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The wide adoption of Machine Learning to solve a large set of real-life problems came with the need to collect 
and process large volumes of data, some of which are considered personal and sensitive, raising serious concerns 
about data protection. Privacy-enhancing technologies (PETs) are often indicated as a solution to protect personal 
data and to achieve a general trustworthiness as required by current EU regulations on data protection and AI. 
However, an off-the-shelf application of PETs is insufficient to ensure a high-quality of data protection, which 
one needs to understand. This work systematically discusses the risks against data protection in modern Machine 
Learning systems taking the original perspective of the data owners, who are those who hold the various data sets, 
data models, or both, throughout the machine learning life cycle and considering the different Machine Learning 
architectures. It argues that the origin of the threats, the risks against the data, and the level of protection offered 
by PETs depend on the data processing phase, the role of the parties involved, and the architecture where the 
machine learning systems are deployed. By offering a framework in which to discuss privacy and confidentiality 
risks for data owners and by identifying and assessing privacy-preserving countermeasures for machine learning, 
this work could facilitate the discussion about compliance with EU regulations and directives.
We discuss current challenges and research questions that are still unsolved in the field. In this respect, this paper 
provides researchers and developers working on machine learning with a comprehensive body of knowledge to 
let them advance in the science of data protection in machine learning field as well as in closely related fields 
such as Artificial Intelligence.
1. Introduction

Machine Learning (ML) systems process data to learn valuable pat-
terns that solve and improve the performance of a specific task at hand.

These systems have demonstrated high performance and accu-
racy, which have led them to become drivers of innovation in sev-
eral disciplines and sectors such as computer vision (Chai et al., 
2021), autonomous transportation, health care (Ghassemi et al., 2020), 
biomedicine (Mamoshina et al., 2016) and law (Surden, 2014).

Nowadays, ML systems are at the core of common technologies such 
as automatic handwriting, natural language recognition (Md Ali et al., 
2021), speech processing (Vila et al., 2018), and biometric data analy-
sis.

A performant ML system needs two critical resources: (i) massive 
volumes of datasets from multiple sources to represent data at various 
circumstances to be used in the training, and (ii) powerful computa-
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tional resources to build the models. The use of such resources raises 
several technical, social, and ultimately legal demands: besides other 
technical requirements (e.g., robustness), ML systems are demanded to 
be transparent and fair (e.g., free from bias in decision-making) and ca-
pable of protecting the data of the various parties involved, mainly data 
owners and model users.

This latter requirement, i.e., data protection, links to properties such 
as data confidentiality and privacy which are particularly relevant to 
achieve lawful data processing whenever current laws require that “ap-
propriate technical and organisational measures”1 be in place to miti-
gate the risk of leaking confidential or private information.

Such legally inspired requirements are no longer outside the scope 
of security experts. Existing regulations – for instance, the Health In-
surance Portability and Accountability Act (HIPAA), the Cybersecurity 
Law of China, the California Consumer Privacy Act (CCPA), or, quite 
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relevant in European legal ecosystems, the General Data Protection 
Regulation (GDPR),2 the Data Governance Act,3 and the Artificial In-
telligence Act4— will change the way one operates with ML systems 
mainly because violating the requirements may lead to high fines.

However, it is also not yet clear which privacy-preserving solution is 
best suited for a given scenario and how to apply it correctly. A deeper 
and more mature understanding of threats, risks, and mitigation that 
certain tools can offer become a necessary know-how for those operat-
ing in the ML sector.

This work systematises current knowledge about the preservation of 
privacy in ML workflows taking the perspective of those aware of the 
obligations imposed by legal requirements who wish to understand the 
risks that threaten data protection in the context of ML systems.

Although we organise our approach in light of the current legal land-
scape —and herein we refer primarily to the European legal framework 
whose provisions are centred on data subjects (i.e., the identifiable nat-
ural persons to whom the data relates)5 and on data processors and 
controllers (i.e., the first being the entity and is legally bound to protect 
the personal data of the data subject)6— this work’s discussion is from 
the point of view of the data owners, while it refers to other parties, such 
as the ML-based service providers, as computational parties. In Section 3
we clarify why we adopted a different terminology when talking about 
the roles involved in a ML process. We will also explain how data own-
ers and computational parties map onto the legal roles of data subjects, 
data processors, and data controllers. Here, we just anticipate that by 
offering a perspective centred on data owners (and data owners can be, 
in certain circumstances, data controllers), this work can offer better 
and novel insights to those who are obliged by law to guarantee data 
protection during processing about the risks and about the technolo-
gies, like Privacy Enhancing Technologies (PETs), offered to mitigate 
them. This work reviews existing privacy and confidentiality issues and 
discusses current Privacy Enhancing Technology (PET) solutions to mit-
igate them and under which conditions. Ultimately, this work helps ML 
service providers reach a higher level of awareness about data protec-
tion issues and achieve a better presumption of compliance with current 
data protection, governance, and trustworthy AI regulations.

One consideration is due concerning the need for a systematisation 
of knowledge work like ours on PETs for ML which takes the perspective 
of data owners. One could think that the privacy-preserving problem 
can be solved by resorting to commercial ML infrastructure and service 
providers, such as Amazon and Microsoft, who are obliged to comply 
while offering a variety of cloud-based solutions to build ML models 
at first and then provide prediction services through cloud-deployed 
models. However, such a setting is often unsatisfactory, as it requires 
data owners to trust big tech service providers, while, on the other end, 
it opens further privacy risks with copies of potentially private data 
being used and in third-party servers.

Even if one resorted to the PETs offered today by the technical 
community, the issue remains that such current technologies may be 
insufficient to provide the required guarantees if applied disregarding 
several key factors that define how and where they are going to op-
erate. For example, privacy preservation as a principle, according to 
the EU perspective, is one of the key elements of trustworthy ML (e.g., 
see (Content European Commission, 2019)) and thus PETs may not be 

2 Regulation (EU 2016/679 of the European Parliament and Council of the 27 
April 2016 on the protection of natural persons with regard to the processing of 
personal data and on the free movement of such data, and repealing Directive 
95/46/EC (General Data Protection Regulation).

3 Regulation of the EU Parliament and of the Council on European data gov-
ernance (Data Governance Act), COM/2020/767 final, 2020/0340 (COD).

4 Regulation of the EU Parliament and of the Council on European on Ar-
tificial Intelligence (Artificial Intelligence Act) and amending certain union 
legislative acts, COM/2021/206 final, 2021/0106 (COD).

5 id. at 2 Art. 4(1).
2

6 id. at 2 Art. 4(8).
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enough unless an argument is made about the trustworthiness of their 
implementations and reasons for their wide adoption.

2. Position and organisation of work

This work aims to gather existing knowledge on data protection for 
ML systems, and specifically on confidentiality and privacy as we will ex-
plain in Sections 4 and 5. Since different particular aspects of ML such 
as the nature of the pipeline, the architectural choices, and the different 
actors heavily affect how we see data protection risks, we start our work 
by highlighting them in Section 3. Our work offers a systematic review 
of the data protection safeguards applicable to ML systems which are 
collectively called PETs; it discusses their capabilities as defence mech-
anisms against existing confidentiality and privacy threats, and mainly 
from the perspective of data owners. As we anticipated in Section 1, this 
perspective is also that of the various computational parties (who can 
be data controllers) who wish to provide lawful data protection guar-
antees to the individuals who trust them with their data. Sections 8 and 
9 conclude our work by providing an overview of open research direc-
tions in the field.

Contribution and originality of this work The protection of data privacy 
throughout the ML pipeline faces many challenges. First, the implemen-
tation of solutions against privacy threats in ML is still in its infancy and 
is expected to advance quickly in the near future. Thus, our discussion 
refers to the current state-of-the-art but also enriches the discussion by 
carefully pointing out certain aspects which are more fluid, for instance, 
the availability of stable libraries (Section 7 and Section A).

The applications of PETs span the entire ML workflow.
To this end, our considerations on what solutions are capable of pro-

tecting the data should be contextualised depending on each stage of the 
ML pipeline. Existing defence mechanisms must be discussed contextu-
ally: for each particular threat, their guarantees depend on whether in 
the ML workflow they apply along with the trust assumptions and the 
inherited performance degradation that may result from applying them 
(Section 6).

The current work is not the first state-of-the-art review of security 
and privacy in machine learning. In (De Cristofaro, 2020) Cristofaro 
presents a broad review of privacy in machine learning, adversar-
ial models and attack methods, and prevention techniques at a very 
high level. The survey (Xue et al., 2020) explores the security issues of 
machine learning in a comprehensive way, analysing existing attacks, 
defence techniques, and security evaluation methods. It covers various 
aspects of machine learning security, including training set poisoning, 
backdoors, adversarial examples, model theft, and sensitive training 
data recovery. Real-world attacks are reviewed to highlight practical 
implications, and suggestions for security evaluations and future direc-
tions in machine learning security are provided. In (Liu et al., 2021a), 
the authors provide a state-of-the-art review of privacy issues and so-
lutions for machine learning, highlighting the unique challenges of 
privacy preservation in the context of machine learning. Their work 
covers the categories of private machine learning, machine learning-
aided privacy protection, and machine learning-based privacy attacks. 
Song et al. presents a benchmark for membership inference attacks 
by including non-neural network-based attacks. They also propose a 
privacy analysis metric called the privacy risk score, which helps to 
identify samples with high privacy risks and investigate factors that 
contribute to these risks (Song and Mittal, 2021). In this regard, another 
authoritative contribution is that of Papernot et al. (2018a); it discusses 
issues of security and privacy for machine learning, mainly referring 
to the famous Confidentiality Integrity Availability (CIA triad) security 
model, but also presents them with insights into emerging properties 
in fairness, accountability, and transparency. Papernot et al. clarifies 
the attack surfaces of a ML data processing pipeline, the trust assump-
tions placed onto the pipeline’s relevant actors, the capabilities that 
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and privacy during the training and inference phases, and finally the 
goals of the adversary in how it can violate instances of security and 
privacy properties, herein paired as confidentiality and privacy, and in-
tegrity and availability. Our organisational structure inevitably shares 
elements due to a common subject and, precisely, the ML pipeline, the 
threats and risks to security and privacy, and a discussion of current 
defence mechanisms. However, this work, compared to those previ-
ous works, is focused exclusively on confidentiality and privacy, diving 
deeper into threats, risks, and mitigation tools than (Papernot et al., 
2018a). By taking the viewpoint of data owners wishing to protect their 
data according to current data protection regulations, our work offers 
a knowledge that can be directly translated into practise to those who 
operate in the ML sector.

Due to this focus and this perspective, our discussion on confiden-
tiality and privacy reveals that they are qualities whose protection is 
more complex than it appears in other works such as (Papernot et 
al., 2018a; Al-Rubaie and Chang, 2019). By spelling out the differ-
ent phases more clearly and distinguishing the various actors that sit 
on those phases, a more detailed overview of potential threats con-
cerning the data flow and the malicious parties involved emerges. The 
different phases are also not independent, and a threat to one phase 
can increase the likelihood or severity of a threat to another. Further-
more, the attack surface against privacy and confidentiality is larger 
than one may initially think, and understanding what risk of attacks 
exists requires understanding the complex distributed architecture that 
today supports the training and inference phases of a machine learning 
system. In addition, it requires understanding the role played by the var-
ious distinguished actors —those we call computational parties— who 
can sit at different nodes in such an architecture and who can or cannot 
behave honestly. Finally, the pools of technologies that are available to-
day, mainly differential privacy, homomorphic encryption, and trusted 
hardware environments, have evolved quickly, and there is more to say 
that can be of interest to data subjects and controllers. The article of 
Papernot et al., citing a work that has been influential on the subject, 
suggests using differential privacy without giving much detail. Instead, 
we discuss this measure, but more extensively, while taking a broader 
focus on other techniques as well. And since in this manuscript, our aim 
is to generate a reference guide for those who plan to implement prac-
tical privacy-preserving ML workflows, we also mention how combined 
environments such as OpenMined toolkits 7 offer a portfolio of tools and 
libraries.

As an additional, although subsidiary, contribution, this work also 
discusses how the regulation on data privacy links to the wider con-
cern about how to achieve a trustworthy ML. In Section 10 we provide 
an outline of the legal and ethical framework by discussing the trust-
worthiness requirements and the challenges of applying them in an ML 
setting, along with the importance of the privacy angle as an unlocking 
factor for the data.

Section 8, concludes the paper and discusses the current research 
landscape in this domain, offering scientists from both the legal and 
computational sciences an overview of future directions in this field.

3. Preliminaries

In ML, the threats to data privacy change depending on several ele-
ments: the ML pipeline; the threat actors; the threatened parties (mainly 
the data owners); the architectural choices for the computations; and 
the phase of the pipeline that we are studying.

The workflow of a typical ML system includes three phases: data 
pre-processing; model building; and model serving. The typical data 
stakeholders are data owners, computation parties and communication 
parties (the latter will remain out of the scope of this work). Depending 
3

7 https://www .openmined .org/.
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Inference data ownersTraining data owners

Pre-processing Building Serving

Communication channel actors Communication channel actors

Computation parties

Fig. 1. The ML pipeline, and the actors involved. Data owners send their data, 
possibly via communications channels. Data are processed along the ML work-
flow, operated by the computation parties usually responsible for processing 
the data.

on the role of each of those stakeholders and the interactions between 
them, they have different protection expectations.

A machine learning system and its phases can be deployed locally, 
in the cloud, or in a combination of the two. Such choices will change 
how one looks at privacy and confidentiality requirements and relevant 
properties. Let us see those elements in more detail.

3.1. Machine learning pipeline

A typical ML system’s workflow has three main phases:

Data pre-processing: In this step the data is cleaned and pre-processed 
to be used by the models. The various cleaning and preprocessing 
operations are task- and data-dependent.8

Model building: The model, during this step is trained to fit the data. 
The output of the machine learning model can be described as a 
function ℎ𝜃(𝑥) where 𝑥 ∈𝑋 is the input and 𝜃 ∈Θ, the set of model 
parameters that will be specified during training. The type of opti-
misation depends on the task and the learning strategy: supervised, 
unsupervised, or reinforcement learning.

Model Serving: It includes deployment and inference operations. This 
phase focusses on serving a fully trained model as a service to ex-
ternal users for inference.

3.2. Data owners and other parties

The typical machine learning workflow involves the participation of 
different parties whose contributions are defined mainly by the context 
of deployment, the goal to achieve, and the architectural design of the 
workflow.

We categorise them into two main types: the data owners and the 
computation parties. There are also other parties which are out of scope 
and thus play a minor role in our discussion, such as the communication 
channel actors.9 Fig. 1 shows the ML workflow and where the actors 
operate there.

Data owners are either training data owners or inference data own-

ers (also called model/service customers, since they are the parties to 
which the model is served, and since this consumption is in fact an 
inference operation that requires them to send their data to get infer-
ences as a service, they are inference data owners). In this work, these 
are considered the threatened parties which face the risk of their data 
being exposed or inferred by threat actors.

The computational parties are those responsible for performing the 
various operations of data preprocessing, model building, and serv-
ing. From the perspective of data owners, these parties are generally 

8 As we will see, this phase may include already the usage of some privacy-
enhancing techniques to protect the privacy and/or the confidentiality of the 
training data.

9 The potential malicious actions that can be carried out by these actors are 
not specific to machine learning design choices but rather common for any 

secure network exchange of data.
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considered as potential threat actors, especially if the entity doing the 
computation is a third-party cloud server.

Not necessarily, all such parties are distinct, and so the deployment 
setting is a key component to deciding whether and how the data should 
be protected. For example, if all computational roles are performed by 
the same entity that holds ownership of both training and inference 
data, then privacy and confidentiality concerns become minimal.

3.3. Workflow actors between the technical roles and the legal terminology

Interpreting privacy issues in the machine learning workflow under 
the EU legal instruments requires a careful usage of terminology when 
describing the actors. In most data protection regulations in the EU such 
as the GDPR, prominently, actors are the data subject, data controller, 
and data processor. The term “data controller” in GDPR10 refers to “the 
entity that determines the purposes for which and the means by which 
personal data are processed. The controller must determine who is re-
sponsible for compliance with the data protection rules and how data 
subjects can exercise the rights in the rules”.11 The “data processor”12 is 
“the party that processes personal data only on behalf of the controller”.

The basic conditions for qualifying as a processor are, on the one 
hand, being a separate legal entity with respect to the controller and, 
on the other hand, processing personal data on his behalf. This process-
ing activity may be limited to a very specific task or context, or may 
be more general and extended. The definition of processor envisages a 
wide range of actors that can play the role of processor (“. . . a natural 
or legal person, public authority, agency, or any other body...”).13

Thus, for the terminology used in this paper, the computational 
party is the party with computational capabilities that performs com-
putations / calculations on the data, whether those calculations are 
pre-processing, training, or inference computations. From a legal per-
spective, this computational party can be either a processor or both a 
processor and a controller at the same time. It qualifies as a processor if 
the legal requirements of the processing are dictated by another sepa-
rate party known as the controller. The computational party takes both 
roles (processor and data controller) if it is the party that processes the 
data under a set of terms determined by itself.

Similarly, the term “data subject” merely refers to the person to 
whom the identification data relates. We quote “the ‘data subject’ is 
an identifiable natural person who can be identified, directly or indi-
rectly, in particular by reference to an identifier such as a name, an 
identification number, location data, an online identifier, or to one or 
more factors specific to the physical, physiological, genetic, mental, eco-
nomic, cultural, or social identity of that natural person”.14

In the same context, “personal data” refer to “the data that can iden-
tify a given data subject”. In a similar legal role, the Data Governance 
Act (DGA) uses another terminology, namely, “data holder” to refer to 
data owners who may own personal and non-personal data, we quote 
“ ‘data holder’ means a legal person, including public bodies and inter-
national organisations, or a natural person, who is not a data subject in 
relation to the data in question, who is entitled under applicable Union 
or applicable national law to provide access to certain personal data or 
non-personal data or to disclose such data”.15

The DGA definition of data holder aims to be more inclusive than the 
previous GDPR term of data subject; it opens the discussion of whether 
a ‘data holder’ is a ‘data controller.’ Therefore, although our work may 
facilitate the discussion about legal compliance by understanding the 
different privacy guarantees that each PET offers, we chose to use the 

10 GDPR Art. 4.
11 Article 29 Working Party Opinion 1/2010 on the concepts of ‘controller’ 
and ‘processor’ (WP 169).
12 GDPR Art. 4.
13 id. at 11.
14 According to Article 3 (1) of Regulation (EU) 2018/1725.
4

15 Art.2 DGA-Definitions.
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term “data owner” to refer to the party that holds (or has) the data prior 
to any processing; it can legally refer to a data subject, a controller, or 
a data holder depending on the nature of the data to process and the 
legal instrument used to interpret the case. In addition to the legal in-
strument used to study each case, it is important to clarify that the legal 
roles depend on the legal nature of the data (e.g., sensitive,16 personal 
data,17 etc.) and while this categorisation is important in the study of 
compliance, it has little relevance in the study of the technical feasi-
bility, performance, and the guarantees offered by PETs. The privacy 
guarantees offered by PETs and even the implementation of PETs can 
be technically built agnostically of these legal types. To explain, when 
adopting one of the privacy enhancing techniques listed in this work 
in a machine learning pipeline, the legal nature of the data does not 
affect the possibility of adopting those PETs, nor does it affect the tech-
nical privacy guarantees offered by these PETs. Thus, we adopt a legally 
neutral terminology to refer to the actors.

3.4. Architectural choices

The architectural choices made when designing the ML pipeline 
will determine the positions and number of different parties and de-
fine whether they are data owners or computation parties; therefore, 
they will help define the threat model and spot the threat points.

These architectural choices are about the ML pipeline phases of ref-
erence; on whether the computations of those phases are performed 
locally or outsourced fully (resp. partially) to other servers; and on 
whether the architecture is centralised or distributed.

In a fully outsourced computation, all the steps in an operation are 
executed by an external computation party, for example, when a train-
ing operation is performed entirely in a cloud service. Respectively, a 
partially outsourced computation is where a number of steps of an op-
eration are performed locally and the rest is performed in the cloud. For 
instance, in horizontal federated learning, some training operations are 
performed locally by the data owners, while the task of updating the 
global model is performed by a central aggregating party.

These architectural choices are influenced by a number of factors 
such as the availability of the computation power, the financial re-
sources, the organisational and legal requirements, etc. We list them 
in order according to the ML phase involved:

During the data pre-processing phase:

• Data pre-processing can be performed fully locally by the data owner.
• Data preprocessing can be partially outsourced, where heavy algo-

rithm preprocessing is performed by a cloud service.
• Data preprocessing is completely outsourced.

During the model-building phase:

• The training data owner party trains the complete model locally.
• The training data owner party trains only a partial model locally. This 

partial model can be used to refine a global ML model collaboratively 
or distributedly.

• The training data owner party sends its data to third-party entities 
that have the computational resources required to train the model.

During the model-serving phase:

• The model customer receives the trained model directly and performs 
the inference computation locally if such a computational resource is 
available.

16 data Article 4(13)(14) and (15), and Article 9 and Recitals (51) to (56) of 
the GDPR.
17 Art. 4 GDPR Definitions and Art. 9 GDPR Processing of special categories of

personal data.

https://ec.europa.eu/justice/article-29/documentation/opinion-recommendation/files/2010/wp169_en.pdf
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022R0868
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e1489-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e2051-1-1
https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679&from=EN#d1e40-1-1
https://gdpr-info.eu/art-4-gdpr/
https://gdpr-info.eu/art-9-gdpr/
https://gdpr-info.eu/art-9-gdpr/
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• The model customer uses a third-party facility where the trained 
model is already deployed to query it to receive the prediction ser-
vice.

4. Privacy and confidentiality

Although in a legal context there is not a crisp distinction between 
privacy and confidentiality when referring to data protection and to 
appropriate measures to ensure it —for instance the GDPR mention con-
fidentiality, while the 2002 Directive on privacy and electronic commu-
nications refer to privacy— in this work, more technical and orientated 
to ML technologies, we need to slightly redefine the terms.

Even if preserving confidentiality has been seen often as a sufficient 
condition to preserve privacy (i.e., preserving confidentiality implies 
data privacy) (Gürses, 2010), or although the general interpretation 
suggests that confidentiality is about data to be protected while privacy 
concerns identifying people, when discussing the terms in reference to 
ML learning, we need to discern what we can learn from the sheer data 
(confidentiality) and what can be learnt by accessing statistics about 
the data (privacy). In fact, a ML model can be used to learn about a cer-
tain person, whose data have been used to build it, although there is no 
explicit reference in the model that points out the person and its data.

The way in which we distinguish confidentiality and privacy is not 
uncommon (e.g., see (Choquette-Choo et al., 2021a)).

Confidentiality of the data ensures that there is no explicit disclosure 
of the data or of certain parts of the data. In other words, the confiden-
tiality of the data is preserved if the data is never accessed in its raw 
form. Thus, the need for a party to keep their data secret from other par-
ties is a confidentiality need. In this work, when the entire data point 
is kept secret from other parties (generally, when using cryptographic 
tools such as homomorphic encryption or functional encryption, etc.), 
it is referred to as a strong confidentiality guarantee. Whereas, when 
only certain features of the data are hidden, for e.g., when anonymising 
personal identifiers such as names or age or race, we refer to it as a lim-
ited confidentiality guarantee since only the secrecy of those features is 
guaranteed, not the entire data point.

Privacy of the data is protected when it is ensured that the adversaries 
cannot leak sensitive pieces of information about the data through an 
intended interaction with the threatened party (such as the model de-
ployment party), such as inferring the participation of a certain data 
point in the training of a given model, also known as membership infer-
ence attacks (Shokri et al., 2017). In other words, privacy is what can 
be revealed from sharing statistics about the data (Choquette-Choo et 
al., 2021a).

5. Threat model

Our threat model clarifies who are the threat actors depending on 
the elements in Section 3. It also defines the goals of these threat actors.

A threat is defined from the point of view of data owners. Since 
we are interested in examining risks from this standpoint, we consider 
out-of-scope threats regarding security aspects such as robustness and 
service availability, as well as privacy matters regarding the model and 
its parameters, which are about the protection of intellectual property.

From Section 3, we remind that there are two types of data owners: 
(a) training data owners whose data are used to train and build the 
model; and (b) inference data owners that interact with the already 
deployed model as service customers. From the perspective of both, the 
threats come from the rest of the stakeholders within the ML workflow 
—and therefore, are seen as threat actors—, with whom they interact 
directly or indirectly.

A direct interaction between a data owner and a threat actor is when 
the data are shared directly and explicitly between the two entities, for 
5

e.g., when an inference data owner (a model customer) sends his data 
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to the cloud inference facility to obtain predictions as a service. Instead, 
an indirect interaction occurs between a data owner and a threat actor 
when the data owner shares the data implicitly through the sharing of 
statistics, aggregations, or knowledge extracted from the data generally 
as a result of an inference computation, for e.g., the probability vectors 
obtained when using an ML classifier.

Thus, a direct interaction between data owners and threat actors 
yields confidentiality risks because the data are shared directly, while 
an indirect interaction between them exposes privacy risks.

From the viewpoint of data owners, the threats against privacy and 
confidentiality change depending on the interaction points between 
them and threat actors, and whether the interaction is direct or indi-
rect.

Table 1 summarises the existing threats that occur during the train-
ing and inference phases when those are operated on the cloud and 
during their interaction with model customers.

5.1. Confidentiality risks

Having the data owners as separate entities from the computation 
facilities requires the data to be uploaded to the servers of the comput-
ing facilities, hopefully through a secure channel. However, even if the 
transmission channel is secured and the data remain encrypted during 
transmission, the computation facility in most cases will only process 
them in plaintext format after being decrypted. Hence, the data will 
reside in third party servers in its original pain-text form.

This is the biggest type of threats, since the user loses any gover-
nance over his private information once decrypted in third-party servers 
which exposes the data to all possible threats and attacks performed by 
any malicious actors from within or outside this third-party server.

5.2. Privacy risks

In privacy attacks, the attacker aims to gain knowledge beyond what 
the machine learning service offers as inference results. The attacker’s 
visibility of the model ranges from a black-box access such as the work 
of Shokri et al. (2017), where the attacker has only access to the infer-
ence results produced by the model, to a white-box access (Yeom et al., 
2017; Szegedy et al., 2013; Nasr et al., 2019) where the attacker has 
partial or full access to the models’ parameters or additional informa-
tion about the model, such as the adversary having access to one of the 
partial local models used in a federated learning setting, or knowledge 
about explanation vectors about the model decisions, or even the archi-
tecture of the model in the case the model was a deep neural network, 
etc.

There are various privacy attacks against machine learning systems 
such as membership inference attacks (Shokri et al., 2017; Bernau et 
al., 2019; Jia et al., 2019a; Li et al., 2020) and model inversion attacks 
(Fredrikson et al., 2015; He et al., 2019; Wu et al., 2016).

5.2.1. Membership inference attacks

In a membership inference (Shokri et al., 2017; Bernau et al., 2019; 
Jia et al., 2019a; Li et al., 2020) attack (see Fig. 2) the adversary tries to 
identify whether a given data point (𝐷𝑐𝑖, 𝑃𝑖) or a sample of data points 
were part of the training data set 𝐷𝑡𝑟𝑎𝑖𝑛 used to train a given model 
ℎ𝜃 . Revealing that a certain record was used to train a specific machine 
learning model is a strong indication of private information leakage 
about the individual data points in the training set. e.g., knowing that a 
medical record was used to train a machine learning model deployed for 
diabetes detection can reveal that the person concerned has diabetes.

These attacks exist in the black-box and the white-box modes. In 
the black box mode, the attacker has only a query access to the model 
without any inner information about it, hence only the query results are 
used to infer the membership of data points within the original training 
set. In the white-box setting, the attacker has either access to the inner 

details (description) of the model or can download it locally.
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Table 1

Points of interaction between the data owners and the other threat actors and potential threats against privacy and confidentiality from their 
perspective. Herein a ✓ indicates the presence of a threat, an ✗ the absence. When there is no interaction between the owner of the data and 
the threat actor, it is marked as not applicable (N/A).

Data owners
Threat actors

Cloud data pre-processing/
training facility

Cloud inference facility
Other training
Data owners
(federated learning setting)

Model customers

privacy
risks

confidentiality
risks

privacy
risks

confidentiality
risks

privacy
risks

confidentiality
risks

privacy
risks

confidentiality
risks

Training data owners ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Inference data owners N/A N/A ✗ ✓ N/A N/A N/A N/A
The first membership inference attack was designed by Shokri et 
al. (2017) and implemented based on the concept of shadow models, 
which are models trained on some attacker dataset that is similar to the 
target model training set. The attack is modelled as a binary classifica-
tion task trained on the prediction of shadow models in the adversary 
data set. Multiple works have then followed extending the attack to var-
ious settings such as in federated learning (Melis et al., 2018), transfer 
learning (Zou et al., 2020), generative models (Hayes et al., 2017), lan-
guage models (Carlini et al., 2019; Song and Shmatikov, 2019a) and 
speech recognition models (Shah et al., 2021).

The membership inference attack can be combined with other pri-
vacy attacks such as model stealing or model reconstruction attacks (Wu 
et al., 2020a; Tramèr et al., 2016; Milli et al., 2019), where the adver-
sary attempts to design a model ̃ℎ𝜃(𝑥) using black-box access to a target 
model 𝑓 with 𝑓 being an approximation or even a perfect match to 𝑓 . 
The reconstructed model then is a perfect candidate for a performant 
shadow model that mimics the targeted model, and hence results in a 
more efficient membership inference attack.

This type of attacks relies on the fact that the models behave dif-
ferently when seeing new data points compared to the training data. 
Models tend to be more confident about the training data, hence the 
prediction loss is significantly lower than the prediction loss of an un-
seen data point.

The poor generalisation of models is one of the main factors that 
improves the accuracy of membership inference attacks. An over-fitted 
model tends to hard memorise the training data points rather than 
learning the underlying distribution. Yeom et al. (2017); Song and 
Shmatikov (2019b) proved that overfitting is a sufficient condition to 
perform a membership inference attack, but not a necessary one. Fur-
thermore, Long et al. (2018) demonstrated that even well-generalised 
models are prone to membership inference attacks due to the unin-
tended memorisation problem that occurs when training machine learn-
ing models (Thakkar et al., 2021), where models memorise rare or 
unique sequences of training data exposing minorities in datasets to 
the risk of such attacks.

The architecture of the model, the type of model, and the charac-
teristics of the data set, such as the dimensionality of the output and 
the uniformity within each class, are also factors that can affect the 
accuracy of the attack (Truex et al., 2018), (Shokri et al., 2017). Com-
plex models exhibit higher precision in membership attack (Nasr et al., 
2019), in addition to the fact that the higher the number of classes in 
the data set, the higher the level of membership leakage will be (Truex 
et al., 2018).

5.2.2. Model poisoning attacks to extract training data

In model poisoning attacks (see Fig. 2), the attacker introduces ad-
versarial examples into the training set 𝐷𝑡𝑟𝑎𝑖𝑛 in order to manipulate 
the behaviour of the model during inference time or to manipulate the 
training of the model.

Poisoning attacks are not restricted to training data points, but also 
to model weights. In a federated setting, for example, it is possible 
to poison the global model by influencing the weights or regularising 
them, inserting hidden back doors, or even injecting poisoning neurones 
6

(Muñoz-González et al., 2017; Jagielski et al., 2018; Chen et al., 2018).
These threats can be used as a first-step strategy to improve the suc-
cess rate of other privacy attacks, such as membership inference attacks 
(Tramèr et al., 2022) or data reconstruction attacks such as the attack 
of Sun et al. (2021) where a malicious client falsifies its local training 
mode by injecting malicious model parameters that were shared with 
the victim through the aggregator. These malicious parameters require 
more effort from the victim’s local model training in order to counteract 
the defect, which exposes more details to the adversary.

5.2.3. Model inversion attacks

Although membership inference attacks can reveal the existence of 
certain data points in the training of the model, model inversion attacks 
(Fredrikson et al., 2015; He et al., 2019; Wu et al., 2016) go beyond 
that (see Fig. 2) by trying to create similar realistic samples of features 
that accurately describe each of the classes of the data set that were 
used to train the targeted model itself. Furthermore, in the case where 
the features match the raw data (image data, videos, etc.), the inversion 
attack includes a reconstruction of a full approximation of the training 
data used. For example, in the face recognition model, an attacker can 
recover an individual face image whose photo has been used as part of 
the training set.

These attacks use confidence vector values as probability vectors re-
turned by machine learning models exposed as APIs, then those vectors 
are used to compute an average that represents a certain class (Yang 
et al., 2019c). The biggest risk exists when a class represents a single 
individual data point, which is the case with face recognition tasks.

5.2.4. Attribute inference attacks

In attribute inference attacks (also called “feature reconstruction 
attack”) (Jayaraman and Evans, 2022), the adversary knows some at-
tributes about given data and by attacking a model that was trained on 
these data, the attacker aims to extract other attributes about those data 
(e.g., an attacker knows the name and age attributes and aims to infer 
the gender). This kind of attack targets particularly vertical federated 
learning settings, where the attacker is either the active party18 or the 
passive party.

When the attacker is the active party, this kind of attack is called a 
feature inference attack (Weng et al., 2020), (Luo et al., 2021), (Jiang et 
al., 2022). Weng et al. (2020) approach proposed two attacks, and both 
approaches focus on investigating the potential data leakage caused by 
numerical computations. The first attack targets XGBoost by encoding 
magic numbers in the gradients and then trying to recover the features 
via a proposed reverse sum attack method, while the second attack tar-
gets logistic regression using a reverse multiplication method. While 
Weng et al. work gave strong indications about the possibilities of data 
leakage through the sharing of intermediate computation results, their 
attacks targeted simple models, namely XGBoost and logistic regression 
models, and cannot be extended to more complex models. Later Luo et 
al. (2021) overcame this limitation by proposing an equality solving at-
tack for linear regression models, a path restriction attack for decision 

18 In Vertical Federated Learning (VFL) the active party is the party that holds 

the labels.
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Fig. 2. Summary of some data privacy threats in a machine learning workflow, namely: model poisoning, model inversion, membership inference attacks. The 
scenario considered is when both data owners and customers use a third-party computation facility to perform model building operations, as well as inference.
tree models, and a generative regression network to attack more com-

plex models. Although their work covered attacks for a wider range of 
models, their attack setting assumes that the attacker, that is, the ac-

tive party, knows the entire model weights, including the local model 
of the passive party. In addition to attacks that exploit the intermedi-

ate computation results, Jiang et al. (2022) proposed another method 
from feature inference attacks that exploits gradients. Jiang’s attack tar-

geted simple models such as simple logistic regression models as well as 
more complex models like multilayer neural networks in both a white-

box setting and black-box setting; however, they rely on the assumption 
that the active party has access to a small set of the passive party data.

On the other hand, when the attacker is the passive party, the at-

tribute inference attack is called the “label inference attack” (Fu et 
al., 2022). Fu et al. (2022) proposed three different label inference 
attacks. In their first attack “passive label inference attack through 
model completion” the adversary fine-tunes the bottom model with 
an additional classification layer for label inference using a small set 
of auxiliary labelled data. The first attack exploits the ability of the 
passive attacker to turn his owned features into an indicative represen-

tation that can be used to predict the labels. For their second attack, 
the adversary accelerates the gradient descent on his local model using 
an adaptive malicious local optimiser to get access to a trained bottom 
model that encodes more hidden information about labels. The third 
attack, called the “direct label inference attack”, relies on the gradi-

ents received to infer the labels; however, the attack works only in a 
federated learning setting without model splitting.19 Liu et al. (2021b)

proposed another way to recover labels using batch-averaged gradients 
that target classification models, where the top model uses a Softmax 
function on the sum of intermediate results and cross entropy as the 
loss function. While Li et al. (2021) proposed two attacks to retrieve 
labels from the norm and the direction of intermediate shared gradi-

ents.

19 In vertical federated learning constructed with model splitting the partici-
pants can not access to the last layer of the neural network and thus the label 
7

in the server are more secure (Wang et al., 2023).
5.2.5. Data reconstruction attacks

Data reconstruction attacks or membership reconstruction attacks 
aim to reconstruct samples from the training set of the target model 
which results in severe consequences especially when the model is 
trained on highly regulated data such as health data.

This kind of attacks targets models trained in federated learning set-
tings (both horizontal and vertical federated learning), as well as online 
learning settings.

During a horizontal federated learning setting,20 reconstruction at-
tacks exploit the gradients shared as intermediate results between the 
central aggregator and local clients (Zhu et al., 2019; Yin et al., 2021; 
Hitaj et al., 2017; Yang et al., 2023). Among the first works on these at-
tacks, we find the attack introduced by Phong et al. (2018), where the 
authors demonstrated that training data can be mathematically derived 
from the weight gradients of the first layer and bias in fully connected 
models. Zhu et al. (2019) proposed a reconstruction attack on Convo-
lutional Neural Networks (CNNs) where they initially created dummy 
data points sampled randomly with their respective random dummy 
labels; then those dummy data are fed to the models to get dummy gra-
dients, by obtaining the dummy gradients, they try to optimise them to 
match the original gradients of a targeted original training data such 
that the closer the dummy gradients become to the original gradients, 
the more the dummy data will look like the original training data. Their 
experimental setup recovered both images and text data; however, it 
suffers from stability problems. Later, Zhao et al. (2020) addressed the 
stability limitations of Zhu’s reconstruction attack (Zhu et al., 2019) by 
exploiting the relationship between the labels and the gradient signs. 
Another approach to address the problems is in the work of Zhu et al. 
(2019) was introduced by Ren et al. (2022) where a Generative Ad-
versarial Neural Network (GAN) was used as an attack model, their 
approach was more stable and scales well on large-resolution images.

The extension of these attacks into a vertical federated learning set-
ting21 was first introduced by Jin et al. (2021) whose approach focusses 
on recovering the gradients with respect to the outputs of the first fully 
connected layer; then, using chain rule, they recover the inputs of the 
respective first fully connected layer; after that, they randomly gener-

20 “Horizontal federated learning, or sample-based federated learning, is intro-
duced in the scenarios that data sets share the same feature space but different 
in sample” (Yang et al., 2019b).
21 Vertical federated learning refers to the setting where “different parties hold 

different feature data belonging to the same set of samples “ (Li et al., 2023).
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ate fake data and labels and try to optimise this generation process so 
that the inputs of the first fully connected layer of the true training data 
match the inputs of the first fully connected layer of the fake data. Data 
reconstruction attacks in vertical federated learning achieve high suc-
cess rates because of the capability of Deep Neural Networks (DNNs) 
in modelling the correlation between the intermediate calculations and 
the inputs.

Data reconstruction attacks can also target online learning settings 
where models are curated by training on newly collected data (Salem 
et al., 2020), they exploit the posterior difference between the curated 
model and the old one.

5.2.6. Training data extraction attacks from language models

Large generative language models are vulnerable to a training data 
leaking attack, where the generated outputs of the model can reveal 
text sequences from the model’s training data. Carlini et al. (2021) de-
signed a simple attack to study the extent of training data memorisation 
in GPT2. The attack relies on querying the model to generate large 
amounts of data; then they use membership inference attack to clas-
sify the generated outputs into either members or non-members of the 
training data. The attack showed that the larger the language models 
are, the more they memorise verbatim sequences of the training data. 
This kind of attacks feeds on the potential memorisation of sequences 
of training data by large neural networks. Carlini et al. (2019) showed 
that large sequence models tend to memorise rare and unique sequences 
even if those are not directly related to the intended task, regardless of 
whether the model is overfitted. They called this kind of memorisation 
“unintended memorisation”, which occurs when models reveal out-of-
distribution training data that are irrelevant to the learning task and 
do not help in improving model accuracy. Zhang et al. (2021) studied 
another type of memorisation called “Counterfactual Memorisation”, 
which inspired notions from human psychology and studied the changes 
in model’s predictions when a particular document is omitted during 
training. Their work revealed that more training epochs and the pres-
ence of foreign language text and structured text like car sales listings 
increase counterfactual memorisation. Furthermore, their study shows 
that the model predictions can be affected when particular training ex-
amples with high memorisation are omitted.

Moreover, the risk of memorisation by language models can be in-
creased when there are duplicate sequences within the training data 
(Carlini et al., 2023).

6. Mitigation techniques

6.1. Trust model

Each and every privacy enhancing technology within the ML data 
flow is characterised by the guarantees it gives under a set of assump-
tions. In other words, confidentiality or privacy guarantees for each 
PET are granted under certain constraints. These constraints are known 
as trust assumptions. The trust assumptions bound the capabilities of 
the malicious entities involved, thus the guarantee holds only within 
those limitations: they do not hold anymore if the limitations are re-
moved. Because of this duality, in all the tables where we comment 
on privacy-enhancing techniques’ guarantees, we keep both columns 
“Trust Assumptions” and “Limitations”. Some of our readers, usually 
security analysts, may prefer the trust assumptions to be stated explic-
itly; others, usually data owners, may find it more helpful to reflect on 
the limitations of a privacy-enhancing technique.

In this section, we present the existing privacy preserving techniques 
throughout the machine learning pipeline from data preparation to 
model inference along with their trust assumptions and the guarantees 
they offer. We also discuss their limitations and the costs that result 
8

from adopting them.
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6.2. Mitigation techniques during the data preparation phase

Data prepossessing/preparation phase is one of the first steps in the 
machine learning pipeline where data are generally cleaned, labelled if 
necessary, and prepared to be fed to models for training.

When adopting a privacy-preserving technology in this phase, the 
training data owner aims to minimise the exposure of the data to the 
other threat actors either by concealing the sensitive attributes or by 
adding noise to the data before sending them to the training computa-
tion party.

Privacy-preserving approaches for data preparation focus on three 
directions: (i) Identifying sensitive attributes and concealing them par-
tially or fully; (ii) Applying perturbation techniques that add a certain 
amount of noise to prevent reverse engineering statistical conclusions 
to retrieve original data points; (iii) Resorting to surrogate dataset tech-
niques. All these techniques are summarised in Table 2 where the dif-
ferent privacy and confidentiality guarantees offered by these PETs are 
discussed together with the set of trust assumptions to consider. We 
also point out the utility loss that can occur due to adopting these tech-
niques.

6.2.1. Private attributes concealing and/or elimination

Sensitive attributes concealing mechanisms such as k-anonymity 
(Sweeney, 2002), l-diversity (Machanavajjhala et al., 2006), and t-
closeness (Li et al., 2007) have been adopted to remove and/or replace 
any identification information, i.e. any attributes that are considered 
sensitive from the data used to train models. These approaches aim to 
ensure that the subjects of the data22 or the entities whose data are 
considered private or sensitive cannot be re-identified based on their 
sensitive attributes while the data remain useful.

These mechanisms have been used for a long time in data mining 
workflows. Friedman et al. (2008) were among the first to propose 
an extension of k-anonymity to be applied in various data mining al-
gorithms such as decision trees, association rules and clustering algo-
rithms.

The k-anonymity mechanism ensures that private attributes about 
an individual are indistinguishable from at least k-1 other individuals. 
k-anonymity starts by spotting the identifiers and quasi-identifiers for 
each data attribute, after which the identifiers are removed, and the 
quasi-identifiers are partially obscured. Extending the k-anonymisation, 
the l-diversity mechanism reduces the granularity of the data represen-
tation; and by using suppression and generalisation techniques, a data 
point can be mapped to at least 𝑙−1 other records in the dataset, ensur-
ing additional levels of diversity across sensitive fields. The t-closeness 
technique improves the t-diversity concept.

The main critique that anonymisation techniques often receive is the 
impact of anonymisation on the accuracy of models due to information 
loss caused by removing the identifiers and the quasi-identifiers from 
the data (Ni et al., 2022). To overcome this drawback, Kifer and Gehrke 
(2006) designed a utility metric for several anonymisation algorithms 
to produce an anonymous version of ML workflows.

Recent works focus on building utility-preserving anonymisation 
strategies. Yao et al. (2023) proposed a utility-aware anonymisation 
model for data that contain multiple sensitive attributes by deassociat-
ing the relationship between quasi-identifiers and sensitive attributes by 
partitioning a set of data records into groups. Alternatively, Goldsteen 
et al. (2022) builds accuracy-guided anonymisation. Their approach is 
based on training an anonymiser model on the training data used to 
build the target model whose accuracy is to be preserved; then they use 
the predictions of this target model as labels for the anonymiser.

Although not considered an anonymisation technique, we should 
also mention the various, and still commonly applied in certain do-

22 We use the term ‘subject of the data’ or ‘data subject’ in the case where the 

data is personal.
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Table 2

Privacy enhancing technologies applied during the data preparation phase.

Trust assumptions Privacy guarantees Confidentiality
guarantees

Utility loss Limitations

Anonymization Threat actors do not have 
access to the anonymisa-
tion mechanism.

Limited privacy 
guarantees prone 
to re-identification 
attacks (Wondracek et 
al., 2010).

Confidentiality 
guarantees limited to 
anonymised features.

Depends on the relevance of 
the correlations between the 
anonymised features and the 
target variables.

Possibility to deanonymise the 
data via linkage attacks using 
other datasets.

Pseudo-anonymisation Threat actors do not have 
access to the lookup tables 
that contain pseudonyms.

Limited privacy guar-
antees prone to re-
identification attacks.

Confidentiality guaran-
tees limited to pseu-
doanonymised features.

Depends on the relevance of 
the correlations between the 
pseudonymised features and 
the target variables.

Possibility to deanonymise the 
data when performing linkage 
attacks using other datasets.

Differential privacy Training parties are not 
trusted to apply calibrated 
noise to produce differen-
tial privacy.

Strong privacy guar-
antees: The contribu-
tion of each individual 
data point cannot be 
inferred.

No confidentiality guar-
antees.

Depends on the privacy bud-
get 𝜖 the smaller is 𝜖 the less 
accurate is the result, gener-
ally LDP is known to suffer 
from a high utility loss.

The more an 𝜖-DP algorithm 
is run, the weaker the privacy 
guarantee for a database be-
comes.

Surrogate datasets Threat actors do not have 
access to the synthetic 
data generators

Privacy guarantees de-
pend on how much 
can the synthetic data 
reveal about the real 
data.

Strong confidentiality 
guarantees.

Depends on how much the 
distributional characteristics 
of the original datasets are 
preserved in the synthetic 
dataset.

When generative models are 
used, there is an inherent risk 
that the surrogate data set 
may contain outlier data re-
produced by the neural net-
work generator.
mains, techniques used to pseudo-anonymise the data. Generally speak-
ing, their purpose is to replace the true entries with synthetically gen-
erated data (Neubauer and Heurix, 2011) and to maintain the lookup 
tables to keep them safe, to deanonymise the data in case of need. This 
may happen when, in the case of unexpected finding e.g., finding out 
that a group has cancer or that in the analysis of message, one finds out 
signs of abuse, the true entities must be revealed.

Despite the simplicity, pseudo-anonymization remains weakly adopt-
ed in machine learning systems due to its many shortcomings. Pseudo-
anonymisation poses technical challenges about safeguarding the 
lookup tables.

Furthermore, sensitive attributes concealing techniques are suscep-
tible to deanonymisation attacks (Narayanan and Shmatikov, 2019; De 
Montjoye et al., 2013). If we take the example of natural language pro-
cessing tasks, sensitive attributes concealing techniques start by identi-
fying sensitive information in the text such as names, gender, or address 
using a named entity recogniser. However, the best named entity recog-
niser has an accuracy of 90% and here we end up with a 10% error rate. 
The tricky fact is that we evaluate the error based on a human annota-
tion with no guarantees that an inter-annotator agreement was done.23

Another source of noise is the fact that the named entity recogniser 
(NER) is heavily dependent on the structure of the text. Grammatical 
structure and typos play a significant role in the accuracy of NERs. In 
short, private attribute concealing techniques, despite the simplicity of 
implementing them, remain weak in the fort of the reidentification at-
tacks.

6.2.2. Perturbation techniques

Perturbation techniques are statistical tools that add a certain 
amount of noise to prevent reverse engineering of statistical conclusions 
to infer the membership of individual data points. Local differential pri-
vacy (Dwork and Roth, 2014; Evfimievski et al., 2003) (LDP) has strong 
privacy guarantees because it maintains plausible deniability at the user 
level. Works such as (Chen et al., 2011; Jiang et al., 2013; Erlingsson 
et al., 2014) used LDP as a strong privacy guarantee for sharing sen-
sitive location data and user data collection. One potential drawback 

23 Inter-annotator agreement IAA is a measure of the quality of the annotations
done by multiple annotators by accounting for how many annotators can make 
9

the same annotation decision for a certain label category or class.
when working with local differential privacy is the aggregated noise 
budget. To reduce the effect of the aggregated noise on the final re-
sult, LDP requires a large number of data points. Furthermore, since 
for each data point an amount of noise is added, the total noise tends 
to be large. An alternative approach is using global differential privacy 
by making the pre-processing algorithms differentially private. Mo et 
al. (2019) propose a differential private based preprocessing technique 
for distance-based clustering in big data mining; their proposed adap-
tive mechanism proves to provide a good trade-off between privacy 
and utility in distance-based clustering algorithms. Amin et al. (2019)
proposed an 𝜖 differentially private algorithm to calculate the covari-
ance matrix, which is a specific preprocessed representation of a dataset 
that can be used for regression and PCA. However, most differential 
private preprocessing techniques are generally designed for specific tar-
geted algorithms, e.g., the approach of Mo et al. (2019) is designed for 
distance-based clustering algorithms, while the technique of Amin et al. 
(2019) is designed for algorithms that compute on covariance matrices, 
and thus both approaches are hard to extend for other algorithms. To 
alleviate this limitation Stoddard et al. (2014) proposed a differentially 
private preprocessing algorithm for feature selection that is agnostic to 
the classifier used during the training phase.

6.2.3. Surrogate dataset techniques

Machine learning models aim to learn the underlying distributions 
of data sets to achieve the target. In the case of highly sensitive data, 
the usage of these data to train a model becomes problematic due to 
the very strict regulations that govern the processing and use of such 
datasets. Therefore, one way to achieve the goal is the usage of sur-
rogate datasets, which are formed by grouping anonymised datasets 
and abstracting the dataset using sketching techniques (Sabay et al., 
2018; Yang et al., 2019a) or even using generative models to generate 
synthetic datasets (Nik Aznan et al., 2019) (Assefa et al., 2021). Re-
cent advances focus on the use of deep generative models to generate 
synthetic datasets; Dash et al. (2020) used GANs (generative adversar-
ial networks) to generate hospital time series based on the MIMIC-III 
dataset. One of the shortcomings of generative models used to generate 
sensitive data is the fact that these models require sufficiently large and 
heterogeneous training data to build good quality generators; however, 
such a requirement is problematic to satisfy since access to sensitive 
real data, such as brain MRI data (Alrashedy et al., 2022), is restricted 

in the first place. To overcome this challenge, researchers used data 



S.Z. El Mestari, G. Lenzini and H. Demirci

augmentation techniques such as the work of Huo et al. (2018) and 
Qasim et al. (2020) however, their approaches tend to limit the user’s 
control over the generated data. A more recent work by Fernandez et 
al. (2022) proposes a model that generates both the MRI brain images 
and their respective labels where the generation of the MRI images is 
conditioned by the generated labels. Generating good-quality synthetic 
data faces many challenges. Generators should implement a statistically 
accurate generation model that introduces little to no bias compared to 
real data (Mannino and Abouzied, 2019). Furthermore, the process of 
generating sensitive data should be audited to allow an acceptable level 
of privacy, robustness and quality (Belgodere et al., 2023) (Alaa et al., 
2022).

6.3. Mitigation techniques during the model building phase

Privacy enhancing techniques added during model training can be 
divided into four categories: (i) perturbation techniques added to the 
training algorithm itself to turn it into a differentially private algorithm; 
(ii) training on encrypted data; (iii) privacy-preserving architectural 
choices like PATE and federated learning; and (iv) training on privacy-
preserving hardware solutions such as trusted execution environments. 
While the former serve to offer privacy guarantees by mitigating model 
reverse engineering attacks such as membership inference attacks, the 
latter offers confidentiality guarantees. This is due to the fact that cryp-
tographic tools, TEEs, and vanilla federated learning guarantee the 
secrecy of the data and thus prevent attacks that try to directly ac-
cess the data in its original form, while DP and PATE guarantee that 
adversaries cannot reveal sensitive information about the data through 
seeing statistics and/or knowledge extracted from the data. These tech-
niques are summarised in Table 3 along with the inherited privacy and 
confidentiality guarantees that result from adopting them under a set of 
trust assumptions. In addition to that, we point out the potential utility 
losses caused by these PETs.

6.3.1. Differential private training

Differential privacy can be implemented within the training algo-
rithm to make optimisation algorithms differentially private, as illus-
trated in (Abadi et al., 2016; Li et al., 2019). Abadi et al. (2016)
propose a differentially private stochastic gradient descent approach 
to train a privacy-preserving deep neural network model. Among more 
recent work, McMahan et al. (2017b) demonstrate that it is possible to 
train large recurrent language models with user-level differential pri-
vacy guarantees with only a negligible cost in predictive accuracy. In 
(Li et al., 2019), Li et al. proposed a differentially private algorithm 
for gradient-based parameter transfer to enable a differentially private 
setting for transfer learning tasks.

In differentially private stochastic gradient descent proposed by 
Abadi et al. (2016) and also (Shokri and Shmatikov, 2015) privacy 
comes at the cost of utility. Furthermore, the amount of noise added to 
gradients does not take into account the importance of the learnt pat-
terns, which exposes fairness issues towards minorities in the dataset 
and also poor accuracy. To address this problem, Phan et al. (2017)
proposed an adaptive mechanism to inject noise into features based on 
the contribution of each feature to the output, adding Laplace noise to 
the affine transformations of neurones and loss functions. Nasr et al. 
(2020) suggested that the loss in model accuracy is due to the fact that 
the Gaussian mechanism is not utility-preserving. They suggested ran-
domising gradients with a t-student distribution instead.

Later works also aimed to design differentially private version of 
the non-gradient-based optimisers. In (Kusner et al., 2015) proposed a 
differentially private Bayesian optimisation to fine-tune the hyperpa-
rameters of a wide variety of machine learning models.

6.3.2. Encrypted machine learning training

Cryptographic tools offer a strong confidentiality guarantee, which 
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is also known in the literature as “confidential-level privacy”, the adop-
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tion of cryptosystems in the training process is a promising step. How-
ever, the computation involved in model training is more complex. 
Traditional cryptosystems, such as the Advanced Encryption Standard 
(AES), preserve the secrecy of data during transmission or storage. 
However, when trying to compute on these ciphers, the results of the 
computations become meaningless; this yields the obligation to decrypt 
the ciphers prior to any computation.

Crypto-based training uses recently proposed advanced crypto-
graphic schemes that mainly include homomorphic encryption (HE) 
(Gentry, 2009; van Dijk et al., 2010; Brakerski et al., 2014; Martins et 
al., 2017; Cheon et al., 2017) and functional encryption (FE) (Boneh et 
al., 2011; Goldwasser et al., 2014; Abdalla et al., 2015, 2019) schemes. 
These schemes offer the possibility of computing over encrypted data.

Homomorphic encryption (HE) is a form of public key encryption 
with the particularity that it allows computations on encrypted data due 
to the fact that it is build upon a homomorphism that by definition pre-
serves the structure of each algebraic group. In short, the result of the 
computation remains encrypted and is the encrypted version of the re-
sult of the same computation performed on the original data. Likewise, 
functional encryption(FE) is a generalisation of public-key encryption 
that allows the evaluation of a function on a ciphertext and outputs the 
result in a plain-text form.

In both techniques, the computation party operates over encrypted 
inputs. However, the key difference between HE and FE is that in 
functional encryption, the computation party that evaluates a func-
tion 𝑓 (𝐸𝑛𝑐𝑘(𝑥)) can learn the value of 𝑓 (𝑥), while in homomorphic 
encryption, the computation party learns 𝐸𝑛𝑐𝑘(𝑓 (𝑥)). Thus, theoreti-
cally speaking, if functional encryption is used, then the computation 
party is not trusted with the input data but is trusted enough with the 
outputs of the computation.

Compared to training on nonencrypted data, training on encrypted 
data may require an additional step: data encoding. This is because 
most cryptosystems, such as BGV (Brakerski, Gentry, Vaikuntanathan) 
(Yagisawa, 2015) compute on polynomials. Moreover, training machine 
learning algorithms require computations in floating-point. A later work 
in homomorphic encryption proposed a scheme called CKKS (Cheon, 
Kim, Kim, Song) (Cheon et al., 2017) that can operate on floating-point 
values.

Most works on training on encrypted data face many shortcomings 
directly related to the computation burden and also the loss of preci-
sion. Taking the case of homomorphic encryption, for example, when 
training a deep neural network model, a large chain of multiplications 
and non-linear function evaluations is performed. The latter one is not 
supported by homomorphic encryption schemes, so the solution is to ei-
ther use lookup tables, polynomial substitution, or even approximations 
using low degree polynomials (Obla et al., 2020), while the former in-
troduces the problems of exploding noise budgets, which can partially 
be addressed using bootstrapping techniques (Cheon et al., 2018).

For homomorphically encrypted training, we recall the works of 
Nikolaenko et al. (2013) to train a logistic regression model on a ho-
momorphically encrypted dataset and the recent work of (Nandakumar 
et al., 2019) to train a handwritten digit classifier on the encrypted 
version of the MNIST dataset (Deng, 2012). More recently, Park et al. 
(2022) proposed a framework for training fair Support Vector Machine 
(SVM) algorithms using the CKKS scheme; their training approach in-
cludes adding a regularisation parameter that controls the magnitude of 
the disparate impact. To address the problem of computing nonlinear 
functions, Baruch et al. (2022) proposed a novel framework for train-
ing neural networks by replacing activation functions with trainable 
polynomial functions where the coefficients are learnt during the train-
ing process, they also used knowledge distillation to transfer knowledge 
from a stronger pre-trained teacher model to a weaker student model. 
Knowledge distillation is used to avoid a long training process. Their 
work shows promising results, especially that it allows for training large 
models. Yoo and Yoon (2021) also addressed the computation of non-

linear functions using the TFHE scheme, where they explained how 
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Table 3

Privacy enhancing technologies applied during the model training phase.

Trust Assumptions Privacy guarantees Confidentiality 
guarantees

Utility loss Limitations

Differential private 
training

Training parties are 
trusted to apply cali-
brated noise to produce 
differential privacy.

strong privacy guar-
antees: The contribu-
tion of each individ-
ual data point cannot 
be inferred.

No confidentiality 
guarantees.

Depends on the privacy budget 𝜖 the 
smaller is 𝜖 the less accurate is the 
result, however, GDP is more utility 
preserving than LDP

The more an 𝜖-DP algorithm 
is run, the weaker the privacy 
guarantee for a database be-
comes.

Federated learning The aggregator is trusted 
to be honest in perform-
ing the aggregation oper-
ation.

Limited to None pri-
vacy guarantees when 
used in vanilla mode, 
since shared gradients 
can leak additional in-
formation.

Strong confiden-
tiality guarantees.

Depends on the federated learning 
architecture, the quality of the lo-
cal datasets and the strategy of the 
local updates (Charles and Konečnỳ, 
2021; Kang et al., 2022; Zhang et al., 
2022).

The other data owners may per-
form poising attacks.
The training facility may carry 
out privacy attacks using shared 
gradients.
Model customers can perform 
privacy attacks by using query-
based access to the models.

Homomorphic encryp-
tion For training data

Training parties do not 
have access to decryp-
tion keys.

No privacy guaran-
tees.

Strong confiden-
tiality guarantees.

The approximations of the non-
linear functions can cause a utility/ 
accuracy loss.
The usage of approximate number 
schemes such as CKKS results in ad-
ditional noise 𝐷𝑒𝑐(𝑐𝑡) = �̃� = 𝑚 + 𝑓 , 
where f is a small error (Kim et al., 
2022)

Model customers can perform 
privacy attacks using query-
based access to the models.

Functional encryption 
for training data

Training parties do not 
have access to decryp-
tion keys.

No privacy guaran-
tees.

Strong confiden-
tiality guarantees.

Depending on the underlying used 
scheme generally, the existing 
schemes do not support compari-
son operations such as min or max, 
and FE-based works have shown 
their demonstration only up to 5 
layers (Xu et al., 2019b) neural 
network.

The training party can perform 
privacy attacks since the gradi-
ents will be in plaintext.
Model customers can perform 
privacy attacks by using query-
based access to the models.

Trusted execution en-
vironment

No privacy guaran-
tees.

Moderate con-
fidentiality 
guarantees based 
on the hardware 
security.

No utility loss caused by training on 
TEEs since the training operations 
and the data will not be modified.

Prone to side-channel attacks.
Model customers can perform 
privacy attacks by using query-
based access to the models.

PATE Teacher models are 
trusted to be trained us-
ing disjoint subsets from 
the private dataset.

Strong privacy guar-
antees.

No confidentiality 
guarantees.

Depends on the privacy budget 𝜖 the 
smaller is 𝜖 the less accurate is the 
result.

The students must share their 
data with all the teachers, and 
therefore, no privacy is guaran-
teed in this step.
to define the four main operations needed in the encrypted domain, 
namely: addition, two’s complement, exponential function, and division 
to allow building the sigmoid function using primitive gates. Although 
their approach proved good accuracy, it suffers from low time perfor-
mance.

The efficiency of computations is another issue that concerns train-
ing on homomorphically encrypted data (Lee et al., 2022). Mihara et 
al. (2020) improved the efficiency of training ML models on encrypted 
data using the CKKS scheme by proposing a new packing method for 
the weight matrix that allows significantly reducing the total number 
of heavy homomorphic operations. Other works such as the work of 
HELayers (Aharoni et al., 2020) proposed a new way of computing 2D 
convolutions in addition to a new packing method to reduce computa-
tion overhead.

The computation of non-linear functions in the encrypted domain 
is not the only challenge facing the training of ML models using ho-
momorphic encryption; selecting the scheme parameters is based on 
determining the multiplicative depth prior to computations.24 However, 

24 “The multiplicative depth is the maximal number of sequential homomor-
phic multiplications which can be performed on fresh ciphertexts such that once 
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decrypted we retrieve the result of these multiplications.” (Aubry et al., 2020).
when training models, it is hard to determine the number of epochs 
needed to achieve the desired performance.

In functional encryption training, we recall the work of Ryffel et al. 
(2019) for a partially encrypted training process in a polynomial neu-
ral network model, and the work of Xu et al. (2019b) who proposed 
a framework that supports training a neural network model over en-
crypted data.

6.3.3. Federated learning

Federated learning (FL) (McMahan et al., 2017a) is rather an archi-
tectural solution for a privacy-preserving training where multiple data 
owners can contribute in training a large model without the need for 
their datasets to be moved to a third-party computation facility. In this 
decentralised setting the computation party, also called the model ag-
gregator, sends copies of the model to the datasets owners to run a local 
training for a number of epochs on their data and then sends back the 
locally trained version to a model aggregator that computes the model 
parameters’ updates and sends the new version to the participants again 
in an iterative process. The decentralised training opens many possibil-
ities in real-world applications in which regulations and data sharing 
policies do not allow the transfer of such sensitive data. Despite the fact 
that federated learning offers confidentiality level of guarantees for the 

training data, Thakkar et al. (2021) found that FL settings have an effect 
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in reducing unintended memorisation, which is a key factor in training 
data extraction attacks explored in section 5.2.6.

Although the participating parties do not share their training 
datasets directly, the local models are shared with the aggregator; 
which exposes the risks of information leakage and disclosure of pri-
vacy. Many proposals have been made to mitigate these risks, such 
as privacy-preserving meta-learning (Xu et al., 2019a) and client-sided 
(local) differential privacy (Geyer et al., 2017). By design, federated 
learning has a heavy communication burden and therefore multiple 
works focus on alleviating this issue (Diao et al., 2020; Ye et al., 2020).

6.3.4. Training in trusted execution environments

The trusted execution environment (TEE) creates an isolated execu-
tion environment on a separate kernel that provides guarantees on code 
authentication, the integrity of the runtime state, and the confidential-
ity of its code, data, and runtime states kept in permanent memory. 
Thus, in can be used to process data on an untrusted third-party com-
putation facility.

There exists work that uses these environments especially for global 
aggregators in a decentralised training setting (Mo et al., 2021; Chen et 
al., 2020).

Trusted environments are prone to side channel attacks that infer 
leaked informations obtained from exploiting the hardware implemen-
tation leakages such as: power consumption, electromagnetic leaks, or 
even sound that can provide an additional information about the pro-
cesses. To mitigate these risks, in general, TEEs are employed with 
additional oblivious techniques (Stefanov et al., 2018). In a recent work 
(Law et al., 2020), the authors proposed a collaborative secure XGBoost 
system that runs in trusted environments by additionally modifying XG-
Boost’s algorithms to be data-agnostic to avoid potential side-channel 
risks. A similar work also addressed this issue by partially sampling 
the order when the active party or all parties have access to the TEE 
(Chamani and Papadopoulos, 2020).

6.3.5. PATE

Private aggregation of teacher ensembles (PATE) (Papernot et al., 
2018b) is an architecture that transfers the knowledge of an ensemble 
model called “teachers” to a “student” model to offer a model inference 
service for a student model. Teacher models are trained using disjoint 
subsets with no overlaps from the private dataset with no constraints on 
teacher training. Then, the knowledge learnt by the teachers is trans-
ferred to a public student model; the teachers label a public unlabelled
dataset which will be used to train the student. The privacy of sensitive 
data that teachers have been trained on is guaranteed by adding a DP 
noise during the labelling process.

PATE guarantees privacy by limiting student training to a limited 
number of teacher votes and revealing only the topmost vote after care-
fully adding random noise.

Several extensions have been introduced to PATE. Jordon et al. 
(2018) proposed PATE-GAN, a modified version of GANs by modify-
ing the discriminator training procedure using PATE. Their proposed 
method is useful to generate synthetic data that satisfy differential pri-
vacy guarantees with respect to the original data. The key limitation 
of PATE-GAN is that it relies on the assumption of the necessity of 
training the discriminator with PATE to ensure that the generator will 
satisfy DP guarantees; however, when the synthetic records are labelled 
as fake by the teacher discriminators, the student discriminator would 
be trained on a biased dataset and the generator will generate low qual-
ity synthetic data. G-PATE (Long et al., 2021) addresses this limitation 
by proving that it is not necessary to ensure that the discriminator is 
differentially private to train a differentially private generator. Teacher 
discriminators are directly connected to the student generator, and the 
student model does not have its own discriminator. To ensure DP the 
gradient aggregator adds noise to the information from teacher discrim-
inators, and the output of this aggregator is a gradient vector that guides 
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the student generator to boost the quality of its synthetic samples. The 
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PATE framework was also used in speech classification with the work of 
Yang et al. who proposed PATE-AAE (Yang et al., 2021) an adversarial 
autoencoder generator with a PATE-based classifier (PATE-AAE).

PATE uses 𝜖 differential privacy, where 𝜖 is the privacy parameter 
that assigns a protection level to the entire data set. This protection may 
be unnecessary for unsensitive data points in the datasets, and thus the 
utility loss becomes unjustifiable for datasets where only a subset is 
considered sensitive. To solve this issue Boenisch et al. (2023) proposed 
the “Individualised PATE” framework for an individual assignment of 
privacy budgets among only the sensitive training data. Their approach 
proves to be more utility preserving.

6.4. Mitigation techniques during the model serving phase:

Model inference or model serving is the last step in the machine 
learning pipeline. At this stage, the model is trained and ready to be 
used as a service. Nowadays, machine learning as a service is guaran-
teed via an emerging set of cloud platforms which are able to deploy a 
wide set of models and provide predictions to customers via end points. 
Most PETs applied in this step aim to protect the confidentiality of the 
inference data during the inference task. This is due to the deployment 
design choices of the service, where the inference is fully outsourced, 
and thus implies that the customer needs to send his data in order to 
receive the predictions.

Privacy-enhancing strategies during model inference can be grouped 
into two main categories: (i) cryptographic tools, and (ii) privacy pre-
serving hardware solutions such as trusted execution environments. 
These techniques are summarised in Table 4. The guarantees provided 
when adopting these tools are stated in a set of trust assumptions. We 
also discuss the various utility losses that may be caused when adopting 
these techniques.

6.4.1. Encrypted inference

From a computational point of view, the inference task is relatively 
simpler than the training task. This is because one inference operation 
can be seen as one epoch of training for one data sample without cal-
culating the error and propagating the loss to update the parameters. 
Thus, given the same model, the inference is computationally simpler 
and less consuming than the training. For this reason we generally find 
that advanced cryptosystems (primarily homomorphic encryption) are 
more applied for inference than for training. This is due to the compu-
tational inefficiency of these cryptosystems.

Encrypted inference is a secured computation that primarily aims to 
enable two or more parties to arbitrarily evaluate a function for both 
their inputs without revealing anything except the output of the compu-
tation. Under this set of tools we find secure multi-party computation 
protocols (Cramer et al., 2015), Garbled circuit evaluation protocols 
(Yao, 1982), and advanced cryptosystems like homomorphic encryp-
tion (Gentry, 2009; van Dijk et al., 2010; Brakerski et al., 2014; Martins 
et al., 2017; Cheon et al., 2017) and functional encryption (Boneh et 
al., 2011; Goldwasser et al., 2014; Abdalla et al., 2015, 2019).

Secure multiparty computation (MPC) protocols are used when mul-
tiple parties want to privately evaluate a function over their inputs. On 
the other hand, homomorphic encryption and functional encryption are 
cryptographic primitives that allow the computation on encrypted data. 
Thus as part of the MPC strategy choices, homomorphic encryption can 
be used as part of the protocol (Ghanem and Moursy, 2019). Earlier 
works that introduced HE in machine learning inference include regres-
sion analysis models (Nikolaenko et al., 2013; de Cock et al., 2015). 
CryptoNets (Gilad-Bachrach et al., 2016) was among the first propo-
sitions to deploy neural networks on encrypted data using a levelled 
homomorphic encryption scheme. CryptoNets supports the addition and 
multiplication of encrypted data, but requires prior knowledge of the 
complexity of the arithmetic circuit. Multiple works emerged after Cryp-
toNets suggesting enhancements, for e.g., the Delphi framework (Mishra 

et al., 2020) that integrates a hybrid cryptographic protocol to reduce 
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Table 4

Privacy enhancing technologies applied during the model inference / service phase.

Trust Assumptions Privacy guarantees Confidentiality 
guarantees

Utility loss Limitations

Trusted execution en-
vironment

No privacy guarantees. moderate confiden-
tiality guarantees 
based on the hard-
ware security.

No utility loss caused by performing 
inference on TEEs since this deploy-
ment choice won’t change anything 
in the model operations and the in-
ference data won’t be modified.

Prone to side channel attacks.
Model customers can perform 
privacy attacks by exploiting 
the inference results.

Oblivious transforma-
tion for inference

The encryption keys are 
not accessed by the in-
ference party.

No privacy guarantees. strong confidential-
ity guarantees.

Depends on the cryptographic prim-
itives used e.g., (Liu et al., 2017; 
Huang et al., 2021).

Model customers can conduct 
privacy attacks using query-
based access to the models.

Homomorphic en-
cryption for inference 
data

The inference party 
does not have access to 
the decryption keys.

No privacy guarantees. Strong confiden-
tiality guarantees.

- The approximations of the non-
linear functions can cause a utility/ 
accuracy loss.
- The usage of approximate number 
schemes such as CKKS result in an 
additional noise
𝐷𝑒𝑐(𝑐𝑡) = �̃� = 𝑚 + 𝑓 , where f is a 
small error (Kim et al., 2022).

Model customers can perform 
privacy attacks using query-
based access to the models.

Functional encryption 
for inference data

The inference party 
does not have access to 
the decryption keys

No privacy guarantees. Strong confiden-
tiality guarantees.

Depends on the underlying scheme 
generally used so far: The existing 
schemes do not support compari-
son operations such as: min or max 
and FE based works have shown 
their demonstration only up to 5 lay-
ers (Xu et al., 2019b) neural net-
work.

The inference party can per-
form privacy attacks, since the 
predictions will be in plain-
text.
Model customers can perform 
privacy attacks using query-
based access to the models.

Confidence masking 
of model outputs

The prediction party 
performs the confidence 
masking correctly.

Privacy guarantees de-
pend on the confidence 
masking technique.

No confidentiality 
guarantees.

Noise based masking techniques 
may not ensure the accuracy of the 
labels.
both the computation and communication costs, in addition, the authors 
also included a planner that generates neural network architecture con-
figurations automatically. Helen (Zheng et al., 2019) is another work 
that developed a secure coopetitive learning of a linear model without 
disclosing their data during the process of a distributed convex opti-
misation technique called alternating direction method of multipliers 
(ADMM), in which a generic maliciously secure multiparty computa-
tion is based on the SPDZ protocol (Damgård et al., 2012) derived 
from Somewhat Homomorphic Encryption (SHE) schemes. In addition 
to that and recently, the authors of Helen proposed Cerebro (Zheng et 
al., 2021) to study the trade-off between transparency and privacy in 
collaborative cryptographic learning.

On the same track, functional encryption-based approaches such as 
(Ryffel et al., 2019; Marc et al., 2019; Dufour-Sans et al., 2018) are also 
emerging, the authors proposed methods to perform partially encrypted 
and privacy-preserving predictions using adversarial training and func-
tional encryption.

Though FE schemes offer the possibility to compute on encrypted 
data, the result will be in plaintext. Thus, when choosing the proper 
technique to preserve the confidentiality of the data between homo-
morphic encryption or functional encryption, one should consider the 
sensitivity of the predictions and the trust level of the inference compu-
tation party.

Garbled circuits and secure multiparty computation protocols are 
not emerging techniques: they have been studied for a long time. How-
ever, the community continues to work to improve their efficiency (Katz 
et al., 2018; Mohassel et al., 2015). Garbled circuits are generally an im-
portant component in secure multiparty protocols. The breakthrough 
that introduced these techniques within the Privacy Preserving Ma-
chine Learning (PPML) community was the Chameleon (Riazi et al., 
2018) framework, which combines the usage of additive secret tech-
niques for linear evaluation and garbled circuit protocols for non-linear 
evaluation. Similarly to Chamelon, the 𝐴𝐵𝑌 3 framework (Mohassel and 
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Rindal, 2018) proposes a three-server paradigm based on the mixed 2PC 
protocol wherein data owners secretly share their data among three 
servers that train and evaluate models on the joint data using three-
party computation.

We also find the deepSecure framework (Rouhani et al., 2018), 
which proposes a more general framework that supports various types 
of neural network evaluations based on garbled circuits and efficient 
design and optimisation methodologies. The efficiency of secure multi-
party computation protocols depends on the underlying cryptographic 
primitives used, however when evaluating ML models under secure 
multi-party computation protocols, the computations will be more time-
consuming compared to plain text training or inference (Sayyad, 2020). 
Garbled circuits are also used to evaluate nonlinear functions in homo-
morphic encryption settings because the HE schemes do not support 
non-linear evaluation.

6.4.2. Oblivious transformation

It is a knowledge transformation that changes an existing model 
into an oblivious model (Liu et al., 2017; Rathee et al., 2021). They are 
generally used in combination with advanced encryption schemes and 
trusted environments. Oblivious transformations ensure that predictions 
are calculated so that the deployment server learns nothing about the 
input of the clients and the clients learn nothing about the model, ex-
cept the prediction results. The first attempt to construct an oblivious 
representation of neural networks for secure inference was done by 
Barni et al. (2006) where Pallier’s scheme (Paillier, 1999) was used 
in addition to some oblivious transformations. However, this method 
is considered inefficient. Also it may leak information about the in-
put data. Among recent works in this direction, we recall MiniONN 
(Liu et al., 2017) in which the authors used lightweight cryptographic 
primitives such as secret sharing and garbled circuits to evaluate neural 
networks, making it less computationally expensive. However, since it 
used an approximation for computing nonlinear functions, the method 
has some shortcomings in model’s utility and accuracy, especially for 

large models.
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Lately, to address the scalability and efficiency problems in the pre-
viously mentioned works, Huang et al. propose TONIC (Huang et al., 
2021) a compiler to convert traditionally trained neural networks into 
oblivious format using two of the two secure two-party computation 
languages, i.e., ObliVM and ABY to scale faster for real-world applica-
tions.

6.4.3. Inference on trusted environments

Trusted Execution Environments (TEE) can also be used for pri-
vate inference, where the model customer can send the input data to a 
trusted environment for inference with less privacy concerns, since the 
inference will be executed in an isolated environment. Generally, TEEs 
are combined with oblivious transformations to mitigate the risks of 
side-channel attacks (Stefanov et al., 2018). To enhance the efficiency 
of such an approach, there are multiple frameworks to optimise both 
the privacy guarantees and the computation burden for machine learn-
ing models. For e.g., Slalom (Tramer and Boneh, 2018), a framework for 
efficient deep learning inference in any trusted execution environment. 
The framework partitions execution between trusted and untrusted en-
vironments. In particular, all linear layers are securely delegated from 
a TEE (e.g., Intel SGX, or Sanctum) to a faster, yet untrusted, co-located 
processor.

6.4.4. Confidence masking of model outputs

Confidence masking techniques aim to minimise privacy leakage in 
model outputs by obfuscating the confidence scores without changing 
the predicted label. Jia et al. (2019b) proposed MemGuard, a confi-
dence masking strategy for model outputs to defend against member-
ship inference attacks. MemGuard adds a carefully crafted noise level 
to the confidence vector of the targeted classifiers in order to fool a 
membership inference by misclassifying them. This is possible because 
a membership inference attack is a classifier that is able to classify confi-
dence vectors into either members or non-members of the training data, 
and classifiers are vulnerable to adversarial examples. MemGuard feeds 
on this vulnerability because the added noise vector aims to turn the 
confidence vector into an adversarial one to fool the membership infer-
ence attack classifier. Later, Yang et al. (2020b) proposed a confidence 
vector purification framework. The framework is based on training a pu-
rifier model that takes confidence vector outputed by the target model 
and computes a purified version of this vector that reduces information 
content in the confidence vector by minimising the dispersion. Their ap-
proach can mitigate both membership inference and inversion attacks, 
but it cannot ensure that the labels will not be changed. Mazzone et al. 
(2022) developed an enhanced strategy that used a repeated knowledge 
distillation strategy before applying confidence masking. The success 
of this approach is based on the availability of an adequate surrogate 
dataset to perform the distillation process.

Other confidence masking approaches limit the exposure of the con-
fidence vector to only the top k scores (Li and Zhang, 2021) or even the 
label-only score (Shokri et al., 2017). Despite their promising results, 
confidence masking techniques remain weak against Label-Only attacks 
(Choquette-Choo et al., 2021b).

7. Technical tools for privacy preserving machine learning

The adoption of PETs in production or even in research depends 
heavily on the available libraries and implementations. In this section, 
we will discuss some of the libraries that implement, namely: homomor-
phic encryption schemes, differential privacy, functional encryption, 
secure multi-party computation, garbled circuits, and oblivious trans-
formations, some anonymisation libraries along with the hybrid toolkit 
HaGrid, which implements a wide set of PETs to allow remote privacy 
preserving data analysis. Table 5 summarises the tools and libraries for 
privacy-enhancing technologies discussed in this work along with their 
basic properties. We emphasise that the list is not an exhaustive one but 
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rather should be a sufficient guide to practitioners.
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From an EU GDPR legal perspective, anonymisation and pseu-
doanonymisation techniques provide solutions when the processing of 
certain types of data is highly regulated. ARX (Prasser et al., 2020) tool-
box offers a wide set of algorithms along this goal that can be helpful, 
even for non-developers since it has a graphical user interface. The weak 
point of ARX is the absence of binders for Python since it is the most 
used language in the machine learning community or even among data 
analysts.

Encryption tools offer a strong level of confidentiality and are gen-
erally useful when the computational party is not trusted. In Table 5
we find a wide range of libraries that offer various implementations of 
homomorphic encryption schemes, functional encryption schemes, se-
cure multi-party computation protocols, Garbled circuits, and Oblivious 
transformation toolkits. Supporting approximate floating-point opera-
tions in these implementation schemes is the most important feature 
in these libraries when used for machine learning tasks since the vari-
ous mathematical operations in machine learning training or inference 
are executed on floating-point numbers; e.g., for homomorphic encryp-
tion; the CKKS scheme (Cheon et al., 2017) is widely used in PPML; for 
this, we note that the library PALISADE (2020) is the only library that 
implements a countermeasure against secret key recovery attacks on 
CKKS (Li and Micciancio, 2021) by adding some Gaussian noise during 
decryption. The amount of noise that should be added during decryp-
tion is parameterized in PALISADE, leaving the choice to the user to 
decide the amount of noise to mitigate key recovery attacks. This de-
sign choice has many shortcomings since both the overestimation and 
the underestimation of the noise distribution parameters are harmful. 
An underestimation is useless from a privacy perspective, whereas the 
overestimation of noise can cause a huge utility loss, especially since 
CKKS is a lossy encryption scheme where the decryption outputs a noisy 
result. A more strict noise flooding mechanism must be implemented 
such as the one described by Li et al. (2022). HE libraries can also be 
subject to side channel attacks such as the one described by Aydin et al. 
(2022). The lack of Python binders and tensor-based implementation 
such as (Benaissa et al., 2021) of these schemes makes the adoption 
of cryptographic tools in machine learning restricted to data scientists 
with sufficient cryptographic knowledge.

Unlike cryptographic tools, differential privacy tools are more data-
scientist-friendly with a wide set of toolkits such as IBM Diffprivlib 
(Holohan et al., 2019) and Google DP library (Google, 2021). The adop-
tion of DP in the already existing ML frameworks like Tensorflow and 
Pytorch by creating alternatives of the existing ML frameworks such as 
Pytorch Opacus (Yousefpour et al., 2021) and Tensorflow Privacy (Ten-
sorflow team, 2019) made differential privacy more widely adopted in 
PPML.

PPML tools aim to solve the lack of access and usage of data that are 
highly sensitive and private by providing alternative privacy-preserving 
tools that motivated the creation of HaGrid (Hall et al., 2021). The Ha-
grid toolkit provides a stack of secure and private data science software 
including a differential privacy library, secure multi-party computation 
support, and a federated learning setting in a Numpy-like interface in 
addition to a command line interface to deploy data nodes and to make 
them accessible to data scientists to perform analysis on data in a secure 
and private way without even seeing the data.

There exist other tools that can be considered under the umbrella 
of ML privacy preservation tools, such as TEE orchestration tools and 
hardware and frameworks of federated learning.

Takeaway: For a wider adoption, PPML tools should have a 
Python tensor-like support to make it data scientist friendly, and a 
floating point computation support (especially for cryptographic 

tools).
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8. Challenges and research directions

Finally, we would like to point out some of the open questions and 
research directions in this field:

• Measurement and evaluation of privacy: there is a need for 
formal evaluation tools and frameworks to measure the privacy 
guarantees that privacy preserving machine learning (PPML) tools 
provide. Measurements are needed for auditing and data protection 
risk assessment for accountability purposes.

• Communication Efficiency: some PPML tools suffer from a high 
communication cost and therefore are inefficient to deploy for 
large complex machine learning models, such as secure multiparty 
(SPMC) protocols and federated learning. Thus, there is a large room 
for optimising computational complexity, such as optimising SMPC 
protocols through the use of MPC compilers.

• Computation Efficiency: computation efficiency is one of the 
drawbacks of the cryptographic tools used in PPML. This established 
the need to reduce the computational complexity either by making 
ML models designed for cryptographic evaluation or by making the 
cryptographic schemes more computationally efficient.

• Privacy budget versus utility and/or fairness: When adopting 
perturbation techniques such as differential privacy, privacy comes 
at the cost of utility (thus reliability), as well as the fairness of mod-
els (since minorities in datasets are the most harmed by utility loss). 
Approaches that balance between privacy, fairness, and utility are 
needed to establish trustworthy machine learning systems.

• The relationship between privacy and other trustworthy ma-

chine learning elements: trustworthiness in machine learning in-
cludes many components such as preservation of privacy, fairness, 
transparency, robustness, etc. The enforcement of privacy can come 
at the cost of these other components, which makes it challenging 
to identify the impact of privacy enhancing technologies on trans-
parency, for example. Understanding how each tool may impact the 
other elements of trustworthiness and how to set a clear trade-off is 
an active area of research.

9. Conclusion

Data protection concerns are the main blocker to the adoption of 
machine learning in life-impacting applications where sensitive and 
personal data should be processed. We have collected, reviewed, and 
presented a body of knowledge about data protection (and its technical 
interpretation as data privacy and confidentiality) in machine learning 
systems.

By taking the perspective of the data owners being the threatened 
parties, we showed that the threats against the process data can be fully 
understood only in reference to the machine learning pipeline, the role 
of parties, and the deployment architecture for the machine learning 
system. Such a perspective, which is in line with the discussion on data 
protection and trustworthy AI according within current EU regulations, 
points out the different vulnerabilities in machine learning systems that 
multiply the risks of data leakage throughout the pipeline by taking 
into consideration the design choices, the different actors, and how the 
threat actors can exploit these weaknesses to maintain efficient yet hard 
to detect privacy attacks.

This work thoroughly discusses the defence mechanisms for each 
phase within the ML pipeline, so highlighting the guarantees that these 
tools offer under specific trust assumptions. Since the defence mech-
anisms have not reached the full maturity level yet, we focus on dis-
cussing problems in adopting these PETs in order to highlight possible 
rooms for improvement.

Finally, we outline some challenges and research directions that call 
for a collaborative interdisciplinary effort to address them. This work 
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serves as a guide for ML practitioners and researchers in this field.
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10. The next horizon: from privacy-preserving ML to trustworthy 
AI

In order to offer a larger context, we discuss our work in the broader 
context of the European initiative on trustworthy machine learning. We 
review a few key principles and concepts in comparison to the technical 
discussion presented in the preceding sections.

According to the report of the High-Level Expert Group on Artificial 
Intelligence in the European Commission (HLEG) (High-Level Expert 
Group on AI, 2019), a trustworthy machine learning model fulfils many 
criteria, namely: lawful and ethical use, robustness and reliability, fair-
ness and transparency, and preservation of privacy.

The real challenge in implementing these requirements of trustwor-
thiness lies in the continuous evolution, update, and retraining opera-
tions that touch the systems throughout their life cycle; as well as the 
non-deterministic nature of some models (e.g., usage of dropout, varia-
tional auto-encoders, etc.).

Hence, the traditional tools that are used to measure the certainty of 
software systems working correctly such as unit tests, end-user testing, 
code reviews, and design documentation; are insufficient to ensure the 
quality and trustworthiness of machine learning systems.

In the rest of this section, we will discuss the requirements to con-
sider for trustworthy machine-learning pipelines.

10.1. Lawfulness and ethicalness

Receiving data inputs and functioning as services places machine 
learning applications within the scope of data privacy and data process-
ing regulations, which encompass frameworks like the EU GDPR, UK 
GDPR, as well as more recent legislations such as the AI Act and the 
Data Governance Act. However, these regulations present limitations to 
machine learning use cases. If we take the example of the principle of 
data minimisation in the GDPR, it aims to ensure that the collected data 
fit the purpose of the project. This suggests that developers should de-
termine the quantity of data and features required for each model, this 
is technically a challenge since it is not always possible to predict what 
a model will learn from data and how this knowledge will be shaped 
to get the predictions. Furthermore, limiting features from a training 
dataset can lead to a decrease in the model generalisation, and thus the 
overall performance of the model will be affected.

Data minimisation is not the only challenging principle; fairness and 
transparency have also been widely discussed (Felzmann et al., 2019). 
Another particularity of machine learning systems is the ability to re-
purpose them (technically known as “transfer learning”). This common 
strategy to reuse models allows the reduction of need to collect large 
volumes of data when building large models. The particularity of trans-
fer learning is the possibility to reuse models without the reuse of the 
original data. Therefore, listing all possible uses for which the data will 
or may be used can be challenging.

Multiple efforts contributed to the implementation of ethical guide-
lines for machine learning and artificial intelligence systems, such as 
the EU Commission’s ethical guidelines for trustworthy AI (European 
Commission, 2019). These guidelines aim at prescribing how machine 
learning models should be built and exploited for the best benefit of the 
environment and the large public.

10.2. Reliability and robustness

The Reliability and Robustness of the machine learning tools are 
vital requirements to establish trust in machine learning products. They 
primarily deal with fault tolerance, the recoverability of the system, and 
the quality of the system’s output.

To elaborate, machine learning models are trained using static 
datasets; however, once deployed, these models may receive inference 
data whose distribution is different from the baseline distribution of 

the training data; hence resulting in low-quality results. The ability of a 
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model to generalise depends on the model’s hyper parameters and also 
on the variety and the size of the training datasets; and is far from being 
guaranteed (Chung et al., 2018; Barbedo, 2018).

In addition to that, a reliable machine learning system should be 
able to handle uncertainties caused by degrading equipment or sen-
sors in manufacturing environments. The detection of uncertainties and 
drops in production performance are among the consequences of data 
set drifts that can be responsible for the inference bias (Müller and 
Salathé, 2020).

The robustness of machine learning models addresses the vulnerabil-
ity to a set of attacks such as adversarial attacks (Michels et al., 2019), 
e.g., Wu et al. (2020b) could design T-shirts with adversarial prints that 
can make individuals wearing them undetectable by pedestrian detec-
tion models, thus decreasing the reliability of security systems that use 
these models. Robustness can be challenged by neural-level trojans (Zou 
et al., 2018), hardware attacks (Bhunia et al., 2014; Clements and Lao, 
2019), and privacy threats (Section 5.2).

To address these issues, continuous monitoring is required for the 
inference of the deployed model, the reliability of the hardware used 
for deployment, and the immunity against network cyberattacks.

10.3. Transparency

Transparency promotes understandability; the term can be used 
interchangeably with explainability and interpretability. The concept 
emerged as a requirement in data protection laws. Both the UK and the 
EU GDPR set transparency and fairness as the first principles of data 
protection regulations (Fischer-Hübner et al., 2016).

As a technical property in machine learning models, transparency 
addresses the understandability of how the model functions internally: 
at the model level, the individual components (model parameters), and 
the training algorithm (Lepri et al., 2018).

Approaches to address transparency by using explainability tools 
focus on explaining the already used black box models; while the 
paradigm of transparency by interpretability mainly focusses on build-
ing easy-to-trace and less opaque models (Rudin, 2019). Building inter-
pretable models requires a significant amount of expertise and compu-
tational resources. The task becomes more challenging when the inter-
pretable models; which are by design simpler models, have to match 
the performance of the complex black-box models. Furthermore, exist-
ing explanations of black-box models do not provide details about what 
the model is doing. For example, saliency maps, which are considered 
to be explanatory for convolutional neural networks, only provide infor-
mation about the image parts that are omitted by the network; however, 
this does not give any details about what the model does with the parts 
that it considers relevant for the task.

10.4. Fairness

Fairness in machine learning refers to issues related to a discrimi-
nating behaviour of models towards certain groups, especially the mi-
norities, in the data sample used for training and/or testing.

The formulation of fairness in quantitative fields (e.g.: maths, com-
puter science, etc.) tends to be narrow and neglects the nuances and 
various conceptions of fairness (Mulligan et al., 2019). For example, 
approaching fairness by equalising the accuracy metrics across the pop-
ulation groups ends up inducing residual unfairness within fair models 
(Kallus and Zhou, 2018). In addition to that and specifically in the case 
of machine learning systems, placing constraints on fairness may come 
at the cost of accuracy since it restricts the learning algorithm (Menon 
and Williamson, 2018). The black-box nature of some machine learning 
models, such as neural networks, makes it challenging to ensure fair-
ness. The discussion of this trade-off of fairness versus accuracy is still 
widely studied. In a recent work (Dutta et al., 2020), authors demon-
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actively collected. In other words, gathering more features for the un-
privileged groups. While this sounds promising, it enlarges the dataset 
horizontally, which introduces an extra computation and storage bur-
den.

Multiple advances in this direction include mainly defining criteria 
that a machine learning system must meet in order to be considered fair. 
Among those works, we find the Microsoft fairness checklist (Madaio et 
al., 2020) that incorporates different stages of the AI system develop-
ment and deployment life cycle.

10.5. Privacy

The data processed during training or inference is subject to differ-
ent leakage and privacy threats that are a result of either the internal 
functioning of the machine learning models, the deployment architec-
tures, or both.

Preserving privacy in machine learning systems goes beyond ac-
cess control to the appropriateness of data flows and was described 
in many frameworks, namely the contextual integrity framework (Nis-
sim and Wood, 2018; Nissenbaum, 2004). The structured transparency 
framework proposed by Trask et al. (2020) highlighted the idea of con-
sidering the appropriateness of the flow of data throughout the machine 
learning pipeline by considering five components, namely input privacy 
(referred to as confidentiality in our work), output privacy, input veri-
fication, output verification, and flow governance.

When we consider the mathematical definitions of privacy in ma-
chine learning, Differential Privacy (DP) (Dwork and Roth, 2014) has 
been widely accepted in multiple domains because of its provable pri-
vacy guarantee. However, the DP approaches applied in machine learn-
ing are still computationally inefficient.

Privacy in the machine learning context should guarantee gover-
nance over the input data and the algorithms, integrity of the process-
ing, and its results to offer mechanisms for transparent and transpar-
ently auditable technical implementations.

Takeaway: A trustworthy ML system can be achieved by estab-
lishing the requirements of an acceptable trade-off between the 
technical properties, mainly: fairness, transparency, privacy, and 
reliability; in accordance with suitable ethical and legal frame-
works.
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Table 5

PETs libraries and toolkits.

Technique Library Name
Supported algorithms/ schemes or
protocols

Programming
languages

Differential privacy

Google’s DP library (Google, 2021)
Laplace mechanism
Gaussian Mechanism
Various statistical aggregations

C++, GO, JAVA

Pytorch Opacus (Yousefpour et al., 2021) Various optimisation of DP SGD Python

RAPPOR (Fanti et al., 2015) Local Differential Privacy Mechanisms Python, R

OpenDP (OpenDP community, 2021)
Core for DP algorithms
sdk for DP for tabular and relational data

Python, Rust

IBM Diffprivlib (Holohan et al., 2019)

Geometric mechanism
Gaussian Mechanism
Uniform Mechanism
Laplace Mechanism
Bingham Mechanism
Exponential Mechanism
Vector Mechanism
Models for Classifications and Clustering
Tools for DP histograms and quantiles

Python

TensorFlow Privacy (Tensorflow team, 2019)

Gaussian mechanism
Skellam Mechanism
DP SGD Optimiser
DP estimators (Binary and Multi Label)

Python

PyDP (OpenMined Community, 2020)
Geometric mechanism
Laplace mechanism
Aggregate statistics algorithms

C++, Python

Homomorphic encryption

TFHE (Chillotti et al., 2016) TFHE (Chillotti et al., 2020) Rust

CuFHE (Cetin et al., 2018) TFHE (Chillotti et al., 2020) on CUDA-enabled GPUs C++

HEAAN (Han et al., 2016) CKKS (Cheon et al., 2017) C++, Python

SEAL (SEAL, 2022)
BFV (Brakerski, 2012)
CKKs (Cheon et al., 2017)
BGV (Brakerski et al., 2014)

Python, C++

HElib (Hunt et al., 2020)
BGV (Brakerski et al., 2014)
CKKS (Cheon et al., 2017)

C++

PALISADE (PALISADE, 2020)

BGV (Brakerski et al., 2014)
BFV (Brakerski, 2012)
FHEW (Ducas and Micciancio, 2015)
CKKS (Cheon et al., 2017)

C++

Functional encryption CiFEr/ GoFE (Marc et al., 2018)

Abdalla et al. scheme (Abdalla et al., 2015)
Abdalla et al. scheme (Abdalla et al., 2018)
Agrawal et al. scheme (Agrawal et al., 2016)
DMCFE (Chotard et al., 2018)
Datta et al. scheme (Datta et al., 2018)
FAME (Agrawal and Chase, 2017)
KP-ABE (Goyal et al., 2006)
Michalevsky et al. scheme (Michalevsky and Joye, 2018)
Dufour et al. scheme (Dufour-Sans et al., 2018)

CiFEr in C
GoFE in Go

Secure Multi-Party
Computation

Crypten toolkit (Knott et al., 2021) Additive secret sharing (Damgård et al., 2012; Evans et al., 2018) Python

ABY /ABY3 (Demmler et al., 2015)

SPDZ (Damgård et al., 2012) and various MPC protocols
Linear regression
Logistic regression
Database Inner, Left, and Full Joins
Database Union
Set Cardinality

C++

MP-SPDZ (Keller, 2020)

TinyOT (Nielsen et al., 2012)
SPDZ (Damgård et al., 2012)
MASCOT (Keller et al., 2016)
SPDZ, Overdrive (Keller et al., 2018)
Yao grained circuits (Yao, 1982)
Generalised secret sharing (Benaloh and Leichter, 1988)
Shamir (Shamir, 1979)
other MPC protocols;

C++
Python

Garbled circuits
and oblivious
transformations (OT)

EMP-toolkit (Wang et al., 2016)
IKNP OT extension (Ishai et al., 2003)
Ferret OT (Yang et al., 2020a)
Wang et al. protocol (Wang et al., 2017)

C++

TinyGarble (Hussain et al., 2020) Yao’s Garbled Circuit (GC) (Yao, 1982) C++

Anonymization
ARX (Prasser et al., 2020)

k-anonymity (Sweeney, 2002)
t-closeness (Li et al., 2007)
𝛿-disclosure privacy (Brickell and Shmatikov, 2008)
𝛽-likeness (Cao and Karras, 2012)
𝛿-presence (Nergiz et al., 2007)

JAVA

AnonyPy (Fujita, 2021)
k-anonymity (Sweeney, 2002)
l-diversity (Machanavajjhala et al., 2006)
t-closeness (Li et al., 2007)

Python

Hybrid toolkits HaGrid/PySyft (Hall et al., 2021)
SMPC protocols
Differential privacy Python
17
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Appendix B. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .cose .2023 .103605.
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