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Introduction
Predictor : X ={X;, t€7x} X,:Q—-R,

Response: Y ={Y;,, te Ty} Y,: Q=R

Hypothesis :

- B(X?) < o0, B(Y?) < o,
- X andY areL,—continuous,

Vw € €.
{Xi(w), t € Tx} € Ly(Tx),{Yi(w), t € Ty} € Lo(Ty),

E(X;) =0,Vt € Tx, E(Y;) =0,Vt € Ty.
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The linear model Is written as

Y(s) = B(s, ) X(t)dt +¢e¢, s € Ty,
Tx

whereg is the coefficient regression function afd },.7,, are
the residuals.

Least squares criterion : Wiener-Hopf equation :

Cov(Y(s)X (1)) :/7 Cov(X(t), X(r))B(s,r)dr, s & Ty,

In general, no unique solution !
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Solutions :

- Functional Principal Components

- Basis expansion approximation (Malfait and Ramsay
(2003))

- Penalized functional linear model (Harezlak et.al (2007)
Eilers and Marx (1996))
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Partial Least Squares : Tucker criterion

max Cov? ( th(t)dt,/ Ec(t)dt) .
Tx

w € La(Tx), [wllacry) = 1 T
¢ € Lo(Ty), llel agzy) = 1
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Cxy : LQ(TY) — LQ(TY)

ny(f)(t) — /7— ]E XtY)dS, f c L2(TY) teTx

CYX LQ(TX) — LQ(T)()

Cyx(g)(t) = [ :/7 E(Y,X.)ds, g€ Lo(Tx).t € Ty

UX:CXYOCYX . UXU}:)\U)

UY:CYXOCXY : Uyc:)\c.
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First PLS component :

11 = th(t)dt.
Tx

Escoufier’s operators :

W7 = / E(X,Z)X.dt, VZr.rv,
Tx

WY 7 = / E(Y;2)Y,dt, VZr.r.v.
Ty

WXWYt, = AW ¢,

max
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PLS iteration :
Let X, = {X()t = Xt,Vt < Tx} andYb {th = Y;g,\v/t c Ty}

Steph, h > 1
WX WYt =20 ¢,

max

Simple linear regression an :

Xt = Xno1t — pr(t)ty, teTx,
Yie=Yr1:—cn(®)tn, teTly.
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Proposition.

a) {tn}n>1 forms an orthogonal system in the linear space
spanned by X, }ie7.,

b) Vi=ci(t)t1 +co(t)ta+ ... +cn(t)tn + Yrs, te€ Ty,
Q) X; =pi()ts +pa(O)ta + ...+ pu(Otn + Xny, t€ Ty,
d) E(Ypit;) =0, VteTy,Vj=1,..h

e) E(Xp4t;) =0, VteTx,Vj=1,.., h

Y, = ey (D)t + (Dot .+ en(t)ly = / Bpuson (b )X (s)ds.
Tx
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PLS and basis expansion.

Metrics :
P = {¢i,j}1§i,j§K, Pij = (9, ¢j>Lz(Tx)
VU = {wz’,j}lgz’,ng; wi,j — <¢i7¢j>L2(TY)

Coefficients :
A=9V2q, II=U0%y
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Equivalence with finite dimensional PLS regression

1) The PLS regression df on X Is equivalent to the PLS
regression ofl on A in the sense that at each stepf the
PLS algorithm,l < h < K, we have the same PLS
components for both regressions.

i) If X isthelL x K-matrix of the regression coefficients Iaf
on A obtained with the PLS regression at step
1< h<K,
II=XA+e¢,

then the PLS approximation at stéf the regression
coefficient function3 is given by

BPLS h) t S ZZSZ g% §b3 (ta S) < TY X TX?

N[

whereS = [Iz]-13[d
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Simulation study

where the{o; },—1... x are independent r.v.'s identically
distributed uniformly on the interval-1; 1) and¢ = {¢; }i—1.. x

IS a cubic B-spline basis df, 1] with equidistant knots.
Let define

1
Y (1) = /0 Bt $)Xuds + 2, t € Ty = [0.1],

whereg(t, s) = (t — s)%, V(t, s) € [0,1]%, ande; is the residual.
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One obtains :
1 K
_ L E : 2

s =0 V) =330 ([ ssaas) | vee ol

The residuake; }cj0.1) is @ zero-mean random process such that
thee; are normally distributed with varianeg > 0 ande; and
e, are independent(s, t) € [0, 1]?, s # t. The residual variance,

. . . V(Y) .
o7, is chosen such that the signal-noise ra@é% IS controlled.
Et

. . VY,
In our simulation we con&dere@% = 0.9,Vt € |0, 1].
t
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1
SSEY—/ AR

1
SSEg—/ / B(t, s) (t,s))*dtds andVy:/ V(Y;)dt.
0

5SS Ey Is computed using the leave-one-out cross-validation,
whereas5.S Ez Is computed from the model including all the
observations.
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From the cross-validation scores obtained for each reggans
the vectorl, h = 5 seems a good choice for the number of PLS
components. The model obtained with= 5 PLS components
gives the following matrixs,

/ —0.0551 1.4171 1.7687 1.5224 0.2926 —0.9046 —0.6530 \
0.0559 0.4597 1.2733 0.8860 0.0741 —0.5878 —0.5195
S = 0.0262 —0.5313 0.4191 —-0.0219 —-0.2213 —-0.0678 —0.2143
0.8245 1.1117 —0.9000 0.3107 —-0.2631 —0.1077 0.2155
\ 1.1491 2.3503 —1.4923 0.6788 —0.2762 —0.2187 0.4060)

One obtainsy(Y') ~ 0.00273, SSEy ~ 0.00038 and
. SSE
SSEz ~ 0.00042. The ratio L
Y

of the approximated model.

~ (0.13919 shows a good fit
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Figure 1: Predicted and observed values for the expar
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