
- ii) If Σ is the $L \times K$ -matrix of the regression coefficients of Π on Λ obtained with the PLS regression at step h ,
 $1 \leq h \leq K$,

$$\Pi = \Sigma \Lambda + \varepsilon,$$

then the PLS approximation at step h of the regression coefficient function β is given by

$$\hat{\beta}_{PLS(h)}(t, s) = \sum_i^L \sum_j^K S_{i,j} \psi_i(t) \phi_j(s), \quad (t, s) \in \mathcal{T}_Y \times \mathcal{T}_X,$$

where $S = [\Psi^{\frac{1}{2}}]^{-1} \Sigma [\Phi^{\frac{1}{2}}]^{-1}$.

Simulation study

$$X_t = \sum_{i=1}^{K=7} \alpha_i \phi_i(t), \quad t \in \mathcal{T}_X = [0, 1],$$

where the $\{\alpha_i\}_{i=1,\dots,K}$ are independent r.v.'s identically distributed uniformly on the interval $[-1; 1]$ and $\phi = \{\phi_i\}_{i=1,\dots,K}$ is a cubic B-spline basis on $[0, 1]$ with equidistant knots.

Let define

$$Y(t) = \int_0^1 \beta(t, s) X_s ds + \varepsilon_t, \quad t \in \mathcal{T}_Y = [0, 1],$$

where $\beta(t, s) = (t - s)^2$, $\forall (t, s) \in [0, 1]^2$, and ε_t is the residual.

One obtains :

$$\mathbb{E}(X_t) = 0, \quad \mathbb{V}(X_t) = \frac{1}{3} \sum_1^K \phi_i^2(t), \quad \forall t \in [0, 1],$$

$$\mathbb{E}(Y_t) = 0, \quad \mathbb{V}(Y_t) = \frac{1}{3} \sum_1^K \left(\int_0^1 \beta(t, s) \phi_i(s) ds \right)^2, \quad \forall t \in [0, 1].$$

The residual $\{\varepsilon_t\}_{t \in [0,1]}$ is a zero-mean random process such that the ε_t are normally distributed with variance $\sigma_t^2 > 0$ and ε_t and ε_s are independent $\forall (s, t) \in [0, 1]^2, s \neq t$. The residual variance, σ_t^2 , is chosen such that the signal-noise ratio, $\frac{\mathbb{V}(Y_t)}{\mathbb{V}(\varepsilon_t)}$ is controlled.

In our simulation we considered $\frac{\mathbb{V}(Y_t)}{\mathbb{V}(\varepsilon_t)} = 0.9, \forall t \in [0, 1]$.

$$SSE_Y = \int_0^1 \mathbb{E}(Y_t - \hat{Y}_t)^2 dt,$$

$$SSE_\beta = \int_0^1 \int_0^1 (\beta(t, s) - \hat{\beta}(t, s))^2 dt ds \quad \text{and} \quad V_Y = \int_0^1 \mathbb{V}(Y_t) dt.$$

SSE_Y is computed using the leave-one-out cross-validation, whereas SSE_β is computed from the model including all the n observations.

From the cross-validation scores obtained for each response in the vector Π , $h = 5$ seems a good choice for the number of PLS components. The model obtained with $h = 5$ PLS components gives the following matrix S ,

$$S = \begin{pmatrix} -0.0551 & 1.4171 & 1.7687 & 1.5224 & 0.2926 & -0.9046 & -0.6530 \\ 0.0559 & 0.4597 & 1.2733 & 0.8860 & 0.0741 & -0.5878 & -0.5195 \\ 0.0262 & -0.5313 & 0.4191 & -0.0219 & -0.2213 & -0.0678 & -0.2143 \\ 0.8245 & 1.1117 & -0.9000 & 0.3107 & -0.2631 & -0.1077 & 0.2155 \\ 1.1491 & 2.3503 & -1.4923 & 0.6788 & -0.2762 & -0.2187 & 0.4060 \end{pmatrix}.$$

One obtains $\mathbb{V}(Y) \approx 0.00273$, $SSE_Y \approx 0.00038$ and $SSE_\beta \approx 0.00042$. The ratio $\frac{SSE_Y}{\mathbb{V}_Y} \approx 0.13919$ shows a good fit of the approximated model.

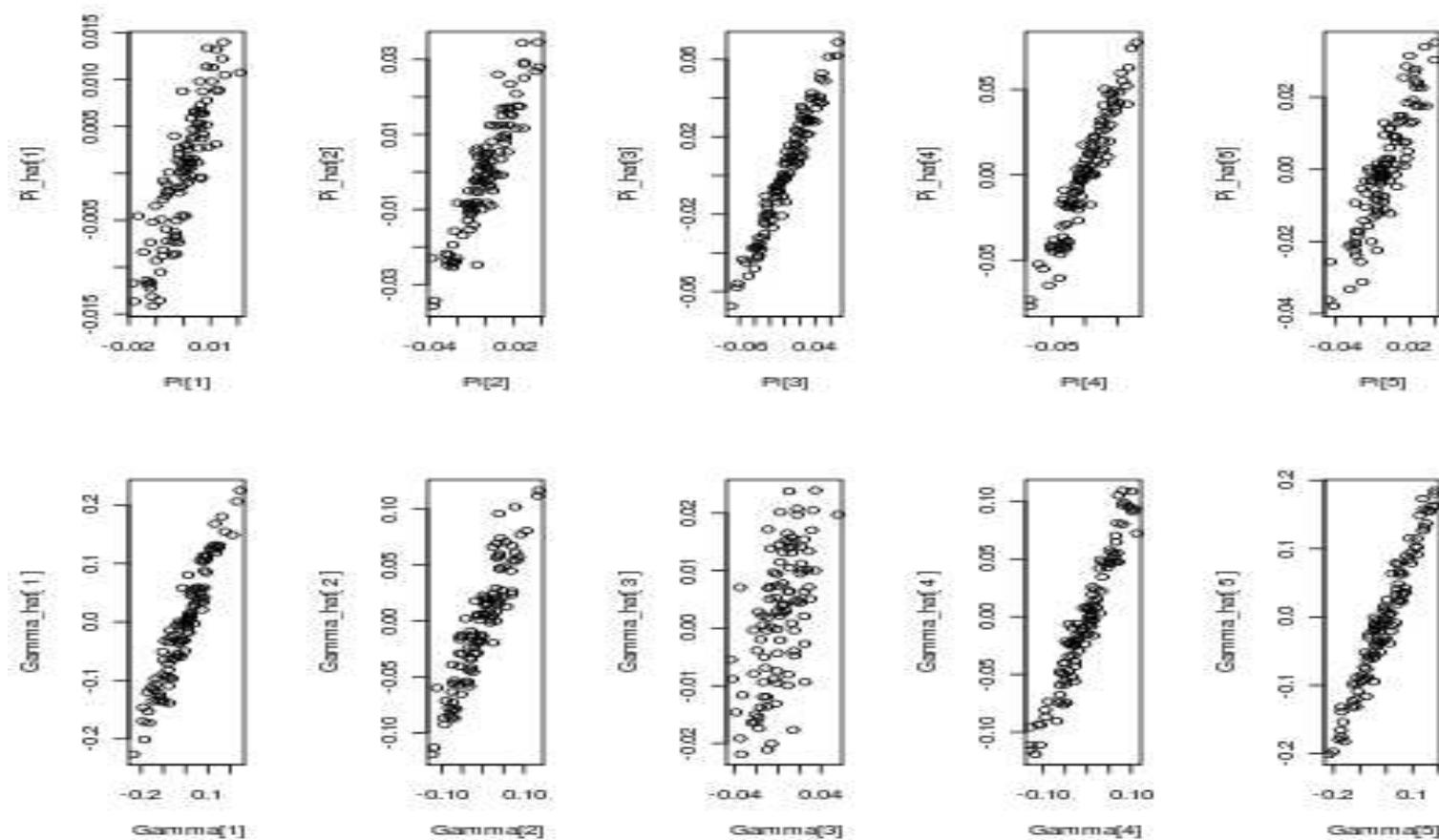


Figure 1: Predicted and observed values for the expansion coefficients γ and Π