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Abstract. This paper considers Partial Least Squares regression with both the
predictor and the response variables of functional type. Approximating the predic-
tor and the response in finite dimensional functional spaces, we show the equivalence
of the PLS regression with functional data and the finite multivariate PLS regres-
sion applied to the expansion basis coefficients corresponding to the predictor and
to the response. This equivalence is expressed in terms of PLS components and
model performance. We give the explicit formula for reconstructing the coefficient
regression function from the regression coefficients of the multivariate finite PLS
model. A simulation study is presented.
Keywords: PLS regression, functional data, basis expansion.

1 Introduction

Partial Least Squares (PLS) is one of the most used regularisation techniques
for the estimation of linear regression models. Developed in the multivariate
finite dimensional setting (i.e. both predictor and response are finite dimen-
sional) by the works of Wold et al. ([9]), it is extended by Preda and Saporta
([7]) to the case of functional data predictor X = {Xt}t∈TX , TX ⊂ R, and
scalar response Y .

Consider TX = [0, T ], T > 0 and write the linear functional model with
scalar response as

Y =

∫
TX

β(t)Xtdt+ ε, (1)

where X = {Xt}t∈TX is a real-valued stochastic process L2-continuous with
sample paths in L2(TX). Y is a real-valued random variable with finite
variance and ε is the residual.

It is important to note that if the projection of Y on the linear space
spanned by {Xt}t∈TX exists, in general, it can not be written as Ŷ =

∫
TX β(t)Xtdt

(see [7]). Thus, the problem of estimating the coefficient function β in the
linear functional model using the least square criterion is an ill-posed one (see



Cardot et al. [3]). Therefore, regularising techniques of the least square crite-
rion are proposed in order to approximate Ŷ by

∫
TX β(t)Xtdt. One of the first

proposed techniques is the principal components regression (PCR) where a
subset of the principal components of X is used for regression. The question
of the choice of principal components retained for regression is important and
difficult to solve (for more details see Escabias et al. [5]). The functional PLS
approach proposed in [7] consists of penalising the least squares criterion by
maximising the covariance (Tucker criterion) instead of the correlation co-
efficient. In both techniques the main tool is the Escoufier operator WX

associated to the predictor X, defined by

WXZ =

∫
TX

E(XtZ)Xtdt, ∀Z r.r.v. (2)

Note that the spectral analysis of WX provides the principal components of
X.

In practice, the functional data X are in general not observed in all points
t ∈ TX but in a discrete way. Often, for each path x = {x(t), t ∈ TX} of
X (curve or trajectory) one associates a finite discrete set of time points for
the observation of x, x = {x(ti), i = 1, . . . , px}. Different curves can have
different time points. One way to recover the functional character of the
data from the discrete observations is to consider that the sample paths of
X belong to a finite dimensional subspace of L2(TX) spanned by a basis of
functions BX = {φ1, . . . , φK}, K ≥ 1. Hence,

X(t) ≈
K∑
i=1

αiφi(t), ∀t ∈ TX , (3)

where the αi’s are real random variables representing the coefficients associ-
ated to the approximation of X by an element of the space spanned by the
basis BX . The vector of coefficients α = {αi}i=1,...K can be obtained using
a smoothing or interpolation methods.

It is expected that under the approximation (3), the regression models
can be expressed in terms of α and the basis BX . Let us denote by Φ the
K × K matrix with entries Φi,j = 〈φi, φj〉TX and by Φ

1
2 the square root of

Φ, i.e. Φ = [Φ
1
2 ]T [Φ

1
2 ], where MT stands for the transpose of M . Then, the

Escoufier operator WX is approximated by the Escoufier operator associated

to the finite dimensional random vector Φ
1
2α, WΦ

1
2 α, defined by

WΦ
1
2 αZ = [E(Φ

1
2α·Z)]TΦ

1
2α =

(
E(α1Z), . . . ,E(αKZ)

) Φ


 α1

...
αK

 . (4)

Under the approximation (3), in Aguilera et al. ([1]) the authors show the
equivalence between the PLS regressions of Y on predictors X, respectively



α. An explicit formula is also given for the coefficient regression function β
of the model (1) using the PLS criterion.

The functional response. The PLS regression with both response Y = {Yt, t ∈
TY } and predictor X = {Xt}t∈TX of functional type (TY ⊂ R) is presented
in [7] (Section 3.1). The linear model is written as

Y (s) =

∫
TX

β(s, t)X(t)dt+ εt, t ∈ TY , (5)

where β is the coefficient regression function and {εt}t∈TY
the residuals.

The main result is that at the each step of the PLS regression, the PLS
components th, h ≥ 1 are eigenvectors of the product of the two Escoufier’s
operators, WX and WY ,

WXWY th = λth. (6)

Let consider in the following that both the response and the predictor are
approximated in finite dimensional function spaces, that is

X(t) ≈
K∑
i=1

αiφi(t), ∀t ∈ TX ,

Y (t) ≈
L∑
i=1

γiψi(t), ∀t ∈ TY ,
(7)

where αi’s and φi’s are as in (3) and γi’s form a random vector γ of dimension
L, L ≥ 1, representing the coefficients associated to the approximation of
Y by an element of the subspace of L2(TY ) spanned by the basis BY =
{ψ1, . . . , ψL}, L ≥ 0.

In this paper we show the equivalence of the PLS estimate of the regression
of Y on X (PLS(Y ∼ X)) and the PLS estimate of the regression of the
vector γ on the vector α (PLS(γ ∼ α)) with some metrics associated to
the basis function BX and BY . Thus, the PLS regression in the functional
framework is reduced to that in the finite multivariate setting. In addition,
we give an explicit formula for the coefficient regression function β of model
(5), as a function of the regression coefficients obtained in PLS(γ ∼ α).

The paper is organised as follows. In Section 2 we present the theoretical
framework of functional PLS regression with functional response and give
our main result after approximation of predictor and response into finite
dimensional function spaces. In section 3, finally, we present a simulation
study.

2 Functional PLS regression with functional response

The PLS approach consists of penalising the least squares criterion by max-
imising the covariance (Tucker criterion) instead of the correlation coefficient.



These ideas have been efficiently used in the finite dimensional case in the
work of [9].

The PLS components associated to the regression of the response Y =
{Yt}t∈TY on the functional predictor X = {Xt}t∈TX , are obtained as solutions
of the Tucker criterion extended to functional data as

max
w ∈ L2(TX), ‖w‖L2(TX) = 1
c ∈ L2(TY ), ‖c‖L2(TY ) = 1

Cov2
(∫
TX

Xtw(t)dt,

∫
TY
Ytc(t)dt

)
. (8)

Let us denote by WX , respectively WY , the Escoufier’s operators asso-
ciated to X, respectively to Y , defined by (2). Then, as it is shown in [7],
the first PLS component t1 of the regression of Y on X, is given by the
eigenvector associated to the largest eigenvalue of the operator WXWY :

WXWY t1 = λmaxt1.

Let X0 = X and Y0 = Y . Then, the first PLS-step is completed by ordinary
linear regression of X0 and Y0 on t1. Let denote by X1 and Y1 the residuals
of these linear regression models

X1,t = X0,t − p1(t)t1 t ∈ TX ,
Y1,t = Y0,t − c1(t)t1, t ∈ TY .

(9)

The weight function w1(t) associated to the first PLS component t1 is
given by

w1(t) =

∫
TY E(YsXt)ds√∫

TX

[∫
TY E(YsXt)ds

]2
dt

, t ∈ TX ,

so that

t1 =

∫ T

0

w1(t)X(t)dt.

At the step h, h ≥ 1, of the PLS regression of Y on X, we define the hth

PLS component, th, by the eigenvector associated to the largest eigenvalue
of the operator WX

h−1W
Y
h−1

WX
h−1W

Y
h−1th = λmaxth,

where WX
h−1 and WY

h−1 are the Escoufier’s operators associated respectively
to Xh−1 and Yh−1.

Finally, the PLS step is completed by the ordinary linear regression of
Xh−1 and Yh−1 on th. Denote by Xhand Yh the functional random variables
which represent the error of these regressions,

Xh,t = Xh−1,t − ph(t)th, t ∈ TX ,

Yh,t = Yh−1,t − ch(t)th, t ∈ TY ,
(10)



The properties of the PLS components are summarised by the following
proposition ([7]):

Proposition 1. For any h ≥ 1

a) {th}h≥1 forms an orthogonal system in the linear space spanned by {Xt}t∈TX ,
b) Yt = c1(t)t1 + c2(t)t2 + . . .+ ch(t)th + Yh,t, t ∈ TY ,
c) Xt = p1(t)t1 + p2(t)t2 + . . .+ ph(t)th +Xh,t, t ∈ TX ,
d) E(Yh,ttj) = 0, ∀t ∈ TY ,∀j = 1, ..., h,
e) E(Xh,ttj) = 0, ∀t ∈ TX ,∀j = 1, ..., h.

Let us now consider the approximations of Y and X as in (7) and denote
by

Λ = Φ
1
2α and Π = Ψ

1
2 γ, (11)

the matrix associated to the two-by-two inner-product of basis functions BX
and BY . Here Φ

1
2 and Ψ

1
2 are the square roots of Φ and Ψ respectively. Notice

that Φ and Ψ are symmetric real-valued matrix of size K ×K, respectively
L× L.

Our main result is :

Proposition 2.

i) The PLS regression of Y on X is equivalent to the PLS regression of Π
on Λ in the sense that at each step h of the PLS algorithm, 1 ≤ h ≤ K,
we have the same PLS components for both regressions.

ii) If Σ is the L×K-matrix of the regression coefficients of Π on Λ obtained
with the PLS regression at step h, 1 ≤ h ≤ K,

Π = ΣΛ+ ε, (12)

then the PLS approximation at step h of the regression coefficient function
β from (5) is given by

β̂(t, s) =

L∑
i

K∑
j

Si,jψi(t)φj(s), (t, s) ∈ TY × TX , (13)

where S = [Ψ
1
2 ]−1Σ[Φ

1
2 ]−1.

The proof is based on the observation that

WX ≈WΦ
1
2 α and WY ≈WΨ

1
2 γ

and is made by induction upon h. Details are available from the authors.
This result establishes the equivalence between the PLS regression of Y

on X with the PLS regression of γ on α with metrics Ψ and Φ in the sense
defined by Cazes [4]. It provides a practical way to obtain the approxima-
tion of the regression coefficient function β when the functional data are



approximated in finite dimensional function spaces. More precisely, it says
that giving the expansion coefficients of curves representing X (α), respec-
tively Y (γ), into the spaces spanned by BX and BY , one can use them in
a finite multivariate standard PLS regression (see equation (12)) in order to
obtain the approximation of β. Finally, let us say that the function plsr of
the R package pls can do this efficiently. It was used in our simulation and
application examples.

3 Simulation study

Let us consider that X is a functional random variable defined by

Xt =

K=7∑
i=1

αiφi(t), t ∈ TX = [0, 1], (14)

where the {αi}i=1,...,K are independent r.v.’s identically distributed uniformly
on the interval [−1; 1] and φ = {φi}i=1,...K is a cubic B-spline basis on [0, 1].

Let us define

Y (t) =

∫ 1

0

β(t, s)Xsds+ εt, t ∈ TY = [0, 1], (15)

where β(t, s) = (t− s)2, ∀(t, s) ∈ [0, 1]2, and εt is the residual.
One obtains :

E(Xt) = 0, V(Xt) =
1

3

K∑
1

φ2i (t), ∀t ∈ [0, 1],

E(Yt) = 0, V(Yt) =
1

3

K∑
1

(∫ 1

0

β(t, s)φi(s)ds

)2

, ∀t ∈ [0, 1].

The residual {εt}t∈[0,1] is a zero-mean random process such that the εt are
normally distributed with variance σ2

t > 0 and εt and εs are independent
∀(s, t) ∈ [0, 1]2, s 6= t. The residual variance, σ2

t , is chosen such that

the signal-noise ratio,
V(Yt)

V(εt)
is controlled. In our simulation we considered

V(Yt)

V(εt)
= 0.8,∀t ∈ [0, 1].

We simulated a sample of n = 100 paths of X and computed the corre-
sponding ones for Y . The graph in Figure 1 shows such a sample.

We look for an estimation of β from the sample of curves {(xi, yi)}i=1,...,n,
with n = 100. In order to apply the Proposition 2 we have considered
for the approximation of Y a trigonometric basis of L = 7 functions, ψ =
{ψi}i=1,...,L. The coefficients γ are then estimated by least squares regression
using an equidistant grid of 100 points of [0, 1].



Fig. 1. A sample of n=100 paths of the response and the predictor functional
variables

The results of our simulation are obtained averaging over 100 samples
{(xi, yi)}i=1,...,n, n = 100, where SSEY , SSEβ and VY are defined by

SSEY =

∫ 1

0

E(Yt − Ŷt)2dt,

SSEβ =

∫ 1

0

∫ 1

0

(β(t, s)− β̂(t, s))2dtds and VY =

∫ 1

0

V(Yt)dt.

SSEY is computed using the leave-one-out cross-validation, whereas SSEβ
is computed from the model including all the n observations.

One obtains V(Y ) ≈ 0.00273, SSEY ≈ 0.00038 and SSEβ ≈ 0.00042.

The ratio
SSEY
VY

≈ 0.13919 shows a good fit of the approximated model.
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