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Abstract—In this paper, we tackle the problem of Unmanned 

Aerial (UAV) path planning in complex and uncertain 

environments by designing a Model Predictive Control (MPC), 

based on a Long-Short-Term Memory (LSTM) network 

integrated into the Deep Deterministic Policy Gradient 

algorithm. In the proposed solution, LSTM-MPC operates as a 

deterministic policy within the DDPG network, and it leverages 

a predicting pool to store predicted future states and actions for 

improved robustness and efficiency. The use of the predicting 

pool also enables the initialization of the critic network, leading 

to improved convergence speed and reduced failure rate 

compared to traditional reinforcement learning and deep 

reinforcement learning methods. The effectiveness of the 

proposed solution is evaluated by numerical simulations. 

Keywords—path planning, reinforcement learning, model 

predictive control, LSTM network modeling, improved DDPG 

I. INTRODUCTION 
Nowadays, Unmanned Aerial Vehicles (UAVs) are being 

increasingly used in various industries, e.g., agriculture, 
mining, and construction, with different applications, such as 
monitoring, inspection, detection, reconnaissance, and 
mapping [1-3]. For this, UAV path planning plays a vital role 
in determining and tracking efficient and safe flight paths 
considering terrain, weather conditions, and dynamic 
obstacles.  

Path planning, in the context of UAV navigation, refers to 
determining the best route for the UAV to follow while 
avoiding obstacles and reaching its destination [4, 5]. Early 
path planning methods were mainly graph-based, which could 
not handle dynamic obstacles [6, 7]. Subsequently, Artificial 
Potential Field (APF), Rapid exploration Random Tree 
(RRT), and D* algorithms were proposed as solutions for 
dynamic environments[8, 9]. However, APF can be stuck in 
local minima, RRT is unsuitable for continuous, highly 
dynamic environments, and the planned path is usually 
suboptimal and nonsmooth. Even though the D* algorithm 
effectively finds a path in a dynamic environment, 
convergence is still challenging in complex environments 
with many obstacles and dynamic obstacles. 

To resolve these issues, Reinforcement Learning (RL) has 
emerged as a promising approach for UAV path planning. 
Salient features of RL, such as learning from experience and 
improving decision-making over time, make it a well-suited 
approach for UAV path planning in dynamic and uncertain 
environments[10]. RL can overcome traditional methods’ 
limitations by allowing the UAV to adapt to time-varying 
conditions and obstacles. Additionally, RL-based algorithms 
Field can tackle the uncertainty and randomness of complex 
environments [11]. However, the poor performance of RL 
methods for handling high-dimensional systems is the main 
drawback that might make it impractical.  

Deep Reinforcement Learning (DRL) is a recent Artificial 
intelligence (AI) technique that combines the strengths of 
Deep Learning and RL to solve decision-making problems for 
high-dimension systems. Therefore, DRL has been applied to 
UAV path planning in complex scenarios [12], resulting in 
more efficient and accurate solutions. For instance,in [13], the 
path smoothness, efficiency, and robustness were 
demonstrated. Furthermore, similar studies highlight the 
practical benefits of DRL for improving UAV path planning, 
addressing the challenges of dynamic obstacle avoidance and 
real-time decision-making in complex environments while 
handling the high-dimension issue [13-15]. 

Moreover, DRL methods require an approximation of the 
action-value function, often using deep neural networks 
(DNNs) [16]. However, it can be challenging to analyze the 
performance of a system controlled by an RL algorithm with 
an approximate policy represented by a DNN or another 
function approximation, which is especially important for 
systems with critical safety requirements. Furthermore, DNN-
based RL has limitations regarding stability analysis, 
state/input constraints satisfaction, and meaningful weight 
initialization [17]. 

Recently, Model Predictive Control (MPC)-based RL 
approaches have been proposed to overcome these limitations, 
which suggests using MPC as the function approximation for 
the optimal policy in RL. MPC involves solving an optimal 
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control problem at each time step to determine the best control 
policy [18]. As a result, MPC not only generates an optimal 
input and state sequence for the entire prediction horizon but 
also has the ability to anticipate future actions based on the 
predicted state [19]. MPC can handle complex and uncertain 
environments by providing a structured approach to control. 
On the other hand, the DRL component provides the ability to 
learn from experience and optimize control performance over 
time., It also can adapt to new situations and improve 
performance over time.  

The main drawback of MPC is the high computational 
complexity, which can be tackled by using semi-accurate 
models of the controlled process to provide predictions [20]. 
It should be mentioned that the predictive model’s accuracy 
directly impacts the MPC framework’s performance. 
Utilizing a DNN to predict the model provides a more 
accurate and reliable representation of the system dynamics, 
thereby enhancing the effectiveness of the MPC framework 
[21]. The Long-Short-Term-Memory (LSTM) network, as a 
DNN, can extract sequential features and handle complex 
dependencies, making it ideal for predicting sequential 
processes [22]. 

Motivated by the considerations mentioned above, in this 
paper, we propose an LSTM-based-MPC system that operates 
as a deterministic policy within the Deep Deterministic Policy 
Gradient (DDPG) network, providing a robust and efficient 
solution for UAV path planning problem in unknown 
environments. Integrating the LSTM-MPC solution into the 
DDPG framework addresses the challenges posed by real-
time path planning and results in improved convergence speed 
and reduced failure, offering a promising solution for path 
planning problems in complex and uncertain environments. 
The main contributions of this paper are as follows. 

• Combining LSTM -MPC and DDPG algorithms to handle 
the high dimensionality of the state space, the uncertainty and 
variability of the obstacles’ trajectories, and the real-time 
constraints of the system. 

• Implementation of the LSTM-MPC-based model as an 
actor network in the DDPG framework  

• Defining a predicting pool for predicting future state and 
corresponding actions 

The rest of the paper is structured as follows. Section 2 
outlines the path planning problem. Section 3 describes the 
proposed LSTM-MPC DDPD method. Section 4 presents the 
experiments carried out to assess the algorithm’s 
performance. Concluding remarks are given in Section 5. 

II. PROBLEM FORMULATION AND PRELIMINARIES 
This paper proposes a novel method for path planning for 

UAVs in unknown environments with static and dynamic 
obstacles. The problem is safe path planning in case of limited 
knowledge of the environment. Path planning aims to find the 
optimal path in considering obstacle avoidance. The UAV is 
equipped with a LIDAR for obstacle avoidance and a GPS for 
positioning. 

A. Problem definition 

The environment is modeled as a Markov Decision 
Process. The UAV is equipped with a LIDAR for obstacle 

avoidance and a GPS for positioning. The GPS sensor 
provides precise navigation and localization capabilities, 
enabling the UAV to maintain its position and navigate to the 
target point with high accuracy. The LiDAR sensor, on the 
other hand, offers real-time 3D mapping and obstacle 
detection capabilities, enabling the UAV to perceive and 
avoid dynamic obstacles present in the field. The UAV 
dynamics are presented in [23], which is not repeated here for 
brevity. 

Here, the safe UAV path planning problem in an unknown 
environment with static and dynamic obstacles is tackled with 
limited knowledge of the environment. 

B.   The Markov Decision Process 

The Markov Decision Process (MDP) is a well-established 
mathematical framework for modeling decision-making 
problems in the presence of uncertainty. MDP is defined by a 
tuple ⟨S, A, P, R, γ ⟩, where S denotes a finite set of states, A 
denotes a finite set of actions, P represents the state transition 
probabilities as 

𝑝𝑠𝑠
𝑎 = 𝑃[𝑆𝑡+1 = 𝑠 | 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]    (1) 

 R denotes the reward function as 

𝑅𝑠
𝑎 = 𝐸[𝑅𝑡| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 ]   (2) 

and γ is the discount factor, which lies in the interval [0, 1] 

and with a stage cost 𝑙(𝑠, 𝑎). 
Consider deterministic policy delivery of the control input 

𝑎 = 𝜋(𝑠), resulting in state distribution 𝜏𝜋  . RL’s goal is to 
find the optimal policy 𝜋∗  by solving the minimization 

problem 𝜋∗ ≔ arg  min 𝐽(𝜋) = 𝔼𝜏𝜋[∑ 𝛾𝑘∞
𝑘=0 𝑙(𝑠𝑘 , 𝜋(𝑠𝑘))]. 

In RL, important quantities are the action-value function 
𝑄∗(𝑠, 𝑎) and value function 𝑉∗(𝑠) associated with the optimal 
policy 𝜋∗(𝑠), which are defined by the Bellman equations 

𝑄∗(𝑠, 𝑎)  =  𝑙(𝑠, 𝑎)  +  𝛾𝔼 [𝑉∗(𝑠𝑡+1) | 𝑠, 𝑎]   (3) 

𝑉∗(𝑠) =  𝑄∗(𝑠, 𝜋∗(𝑠)) = min
𝑎

 𝑄∗(𝑠, 𝑎)  (4) 

C. MDP formulation 

1) State 
The proper action is chosen based on the current state of 

the UAV. The obstacle is cylindrical shape and unknown in 
the environment. Moreover, the shape of the environment is a 
rectangle. The state of the UAV is represented by a state 
vector consisting of the position of the UAV in the world 
frame, represented by (𝑥, 𝑦, 𝑧), and the velocity of the UAV 
along the X, Y, and Z axes, represented by (𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧). 

For ease of navigation towards the target, the absolute 
position of the UAV is transformed into its relative position 
with respect to the target. The environment information is 
gathered using Lidar distance sensors, with a scan angle range 
of π and an angle of 𝜋/6  between each pair of rays. The 
environment observations are divided into 7 sensors in the 
horizontal plane and 7 in the vertical plane. The state 
represented: 

𝑆 = [𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 , 𝜙, 𝜃, 𝜓, 𝑥𝑡 , 𝑦𝑡 , 𝑧𝑡 , 𝑑0, … , 𝑑𝑁] (5) 

To simplify the description of the UAV’s position and 
motion, a three-degree-of-freedom kinematic model is 
adopted in this study. The assumption is that the UAV 
maintains a constant horizontal altitude, thus confining its 
movement to the x-y plane. By disregarding the momentum 
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effects during flight and assuming a constant velocity v, the 
position, and motion of the UAV are represented by the vector 
𝜁 =  [𝑥, 𝑦, 𝜓]. 

Five variables represent the state of the UAV in 2D (𝑥, 𝑦) 

for its position in the world frame (𝑣𝑥 , 𝑣𝑦) for its velocity 

along the X and Y axes, and 𝜓 for the angle between its first-
perspective direction and the line connecting the UAV to the 
target. 

The relative position between the UAV and the target can 
be transformed to make it easier to reach the target. The 
environment information is obtained using laser distance 
sensors, which have a scan angle range of π and an angle 
between each two laser rays of π/6. The observations are 7 
sensors in the horizontal plane. And the state represented for 
UAV in a simplified environment is as follows 

𝑆 = [𝑥𝑡 − 𝑥, 𝑦𝑡 − 𝑦, 𝑣𝑥 , 𝑣𝑦 , 𝑣, 𝜓, 𝑑0, … , 𝑑𝑁]  (6) 

2) Action 
the control of the UAV is simplified to only two 

commands - speed and yaw angle. The control vector of the 
UAV is represented as 𝑎 = [𝑎𝑣 , 𝑎𝜓] where 𝑎𝑣  is the current 

speed ratio to the maximum speed, with a range of values 
between -1 and 1. 𝑎𝜓 is a steering signal that determines the 

desired yaw angle, with a range of values between -1 and 1. 

3) Reward function 
The reward function for the UAV in the given scenario is 

a combination of four parts. It aims to guide the UAV to reach 
the target area while ensuring its safety, defined as follows. 

Distance Reward: The negative value of the distance between 

the UAV and the target point is used as a penalty to encourage 

the UAV to reach the target area. The UAV will receive a 

positive reward if it reaches the target area. The relative 

distances represent the difference between the present 

location and the destination. We assume the difference 

between the UAV and its target in the previous and current 

stages, respectively.  

𝑑𝑑𝑖𝑠 = 𝑑𝑐𝑢𝑟𝑒𝑛𝑡 − 𝑑𝑝𝑟𝑒𝑣𝑜𝑢𝑠 

𝑟1 = {
−0.1     𝑑𝑑𝑖𝑠 > 0
1           𝑑𝑑𝑖𝑠 < 0

    (7) 

Step Penalty: To make the UAV reach the target area as soon 

as possible, a penalty of 𝑟2 = −0.01 is given to the UAV at 

each step. 

Orientation Penalty: the negative value of the angle between 

the UAV’s first-perspective direction and the connection line 

of the UAV and the target is taken as a penalty to help the 

UAV approach the target in the direction towards the target. 

It is considered 𝑟3 = −0.01. 

Obstacles Penalty: To keep the UAV away from obstacles, 

first should define a safe distance to prevent collision with 

the obstacles. When the distance between the UAV and the 

nearest obstacle is less than the safe distance, the UAV 

receives a penalty for the distance. If the UAV collides with 

obstacles, it receives another penalty. Otherwise, it does not 

receive any punishments if the distance exceeds the safe 

distance.  

𝑟4 = {
−0.1     𝑑𝑠𝑎𝑓𝑒 > 0

−1   𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛
     0           𝑒𝑙𝑠𝑒

    (8) 

Therefore, the reward received by the UAV at the current 

moment can be expressed as follows: 

𝑅 = 𝑤1𝑟1 + 𝑤2𝑟2 + 𝑤3𝑟3 + 𝑤4𝑟4   (9) 

To mention more attention on collision avoidance to reduce 

risk and have safe path planning and the optimal path, we 

chose the weight of the 𝑤1 𝑎𝑛𝑑 𝑤4 more than 𝑤2 𝑎𝑛𝑑 𝑤3 

III. METHODOLOGY 

A. The Long Short-Term Memory Model Predictive Control  

1) LSTM 
LSTM is a Recurrent Neural Network (RNN) type that 

features external recurrences from the outputs to the hidden 
layer’s inputs and internal recurrence between LSTM cells. In 
each LSTM cell, a set of gating units regulates the information 
flow, enabling the network to remember or forget information 
based on a sequence of inputs [24]. The LSTM network 
consists of an input layer, multiple hidden layers, and an 
output layer. Its uniqueness lies in its memory cells in the 
hidden layers, which allow data to be learned by maintaining 
or adjusting the memory cell’s state. The proposed LSTM 
model was built using the deep learning toolbox in MATLAB. 
To optimize the LSTM structure, learning parameters are 
specified and summarized in Table 1. The set values for these 
parameters were chosen based on recommendations from 
MATLAB and previous research. 

Table 1. The LSTM hyperparameters. 

Parameter Value 

Optimization algorithm Adam 

Initial learn rate 0.01 

Hidden layer 3 

Hidden unit 200(3) 

Max epochs 100 

2) The Long Short-Term Memory Model Predictive 

Control 
The Long Short-Term Memory Model Predictive Control 

(LSTM-MPC) is a novel control algorithm that combines the 
strengths of Model Predictive Control (MPC) and LSTM 
networks. The LSTM network models the state dynamics of a 
system, while MPC is used to generate control actions based 
on state predictions. LSTM-MPC aims to find an optimal 
control sequence, 𝑢∗, that minimizes a cost function, J, over a 
set of predicted states and control actions in real-time 
environments. 

The LSTM network predicts state dynamics based on the 
current state and control actions. Given the initial states, 𝑠0, 
and control actions, u, the LSTM network predicts the next 
state, 𝑠{𝑡+1}. 

MPC generates control actions, u, based on predicted 
states, 𝑠. The control actions are computed by minimizing the 
cost function, 𝐽, over predicted states and control actions using 
a quadratic program (QP). The predicted states and control 
actions are inputs to the optimization problem, and the optimal 
control actions are the outputs. 

The algorithm offers several advantages, including 
improved state prediction accuracy, handling unknown state 
dynamics, and incorporating constraints on control actions 
and states. On the other hand, it can face Several challenges 
that can arise when using LSTM-MPC for path planning with 
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collision avoidance and considering unknown dynamic 
obstacles. Some of these challenges include LSTM-MPC has 
limitations, including sensor noise and measurement errors, 
model uncertainty, computational complexity, nonlinearity 
and non-convexity, and data efficiency. The optimized control 
action may also be insufficient due to model mismatch, 
nonlinear dynamics, unmodeled disturbances, limited 
prediction horizon, constraint violations, and real-time 
requirements. 

In this paper, The LSTM network and MPC algorithm are 
trained together in an iterative process, with the LSTM 
network improving its model dynamics based on the feedback 
from the MPC algorithm and the MPC algorithm using the 
improved LSTM model to make better control decisions. 
After each iteration of the MPC algorithm, the predicted 
following states and the following actual states can be 
compared, and the difference between them can be used to 
update the parameters of the LSTM network using an 
optimization algorithm such as gradient descent. The training 
goal is to minimize the prediction error between the actual and 
predicted following states, thus improving the accuracy of the 
LSTM model dynamics. 

B. LSTM-MPC-DDPG 

The proposed algorithm for RL in UAV path planning is 
based on integrating DDPG and LSTM-MPC algorithms. The 
integration of these two algorithms leverages their respective 
strengths to provide a robust solution for real-time constraints 
and unknown environments.  

The integration of MPC and LSTM allows the algorithm 
to make informed decisions in unknown environments by 
combining the strengths of both algorithms. The MPC 
component generates training data for the LSTM network by 
repeatedly applying the policy to the system and collecting the 
resulting states and actions. The LSTM network is trained 
using this data to predict future states and actions. The MPC 
component can then use the predictions made by the LSTM 
network to make more informed decisions about which 
actions to take in the future. 

The LSTM-MPC component is utilized as a deterministic 
policy, where the LSTM network is pre-trained using limited 
knowledge of the environment map. The future state action 
predictions generated by the LSTM-MPC are stored in a 
“predicting pool.” The predicted data in predicting pool will 
be used to improve the training of the critic network. One 
approach is to use the predicted data as a warm start for the 
critic network by initializing the network parameters using the 
estimated Q-values for each future state-action pair. This can 
help to speed up the convergence of the network. 

Additionally, the estimated Q-values can be used as target 
values during the backpropagation step, allowing the network 
to learn to predict better the quality of the actions taken by the 
policy and make more informed decisions about which actions 
to take the future. This approach can lead to improved 
accuracy in the Q-value estimates and more efficient network 
convergence. These estimated Q-values can be used as the 
target values for the critic network during the backpropagation 
step, where the loss is calculated as the mean-squared error 
between the estimated Q-values and the actual Q-values. 

Using the “predicting pool” for initialization combined 
with warm starting further enhances the algorithm’s 
efficiency. Using a “predicting pool” in the DDPG algorithm 
provides several benefits that improve the performance and 
efficiency of the algorithm. 

 Speed up the learning process: By providing an initial 

estimate of the expected return, the learning process can 

be initiated from a better starting point. This reduces the 

number of iterations required for convergence to an 

optimal solution, thus speeding up the learning process. 

 Improved accuracy of predictions: The data collected 

from the “predicting pool” can be utilized to refine the 

accuracy of predictions made by the LSTM-MPC (Long 

Short-Term Memory Model Predictive Control), which 

leads to improved performance of the DDPG algorithm. 

 Better utilization of data: The “predicting pool” serves 

as a repository for the data generated by the LSTM-MPC 

predictions. This facilitates the better utilization of the 

data and enables easy incorporation into the learning 

process. 

 Increased stability: By utilizing the data from the 

“predicting pool” as supplementary information and 

combining it with the observations from the environment 

to estimate the TD (Temporal difference) error, the 

algorithm’s stability can be improved. The weight 

assigned to the predicted data can be adjusted 

dynamically based on its reliability, and the observed 

data can serve as a backup to ensure stability and 

accuracy. 
In this work, the LSTM-MPC algorithm is utilized as a 

function approximator in the actor network of the DDPG 
framework for UAV path planning in the x-y plane with a 
constant altitude. The cost function for UAV path planning is 
formulated as a combination of several terms: the deviation of 
the UAV’s position from the target point, a collision 
avoidance term based on the lidar data, and the magnitude of 
the control inputs required to execute the path. The 
optimization problem, defined as the minimization of this cost 
function, is solved at each time step by the MPC algorithm to 
determine the control inputs, which are treated as the 
deterministic policy for the actor-network in the DDPG 
framework. The LSTM network and MPC parameters are 
updated over time as the system learns from its interactions 
with the environment. 

The cost function in the MPC algorithm for a quadrotor in 
an x-y plane at a constant altitude can be formulated as a trade-
off between following the optimal path and avoiding 
collisions. One possible formulation of the cost function could 
be 

𝐽𝑀𝑃𝐶(𝑥, 𝑢) =  𝑤1 ||𝑥𝑑(𝑡 + 𝑗)  −  𝑥𝑝(𝑡 + 𝑗)||
2

+

 𝑤2||Δ𝑢(𝑡 + 𝑗)||
2

 +  𝑤3𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛  (𝑥)  

  (10) 

where 𝑥𝑝(𝑡 + 𝑗) is the current state of the system (position 

and velocity) based on the LSTM network at the (𝑡 + 𝑗)th 

period based on the available measurements at the 𝑡 th 

sampling period, 𝑢  is the control input, 𝑥𝑑  is the desired 

state, 𝑤1, 𝑤2, and 𝑤3are weighting factors that balance the 

importance of following the desired state, minimizing control 
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effort, and avoiding collisions, respectively. More details 

regarding the LSTM_MPC formulation can be found in [25]. 
The collision cost in the context of a quadrotor in the x-y 

plane can be formulated as a measure of the distance between 
the quadrotor and any potential obstacles in the environment. 
the cost can be defined as the negative exponential of the 
Euclidean distance between the quadrotor’s current position 
and the closest obstacle. Formally, the collision cost can be 
defined as: 

𝐶𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛  =  −𝑒(−𝑑(𝑞,𝑜𝑏𝑠))    (11) 

Where 𝑑(𝑞, 𝑜𝑏𝑠)  is the Euclidean distance between the 

quadrotor’s position q and the closest obstacle, the negative 

exponential ensures that the cost increases as the quadrotor 

approaches an obstacle and approaches infinity as the 

distance decreases to zero, encouraging the quadrotor to 

avoid collisions. 
This cost function can be added to the overall cost function 

used in the MPC optimization problem, which may also 
include other objectives such as reaching a target position, 
tracking a desired trajectory, or minimizing control inputs. 
The optimization problem is then solved at each time step to 
determine the control inputs for the quadrotor, which can be 
treated as the deterministic policy for the actor network in a 
DDPG framework. 

In order to evaluate the reward for each set of states, 
action, and future state in the MPC-based deterministic policy, 
it is necessary to incorporate the reward function into the MPC 
optimization process. The reward function assigns a 
numerical value to the quality of a given state-action-future 
state combination. It serves as a means of reinforcing 
desirable actions and discouraging undesirable ones. To this 
end, the MPC optimization problem can be formulated as 
follows: 

𝑚𝑖𝑛 𝐽𝑡  =  𝐽𝑀𝑃𝐶(𝑥𝑡 , 𝑢𝑡) + ∑ 𝑤𝑖  𝑅(𝑠𝑖 , 𝑎𝑖)  (12) 
where 𝐽𝑡  is the objective function, 𝑤𝑖  is the weight that 

controls the relative importance of each term, 𝑅(𝑠𝑖 , 𝑎𝑖) is the 

reward function, and the constraints represent operational 

limitations and requirements for the UAV. Including the 

reward function in the MPC optimization makes it possible 

to evaluate the reward for each set of states, actions, and 

future states. These rewards can then be stored in the 

predicting pool, providing valuable information that can be 

used to improve the accuracy of the LSTM network and the 

performance of the MPC algorithm and the Actor-Critic 

Network. Overall, incorporating the reward signal into the 

MPC optimization process guides the UAV toward making 

better decisions in unknown environments.  

C. LSTM-MPC as function approximation 

The LSTM-MPC actor network is trained to maximize the 
expected cumulative reward through gradient descent. The 
gradient of the expected cumulative reward with respect to the 
network parameters (denoted as θ) is computed using the 
chain rule of differentiation as 

𝛻𝜃𝐽(𝜃)  =  𝛻𝜃𝔼[𝑅|𝜃]    (13) 

where 𝐽(𝜃) is the expected cumulative reward, 𝔼[𝑅|𝜃] is the 

expected cumulative reward given the current policy 

(parameterized by 𝜃 ), and 𝛻𝜃 denotes the gradient with 

respect to the parameters 𝜃. The gradient is estimated using 

the experience gathered from the environment. The LSTM-

MPC actor network is updated after each episode or after a 

batch of episodes to maximize the expected cumulative 

reward. 
The parameters of the LSTM network, theta, are trained 

using gradient descent to minimize the expected cost over a 
sequence of states and control inputs. In each iteration of the 
MPC algorithm, the LSTM network uses the current state, 𝑥𝑡, 
and the past control inputs, 𝑢𝑡−1, … , 𝑢𝑡−𝑘 , to predict the 
control input for the next time step, 𝑢𝑡. The predicted control 
input, 𝑢𝑡 , is then used in the optimization problem to 
determine the optimal control input, 𝑢∗. The parameters of the 
LSTM network are updated using gradient descent as follows 

𝜃 = 𝜃  − 𝛼∇ (𝐽(𝑥, 𝑢∗ ), 𝜃)   (14) 

where 𝛼 is the learning rate. 
By iterating this process, the parameters of the LSTM 

network converge to the optimal policy, 𝜋∗, that maps states 
to control inputs to minimize the expected cost. The policy 
can be used to control the system in real time. A further 
detailed formulation can be found in [26]. 

1) Steps of the proposed algorithm 

Step 1:  Training of LSTM Network: 

 Initialize the LSTM network using limited knowledge 

of the environment. 

 The LSTM network is initialized with parameters 𝜃0. 

The network’s hidden state, ℎ0, is initialized based on 

the initial conditions of the system. 

Step 2: Improvement of LSTM with Real-time Sensor Data: 

 Use real-time data from sensors to update the network’s 

predictions continually. 

 This allows the network to adapt to environmental 

changes and continuously improve its predictions. 

 Use backpropagation and gradient descent to update the 

network parameters, w, to minimize the prediction 

error. 

Step 3: Use of LSTM to Predict the Environment and Control 

Action:  

 The LSTM network is used to predict the environment, 

while the Model Predictive Control (MPC) is used to 

determine the optimal control action. The LSTM 

considers the MPC data and past data to predict the next 

state. 

 The control actions are generated by minimizing the 

cost function, J, over a set of predicted states and 

control actions, as described in the previous sections. 

 LSTM uses MPC data to train and improve the MPC 

network 

Step 4: LSTM-MPC as Deterministic Policy Actor-Network: 

 Use the LSTM-MPC network to determine the optimal 

control actions for a given state.  

 Parametrized LSTM based on the 𝜃  to use gradient 

descent for updating the policy 

Step 5: Predicting Pool: 

 Use the LSTM-MPC network to predict future states 

and corresponding control actions in a set MPC 

horizon. 

 Evaluate the rewards for each control action 
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  Store information in a new experience pool called the 

“predicting pool.” 

Step 6: Collection of Experiences from the Environment: 

 Interact with the environment by choosing actions and 

collecting information about the current state, action, 

reward, and next state. 

 Store this information in a separate experience pool. 

Step 7: Training of Critic Network: 

 Use a critic network to estimate the value function for 

each experience in the batch from the “experience 

pool.” 

 Using the predicting states from the LSTM network for 

more sample 

 Calculate the target value for each experience, which is 

the reward plus the estimated value of the next state. 

 Train the critic network to predict the target value by 

minimizing the mean squared error between the 

prediction and the target. 

 The “predicting pool” is used to initialize the value 

function approximator, which can speed up the training 

process and reduce the number of iterations required to 

converge. (Warm start) 

Step 8: Improvement of LSTM-MPC: 

 Use the data from the “predicting experience pool” to 

warm-start the LSTM-MPC, improving the accuracy of 

its predictions based on their reliability. 

 To improve the real-time performance of the MPC, 

efficient optimization algorithms and approximations 

can be employed to reduce computational complexity. 

 These algorithms can significantly improve the speed 

and efficiency of the MPC, allowing it to make 

predictions and choose actions in real-time. 

Step 9: Repeating Steps 2-8: 

 Continuously repeat Steps 2 through 8 to improve the 

MPC’s performance. 

The algorithm structure block diagram is shown in Figure 1. 

IV. SIMULATION RESULTS AND SETTING 

A. Experiment enviorment 

In this scenario, the environment is a simplified 3D space 
with dimensions of 200m x 200m x 50m. The target and initial 
points of the UAV are randomly initialized in one of the 
corners of the environment. Cylindrical Obstacles of different 
sizes are randomly generated within the rest area. In order to 
navigate this environment, the UAV uses its sensor data to 
avoid obstacles and reach its target point. The environment 
was chosen to be simplified to make the task of path planning 
and obstacle avoidance more manageable. The safe distance 
to the obstacle is 1.5m, and the max sensor length is 20m.  

B. Training 

The proposed algorithm in this paper operates within the 
MATLAB environment and utilizes a learning rate of 0.001 
for its optimizer. The maximum number of iterations is set to 
5000 to ensure network convergence, and the maximum 
number of steps per iteration is set to 500. the experience pool 
has a maximum capacity of 105. The episode ends if the UAV 
reaches the target area, collides with the obstacles, and the 
number of training steps reaches the maximum. The soft 

update factor 𝜏 is 0.001, and the exploration noise is set to 0.2. 
the MPC horizon is set as 5 with time step 0.5 and minimum 
batch size 𝑁 = 256.  

 
Figure 1. The diagram of the proposed algorithm. 

In the training environment, there are five cylindrical 
obstacles with a size of 5 x 50 and five cylindrical obstacles 
with a size of 10 x 50. Figure 2 and Figure 3 show the training 
data’s success ratio and cumulative reward function. In the 
initial training stage, the UAV operates randomly due to the 
lack of accurate prediction, resulting in a low average reward. 
However, the MPC-based deterministic policy shows a higher 
average reward than the other two methods at the beginning 
and the end of episodes; the proposed algorithm also 
converges faster. The success rate represents the percentage 
of successful target acquisitions.  

C. Results 

After 5000 episodes of training in the training 
environment for DDPG, TD3, and the proposed algorithm, 
they were tested in dynamic and static environments. The 
proposed algorithm was first evaluated in a static 
environment, where obstacles were randomly placed in each 
episode to assess the algorithm’s ability to generalize. The 
environment uses two different settings; E1 and E2. E1 
consists of five cylindrical obstacles with dimensions of 
20x50 and five with dimensions of 15x50. E2 consists of ten 
obstacles with dimensions of 20x50 and ten with dimensions 
of 5x50.  

The results of the proposed algorithm were compared to 
those of the DDPG and TD3 algorithms after 3000 episodes. 
As shown in Table 2, the proposed algorithm demonstrated 
the highest success rate in all three settings. The advantage of 
the proposed algorithm became increasingly apparent in more 
complex environments with a higher number of obstacles. In 
the more complex environment, E2, the success rate of the 
proposed algorithm decreased less than two others.  

Furthermore, The performance of the proposed algorithm, 
DDPG, and TD3 algorithms was evaluated in terms of 
cumulative step convergence. Results indicated that the 
proposed algorithm demonstrated faster convergence speed 
when compared to the TD3 and DDPG. Upon testing the 
algorithms for 3000 episodes in the same environment, These 
findings suggest that the proposed LSTM_MPC_DDPG 
algorithm exhibits superior convergence and performance 
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compared to the TD3 and DDPG algorithms. Figure 4 and 
Figure 5 show the paths generated in environments E1 and E2 
based on the proposed algorithm, respectively, where the 
black dashed line shows the safe zones around obstacles. As 
seen, the UAV reaches the target area without collision with 
obstacles using a short path. 

 

Figure 2. The success ratio of reaching the destination in the 

training phase.  

 

Figure 3. The comparison of the average reward of the algorithms 

in the training phase.  

Next, algorithms were tested in a dynamic environment. 
In this scenario, obstacles move along the X -axis at different 
speeds, which can test whether the UAV can make real-time 
decisions in dynamic environments. Obstacles move at the 
speed of v in the negative direction of the X-axis. DDPG, 
TD3, and the proposed algorithm are tested for 3000 episodes 
in 2 different speeds of obstacle. The results in different 
dynamic environments are illustrated in Table 2. The success 
rates of the three algorithms decrease as the speed of obstacles 
increases. The success rate of the proposed algorithm is the 
lowest. 

Moreover, the success rate of our algorithm is much higher 
than that of TD3. It is because the design of the predicting pool 
network and MPC_LSTM as an actor-network structure 
works. UAVs can perceive the changes in the surrounding 
environment on the horizon by adding environmental 
information changes to predicting pool inputs so that obstacles 
can be avoided in time. The results show that the proposed 
algorithm has strong adaptability to dynamic environments. 

Table 2. Tests results under static environments and the impact of 

different speeds of a dynamic obstacle in a dynamic environment 

 E1 E2 
V=10 

m/s 

V=15 

m/s 

DDPG 

SR (%) 92.25 80.5 85.2 78.15 

CR (%) 7.05 10.1 14.3 21.75 

LR (%) 0.7 9.4 0.5 0.1 

AR 3.42 2.3 3.1 1.2 

TD3 

SR (%) 94.1 85.7 90.25 85.25 

CR (%) 4.8 8.2 8.5 14.15 

LR (%) 1.1 6.1 1.5 0.6 

AR 4.23 2.71 4.01 1.7 

Proposed 

Algorithm 

SR (%) 95.1 93.4 93.35 86.26 

CR (%) 4.9 6.3 6.65 13.74 

LR (%) 0 0 0 0 

AR 5.08 3.02 4.25 2.56 
Success rate (SR): The percentage of successful target acquisitions. 

Collision rate (CR): The percentage of collisions with obstacles. 
Loss rate (LR): The percentage of getting lost (without collision). 

Average reward (AR): The overall performance quality. 

 

 
Figure 4. The generated path by the proposed algorithm in the E1 

environment. 

 

  
Figure 5. The generated path by the proposed algorithm in the E2 

environment. 
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V. CONCLUSION  
This paper presents a novel method that leverages Deep 

Reinforcement Learning to facilitate autonomous path 
planning for unmanned aerial vehicles in complex 
environments with multiple static and dynamic obstacles. The 
proposed solution employs a deterministic policy based on the 
LSTM-MPC architecture to enhance the performance of the 
DDPG algorithm. The LSTM-MPC can predict 
environmental features from observations, thereby addressing 
the unpredictability and variability in these scenarios. The 
method incorporates a “predicting pool” that stores the set of 
state-action-reward data, which accelerates the performance 
of the DDPG algorithm. The efficacy of the proposed 
algorithm was evaluated in simplified 3D-simulation 
environments and compared with the DDPG and TD3 
algorithms. The results demonstrated that the proposed 
solution could effectively train UAVs for path planning in 
complex environments with real-time dynamic obstacle 
avoidance while reaching the target area promptly and safely 
with higher performance indices than DDPG and TD3 
algorithms.  
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