Functional PLS regression with functional
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Abstract. This paper considers Partial Least Squares regression with both the
predictor and the response variables of functional type. Approximating the predic-
tor and the response in finite dimensional functional spaces, we show the equivalence
of the PLS regression with functional data and the finite multivariate PLS regres-
sion applied to the expansion basis coefficients corresponding to the predictor and
to the response. This equivalence is expressed in terms of PLS components and
model performance. We give the explicit formula for reconstructing the coefficient
regression function from the regression coefficients of the multivariate finite PLS
model. A simulation study is presented.
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1 Introduction

Partial Least Squares (PLS) is one of the most used regularisation techniques
for the estimation of linear regression models. Developed in the multivariate
finite dimensional setting (i.e. both predictor and response are finite dimen-
sional) by the works of Wold et al. ([9]), it is extended by Preda and Saporta
([7]) to the case of functional data predictor X = {X;}ie7y, Tx C R, and
scalar response Y.

Consider Tx = [0,T], T > 0 and write the linear functional model with
scalar response as

Tx
where X = {X;}ieTy is a real-valued stochastic process La-continuous with
sample paths in La(Tx). Y is a real-valued random variable with finite
variance and ¢ is the residual.

It is important to note that if the projection of Y on the linear space
spanned by { X }1c7y exists, in general, it can not be written as Y = fTX B(t) X dt
(see [7]). Thus, the problem of estimating the coefficient function £ in the
linear functional model using the least square criterion is an ill-posed one (see



Cardot et al. [3]). Therefore, regularising techniques of the least square crite-
rion are proposed in order to approximate Y by fo B(t)Xdt. One of the first
proposed techniques is the principal components regression (PCR) where a
subset of the principal components of X is used for regression. The question
of the choice of principal components retained for regression is important and
difficult to solve (for more details see Escabias et al. [5]). The functional PLS
approach proposed in [7] consists of penalising the least squares criterion by
maximising the covariance (Tucker criterion) instead of the correlation co-
efficient. In both techniques the main tool is the Escoufier operator WX
associated to the predictor X, defined by

Wz = /T B(X:Z)Xdt, VZrx.v. (2)
X

Note that the spectral analysis of W* provides the principal components of
X.

In practice, the functional data X are in general not observed in all points
t € Tx but in a discrete way. Often, for each path x = {z(t),t € Tx} of
X (curve or trajectory) one associates a finite discrete set of time points for
the observation of z, x = {x(¢;),s = 1,...,p,}. Different curves can have
different time points. One way to recover the functional character of the
data from the discrete observations is to consider that the sample paths of
X belong to a finite dimensional subspace of Lo(7x) spanned by a basis of
functions Bx = {¢1,...,¢x}, K > 1. Hence,

K
X(t) ~ Zai¢i(t)a vt € Tx, (3)

where the «;’s are real random variables representing the coefficients associ-
ated to the approximation of X by an element of the space spanned by the
basis Bx. The vector of coefficients o = {; }i=1,...x can be obtained using
a smoothing or interpolation methods.

It is expected that under the approximation (3), the regression models
can be expressed in terms of o« and the basis Bx. Let us denote by @ the
K x K matrix with entries @; ; = (¢;, ;)7 and by @2 the square root of
@, ie. & =[P2]T[®2], where MT stands for the transpose of M. Then, the
Escoufier operator W is approximated by the Escoufier operator associated

1
to the finite dimensional random vector sﬁ%a, W2 defined by

g
WPz = [B(@*a-2)]Tdra = (B(a12), ..., E(ax Z)) | @ C- @)
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Under the approximation (3), in Aguilera et al. ([1]) the authors show the
equivalence between the PLS regressions of Y on predictors X, respectively



a. An explicit formula is also given for the coefficient regression function 3
of the model (1) using the PLS criterion.

The functional response. The PLS regression with both response Y = {Y;,t €
Ty} and predictor X = {X;}te7, of functional type (7y C R) is presented
in [7] (Section 3.1). The linear model is written as

Y(s) = B(s, )X (t)dt + &, te€ Ty, (5)
Tx
where 3 is the coefficient regression function and {e;}+cr, the residuals.
The main result is that at the each step of the PLS regression, the PLS
components t,,h > 1 are eigenvectors of the product of the two Escoufier’s
operators, WX and WY,

WAWYt, = My, (6)
Let consider in the following that both the response and the predictor are
approximated in finite dimensional function spaces, that is

K

X(t) ~ Zai¢i(t)a vt e Tx,
& @

Y(t) ~ Z%’%‘(t)a Yt e Ty,
=1

where «;’s and ¢;’s are as in (3) and ~;’s form a random vector -y of dimension
L, L > 1, representing the coefficients associated to the approximation of
Y by an element of the subspace of La(7Ty) spanned by the basis By =
{d}la"'ﬂ/}L}a L > 0.

In this paper we show the equivalence of the PLS estimate of the regression
of Y on X (PLS(Y ~ X)) and the PLS estimate of the regression of the
vector v on the vector o (PLS(y ~ «)) with some metrics associated to
the basis function Bx and By. Thus, the PLS regression in the functional
framework is reduced to that in the finite multivariate setting. In addition,
we give an explicit formula for the coefficient regression function 8 of model
(5), as a function of the regression coefficients obtained in PLS(y ~ «).

The paper is organised as follows. In Section 2 we present the theoretical
framework of functional PLS regression with functional response and give
our main result after approximation of predictor and response into finite
dimensional function spaces. In section 3, finally, we present a simulation
study.

2 Functional PLS regression with functional response

The PLS approach consists of penalising the least squares criterion by max-
imising the covariance (Tucker criterion) instead of the correlation coefficient.



These ideas have been efficiently used in the finite dimensional case in the
work of [9].

The PLS components associated to the regression of the response Y =
{Y;}te7s on the functional predictor X = {X;}+eTy , are obtained as solutions
of the Tucker criterion extended to functional data as

max Cov? ( Xyw(t)dt,
w € La(Tx), |[wllLoy(7x) = 1 Tx
¢ € Ly(Ty), el oryy = 1

th(t)dt> . (8)

Ty

Let us denote by W, respectively WY, the Escoufier’s operators asso-
ciated to X, respectively to Y, defined by (2). Then, as it is shown in [7],
the first PLS component ¢; of the regression of Y on X, is given by the
eigenvector associated to the largest eigenvalue of the operator WXWY:

WXWYt, = Amaxti-

Let Xo = X and Yy =Y. Then, the first PLS-step is completed by ordinary
linear regression of Xy and Yy on t;. Let denote by X; and Y7 the residuals
of these linear regression models

Xl,t = XO,t — D1 (t)t] te TX, (9)
Yiy =Yoi—ca(®)t, teTy.

The weight function wy(t) associated to the first PLS component ¢; is

given by
ny E(Y,X:)ds

wy(t) = =
\/fTX [ny E(Yth)dS] dt

, teTx,

so that "
t1 :/ w1 (6) X (t)dt.
0

At the step h, h > 1, of the PLS regression of Y on X, we define the Rtk
PLS component, t;, by the eigenvector associated to the largest eigenvalue
of the operator W;* , WY,

Wfle1W}¥71th - Amaxtha

where W,fg , and W,}Cl are the Escoufier’s operators associated respectively
to Xp_1 and Yy, _1.

Finally, the PLS step is completed by the ordinary linear regression of
Xpn_1 and Y1 on tp,. Denote by Xpand Y the functional random variables
which represent the error of these regressions,

Xnt=Xn—1, —pr(®)tn, t € Tx,

(10)
Yiie=Yn1:—cn(t)tn, t<Ty,



The properties of the PLS components are summarised by the following
proposition ([7]):

Proposition 1. For any h > 1

a) {tn}tn>1 forms an orthogonal system in the linear space spanned by { X, hrety,
b) Ytch(t)fl+Cg(t)t2+...+Ch(t)th+Yh,t, te Ty,

c) X =p1(t)ty +pa(t)ta + ... +pr()tn + Xy, teTx,

d) E(Yust;)) =0, VteTy,¥j=1,..h

e) E(Xp4t;) =0, VteTx,Vj=1,..,h.

Let us now consider the approximations of ¥ and X as in (7) and denote

by
A=d3q and IT =W3y, (11)

the matrix associated to the two-by-two inner-product of basis functions Bx
and By . Here ®2 and W2 are the square roots of @ and ¥ respectively. Notice
that @ and ¥ are symmetric real-valued matrix of size K x K, respectively
L x L.

Our main result is :

Proposition 2.

i) The PLS regression of Y on X is equivalent to the PLS regression of IT
on A in the sense that at each step h of the PLS algorithm, 1 < h < K,
we have the same PLS components for both regressions.

1) If X is the L x K-matriz of the regression coefficients of II on A obtained
with the PLS regression at step h, 1 < h < K,

I =XA+e¢, (12)
then the PLS approximation at step h of the regression coefficient function
B from (5) is given by

L K
B(t, S) = Z Z S¢7j1/)i(t)¢j(5), (t, S) €Ty % TX, (13)

where § = [W2]~1 X[@3] 1.

The proof is based on the observation that
WX ~ WQS%" and WY ~ WW%“’

and is made by induction upon A. Details are available from the authors.
This result establishes the equivalence between the PLS regression of Y
on X with the PLS regression of v on a with metrics ¥ and @ in the sense
defined by Cazes [4]. It provides a practical way to obtain the approxima-
tion of the regression coefficient function 8 when the functional data are



approximated in finite dimensional function spaces. More precisely, it says
that giving the expansion coefficients of curves representing X («), respec-
tively Y (), into the spaces spanned by Bx and By, one can use them in
a finite multivariate standard PLS regression (see equation (12)) in order to
obtain the approximation of 5. Finally, let us say that the function plsr of
the R package pls can do this efficiently. It was used in our simulation and
application examples.

3 Simulation study

Let us consider that X is a functional random variable defined by

K=7
Xt = Z O‘id)i(t)v t e TX = [Oa 1]7 (14)
i=1
where the {e; };=1, .k are independent r.v.’s identically distributed uniformly
on the interval [—1;1] and ¢ = {¢;}i=1,... kx is a cubic B-spline basis on [0, 1].
Let us define

Y () = /01 B(t,s)Xsds+¢e, t €Ty =10,1], (15)

where 3(t,s) = (t — s)?, V(t,s) € [0,1], and &; is the residual.
One obtains :

K
E(X) =0, V(X)=3 ) 80 vt e 0.1],
1

K 1 2
B =0, Vo= 330 ([ saas) e o

The residual {&;}¢c[o,1) is a zero-mean random process such that the &, are

normally distributed with variance Uf > 0 and ¢; and €4 are independent

V(s,t) € [0,1]%, s # t. The residual variance, o7, is chosen such that

Y,
the signal-noise ratio, XE t; is controlled. In our simulation we considered
€t
V(%)
=0.8,Vt € [0,1].
Vo) [0,1]

We simulated a sample of n = 100 paths of X and computed the corre-
sponding ones for Y. The graph in Figure 1 shows such a sample.

We look for an estimation of 5 from the sample of curves {(z;, ¥:) }i=1,....n,
with n = 100. In order to apply the Proposition 2 we have considered
for the approximation of Y a trigonometric basis of L = 7 functions, ¢ =
{®;}i=1,... 1. The coefficients + are then estimated by least squares regression
using an equidistant grid of 100 points of [0, 1].
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Fig.1. A sample of n=100 paths of the response and the predictor functional
variables

The results of our simulation are obtained averaging over 100 samples
{(xi,yi)}i=1,...n, n = 100, where SSEy, SSEz and Vy are defined by

1
SSEy-/ O
SSEg—// B(t,s) — B(t,s))dtds andVy—/ V(Yy)d

SSEy is computed using the leave-one-out cross-validation, whereas SSEj
is computed from the model including all the n observations.
One obtains V(Y) ~ 0.00273, SSEy ~ 0.00038 and SSEg ~ 0.00042.

F
The ratio S5Ey
Y

~ 0.13919 shows a good fit of the approximated model.
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