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Abstract—With the commercial deployment of low earth orbit
(LEO) satellites, the future integrated 6G-satellite system repre-
sents an excellent solution for ubiquitous connectivity and high-
throughput data service to massive users. Due to the heterogene-
ity of users’ traffic profiles, uneven traffic distribution among
beams or users often occurs in LEO satellite systems. Conven-
tional satellite payloads with fixed beam radiation patterns may
result in large gaps between requested and allocated capacity. The
advances of flexible satellite payloads with dynamic beamforming
capabilities enable spot beams to adjust their coverage and
adaptively schedule users, thus offering spatial-temporal domain
flexibility. Motivated by this, as an early attempt, we investigate
how adaptive beam patterns with flexible user scheduling schemes
can help alleviate mismatches of requested-transmitted data
in uneven-traffic and full-frequency reuse LEO systems. We
formulate an optimization problem to jointly determine beam
patterns, power allocation, user-LEO association, and user-slot
scheduling. The problem is identified as mixed-integer nonconvex
programming. We propose an efficient iterative algorithm to
solve the problem by first determining beam patterns and user
associations at the frame scale, followed by optimizing power
allocation and user scheduling at the timeslot scale. The four-
decision components are iteratively updated to improve the
overall performance. Numerical results demonstrate the benefits
brought by adaptive beam patterns and their effectiveness in
reducing the mismatch effect in uneven-traffic LEO systems.

Index Terms—Low earth orbit (LEO) satellite, uneven traffic,
adaptive beam radiation patterns, resource optimization.
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I. INTRODUCTION

LOW earth orbit (LEO) satellite systems are envisioned as
one of the promising solutions to the upcoming beyond

5G (B5G) and 6G era for the potentials of offering high-
throughput transmission and extending communications to
remote or unserved areas [1]. Compared to geostationary earth
orbit (GEO) and and medium earth orbit (MEO) satellites,
LEO satellites operate at lower altitudes with low latency
and transmission attenuation [2]. To address exponentially
growing traffic demand and support ubiquitous connectivity
in the future, the industry is motivated to develop projects on
building advanced architectures with hundreds or thousands of
LEO satellites in space [3].

The dense deployment of LEO satellites may introduce
more interference. users, especially those located in the areas
overlapped by neighboring satellites’ beam coverages, may re-
ceive considerable co-channel interference, which could result
in severe performance degradation [4], [5]. Another typical
concern is raised by the heterogeneity of traffic distribution
that often varies temporally and geographically. To improve
the utilization of scarce spectrum, resource allocation in LEO
satellite systems shall be adapted to the dynamic variations
of on-ground traffic demand [6]. The coordination of multiple
LEO satellites to provide high-quality services to ground users
is crucial and challenging, which calls for the introduction of
more flexibility in radio resource allocation.

In conventional satellite systems, beam radiation patterns
are decided before launch and the projected beam shapes (or
footprints) are fixed during service [7]. As the deployment of
LEO satellites becomes dense, the fixed footprint plan cannot
adapt to dynamic variations and uneven traffic distribution,
which limits the performance. With the advances of flexi-
ble payloads with onboard digital processing, beam shapes
can be dynamically altered by changing beam patterns via
beamforming networks (BFN) instead of mechanically moving
antennas [7]–[9]. By adjusting the selection of different beam
patterns, data transmission in satellite systems can be more
adaptive to non-uniform traffic distribution and with mitigated
co-channel interference [10], [12], [14]. Besides, the capability
of integrating to terrestrial systems or non-terrestrial networks
(NTN) can be improved by adapting footprints to reduce co-
channel interference to terrestrial systems [16] or to satisfy
configuration requirements in various systems [17]. The au-
thors in [18] developed a multi-objective deep reinforcement
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Fig. 1: Illustrative examples of adjusting beam patterns for better coverage
and efficient transmission. Reducing coverage areas from (a) to (b) to avoid
overlap and mitigate co-channel interference; Enlarging coverage areas from
(c) to (d) to connect more users.

learning approach for dynamic beam hopping to reduce the gap
of offered-allocated capacity. Illustrative instances of adaptive
beam patterns are shown in Fig. 1. When a user is located
in the area covered by two adjacent satellite beams (full
frequency reuse), e.g., in Fig. 1(a), it may suffer from large
inter-satellite interference. To reduce the interference, both
satellites could select beam patterns with smaller coverage
to avoid overlap, as depicted in Fig. 1(b). Another typical
example is to change patterns with wider radiated beams to
cover more users that are beyond but near the beam edge, as
presented in the process from Fig. 1(c) to Fig. 1(d).

A. Related Works

Considering extra flexibility in spatial domain and advan-
tages of traffic adaptation and interference mitigation, the
design of adaptive beam pattern schemes has received growing
attention. In [16], the authors studied adaptive beam control
schemes in LEO satellite systems to maximize the signal-to-
noise ratio and minimize the interference to incumbent terres-
trial systems. The authors in [10] jointly optimized beam size
and transmit power to improve the adaptation to varying traffic.
Particularly, the coupling between beamwidth and power was
discussed. In [11], the authors designed flexible schemes to
tackle several issues for satellite systems, including beam
localization, beamwidth adjustment, use-beam scheduling, and
beam coloring. Besides beam size, more factors affecting
beam shapes, e.g., beam center and rotation angle, were
taken into account, and novel footprint planning strategies
were designed to match offered capacity to irregular traffic
distribution in [12]. Further, the authors in [13] provide a
more comprehensive view on beam radiation pattern design,
considering factors like beamwidth, beam center, required
effective isotropic radiated power, side lobe levels, and nulling
direction. In the above works, regular beam shapes (e.g.,
circular or elliptical) were employed. However, the expres-

sions of transmit antenna gain w.r.t. configuration parameters
(including beamwidth, beam center, rotation angle, etc.) are
generally sophisticated [12]. Directly defining the optimal
beam pattern is difficult and cumbersome, even when we
consider regular beam shapes. These approaches may also be
inapplicable to more general scenarios where irregular beam
shapes are adopted [7]. Regarding irregular shaped beams,
the authors in [15], provided a generic radiation model and
designed a dynamic beamforming optimization framework to
adjust offered capacity to match irregular traffic demands.

Unlike the above works that directly optimize beam ra-
diation patterns, multiple candidate beam patterns can be
pre-designed and the corresponding parameter settings can
be stored in advance for various potential scenarios [19].
During service, suitable beam patterns can be selected from
the candidate set depending on traffic distribution and inter-
ference levels. Unlike directly optimizing beam patterns, the
optimization of beam pattern selection can be applied to any
type of footprint. Additionally, the update of candidate beam
patterns can be processed ahead of transmission rather than
real-time adjustment, which is more extendable to practical
implementation. In [14], the authors optimized beam pattern
selection to minimize the capacity-demand gap, normalized
coverage error, and cost per Gbps in orbits and discussed the
implementation of adaptive beam patterns in practical satellite
payloads.

B. Motivations and Contributions

The abovementioned works focused on optimizing beam
patterns from the beam level, i.e., satisfying irregular traffic
distribution across different areas rather than capacity-demand
matching for specific users. The mutual influence between
adaptive beam patterns and resource allocation (e.g., power
allocation and user association/scheduling) has not been fully
discussed. For instance, when the beam pattern plan is ag-
gressive with large footprints, more users can be covered by
the footprint. However, the co-channel interference, especially
for users in the overlapped areas, becomes larger, leading to
difficulties in resource allocation. On the contrary, the effect
of interference is eased to some extent when narrow beams
are employed, and thus a more flexible scheduling plan can
be applied. Not all the users are covered by their associated
beams and thus low data rate may happen to those edge users.
In this case, the performance of resource allocation would be
limited by inappropriate beam pattern selection.

As an early-attempt study in [20], we evaluate the perfor-
mance gain of adopting adaptive beam pattern in LEO satellite
systems under pre-decided user scheduling. For extension, we
are motivated to provide more comprehensive insights on joint
resource optimization of beam pattern selection and resource
allocation and aim to analyze their mutual influence, which
distinguish this work from other state-of-the-art works [10],
[12], [14], [15]. The main contributions are summarized as
follows:
• To investigate the coupling between beam pattern selec-

tion and resource allocation in LEO satellite systems, we
formulate a joint optimization problem of beam pattern
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selection, power allocation, user-LEO association, and
user-slot scheduling. The objective is to minimize the
capacity-demand gap such that the delivered data can be
matched to users’ uneven traffic demands.

• We provide insights on determining beam patterns and
user association via thoroughly analyzing a special case.
That is, satellites tend to serve high-demand users and
select narrow beams, more concentrated on associated
users and radiating less interference to other users.

• We propose an efficient scheme to jointly optimize power
allocation and user scheduling on a timeslot-by-timeslot
basis.

• We design a swap-based approach to update pattern
selection and user association such that the performance
can be iteratively improved.

• Numerical results demonstrate the advantages of adaptive
beam patterns over conventional single-pattern schemes.
The results validate the performance of the proposed
scheme in terms of complexity, capacity-demand match-
ing, power consumption, and user association over bench-
marks.

The remainders of the paper are organized as follows:
Section II elaborates the considered LEO satellite systems with
the functionality of adaptive beam patterns. In Section III, we
formulate a joint optimization problem of power allocation,
beam pattern selection, and user association/scheduling. In
Section IV, we analyze the optimization of beam pattern
selection and user association. An efficient approach of jointly
optimizing power allocation and user scheduling is provided
in Section V. In this section, we also present a swap-based
approach to further improve the performance. Numerical re-
sults are presented and analyzed in Section VI. Section VII
concludes the paper.

II. SYSTEM MODEL

Consider downlink data transmission in a LEO satellite
system, as depicted in Fig. 2. S LEO satellites fly over the
area of interest, where each satellite beam’s coverage may be
partially overlapping with neighboring beams. Denote S as
the set of the satellites and K as the set of the users. We
assume that each LEO satellite generates one beam [5], [16],
[17]. In the system, all the LEO satellites fully reuse the same
frequency band. The communication procedure is described as
follows: First, messages containing users’ status, e.g., channel
conditions, traffic demand, users’ positions, etc., are fed back
to the gateway via return links. Based on the information, the
resource manager co-located with the gateway executes the re-
source optimization algorithm to generate optimized decisions,
including beam pattern selection, user association/scheduling,
and power allocation. Note that beam configurations can be
communicated through the TT&C link in practice which can
be separate from the feeder link. Next, the gateway informs the
decisions to satellites and delivers data from the core networks
to satellites. At last, satellites generate beams according to the
selected patterns and transmit data to targeted users. Remark
that the latency among different transmission links is assumed
to be identical.

Fig. 2: An illustrative scenario of the considered LEO satellite system where
adaptive beam patterns are adopted.

Fig. 3: The shaped beam antenna with BFN.

Denote Ns as the set of the candidate beam patterns of
satellite s. Each pattern corresponds to one specific beam
shape. With optimized decisions informed by the gateway, one
beam pattern is selected from Ns. The information of resource
allocation is carried before the data frame is transmitted.
In practical satellite systems, the communication distances
between satellites and ground terminals are large and the
latency may not be ignored. We consider that beam patterns
and user association change on a frame-by-frame basis and
resource allocation is targeted for one frame. Denote T as
the set of the T timeslots in one frame. The beam pattern is
generated by the BFN on the satellite payload, as depicted in
Fig. 3. By BFN controlling phase shifters and variable power
dividers to alter phases and amplitudes, respectively, each feed
element generates one elementary beam and the shaped beam
is constructed by these elementary beams [7]. The resulted
beam shape is defined as the coverage within the ϕ-dB contour
[7].

The relationship between the transmit antenna gain of a
beam pattern and the corresponding configuration parameters
is sophisticated and might not be captured by explicit ex-
pressions, especially for patterns with irregular beam shapes
[7], [12], [14]. For illustration, we plot the 3dB curve to
produce ellipse beams to illustrate the beam pattern model.
The transmit antenna gain of satellite s with beam pattern n
regarding user k is expressed by,

GTx
snk = GTx

sn,max

(
J1(usnk)

2usnk
+ 36

J3(usnk)

u3
snk

)2

, (1)
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where J1(·) and J3(·) are Bessel functions of the first kind of
order one and three, respectively. GTx

sn,max is the peak transmit
antenna gain of satellite s with pattern n. The notation usnk
is expressed as,

usnk = 2.07123
sin θsk

sin θsn,3dB
, (2)

where θsk denotes the off-axis angle between the s-th satel-
lite’s beam center and the k-th user. θsn,3dB denotes the 3-dB
angular beamwidth of pattern n radiated by satellite s. The
beam pattern model in (1) is widely adopted, e.g., a simplified
Bessel function was adopted in 3GPP TR 38.811 [21].

For other types of beam shapes, the expression could be
more complicated, e.g., the transmit antenna gain for elliptical
beams depends on beam center position, beamwidth (including
the major and minor axes), and tilt angle [7], [12]. Remark
that we only focus on beam pattern selection, where the can-
didate patterns are determined before transmission and can be
updated easily when necessary. Thus the approaches discussed
in this paper can be applied to any types of footprints.

The channel loss from satellite s to user k is written as [21],

[Ltotal
sk ] = [Lba

sk ] + [Lga
sk] + [Lsc

sk] + [Lra
sk], (3)

where Lga
sk, Lsc

sk, and Lra
sk are gaseous, scintillation, and rain

attenuation exceeded for ρ% of an average year, respectively.
Here, the operator [·] converts values into dB. Lba

sk is the basic
path loss, which is derived as,

[Lba
sk ] = [Lsk] + [Lsf

sk], (4)

where Lsf
sk denotes shadow fading following log-normal dis-

tribution. Lsk denotes the free-space path loss, which is
expressed by [20],

Lsk = 32.45 + 20 log10(f freq) + 20 log10(dsk), (5)

where dsk is the distance from satellite s to user k, and f freq

is the frequency. The channel gain from satellite s to user k
with beam pattern n is expressed as,

|hskn|2 = GTx
sknG

Rx
k /Ltotal

sk , (6)

where GRx
k is the receive antenna gain of user k. The channel

gain from satellite s to user k is derived as,

|hsk|2 =
∑
n∈Ns

ysn|hskn|2. (7)

Here, ysn ∈ {0, 1} indicates beam pattern selection, where
ysn = 1 if satellite s selects the n-th pattern and ysn = 0
otherwise.

If user k associated to satellite s is scheduled at times-
lot t, the corresponding signal-to-interference-plus-noise ratio
(SINR) is expressed as,

γskt =

∑
n∈Ns

ysn|hskn|2Pst∑
s′∈S\{s}

∑
n∈Ns′

ys′n|hs′kn|2Ps′t + σ2
, (8)

where Pst is the transmit power of satellite s at timeslot t and
σ2 is the noise power. The available rate of user k if scheduled
by satellite s at timeslot t is,

Rskt = B log(1 + γskt), (9)

where B is bandwidth. The offered capacity (in bps) of user
k is,

Rk =
∑
t∈T

∑
s∈S

xsktRskt, (10)

where xskt ∈ {0, 1} indicates whether the user is scheduled
to timeslot t by satellite s (xskt = 1 if scheduled and 0
otherwise).

III. PROBLEM FORMULATION

We formulate a resource allocation problem to jointly
optimize power allocation, beam-pattern selection, and user
association and scheduling. The optimization variables are
listed as follows,

Pst ≥ 0, transmit power of satellite s at timeslot t;

xskt =

{
1, if satellite s serves user k at timeslot t,
0, otherwise;

ysn =

{
1, if satellite s selects the n-th beam pattern,
0, otherwise;

zsk =

{
1, if user k is associated to satellite s,
0, otherwise.

The objective is to minimize the sum of capacity-demand gap,
which is measured by

∑
k∈K |Rk − Dk|. This dissimilarity

metric has been widely adopted in satellite systems, which
can describe the mismatch effects between offered capacity
and requested traffic. Note that the case Rk = Dk reflects a
perfect capacity-demand match and the gap increases if Rk is
distant from Dk (either larger or smaller). The optimization
problem is formulated as,

P0 : min
Pst,xskt,ysn,zsk

∑
k∈K

|Rk −Dk| (11a)

s.t. Pst ≤ P̄s,∀s ∈ S,∀t ∈ T , (11b)∑
s∈S

zsk ≤ 1,∀k ∈ K, (11c)∑
k∈K

zsk ≤ K̃s,∀s ∈ S, (11d)∑
k∈K

xskt = 1,∀s ∈ S,∀t ∈ T , (11e)

xskt ≤ zsk,∀s ∈ S,∀k ∈ K,∀t ∈ T , (11f)∑
n∈Ns

ysn = 1,∀s ∈ S, (11g)

Rk ≥ Rmin
k

∑
s∈S

zsk,∀k ∈ K. (11h)

In (11b), the transmit power of satellites is no larger than the
power budget. In (11c), each user can be associated to at most
one satellite. For the s-th satellite, at most K̃s users can be
associated in (11d). In (11e), each satellite schedules only one
user to each timeslot. The connection between xskt and zsk is
expressed in (11f). If user k is not associated to satellite s, i.e.,
zsk = 0, xskt is restricted to zero; otherwise, xskt ∈ {0, 1}.
Constraints (11g) restrict that each satellite can only select
one pattern. In (11h), the offered capacity of user k should
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be at least larger than Rmin
k if the user is associated to any

satellite. Usually, the requested traffic demand is larger than
the minimum-rate requirement, i.e., Dk > Rmin

k .
We can observe that P0 falls into the category of

mixed-integer nonconvex programming considering the non-
convexity of the objective function and constraints (11h)
(resulted by the non-convex expression of Rskt in (8) and (9))
and the presence of binary variables xskt, ysn, and zsk. It is a
non-trivial task to directly solve P0. To tackle the problem, we
decompose the original problem into two subproblems: 1) joint
optimization of beam pattern selection and user association; 2)
joint optimization of power allocation and user scheduling.

IV. JOINT OPTIMIZATION OF BEAM PATTERN SELECTION
AND USER ASSOCIATION

In this section, we study beam pattern selection and user
association. The joint problem of beam pattern selection and
user association is expressed as,

P1 : min
ysn,zsk

∑
k∈K

|Rk −Dk| (12a)

s.t. (11c), (11d), (11f), (11g), (11h). (12b)

Since the binary variables ysn appear in both numerator and
denominator of the SINR expression as shown in (8), P1 is
non-convex integer programming, which is difficult to solve.
We first study the characteristics of P1 by discussing strategies
in some special cases. Based on the analysis, we design an
approach to determine beam patterns and user association.

A. Discussion of Special Cases

Consider a scenario in Fig. 4 in which multiple LEO
satellites aim to serve an area with heterogeneous traffic
distribution. In the first case, satellites move to the positions
where high-demand users are located near the beam center, as
depicted in Fig. 4(a). Since high-demand users’ performance
is more significant to the capacity-demand matching of the
whole system compared to low-demand users, satellites tend
to select beam patterns with smaller but more concentrated
shapes, e.g., in Fig. 4(b). In this way, more capacity is offered
to high-demand users and meanwhile co-channel interference
towards other beams is mitigated, such that the capacity-
demand mismatch can be largely reduced.

As satellites move to the right, however, the distances
between satellites and users change. High-demand users stand
beyond the beam coverage much worse channel conditions,
resulting in deteriorated performance even if more resources
are assigned to them. In this case, satellites are prone to expand
their beam coverage to serve more low-demand users but with
better channel conditions to reduce mismatch effects, as shown
in Fig. 4(c).

From the above special cases, we observe that the decision
of beam pattern selection and user association is influenced
by users’ demand and channel conditions. Based on the above
cases, we discuss how to optimize beam pattern selection and
user association in the following remark.

Remark 1: The optimization of beam pattern selection and
user association is discussed from the following two aspects:

Fig. 4: Illustration of the special-case scenario, where multiple LEO satellites
are flying (from the left to the right) over the targeted area with heterogeneous
traffic distribution. High-demand and low-demand users are colored in red and
blue, respectively. Depending on different traffic distributions within the beam
coverage, satellites adjust their selections of beam patterns and associated
users.

• User association: Given determined beam patterns, the
decisions of association is made by considering both
users’ demand and channel conditions. On the one hand,
users with higher demand are more likely to be served
since they have more influence on the overall capacity-
demand gap. On the other hand, satellites tend to choose
users experiencing better channel conditions, i.e., larger
gain from the associated satellite but smaller inter-
satellite interference.

• Beam pattern selection: With the decision of user associ-
ation, each satellite selects a beam pattern generating
large channel gains to the associated users but small
co-channel interference to users served by neighboring
satellites.

In short, Remark 1 conveys that satellites tend to select
patterns with smaller but concentrated beams to cover the
associated users as well as generate smaller inter-satellite in-
terference and select users for association with higher demand
and better channel conditions.
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Algorithm 1 Optimization of beam pattern selection and user
association
Input: |hskn|2, Dk. Initialized ysn, zsk.

1: repeat
2: Calculate µsk in (13), ∀k ∈ K, ∀s ∈ S.
3: Sort µsk for each satellite.
4: Each satellite selects K̃ largest-µsk users for associa-

tion.
5: Update zsk and Ks.
6: Computes νsn in (14), ∀n ∈ Ns, ∀s ∈ S.
7: Each satellite selects the pattern with the largest νsn.
8: Update ysn.
9: until ysn and zsk converge or reaching I1 iterations

Output: Optimized ysn, zsk.

B. Algorithmic Design

Based on Remark 1, we design an approach to determine
user association and beam pattern selection. Given beam
pattern selection, we calculate the following ratios,

µsk = Dk log

 |hsk|2∑
s′∈S\{s}

|hs′k|2

 ,∀k ∈ K,∀s ∈ S, (13)

which take into consideration both channel conditions and
traffic demands. By sorting these ratios, each satellite selects
K̃ largest-µsk users for association and update Ks (the set of
users associated to satellite s). After deciding user association,
each satellite computes the following ratios,

νsn =
∑
k∈Ks

|hskn|2∑
k∈Ks′ ,s

′ 6=s
|hsk′n|2

,∀n ∈ Ns,∀s ∈ S, (14)

for each beam pattern and selects the pattern with the largest
νsn, i.e., largest gain from satellite s but smallest interference
to users associated to s′ 6= s.

The whole procedure is summarized in Alg. 1, where user
association is decided in line 2 to line 5 and beam pattern
selection is proceeded in line 6 to line 8. The algorithm
terminates if the iteration number exceeds I1 or the solution
stays unchanged.

The complexity of Alg. 1 falls in the sorting process in line
3 and the arg-max process in line 7. The complexity of sorting
K users based on µsk and choosing the pattern with the largest
value of νsn are O(K log(K)) and O(N), respectively [22].
Thus the overall complexity is derived as O(I1S(K log(K)+
N)).

V. JOINT OPTIMIZATION OF POWER ALLOCATION AND
USER SCHEDULING

In this section, we jointly optimize power allocation and
user scheduling given decided beam pattern selection and user
association, which is expressed as,

P2 : min
Pst,xskt

∑
k∈K

|Rk −Dk| (15a)

s.t. (11b), (11e), (11h). (15b)

Note that only scheduled users with
∑
s∈S zsk = 1 are

considered and hence contraints (11f) are omitted in P2. The
problem is still in the format of mixed-integer nonconvex
programming.

A. Problem Transformation

Solving P2 is complicated. Considering the applicability of
the solution to practical implementation, we break the coupling
across timeslots in P2 and decompose the problem into T
subproblems, each of which corresponds to a timeslot. The
subproblem at timeslot t is written as,

P2(t) : min
Pst,xskt

∑
k∈K

∣∣∣∣∣∑
s∈S

xsktRskt + R̄kt −Dk

∣∣∣∣∣
+ ρ

∑
k∈K

[
Rmin
k −

∑
s∈S

xsktRskt − R̄kt

]+

(16a)

s.t. Pst ≤ P̄s,∀s ∈ S, (16b)∑
k∈K

xskt = 1,∀s ∈ S. (16c)

Here, we define R̄kt as the rate already allocated to the user
before the t-th timeslot, which is expressed as,

R̄kt =

t−1∑
τ=0

∑
s∈S

xskτRskτ , (17)

where Rsk0 = 0, ∀s ∈ S, ∀k ∈ K. We move constraints
(11h) to the objective as a penalty with the factor ρ > 0.
The operator [·]+ is equivalent to max{·, 0}. The objective is
penalized if constraints (11h) are violated.

We convert P2(t) into the following problem where the
absolute operation in the objective is removed,

P ′2(t) : min
Pst,xskt

∑
k∈K

(
Dk −

∑
s∈S

xsktRskt − R̄kt

)

+ ρ
∑
k∈K

[
Rmin
k −

∑
s∈S

xsktRskt − R̄kt

]+

(18a)

s.t. (16b), (16c),∑
s∈S

xsktRskt + R̄kt ≤ Dk,∀k ∈ K. (18b)

The equivalence between P2(t) and P ′2(t) is built based on
the following proposition, which conveys that if the resource
is sufficient, the optimal allocated rates of the scheduled users
are no larger than their demands.

Proposition 1: At the optimum of P2(t), the allocated rates
meet

∑
s∈S xsktRskt + R̄kt ≤ Dk, ∀k ∈ K.

Proof. Please kindly refer to Appendix A.

B. Algorithmic Design

To solve P ′2(t) with combinatorial and nonconvex proper-
ties, one of the widely-adopted ideas is to convert the problem
into a series of convex subproblems, where the solution can
be obtained by iteratively solving these subproblems. Con-
ventional approaches, e.g., successive convex approximation
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(SCA) method and Dinkelbach’s transform method, can be
applied. However, since a convex problem needs to be solved
at each iteration, these approaches may end up with large
computational complexity in practice. We design an iterative
approach based on quadratic transform method [23] with lower
complexity. One benefit of quadratic transform method is that
the log-fractional rate functions can be converted into convex
quadratic expressions and the series of convex subproblems
can be optimized by deriving closed-formed update rules such
that the overall complexity can be largely reduced.

We introduce auxiliary variables γs ≥ 0 and ηs ≥ 0 and
transform the rate functions in (9) as the following,

R̃skt =B log(1 + γs)−Bγs + 2ηs
√
B(1 + γs)|hsk|2Pst

− η2
s

∑
s′∈S
|hs′k|2Ps′t − η2

sσ
2. (19)

By substituting R̃skt into P ′2(t), the problem is then trans-
formed into the following,

P ′′2 (t) : min
Pst,xskt,γs,ηs

∑
k∈K

(
Dk −

∑
s∈S

xsktR̃skt − R̄kt

)

+ ρ
∑
k∈K

[
Rmin
k −

∑
s∈S

xsktR̃skt − R̄kt

]+

(20a)

s.t. (16b), (16c), (18b). (20b)

We derive an iterative approach to solve P ′′2 (t). Given xskt
and Pst, we update γs and ηs by,

γs =
|hsks |2Pst∑

s′∈S\{s} |hs′ks |2Ps′t + σ2
, (21)

ηs =
B
√

(1 + γs)|hsks |2Pst∑
s′∈S |hs′ks |2Ps′t + σ2

, (22)

where ks denotes the index of the user scheduled by satellite
s.

With fixed xskt, γs, and ηs, the residual power allocation
is convex without (18b), since the nonconvex rate functions
have been converted to convex quadratic expressions. Thus,
while the update iterates, we temporally ignore (18b). Power
allocation will be adjusted to meet (18b) after the iterations.
Note that only the S scheduled user with xskt = 1 are
considered at this phase and thus

∑
s∈S xsktR̃skt = R̃skst

in this case. The corresponding Lagrangian dual function is
derived as,

L(Pst) =
∑
s∈S

(Dks − R̃skst − R̄kst)

+ ρ
∑
s∈S

[
Rmin
ks − R̃skst − R̄kst

]+
. (23)

The KKT conditions are,

∂L
∂Pst

= (1 + ψs)ηs

√
B(1 + γs)|hsks |2

Pst

−
∑
s′∈S

(1 + ψs′)η
2
s′ |hsks′ |

2 = 0,∀s ∈ S, (24)

(25)

where

ψs =

{
ρ, if R̃kst + R̄kst < Rmin

ks
;

0, if R̃kst + R̄kst ≥ Rmin
ks

.
(26)

Then the optimal power allocation is derived by,

P ∗st = min

{
(1 + ψs)

2(ηs)
2B(1 + γs)|hsks |2(∑

s′∈S(1 + ψs′)η2
s′ |hsks′ |2

)2 , P̄s

}
. (27)

The total number of potential combinations for deciding all
ψs is 2S . To maintain the computational complexity at an
acceptable level, a heuristic decision strategy is applied. We
first let ψs = 1 for all satellites and calculate Pst and R̃kt.
Then set ψs = ρ to increase the power value (let Pst = P̄st
when Ps surpasses the budget) if R̃kst + R̄kst < Rmin

ks
.

As the power allocation is decided, we can calculate R̃skt
for each user. The residual user scheduling problem is a linear
integer programming, which can be further divided into each
satellite as,

P ′′3 (t, s) : min
xskt

∑
k∈Ks

(
Dk − xsktR̃skt − R̄kt

)
+ ρ

∑
k∈Ks

[
Rmin
k − xsktR̃skt − R̄kt

]+
(28a)

s.t.
∑
k∈K

xskt = 1, (28b)

where Ks is the set containing the users associated to satellite
s but excluding users already satisfied with demands. With
(28b) that each satellite can only schedule one user to each
timeslot, we can derive the following rule to select the optimal
user for the s-th satellite,

k∗s = arg min
k∈Ks

Dk − R̃skt − R̄kt + ρ
[
Rmin
k − R̃skt − R̄kt

]+
.

(29)
Then we set xsk∗s t = 1 accordingly.

After iterations, we need to adjust the power allocation to
meet constraints (18b). Let S̄ be the set of the satellites whose
scheduled users’ rates are larger than their demands, i.e.,
Rkst + R̄kst > Dks . We set Rkst = Dks − R̄kst, ∀s ∈ S̄, and
convert the corresponding rate expressions into the following,

Pst =

(
2

Rkst
B − 1

) ∑
s′∈S\{s} |hs′ks |2Ps′t + σ2

|hsks |2
,∀s ∈ S,

(30)

which can be viewed as the equations of Pst. By solving the
equations, the power allocation for those users can be adjusted
to Rkst + R̄kst = Dks . After that, we need to remove users
with satisfied demands from Ks.

The whole procedure of jointly optimizing power allocation
and user scheduling is summarized in Alg. 2. The algorithm
is operated timeslot by timeslot. In each timeslot, iterations
are performed to update γs, ηs, Pst, and xskt from line 4
to line 7, and terminate when convergence occurs or the
maximum number of iterations I2 is reached. Within each
iteration, the update of xskt (computing the values in (29)
and selecting the user with the minimum for each satellite)
dominates the complexity with O(SK̃). In line 10, power
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Algorithm 2 Joint optimization of power allocation and user
scheduling

Input: ysn, zsk, ρ, Dk, Ks, and channel gains; Initialized Pst
and xskt.

1: for t = 1, . . . , T do
2: Initialize γs and ηs, ∀s ∈ S.
3: repeat
4: Update γs and ηs in (21) and (22), respectively.
5: Compute Pst in (27) by letting ψs = 1, ∀s ∈ S.
6: Adjust Pst in (27) with ψs = ρ for satellites with

R̃kt + R̄kt < Rmin
k .

7: Update xskt based on the rule in (29).
8: until Convergence or reaching I2 iterations
9: if there exist users with Rkt + R̄kt > Dk then

10: Set Rkst + R̄kst = Dks for these users and adjust
Pst by solving equations in (30).

11: end if
12: Update Ks and calculate R̄kt.
13: end for
Output: Optimized Pst and xskt.

allocation is adjusted to meet Rk ≤ Dk, where the complexity
of solving the equations in (30) is O(S3) [24] in the worst
case. Thus, the complexity of Alg. 2 is O(T (I2SK̃ + S3)).

C. The Algorithm Framework

To solve P0, Alg. 1 is performed first to decide beam
patterns and user association at the frame level and then
Alg. 2 is executed to jointly optimize power allocation and
user scheduling at the timeslot level. To futher improve the
performance, we design a swap-based algorithm to update the
selection of beam patterns and users to iteratively decrease the
capacity-demand gap.

Beam pattern selection and user association can be defined
as two many-to-one matching problems. A swap of satellite-
pattern matching is defined as Φsnsn′ , denoting that satellite
s changes pattern selection from n to n′. In other words,
the integer solution changes from {ysn = 1, ysn′ = 0}
to {ysn = 0, ysn′ = 1}. Similarly, we define a swap of
satellite-user matching as Ψsk

sk′ , which means the satellite
changes the scheduling from user k to user k′. Accordingly,
the integer solution of {zsk = 1, zsk′ = 0} is changed to
{zsk = 0, zsk′ = 1}. The swaps Φsnsn′ and Ψsk

sk′ are operated
if:
• F > F ′, where F and F ′ are the objective values before

and after the swaps, respectively.
The detailed procedure of the overall scheme is summarized

in Alg. 3. In line 1, beam pattern selection and user association
are initialized by Alg. 1. From line 2 to line 9, the update
operation is executed for I3 iterations. Within each iteration,
we first randomly select swaps in line 3 and calculate the
objective value based on the satellite-pattern and satellite-user
matchings after the swaps by optimizing power allocation
and user scheduling via Alg. 2 in line 4. In line 5 to line
8, we operate the swaps and update the best solution and
objective value if the capacity-demand gap decreases after the

Algorithm 3 Joint optimization of adaptive beam patterns and
resource allocation
Input: Dk and channel gains; Initialized F∗ = inf as the

best objective value, x∗skt, y
∗
sn, z∗sk, and P ∗st as the best

solution.
1: Determine beam pattern selection and user association by

Alg. 1 and update y∗sn and z∗sk.
2: repeat
3: Randomly select swaps Φsnsn′ and Ψsk

sk′ , where ysn and
zsk are the solution after this swap.

4: Optimize power allocation and user scheduling by Alg.
2 based on ysn and zsk. Obtain xskt, Pst, and the
corresponding objective value F .

5: if F < F∗ then
6: Operate the swaps.
7: Update x∗skt = xskt, y∗sn = ysn, z∗sk = zsk, P ∗st =

Pst, and F∗ = F .
8: end if
9: until Reaching I3 iterations

Output: x∗skt, y∗sn, z∗sk, and P ∗st.

TABLE I: Simulation parameters

Parameter Value
Frequency, f freq 20 GHz
Bandwidth, W 400 MHz
Satellite height 600 km

Number of satellites, S 5
Power budget, P̄s 43 dBm

Number of beam patterns, N 5
Receive antenna gain, GRx

k 35 dBi
Noise power, σ2 -126.47 dBW

Number of timeslots, T 32
Minimum elevation angle 40◦

Minimum association rate, Rmin
k 100 kbps

Number of iterations, I1, I2, I3 10, 30, 50

swaps. The complexity of each iteration mainly comes from
executing Alg. 1. Thus the overall complexity of Alg. 3 is
O(I3T (I2SK̃ + S3)).

For practical implementation, the algorithm can be divided
into two parts. With less flexibility compared to power alloca-
tion and user scheduling, the optimization of user association
and beam pattern selection can be solved ahead of service
with predicted channel models and demands for a long-term
goal of diminishing capacity-demand gap. During each frame,
dynamic issues may happen. In this case, user scheduling and
power allocation can be optimized in a short-term way to adapt
to short-term changes.

VI. NUMERICAL RESULTS

In simulation, we consider a square area with 200 × 200
km2, where the generation of users follows two-dimension
normal distributions [25]. The main parameters are summa-
rized in Table I, unless otherwise stated. The generation of
beam radiation patterns follows the rule in [7] and [10]
where GTx

sn,max depends on the beamwidth. We consider beam
patterns which generate circular beams with 3-dB beamwidths
{1◦, 1.5◦, 2◦, 2.5◦, 3◦} [7]. Beams with 1◦ beamwidth have the
largest directivity to the beam center whereas those with 3◦



9

beamwidth generate the widest service range. The results are
averaged over 500 instances.
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Fig. 5: Average computational time consumed by the proposed approaches
(with different I3) and the SCA-based approach.

We first evaluate the performance of the proposed approach
in the aspects of consumed computational time in Fig. 5. For
comparison, a benchmark based on the conventional convex-
ification (SCA) method is set, where the power optimization
problem is addressed by solving a series of approximated
convex subproblems and the integer solution is obtained by
Alg. 3 with I3 = 50. We can observe that the proposed
approach can maintain the computational time at the level
of milliseconds when K ≤ 15. This is because resources
are enough to satisfy users’ demand when the number of
users is small such that the algorithm can perform an early
stop. As the problem size increases with the number of users
(K ≥ 20), the consumed computational time of the proposed
approach remains a relatively smooth variation compared to
the SCA-based approach. When I3 = 1, the computational
time stays below 1 second since no update of integer solutions
is executed. The SCA-based approach requires more compu-
tational time with a drastic rise. As described in Alg. 2, we
jointly optimize power allocation and user scheduling by a
series of closed-form expressions rather than solving convex
subproblems, which saves up computational efforts compared
to the conventional SCA-based scheme.

In Fig. 6, we present the capacity-demand gap performance
of the proposed and SCA-based schemes. As abovementioned,
users’ capacity matches to their requested demand when
K ≤ 15. After that, the capacity-demand gap grows with K
linearly. With swap-based update of beam pattern selection
and user association, the proposed scheme with I3 = 20 can
alleviate the mismatch by 39.81% over that with I3 = 1. As the
number of iterations I3 increases, the proposed scheme reduces
the capacity-demand gap through searching more possible
integer solutions but tends to converge. From I3 = 20 to
50, the proposed approach decreases the gap by 12.40%. The
reduction is 6.95% when I3 rises from 50 to 100. Compared
to the SCA-based approach, the proposed approach only sacri-
fices 4.11% performance but largely reduces the computational
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Fig. 6: Gap performance of the proposed schemes (with different I3) and the
SCA-based approach versus the number of users K (average demand is set
to be 200 Mbps).
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Fig. 7: Gap performance of the proposed scheme and state-of-the-art strategies,
where K = 20.

efforts as presented in Fig. 5, which demonstrates a better
complexity-performance tradeoff.

Then we compare the proposed scheme with some state-of-
the-art strategies in Fig. 7. We set the following strategies as
benchmarks:

• Random: Each satellite selects K̃ users for association
randomly and then chooses the beam pattern with the
largest νsn. At each timeslot, users are scheduled follow-
ing the Round-Robin basis [26].

• Best-channel: users are associated to satellites with the
best channel gains and beam patterns with the largest νsn
are selected. During the scheduling period, each satellite
serves best-channel users first until Rk ≥ Dk [4], [27].

• Largest-demand: Each satellite chooses users with the
largest demand and then select the largest-νsn patterns.
Timeslots are scheduled to users with largest demand
first.

Note that power allocation is optimized following Alg. 2 in
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Fig. 8: Gap performance of the schemes with different beam pattern settings,
where K = 20.

the above benchmarks. Among benchmarks, the Best-channel
scheme outperforms the other two but yields larger capacity-
demand mismatch over the proposed schemes. This is because
the proposed schemes consider both users’ channel conditions
and demand when deciding user association and perform
joint optimization of power allocation and user scheduling.
Compared to the Best-channel scheme, the proposed schemes
reduce the capacity-demand gap by 27.67% and 44.92% when
I3 = 1 and I3 = 50, respectively.

Next, we evaluate the capacity-demand gap performance
of the approaches with different beam pattern settings (5
patterns, 3 patterns, and 1 pattern) in Fig. 8. In the 3-
pattern scheme, each satellite can generate beams with 3-dB
beamwidths {1◦, 2◦, 3◦}. As for schemes with single pattern,
Alg. 1 is employed to decide user association and then Alg.
2 is adopted to perform power and user scheduling. The
resulted capacity-demand gap increases with the growth of the
average requested demand. Among single-pattern schemes, the
one with 2.5◦ beamwidth outperforms the others. Functioned
with multiple beam patterns, 3-pattern and 5-pattern schemes
improve the capability of meeting users’ demand, with 31.46%
and 46.68% reduction of capacity-demand gap over the single-
pattern scheme with 2.5◦ beamwidth, respectively.

In Fig. 9, we evaluate the average power consumption per
satellite of different schemes. Generally, the power consump-
tion rises with the number of users K but tends to be steady
when K is large. Particularly, the single-pattern scheme with
1◦ beamwidth results in the least power consumption in spite
of the worst performance in reducing capacity-demand gap.
With more flexibility introduced in spatial domain, the 5-
pattern scheme can guarantee good capacity-demand matching
with power consumption smaller than the other four single-
pattern schemes. Moreover, the capability of user association
of different schemes is presented in Fig. 10. Compared to
the single-pattern scheme with 2◦ beamwidth, which performs
the best with the most associated users, the 5-pattern and 3-
pattern schemes sacrify 8.04% and 10.13% performance, re-
spectively. The designed multiple-pattern scheme can achieve
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Fig. 9: Power consumption of the schemes with different beam pattern settings,
where the average demand is 200 Mbps.
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Fig. 10: Average number of associated users (with Rk ≥ Rmin
k ) achieved by

the schemes with different beam pattern settings, where the average demand
is 200 Mbps.

a good balance between capacity-demand matching and power
consumption/user association over conventional single-pattern
schemes.

In practical systems, LEO satellites equipped with advanced
payloads (adopting the multiple-pattern scheme) would coexist
with those equipped with conventional payloads (using the
single-pattern scheme). We evaluate the performance of sce-
narios with different types of satellite payloads in Fig. 11. The
more satellites are equipped with multiple beam patterns, the
more spatial-domain flexibility is offered and thus the more
reduction in capacity-demand gap is obtained. By introducing
adaptive beam patterns, the capacity-demand gap is largely
reduced by 91.59% and 76.19% when N = 5 and N = 3,
respectively.

VII. CONCLUSION

In this paper, we have investigated joint resource optimiza-
tion and discussed synergies of spatial-temporal domain flex-
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Fig. 11: Gap performance of LEO satellite systems with the coexistence of
satellite payloads with both conventional single pattern and multiple patterns.
Note that beamwidth is set to 2◦ in the single-pattern scheme. Here, the
average demand is 200 Mbps and K = 20.

ibilities when adopting adaptive beam patterns with flexible
user scheduling in LEO satellite systems. We have designed an
algorithmic framework to first determine beam pattern selec-
tion and user-LEO association, and then jointly optimize user-
slot scheduling and power allocation. We have revealed facts
for guiding algorithm design. That is, to mitigate the mismatch
effect, users with better channel and high demand are prone
to be served by narrow beams with low radiated interference
to other users. Furthermore, we have proposed a swap-based
update strategy to iteratively reduce the capacity-demand gap.
Numerical results have demonstrated a good tradeoff of the
designed scheme between performance and complexity and
the advanced capability of matching capacity to demand when
extra flexibility in spatial domain is introduced.

APPENDIX

A. Proof of Proposition 1

We prove the proposition by contradiction. Assume that
there exist users with

∑
s∈S xsktRskt + R̄kt > Dk at the

optimum of P2(t). Denote S+
t and S−t as the sets of satellites

offering their scheduled users with
∑
s∈S xsktRskt + R̄kt >

Dk and
∑
s∈S xsktRskt+ R̄kt ≤ Dk, respectively. Let P ∗st be

the optimal power allocation and % control the power of users
scheduled by satellites in S+

t . Note that, at the optimum, % is
set to 1. For users scheduled by satellites in S+

t , the optimal
SINR expression is derived as,

γskt =
|hsk|2%P ∗st∑

s′∈S+
t \{s}

|hs′k|2%P ∗s′t +
∑

s′∈S−t

|hs′k|2P ∗s′t + σ2
,

(31)
Similarly, the optimal SINR of users scheduled by satellites
in S−t is expressed as,

γskt =
|hsk|2P ∗st∑

s′∈S+
t

|hs′k|2%P ∗s′t +
∑

s′∈S−t \{s}
|hs′k|2P ∗s′t + σ2

,

(32)

With the optimal P ∗st, we view the objective as the function
of % and derive the derivative of the objective regarding % in
(33). Note that

ρ̄ =

{
ρ, if Rmin

k >
∑
s∈S xsktRskt + R̄kt;

0, otherwise.
(34)

We can observe that the derivative of the objective with respect
to % is larger than 0. This result conveys that the objective
value could be smaller if we lower transmit power of satellites
in S+

t by reducing %, which is contrary the assumption of
optimality. Hence the proposition.
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