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Introduction
Predictor : X = {Xt, t ∈ TX} Xt : Ω → R,

Response : Y = {Yt, t ∈ TY } Yt : Ω → R.

Hypothesis :

- E(X2
t ) <∞, E(Y 2

t ) <∞,

- X andY areL2–continuous,

- ∀ω ∈ Ω :

{Xt(ω), t ∈ TX} ∈ L2(TX), {Yt(ω), t ∈ TY } ∈ L2(TY ),

- E(Xt) = 0, ∀t ∈ TX , E(Yt) = 0, ∀t ∈ TY .
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The linear model is written as

Y (s) =

∫

TX

β(s, t)X(t)dt+ εt, s ∈ TY ,

whereβ is the coefficient regression function and{εt}t∈TY
are

the residuals.

Least squares criterion : Wiener-Hopf equation :

Cov(Y (s)X(t)) =

∫

TX

Cov(X(t), X(r))β(s, r)dr, s ∈ TY ,

In general, no unique solution !
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Solutions :

- Functional Principal Components

- Basis expansion approximation (Malfait and Ramsay

(2003))

- Penalized functional linear model (Harezlak et.al (2007),

Eilers and Marx (1996))
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Partial Least Squares : Tucker criterion

max

w ∈ L2(TX), ‖w‖L2(TX) = 1

c ∈ L2(TY ), ‖c‖L2(TY ) = 1

Cov2

(
∫

TX

Xtw(t)dt,

∫

TY

Ytc(t)dt

)

.
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CXY : L2(TY ) → L2(TY ) :

CXY (f)(t) = g(t) =

∫

TY

E(XtYs)ds, f ∈ L2(TY ), t ∈ TX

CY X : L2(TX) → L2(TX) :

CY X(g)(t) = f(t) =

∫

TX

E(YtXs)ds, g ∈ L2(TX), t ∈ TY

UX = CXY ◦ CY X : UXw = λw.

UY = CY X ◦ CXY : UY c = λc.
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First PLS component :

t1 =

∫

TX

Xtw(t)dt.

Escoufier’s operators :

WXZ =

∫

TX

E(XtZ)Xtdt, ∀Z r.r.v,

W YZ =

∫

TY

E(YtZ)Ytdt, ∀Z r.r.v.

WXW Y t1 = λ(1)
maxt1
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PLS iteration :

LetX0 = {X0,t = Xt,∀t ∈ TX} andY0 = {Y0,t = Yt,∀t ∈ TY }.

Steph, h ≥ 1 :

W
X
h−1W

Y
h−1th = λ(h)

maxth.

Simple linear regression onth :

Xh,t = Xh−1,t − ph(t)th, t ∈ TX ,

Yh,t = Yh−1,t − ch(t)th, t ∈ TY .
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Proposition.

a) {th}h≥1 forms an orthogonal system in the linear space

spanned by{Xt}t∈TX
,

b) Yt = c1(t)t1 + c2(t)t2 + . . .+ ch(t)th + Yh,t, t ∈ TY ,

c) Xt = p1(t)t1 + p2(t)t2 + . . . + ph(t)th +Xh,t, t ∈ TX ,

d) E(Yh,ttj) = 0, ∀t ∈ TY ,∀j = 1, ..., h,

e) E(Xh,ttj) = 0, ∀t ∈ TX ,∀j = 1, ..., h.

Ŷt = c1(t)t1 + c2(t)t2 + . . .+ ch(t)th =

∫

TX

βPLS(h)(t, s)X(s)ds.
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PLS and basis expansion.

X(t) ≈

K
∑

i=1

αiφi(t), ∀t ∈ TX ,

Y (t) ≈
L

∑

i=1

γiψi(t), ∀t ∈ TY ,

Metrics :

Φ = {φi,j}1≤i,j≤K , φi,j = 〈φi, φj〉L2(TX)

Ψ = {ψi,j}1≤i,j≤L, ψi,j = 〈ψi, ψj〉L2(TY )

Coefficients :

Λ = Φ1/2α, Π = Ψ1/2γ
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Equivalence with finite dimensional PLS regression

i) The PLS regression ofY onX is equivalent to the PLS

regression ofΠ onΛ in the sense that at each steph of the

PLS algorithm,1 ≤ h ≤ K, we have the same PLS

components for both regressions.

ii) If Σ is theL×K-matrix of the regression coefficients ofΠ

onΛ obtained with the PLS regression at steph,

1 ≤ h ≤ K,

Π = ΣΛ + ε,

then the PLS approximation at steph of the regression

coefficient functionβ is given by

β̂PLS(h)(t, s) =
L

∑

i

K
∑

j

Si,jψi(t)φj(s), (t, s) ∈ TY × TX ,

whereS = [Ψ
1

2 ]−1Σ[Φ
1

2 ]−1. Functional PLS regression with functional response – p.11/16



Simulation study

Xt =
K=7
∑

i=1

αiφi(t), t ∈ TX = [0, 1],

where the{αi}i=1,...,K are independent r.v.’s identically

distributed uniformly on the interval[−1; 1] andφ = {φi}i=1,...K

is a cubic B-spline basis on[0, 1] with equidistant knots.

Let define

Y (t) =

∫ 1

0

β(t, s)Xsds+ εt, t ∈ TY = [0, 1],

whereβ(t, s) = (t− s)2, ∀(t, s) ∈ [0, 1]2, andεt is the residual.
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One obtains :

E(Xt) = 0, V(Xt) =
1

3

K
∑

1

φ2
i (t), ∀t ∈ [0, 1],

E(Yt) = 0, V(Yt) =
1

3

K
∑

1

(
∫ 1

0

β(t, s)φi(s)ds

)2

, ∀t ∈ [0, 1].

The residual{εt}t∈[0,1] is a zero-mean random process such that

theεt are normally distributed with varianceσ2
t > 0 andεt and

εs are independent∀(s, t) ∈ [0, 1]2, s 6= t. The residual variance,

σ2
t , is chosen such that the signal-noise ratio,

V(Yt)

V(εt)
is controlled.

In our simulation we considered
V(Yt)

V(εt)
= 0.9,∀t ∈ [0, 1].
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SSEY =

∫ 1

0

E(Yt − Ŷt)
2dt,

SSEβ =

∫ 1

0

∫ 1

0

(β(t, s) − β̂(t, s))2dtds andVY =

∫ 1

0

V(Yt)dt.

SSEY is computed using the leave-one-out cross-validation,

whereasSSEβ is computed from the model including all then

observations.
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From the cross-validation scores obtained for each response in

the vectorΠ, h = 5 seems a good choice for the number of PLS

components. The model obtained withh = 5 PLS components

gives the following matrixS,

S =

0

B

B

B

B

B

B

B

@

−0.0551 1.4171 1.7687 1.5224 0.2926 −0.9046 −0.6530

0.0559 0.4597 1.2733 0.8860 0.0741 −0.5878 −0.5195

0.0262 −0.5313 0.4191 −0.0219 −0.2213 −0.0678 −0.2143

0.8245 1.1117 −0.9000 0.3107 −0.2631 −0.1077 0.2155

1.1491 2.3503 −1.4923 0.6788 −0.2762 −0.2187 0.4060

1

C

C

C

C

C

C

C

A

.

One obtainsV(Y ) ≈ 0.00273, SSEY ≈ 0.00038 and

SSEβ ≈ 0.00042. The ratio
SSEY

VY

≈ 0.13919 shows a good fit

of the approximated model.
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Figure 1: Predicted and observed values for the expan-

sion coefficientsγ andΠ Functional PLS regression with functional response – p.16/16


	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

