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Abstract
Privacy Attacks and Protection in Generative Models

by Hailong Hu

Recent years have witnessed the tremendous success of generative models in data
synthesis. Typically, a well-trained model itself and its training set constitute key
assets for model owners, which allows technology companies to gain a leading po-
sition in the global market. However, privacy is a key consideration in deploying
state-of-the-art generative models in practice. On the one hand, the exposure of
model privacy can lead to the compromise of the intellectual property rights of le-
gitimate model owners, which consequently affects the market share of companies.
On the other hand, the disclosure of training data, especially when it includes per-
sonal information, constitutes a direct infringement of data privacy, which severely
leads to legal sanctions for companies. Indeed, the advent of emerging generative
models critically necessitates novel privacy analysis and protection techniques to
ensure the confidentiality of cutting-edge models and their training data. To solve
these challenges, this dissertation investigates several new privacy attacks and pro-
tection methods for generative models from the perspective of model privacy and
data privacy. In addition, this dissertation also explores a new mode that leverages
existing pre-trained generative models to study the security vulnerabilities of dis-
criminative models, which provides a fresh angle to apply generative models to the
risk analysis of discriminative models.

This dissertation is organized into three parts. In the first part, i.e. model
privacy in generative models, I develop new model extraction attacks to steal gen-
erative adversarial networks (GANs). The evaluations show that preventing model
extraction attacks against GANs is difficult but protecting GANs through verifying
the ownership can be a deterrence against malicious adversaries. Thus, I further
propose an ownership protection method to safeguard GANs, which can effectively
recognize these stolen models constructed from physical stealing and model extrac-
tion. In the second part, i.e. data privacy in generative models, I develop two types
of membership inference attacks against diffusion models, and the proposed loss-
based method reveals the relationship between membership inference risks and the
generative mechanism of diffusion models. I also investigate property inference
risks in diffusion models and propose the first property aware sampling method to
mitigate this attack, which bears the benefits of being plug-in and model-agnostic.
In the third part, i.e. applications of generative models, I propose a new type
of out-of-distribution (OOD) attack by leveraging off-the-shelf pre-trained GANs,
which demonstrates that GANs can be utilized to directly construct samples to
fool classification models and evade OOD detection. Taken together, this disserta-
tion primarily provides new privacy attacks and protection methods for generative
models and can contribute to a deeper and more comprehensive understanding of
the privacy of generative artificial intelligence.
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Chapter 1

Introduction

Artificial intelligence (AI) technology profoundly powers numerous facets of mod-
ern society, ranging from agriculture to manufacturing, transportation to finance,
and entertainment to healthcare [LBH15]. At the same time, AI systems entail a
number of potential security and privacy risks, such as erroneous decision-making
in autonomous driving, exposure of personal health information in AI-assisted
medical diagnosis, or being used for malicious purposes. In particular, recent gen-
erative AI systems, such as ChatGPT which can generate impressively coherent and
readable text, further bring about people’s concerns in relation to privacy.

1.1 Generative Models

“What I cannot create, I do not understand.”

— Richard Feynman, 1988

Over the past few years, generative AI has undoubtedly made incredible achieve-
ments in a variety of domains, such as image synthesis, natural language process-
ing, and audio generation. For instance, diffusion-based generative AI systems, like
DALL-E2 [RDN+22] or Stable Diffusion [RBL+22], can synthesize various styles of
images that are aesthetically pleasing and visually stunning. Autoregressive-based
generative AI systems, such as GPT-3 [BMR+20], excel in generating natural lan-
guage texts that are lexically diverse and semantically coherent, making it exceed-
ingly challenging to distinguish them from human-authored content. Variational
autoencoder-based generative AI systems, like Jukebox [DJP+20], exhibit promis-
ing potential in generating music with singing in the raw audio domain. Behind
the success of generative AI, one of the key catalysts is the breakthrough of genera-
tive models which synergistically combine generative modeling methods and deep
neural networks.

Generative models generally include energy-based models [AHS85, LCH+06], au-
toregressive models [BB99, GGML15], normalizing flows [RM15, DSDB16], varia-
tional autoencoders [KW14], generative adversarial networks (GANs) [GPAM+14],
and diffusion models [SDWMG15]. The generation performance of generative mod-
els can vary, depending on the characteristics of different application domains. For
example, text generation in the natural language processing domain mainly relies
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on autoregressive models, which operate sequentially predicting subsequent to-
kens conditioned on prior information [BMR+20]. In contrast, image synthesis in
the computer vision domain predominantly utilizes GANs and diffusion models,
where they are much more versed in capturing intricate patterns and dependencies
within the image data [YZS+22].

GANs, first introduced by Goodfellow et al. [GPAM+14], learn to generate novel
samples via an adversarial learning way. A typical GAN comprises two neural
networks: a generator and a discriminator. In a GAN, the generator learns to
produce data samples that closely resemble these samples from the training set,
thereby fooling the discriminator. Conversely, the discriminator, usually designed
as a binary classifier, aims to differentiate between samples from the generator and
from the training set. The adversarial learning process, i.e. a min-max game, is
conducted between the generator and the discriminator until Nash equilibrium is
reached. Drawing from the foundational idea of the seminal GAN, researchers
have proposed various methods to further improve the generation performance of
GANs, such as designing new neural networks [RMC16, KALL18], using novel la-
tent spaces [KLA19, KLA+20], constructing new loss functions [SGZ+16, MKKY18].

Diffusion models, initially proposed by Sohl-Dickstein et al. [SDWMG15], learn to
generate novel samples via a way of successively adding the noise and denoising.
Specifically, a diffusion model first perturbs training samples to Gaussian noise
samples by gradually adding different levels of noise into training samples. Then,
it learns to reverse this process to synthesize the noise-free samples from noise
samples via step by step removing the noise. Denoising diffusion probabilistic
models [HJA20] significantly enhance the generation performance of the original
diffusion model and enable it to synthesize high-quality images by parameteriza-
tion techniques and a new objective function. Additionally, researchers successfully
improve the performance of a diffusion model by effectively utilizing the score func-
tion of the log-likelihood of the data [SSDK+21]. Unlike GANs which are known
for their high sampling speeds but often present challenges in terms of training
stability, diffusion models can exhibit robust training stability but typically suffer
from a notably slower sampling process. Despite these divergent yet complemen-
tary characteristics, GANs and diffusion models are widely appreciated for their
excellent performance in image synthesis.

1.2 Privacy in Machine Learning

With the burgeoning prosperity of AI and the profound integration into numerous
aspects of our daily lives, people have increasingly drawn attention to privacy and
security threats on AI-based applications [PMSW18]. Indeed, research on adver-
sarial example attacks has demonstrated that an adversarial 3D-printed object can
cause an autonomous driving system to fail in detecting and crash into it, which
exerts direct and formidable threats on security-critical applications [CWX+21]. Re-
cent studies on membership inference attacks have illustrated that various machine
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learning (ML) models, including classification models, language models, and gen-
erative models, can inadvertently memorize certain training samples, which results
in privacy concerns for privacy-sensitive applications [SSSS17, CTW+21, CHN+23].

In general, based on the adversary’s goal, we can classify attacks against a machine
learning model into two categories: integrity attacks and privacy attacks. Integrity
attacks concern how an adversary manipulates an ML model to compromise the
model’s performance. They can occur in the training phase, such as poisoning
attacks [BNS+06] and backdoor attacks [GLDGG19], or in the inference phase, such
as evasion attacks [BCM+13, SZS+14], which are usually related to the security or
robustness properties of an ML model. In contrast, privacy attacks usually steal or
reveal the information of a well-trained ML model including the model itself and
the training set.

Privacy attacks targeting to steal the information of an ML model itself include
stealing the functions or parameters of an ML model (also called model extraction
attacks) [TZJ+16, CJM20], and stealing the hyperparameters of an ML model [WG18,
OAFS18]. These types of attacks that infringe the model privacy usually compro-
mise the intellectual property of a model owner. In addition, privacy attacks target-
ing to steal the information of the training set of an ML model include membership
inference attacks [SSSS17], property inference attacks [AMS+15], and data extrac-
tion attacks [FJR15]. These types of attacks that infringe the data privacy usually
lead to the information leakage of a private training set. For instance, membership
inference attacks aim to infer whether a given sample is in the model’s training
set. These attacks allow adversaries to reveal that one person has this disease by
inferring an ML model associated with a disease. As another example, property
inference attacks focus on inferring some global information about the model’s
training set, which is not shared by model owners. These attacks enable adver-
saries to reveal the proportion of the training dataset from a certain class, such as
the fraction of females or minorities on an ML model used for loan scoring.

1.3 Dissertation Motivation

Advanced ML technologies enable enterprises to acquire an advantageous position
in the global market. Generally, a well-trained state-of-the-art ML model and its
training set are valuable assets of model owners or providers. On the one hand,
a well-trained ML model is typically thought the intellectual property of enter-
prises and should be confidential [KNL+20]. On the other hand, the model’s train-
ing data associated with personal information should be secret. In particular, an
increasing number of legislation, such as the General Data Protection Regulation
(GDPR) [PotEU16] and the California Consumer Privacy Act (CCPA) [LoC18], have
required that enterprises should assess the privacy risks of techniques when they
are applied to personal data. Privacy breaches in models or training data can result
in considerable financial losses and legal risks for businesses. Therefore, in this dis-
sertation, we delve into privacy risks centering around models and their training
data, classifying these risks into two types: model privacy and data privacy.
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Model privacy in generative models. We illustrate our motivation with regard to
model privacy in generative models from two aspects.

The first motivation is that adversaries might bear significantly low costs to ob-
tain an ML model that enjoys a comparable level of performance to the victim
model (also referred to as the target model in this work). In practice, attaining a
cutting-edge performance level for an ML model is not straightforward. It generally
necessitates engaging in the complicated and exhausting process of data collection
and purification, possessing expert-level knowledge in model architecture and al-
gorithm design, performing elaborate hyperparameter tuning, and having access
to extensive computing resources. Therefore, a high-quality well-trained ML model
is a comprehensive undertaking that entails substantial financial investment and
the commitment of significant human resources, and it is considered the intellec-
tual property of model owners. Moreover, the escalating number of enterprises has
deployed Machine Learning as a Service (MLaaS) where customers are allowed to
use their state-of-the-art ML models by subscription payments, such as Amazon
AWS, Google Cloud, and Microsoft Azure. This emerging attack surface further
incentivizes adversaries to compromise the model privacy and intellectual prop-
erty of model owners, such as launching model extraction attacks to illicitly obtain
high-value ML models.

The second motivation is that model extraction attacks and defenses in genera-
tive models are less explored. Early work on attacking model privacy focuses on
stealing simple classification models [TZJ+16], such as logistic regression, decision
tree, support vector machine and multilayer perceptrons, and complex classification
models on deep convolution neural networks [OSF19, JCB+20] and classification
models on natural language processing tasks [KTP+20]. There are several works
that steal hyperparameters or parameters of a classification model [WG18, CJM20].
However, generative models, as an equally important type of ML model, do not
receive much attention from the privacy research community. In a nutshell, both
motivations drive us to study the feasibility of model extraction attacks in gen-
erative models and strive to propose potential defense measures to safeguard the
ownership of generative models.

Data privacy in generative models. We illustrate our motivation with regard to
data privacy in generative models from two aspects.

The first motivation is that data privacy attacks might cause severe privacy risks,
i.e. considerable leakage of sensitive information in the training set via attacking an
ML model. This threat is not allowed by existing data protection regulations when
the training set involves personal data, such as human faces or medical records. For
example, GDPR [PotEU16], a regulation in European Union law on data protection,
requires that it is mandatory to conduct thorough assessments of potential privacy
threats associated with artificial intelligence technologies that involve sensitive data.
Therefore, successful data privacy attacks can cause enterprises to incur substantial
financial loss and potential legal sanctions. In other words, it is paramount for an
ML model to systematically study data privacy attacks under various adversarial
scenarios. Beyond that, these attacks, in a synergistic manner, can serve as powerful
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catalysts, fostering significant advancements in protection methodologies.

The second motivation is that the latest generative models necessitate new data pri-
vacy assessments and protection methods. Prior methods on membership inference
attacks mainly focus on classification models [SSSS17], early generative models,
such as variational autoencoders (VAEs) [HHB19] and GANs [HMDDC19], which
are not applicable to the latest generative models — diffusion models. On the one
hand, it is due to the difference between classification models and generative mod-
els. Take the image domain as an example, classification models output the predic-
tion results of images, such as class labels or confidence scores of being certain class,
while generative models directly generate images that are high-dimensional data.
On the other hand, this is because the latest diffusion models [HJA20, SSDK+21]
have different generative mechanisms from VAEs [KW14] and GANs [GPAM+14].
For instance, unlike GANs which have one loss value in the training phase, dif-
fusion models have lots of loss values because diffusion models introduce a time
dimension and each diffusion time step corresponds to a loss value. This pro-
vides more potential signals to adversaries and it requires a new study to unearth
new insights about privacy risks in diffusion models. In addition, different sam-
pling mechanisms between diffusion models and early generative models, such as
GANs, require a new defense method to protect the privacy of diffusion models. To
sum up, both motivations drive us to investigate data privacy attacks and propose
protection methods on the latest diffusion models.

Applications of generative models. In addition to studying privacy risks related
to generative models themselves, we further unlock their potential and leverage
generative models as a tool to investigate evasion attacks in discriminative mod-
els. Our motivation is that generated samples from generative models might be
utilized by adversaries to fool classification models, even if classification models
are protected by an out-of-distribution (OOD) detector. On the one side, there
are many well-trained generative models which can generate images with both a
greater stylistic diversity and a substantially larger quantity of images than those
from datasets collected by humans. Thus, generated data from generative mod-
els can be utilized to maliciously attack classification models. On the other side,
there are many research works on studying the OOD generalization of classifica-
tion models. However, these works evaluate the OOD generalization of classifi-
cation models via other OOD datasets, which might largely overestimate the OOD
generalization. This is because OOD datasets used in the current literature are often
limited to several common datasets [YZLL21, CLW+21, FLL+22]. For instance, the
OOD performance of a classification model trained on CIFAR-10 is evaluated by the
SVHN dataset [NWC+11] and LSUN dataset [YSZ+15]. Therefore, leveraging vari-
ous pre-trained and publicly available generative models, we aim to develop attack
techniques to fool a classification model and evade OOD detection. This new an-
gle of attack aims to provide novel insights into the generalization of classification
models.
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1.4 Dissertation Contributions

This dissertation makes five technical contributions over three thematic parts. These
range from model privacy and data privacy to evasion attacks, addressing the mo-
tivation illustrated previously.

1.4.1 Model Privacy

We analyze model privacy via the lens of model extraction attacks which aim to
steal the function of victim models. By investigating model extraction attacks
against GANs, we show that adversaries can steal a model that has quite sim-
ilar performance (in terms of fidelity) as the victim model with only about 50K
queries/generated samples. By investigating ownership protection methods for
GANs, we provide evidence that existing ownership protection methods fail to de-
fend against our model extraction attacks and our defense can provide effective
ownership verification on both physical stealing and model extraction scenarios.

• Model extraction in GANs. First, we taxonomize the space of model extraction
attacks on GANs and define the fidelity extraction and accuracy extraction, respec-
tively [HP21b]. The corresponding model extraction methods are proposed and
achieve excellent performance, which is also the first systematic study on model
extraction attacks in GANs. We perform one case study to illustrate the impact of
model extraction attacks against GANs on a large-scale scenario. We propose new
effective defense measures to mitigate model extraction attacks against GANs by a
trade-off between attack performance and model utility.

• Ownership protection in GANs. We show that prior works about watermark-
based and fingerprint-based methods cannot provide ownership protection under
model extraction attacks [HP23b]. We propose a protection method GAN-Guards
from a new angle: detecting ownership infringement by utilizing the common char-
acteristics of a target model and stolen models. Our method achieves a new state-
of-the-art performance on both physical stealing attacks and emergent model ex-
traction attacks.

1.4.2 Data Privacy

We analyze data privacy from two different perspectives - one that seeks to infer
the individual information of a training set, and one that seeks to infer the global
information of a training set. By evaluating membership inference attacks against
the latest diffusion models, we reveal the relationship between membership infer-
ence risks and the generative mechanism of diffusion models: different diffusion
steps of a diffusion model have significantly different privacy risks, and there exist
high-risk regions which lead to leakage of training samples from the perspective of
diffusion steps. By evaluating the performance of the property inference defense,
we demonstrate that property inference risks of diffusion models can be effectively
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mitigated by a property aware sampling method that gracefully boasts plug-in and
model-agnostic advantages.

• Membership inference of diffusion models. We propose two types of attacks to
infer membership of diffusion models [HP23a]. We show that from the dimension
of diffusion steps, there are high-risk regions that can cause the leakage of training
samples, and the likelihood values of samples from a diffusion model are a strong
clue to infer training samples. We evaluate our attacks on one classical defense
- diffusion models trained with differentially-private stochastic gradient descent
(DP-SGD), finding that it mitigates our attacks at a substantial compromise to the
quality of synthetic samples. Our code in this work is available at https://github.
com/HailongHuPri/MIDM.

• Property inference of diffusion models. We perform the first study of property
inference attacks against diffusion models under the most practical attack scenario,
showing that diffusion models and their samplers are vulnerable to property in-
ference attacks [HP23c]. We conduct one case study to demonstrate the privacy
risks of property inference of diffusion models in practice. We propose the first
model-agnostic and plug-in defense — PriSampler to mitigate property inference at-
tacks against diffusion models, illustrating that our method achieves state-of-the-art
performance in both model utility and defense performance.

1.4.3 Applications

We analyze evasion attack risks of classification models by the utilization of GAN
models. By investigating OOD attacks against classification models, we demon-
strate that well-trained GANs can be utilized to directly construct samples to fool
classification models and evade OOD detection.

• OOD attacks via GANs. We formulate the problem as: leveraging any pre-
trained GANs, an adversary aims to fool a classification model and make the model
misclassify a sample from GANs as a pre-specified target class [HP22]. We pro-
pose a novel and unified OOD targeted attack framework for white-box and black-
box scenarios, which is the first work to study out-of-distribution attacks through
GANs. Our framework casts this problem as an optimization problem and a fam-
ily of attack methods are developed. We thoroughly evaluate our attack methods
on various victims trained on various datasets and expand our method to attack
classification models with classical and state-of-the-art defense measures.

1.5 Dissertation Structure

This dissertation is comprised of three thematic parts.

Part I investigates the privacy attacks and protection of generative adversarial net-
works from the perspective of model privacy.

https://github.com/HailongHuPri/MIDM
https://github.com/HailongHuPri/MIDM
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• In Chapter 3, we systematically study the feasibility of model extraction at-
tacks against GANs. We propose two types of model extraction attacks, con-
duct one case study in practice and present several mitigating techniques.
This chapter was previously published as [HP21b].

• In Chapter 4, we present one defense method against model extraction at-
tacks by verifying the ownership of GANs, demonstrating its effectiveness by
comparison and a number of analysis experiments, such as performance with
respect to the number of generations of model extraction attacks, the number
of generated samples, different datasets, different target models and adaptive
attacks. This chapter is based on [HP23b].

Part II focuses on the privacy attacks and protection of diffusion models from the
perspective of data privacy.

• In Chapter 5, we investigate membership inference risks of diffusion mod-
els. We propose two attack methods, namely loss-based and likelihood-based
attacks, illustrating their effectiveness by attacking several state-of-the-art dif-
fusion models trained on privacy-sensitive datasets and diffusion models
trained with differential privacy. This chapter is built upon [HP23a].

• In Chapter 6, we study property inference risks of diffusion models. We con-
duct property inference attacks against different types of samplers and dif-
fusion models under the most practical attack scenario, and present one case
study about attacking off-the-shelf pre-trained diffusion models, and propose
a new model-agnostic plug-in method PriSampler to mitigate the property in-
ference of diffusion models. This chapter is based on [HP23c].

Part III is about the application of generative models in analyzing the robustness
of classification models.

• In Chapter 7, we propose a novel OOD framework to fool a classification
model by leveraging any pre-trained GANs. We develop a family of attack
methods under this framework and show that our methods can achieve com-
petitive performance by comparing with several state-of-the-art adversarial
example attacks and evading several widely-used and the latest defenses. This
chapter is based on [HP22].

We conclude and discuss future avenues in Chapter 8.



9

Chapter 2

Preliminaries

In this chapter, we start with the introduction of generative models, and illustrate
two predominant families of generative models in computer vision: generative ad-
versarial networks and diffusion models. Then, we describe the background knowl-
edge about threat models from the viewpoint of adversaries.

2.1 Generative Models

Problem formulation. Given a training set with a size of N, i.e.D = {x1, x2, · · · , xN},
one of the most commonly used assumptions in the machine learning research
community is that these data samples in the dataset D are independent and identi-
cally distributed and are from an underlying (unknown) data distribution pdata(x)
[GBC16]. The goal of generative models is to model and estimate the unknown
data distribution pdata(x) based on a given training set D. To achieve this, we first
denote a generative model pθ(x), where θ ∈ Θ is model parameters and Θ is the
set of parameter values. Then, we aim to find the optimal parameters θ∗ ∈ Θ such
that

pθ∗(x) ≈ pdata(x). (2.1)

Once the optimal generative model pθ∗(x) is obtained, we can synthesize numerous
new data via sampling from pθ∗(x). Furthermore, synthesized samples and gen-
erative models themselves can be also applied to a variety of applications, such as
data augmentation to cope with the scarcity of data [KAH+22], image editing via
the well-trained generative models [XZY+22]. A generative model is also known as
a statistical model or a probabilistic generative model. In the machine learning com-
munity, a generative model is also called a deep generative model, because current
generative models generally utilize deep neural networks to learn high-dimensional
probability distribution and achieve state-of-the-art generation performance.

Training of generative models. To get the optimal parameter θ∗ of a generative
model, we can minimize the distance between pdata(x) and pθ(x) by the following
formula:

θ∗ = arg min
θ

D(pdata||pθ), (2.2)

where D(·||·) is a distance metric. Common distance metrics include f -divergences
[Csi64, AS66], Kullback-Leibler (KL) divergence [KL51] and integral probability
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metrics [Mül97]. Take the KL divergence as an example, its standard formula
for pdata(x) and pθ(x) is:

DKL(pdata||pθ) =
∫

pdata(x) log
pdata(x)
pθ(x)

dx

= Epdata(x)

[
log(

pdata(x)
pθ(x)

)

]
. (2.3)

Furthermore, given a training set D containing N samples, we can approximate
Equation 2.3 by the empirical mean:

DKL(pdata||pθ) ≈
1
N

N

∑
i=1

log
(

pdata(xi)

pθ(xi)

)
=

1
N

N

∑
i=1

log pdata(xi)−
1
N

N

∑
i=1

pθ(xi). (2.4)

In the course of model training, the first item of Equation 2.4, i.e. 1
N ∑N

i=1 log pdata(xi),
is a constant because it is independent of the model parameter θ. In other words,
we can drop this item in the training process. As a result, combining Equation 2.2
and Equation 2.4, a generative model can be trained by:

θ∗ = arg min
θ

(
− 1

N

N

∑
i=1

pθ(xi)

)

= arg max
θ

(
1
N

N

∑
i=1

pθ(xi)

)
. (2.5)

Equation 2.5 is a standard method to learn a probabilistic generative model, which
is also the maximum likelihood estimation approach in the statistics community.

Challenges of generative modeling. When optimizing Equation 2.5 and ensur-
ing the validity of probability distributions, there are two natural constraints for a
generative model pθ(x) [Son22]:

(1) Non-negativity: ∀x : pθ(x) ≥ 0.

(2) Normalization:
∫

pθ(x)dx = 1.

Non-negativity guarantees that each probability is non-negative, while normaliza-
tion says that the sum/integration of the values of the probability distribution is
equal to 1. Generally, normalization is much more challenging than non-negativity.
This is because normalization involves intractable computing problems for high-
dimensional data x, while non-negativity can be conveniently implemented by
exponential functions, such as exp(p(x)). Therefore, this also inspires numerous
talented researchers to propose various methods for generative modeling.

Various families of generative models. In general, there are six families of genera-
tive models: energy-based models [AHS85, LCH+06], autoregressive models [BB99,
GGML15], normalizing flows [RM15, DSDB16], variational autoencoders [KW14],
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Figure 2.1: The mechanism of a GAN.

generative adversarial networks [GPAM+14] and diffusion models [SDWMG15]. In
computer vision, early generative models cannot generate high-quality and high-
resolution images, due to either the restriction of model architectures, such as au-
toregressive models, normalizing flows, and variational autoencoders, or the heavy
computation for high-dimensional data, such as energy-based models. As a conse-
quence, generative adversarial networks and diffusion models stand out in the im-
age generation domain due to their unique characteristics. In the following section,
we introduce two types of predominant generative models in image generation.

2.1.1 Generative Adversarial Networks

Generative adversarial networks (GANs) completely avoid the normalization chal-
lenge by only focusing on modeling the data generation process. Therefore, GANs
are also the first generative models which can generate high-quality, high-resolution,
and realistic images.

The basic mechanism of a GAN

GANs are a class of generative models where they adversarially learn the unknown
distribution pdata on the training data set D. As shown in Figure 2.1, a GAN gen-
erally consists of two components: a generator G and a discriminator D, both of
which are structured as deep neural networks. G is responsible for generating fake
data xg = G (z), where the latent code z is sampled from a prior distribution pz,
such as Gaussian distribution or uniform distribution. In contrast, D takes the role
of a binary classifier which differentiates real-like samples xg from real samples
xr ∈ D as accurately as possible. In the course of training, G and D compete with
each other, resulting in a min-max (two-player adversarial) game. In the course of
the deployment, only G is utilized to produce new synthetic data while D is usually
discarded.

The seminal GAN [GPAM+14] utilizes multilayer perceptrons as the architectures
of the generator G and the discriminator D. It is trained through optimizing the
following loss function:

min
G

max
D

V(D, G) = Ex∼pdata [log D (x)] + Ez∼pz [1− log D (G (z))] . (2.6)

A GAN is an implicit generative model, and the learned distribution of the GAN,
i.e. pg, can be implicitly defined from pz and G(z). If the generator G and the
discriminator D converge and reach global equilibrium, then pdata (x) = pg (x). For
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a fixed G, the optimal discriminator D∗ can be obtained by:

D∗ (x) =
pdata (x)

pdata (x) + pg (x)
(2.7)

Once D∗ can be exactly calculated, Goodfellow et al. [GPAM+14] further show that
the loss function, i.e., Equation 2.6, can be reformulated as:

max
D

V(D, G) = DKL(pdata||
1
2
(pdata + pg)) + DKL(pg||

1
2
(pdata + pg))− log 4

= 2DJS(pdata||pg)− log 4. (2.8)

DJS(·||·) represents the Jensen-Shannon (JS) divergence, which is a specific instance
of f -divergence. Therefore, recalling Equation 2.2, the objective of the seminal GAN
in essence is also to minimize the distributional distance between pdata and pg,
where the distance is defined by the JS divergence.

Various GANs

To further improve the performance of GANs, numerous methods have been pro-
posed from the perspective of loss functions or architectures of GANs. In the fol-
lowing, we introduce several representative GAN models.

• WGAN. The seminal GAN has instability problems during the training process.
One of the reasons is that the JS divergence fails to accurately reflect the distance
when pdata and pg do not overlap. However, in practice, there is a high probability
for pdata and pg to overlap [AB17]. To address these problems, the Wasserstein
GAN (WGAN) [ACB17] proposes to utilize the Wasserstein distance to measure
the distance between distributions. Intuitively, the Wasserstein distance is the cost
of the optimal transport that is required to transform pdata into pg. Thus, WGAN
contributes to a more stable training process and enhances the GAN’s performance.

• WGAN-GP. Gulrajani et al. find that the use of weight clipping in WGAN
to enforce a Lipschitz constraint on the discriminator can lead to undesired be-
haviour [GAA+17]. Therefore, they propose WGAN with gradient penalty (WGAN-
GP) penalize the norm of the gradient of the discriminator with respect to its input.
As a result, the performance of a GAN can be further improved.

• SNGAN. Spectral normalization GAN (SNGAN) [MKKY18] proposes to stabilize
GAN training by a weight normalization technique. It is used on the discriminator
to adjust the weights of all the layers to 1. SNGAN ensures that the discriminator
is KLipchitz continuous. This enables SNGAN to present better training behavior
and obtain a better quality of generated samples.

• DCGAN. Unlike the seminal GAN that uses multilayer perceptrons as the archi-
tectures of a GAN [GPAM+14], the deep convolutional GAN (DCGAN) [RMC16]
proposes to introduce a deconvolutional neural network into the generator of a
GAN. The spatial up-sampling ability of the deconvolution operation enables a
GAN to generate higher resolution images. Consequently, the deconvolution oper-
ation becomes a main operation in subsequent GAN architectures.
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• PGGAN. In the pursuit of enhancing the performance of a GAN from the archi-
tectural perspective, the Progressive Growing GAN (PGGAN) [KALL18] proposes a
method that incorporates progressive growing neural networks in the GAN frame-
work. This enables PGGAN to generate as high as 1024× 1024 resolution of realistic
images. To be specific, PGGAN is trained from 4× 4 pixel images and gradually
increases the size of training images and neural networks. As a consequence, the
large size of generated images can be obtained.

• StyleGAN. On the basis of PGGAN, StyleGAN [KLA19] further improves the
performance of a GAN by introducing a style controlled mechanism into the gener-
ator of a GAN. In the style controlled mechanism, an 8-layer multilayer perceptron
is first employed to transform input latent codes z into intermediate latent codes w.
Subsequently, these intermediate latent codes are transformed by learned affine
transformations, and the resulting codes, i.e. styles, are added to each convolution
layer of the generator to control the styles of generated images. To enhance stochas-
tic variation, Gaussian noise is also added after each convolution layer. As a result,
the style-based generator can synthesize diverse styles and high-resolution images.

2.1.2 Diffusion Models

Unlike GAN models which directly model the data generation process but have
challenges in training stability, diffusion models learn a data distribution by grad-
ually adding the noise and denoising.

The basic mechanism of a diffusion model

A diffusion model is a generative model, and it aims to learn the distribution pdata

of a training set and generate new unseen data samples. In general, as shown
in Figure 2.2, a diffusion model consists of two processes: a forward process and
a reverse process. In the forward process, it adds different levels of noise 0 =

σ0 < σ1 <, ...,< σT = σmax into training data, in order to transform a training data’s
distribution into a Gaussian distribution within T time steps. In the reverse process,
it randomly samples a noise image from the Gaussian distribution and gradually
denoises it into an image.

Various diffusion models

In the following, we introduce three fundamental types of diffusion models.

• DDPM. The denoising diffusion probabilistic model (DDPM) is proposed by Ho
et al. [HJA20]. In the forward process, a sample at the t time step is perturbed by:
xt ←

√
αtx0 +

√
1− αtε, where ε ∼ N (0, I), x0 ∼ pdata, and αt ∈ [0, 1] is a variance
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schedule to control the magnitude of noise in each time step. α0 = 1 means that an
image at t = 0 time step is not perturbed and αT = 0 indicates that the perturbed
image at t = T time step becomes pure Gaussian noise. In the reverse process, a
noise image from N (0, I) is step by step denoised and eventually recovers a noise-
free image, and during the process a neural network ϵθ(xt, t) is trained to predict
noise by minimizing the following loss:

L(θ) = Et∼[1,T],x∼pdata,ε∼N (0,I)[||ε− εθ(
√

αtx +
√

1− αtε, t)||2]. (2.9)

• SMLD. The score matching with Langevin dynamics (SMLD) is proposed by
Song et al. [SE19]. In the forward process, a perturbed sample at the t time step is
obtained by: xt ← x0 + σtϵ, where σt is the noise schedule to control the magnitude
of noise. In the reverse process, a neural network sθ(xt, σi) is trained to predict score.
The score refers to the gradient of the log probability density with respect to data,
i.e. ∇xlog p(x). SMLD minimizes the following loss:

Lθ = Et∼[1,T],x∼pdata,xt∼q(xt|x)[λ(σt)||sθ(xt, σt)−∇xt log q(xt|x)||2], (2.10)

where λ(σt) is a coefficient function and ∇xt log q(xt|x) = − xt−x
σ2

t
.

• SSDE. The score-based stochastic differential equation (SSDE) proposed by Song
et al. [SSDK+21] presents a general and unified framework for generative modeling.
The process of a diffusion model is described as a stochastic differential equation.
Specifically, SSDE defines the forward process as:

dx = f(x, t)dt + g(t)dw, (2.11)

where f(x, t), g(t) and dw are the drift coefficient, the diffusion coefficient and a
standard Wiener process, respectively. In the reverse process, it can be expressed by
a reverse-time SDE: dx = [f(x, t)− g(t)2∇xlog qt(x)]dt+ g(t)dw̄, where w̄ is a stan-
dard Wiener process in the reverse time. A neural network is used for predicting
score by minimizing the loss:

Lθ = Et∈U (0,T),x∼pdata,xt∼q(xt|x)[λ(t)||sθ(xt, t)−∇xt log q(xt|x)||2]. (2.12)

Different coefficients, i.e. f(x, t) and g(t), correspond to different types of SSDE,
and in their work, two types of SSDE are proposed: variance preserving (VP) and
variance exploding (VE). We call their corresponding models as VPSDE and VESDE
and they are continuous diffusion models. Furthermore, under this framework,
DDPM and SMLD can be considered discrete VP and VE, respectively.

2.1.3 Sampling

Sampling mechanisms of GANs. The sampling procedure of a GAN is highly
efficient, requiring only a single forward pass through the trained GAN. This is
because it directly models the data generation process. To be specific, given a
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trained GAN G, generated samples xg can be obtained by latent codes, such as
xg = G(z), z ∼ N (0, I).

Sampling mechanisms of diffusion models. Unlike GANs that can directly gener-
ate samples, diffusion models usually need iterative approaches that involve a large
number of forward passes. Therefore, there are many sampling methods for diffu-
sion models that aim to speed up the sampling process and maintain or improve
the quality of generated samples. In addition, based on the unified framework of
SSDE [SSDK+21], sampling methods can be classified into two categories: stochas-
tic sampling and deterministic sampling.

• Stochastic sampling. Because a diffusion model can be described as a stochastic
differential equation (SDE), we can generate a new sample by solving the corre-
sponding reverse-time SDE [And82]. Existing general-purpose numerical solvers,
such as Euler-Maruyama and stochastic Runge-Kutta methods [PBL10], can be used
for solving the SDE. Song et al. [SSDK+21] propose Predictor-Corrector methods to
further improve the sampling quality by utilizing the score-based model. In this
work, we call it a PC sampler.

• Deterministic sampling. In addition to solving a reverse-time SDE, Song et al.
[SSDK+21] find that a reverse-time SDE also corresponds to a probability flow ordi-
nary differential equation (ODE) in which they have the same marginal probability
densities. It indicates that we can generate a new sample by solving a probability
flow ODE. Existing black-box ODE solver [DP80] can be used to generate samples.
In this work, we call it an ODE sampler.

In addition to directly using a black-box ODE solver, there are many works about
designing efficient samplers based on solving the probability flow ODE [LRLZ22,
LZB+22, ZC23]. For example, DPM [LZB+22] analyzes the ODE consisting of a
linear function of the data variable and a nonlinear function parametrized by neural
networks. By deriving an exact formulation for the linear part, DPM can improve
the quality of generated samples and speed up the sampling process. In this work,
we call it a DPM sampler.

2.2 Threat Model

In this section, we describe a general threat model from two perspectives: adver-
sarial capabilities and adversarial goals. An adversary can develop different levels
of attack methods based on a threat model.

2.2.1 Adversarial Capabilities

Adversarial capabilities refer to how much information adversaries can exploit
when launching an attack. Figure 2.3 shows components of a generative model.
It consists of four parts: training set, generative model, latent codes and generated
data. In the training phase, a generative model leans the distribution of a training
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Figure 2.3: Components of a generative model.

set. In the sampling phase, the trained generative model is utilized to synthesize
new data by latent codes. We detail each component as follows.

1 Training set. Adversaries may obtain the information on a training set, including
the distribution information and/or partial training set. The assumption on the
distribution information usually refers that adversaries have a shadow dataset that
has the same distribution as the training set, which is widely used in shadow-based
membership inference attacks [SSSS17, CHN+23]. The assumption of obtaining a
partial training set is often utilized to further enhance the attack performance on
membership inference [HMDDC19] or model extraction [JCB+20, HP21b].

2 Generative model. Adversaries might attain the information on a generative
model itself, such as the architecture of a generative model, and the partial and/or
whole well-trained generative model. Obtaining a whole generative model might
happen in a white-box inference attack where adversaries can fully have access
to the model’s parameters. Obtaining the part of a generative model commonly
happens when adversaries mount an attack relying on the discriminator of a GAN,
rather than the whole GAN [HMDDC19, HP21a].

3 Latent codes. Latent codes refer to random numbers drawn from a prior dis-
tribution such as Gaussian distribution. Adversaries obtaining latent codes mean
that they know the prior distribution or can leverage latent codes to interactively
query a model’s application programming interface (API) provided by model own-
ers. Due to the rising popularity of MLaaS, querying a model is becoming more
prevalent. Thus, this is a basic assumption in the query-based attack setting.

4 Generated data. Generated data refers to samples from a generative model. In
some scenarios, adversaries are unable to query the target model but only have ac-
cess to the generated samples which are publicly released by the model provider.
Whether adversaries can achieve a good attack performance depends on the amount
of released data from model owners. This is also the strictest and most practical
assumption.

Depending on the weak or strong assumptions, an adversary may obtain one or
several components to conduct an attack.

2.2.2 Adversarial Goals

Adversaries can have distinct goals when attacking a machine learning (ML) model.
Generally, we can classify the goals of adversaries into two categories: integrity and
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privacy [PMSW18, Jag21]. For brevity, we also refer to attacks with the goal of
integrity and privacy as integrity attacks and privacy attacks, respectively.

Integrity attacks. Adversaries who aim to break the integrity of an ML model
attempt to manipulate an ML model to undermine the model’s performance. In-
tegrity attacks can happen in the training phase or in the inference phase (also called
the sampling phase in generative models). The attack performance that adversaries
want to compromise includes many types, such as decreasing the accuracy of a
classification model [BCM+13, SZS+14], increasing the privacy risks of a classifica-
tion model [TSSJ+22], and exacerbating the unfairness risks of a certain class in a
classification model [JSPHO21]. Typical integrity attacks include poisoning attacks
and evasion attacks.

• Poisoning attacks. Poisoning attacks are a class of training phase attacks where
adversaries compromise the model performance via injecting carefully constructed
examples into the training set [NBC+08, CLL+17]. In untargeted poisoning attacks,
adversaries poison an ML model to reduce its accuracy to chance while target poi-
soning attacks cause the specific misprediction of a particular sample.

• Evasion attacks. Evasion attacks manipulate the inputs to fool an ML model in
the inference phase [BCM+13, SZS+14]. They are also called adversarial example
attacks. Given a well-trained ML model, adversaries aim to construct perturbed
inputs, i.e. adversarial examples, to compromise the accuracy of this ML model.
Similar to poisoning attacks, untargeted evasion attacks decrease the accuracy of an
ML model randomly while targeted evasion attacks make an ML model misclassify
one sample into a certain specific class.

Privacy attacks. Adversaries who target to violate the privacy of an ML model
attempt to reveal the information of an ML model itself or the information of its
training set. Typical attacks with the goal of privacy include model extraction at-
tacks, membership inference attacks, and property inference attacks.

• Model extraction attacks. Model extraction attacks aim to extract or steal in-
formation of an ML model itself, such as reconstructing a functionally-equivalent
substitute model [TZJ+16]. Jagielski et al. [JCB+20] further classify model extraction
of classification models into accuracy extraction and fidelity extraction. Accuracy
extraction refers that adversaries steal an ML model which exhibits similar perfor-
mance to a victim model on the same test set, while fidelity extraction requires
that the substitute model cannot only have similar accuracy in correctly-recognized
samples and replicate similar errors on a test set. This type of attack, on the one
hand, causes the infringement of the intellectual property of model owners. On
the other hand, it can serve as a stepping stone for other types of attacks, such as
evasion attacks.

• Membership inference attacks. Membership inference attacks, one of the most
popular privacy attacks, aim to determine whether one sample was used for train-
ing an ML model [SSSS17]. They usually infer membership on the assumption that
adversaries can have shadow sets and obtain model’s predictions, such as labels,
loss values, and logit values. Obtaining model parameters and gradients is a strong
assumption to conduct membership inference. Membership inference attacks focus
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on inferring individual samples of the training set of a trained ML. In extreme cases,
there are some attacks aiming to extract or reconstruct training samples, which are
also called data extraction attacks [CTW+21]. Nevertheless, data extraction attacks
usually require high attack costs.

• Property inference attacks. Property inference attacks aim to reveal the macro
information of the training set of an ML model [AMS+15]. For example, adversaries
could extract the ratio of gender in a classification model used for loan scoring,
which is not shared by model owners. Moreover, the attacks allow adversaries
to obtain much richer insight about the training set and can be utilized to infer
vulnerabilities of a security-critical system [GWY+18].

In the following chapters, we will present a family of privacy attacks against gener-
ative models, and the corresponding protection mechanisms are exhaustively dis-
cussed and proposed. In addition, a novel evasion attack via generative models
will be illustrated to reveal the security vulnerability of discriminative models.
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Part I

Model Privacy in Generative
Models





21

Chapter 3

Model Extraction in Generative
Adversarial Networks

Once generative adversarial networks (GANs) have been trained and achieved state-
of-the-art performance, how significant is the threat of model extraction attacks
against GANs? In this chapter, we systematically study the feasibility of model
extraction attacks against GANs. Specifically, we first define fidelity and accuracy
on model extraction attacks against GANs. Then we study model extraction attacks
against GANs from the perspective of fidelity extraction and accuracy extraction,
according to the adversary’s goals and background knowledge. We further conduct
a case study where the adversary can transfer knowledge of the extracted model
which steals a state-of-the-art GAN trained with more than 3 million images to new
domains to broaden the scope of applications of model extraction attacks. Finally,
we propose effective defense techniques to mitigate the risks, considering a trade-
off between the utility and model privacy of GANs.

3.1 Introduction

Over the past few years, machine learning, deep learning in particular, has gained
significant advances in a variety of areas, such as computer vision [TVDJ19, BDS19,
KLA19, KLA+20] and natural language processing (NLP) [DCLT19, LYK+20]. In
general, machine learning models are often considered as the intellectual property
of model owners and are closely safeguarded. The reasons are from at least two
aspects. First, obtaining a practical deep learning model is non-trivial. This is be-
cause training a model requires a large number of training data, intensive comput-
ing resources, and human resources [RDS+15, YSZ+15, TVDJ19, DCLT19, BMR+20,
KLA+20]. Second, deep learning models themselves are confidential, and expo-
sure of deep learning models to potential adversaries poses a threat to security and
privacy [LM05, PMG+17, SSSS17, SZH+19, TZJ+16, LTR+19]. However, a model
extraction attack — a novel attack surface targeting at duplicating a model only
through query access to a target model, has recently emerged and gained signifi-
cant attention from the research community.

In the early study, Tramèr et al. [TZJ+16] first attempt model extraction on tra-
ditional machine learning models and shallow neural networks, such as logistic
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regression, decision tree, support vector machine and multilayer perceptrons. Since
then, Jagielski et al. [JCB+20] further mount the attack against a million of pa-
rameters model trained on billions of Instagram images [MGR+18], which makes
model extraction attack more practical. In addition to model extraction on deep
convolutional neural networks about image classification, there are some works
studying the problem of model extraction in NLP tasks [KTP+20, TYF20]. For in-
stance, with the assumption that victim models are trained based on the pre-trained
BERT model, Krishna et al. [KTP+20] show that an adversary can effectively ex-
tract language models whose performance is only slightly worse than that of the
victim models. However, to the best of our knowledge, these model extraction at-
tacks mainly focus on discriminative models. The attack against generative models,
GANs in particular, is still an open question.

Comparing to model extraction attacks on discriminative models, we observe that
there exist some differences for generative models. First, adversaries can leverage
output information from target models such as labels, probabilities and logits, to
mount model extraction attacks on discriminative models [LM05, OSF19, JCB+20,
TZJ+16], while generative models do not provide such information but only return
images. Second, model extraction attacks on discriminative models are evaluated
on a test dataset. In contrast, unsupervised generative models aiming to learn
the distribution of training data are evaluated by quantitative measures such as
Fréchet Inception Distance (FID) [HRU+17] and multi-scale structural similarity
(MS-SSIM) [OOS17], or qualitative measures such as preference judgment [HLP+17,
ZXL+17]. Therefore, these differences indicate that model extraction strategies,
evaluations and defenses on generative models are very different from these on
discriminative models.

In this chapter, we aim to systematically study the feasibility of model extraction
attacks against GANs from the perspective of fidelity extraction and accuracy ex-
traction. First, we define fidelity and accuracy of model extraction on GANs. More
specifically, when an adversary mounts model extraction attacks against GANs, fi-
delity measures the difference of data distribution between the attack model and
the target model, while accuracy ensures the distribution of the attack model is con-
sistent with the distribution of the training set of the target model. In the next
step, according to the adversary’s goals and the background information that they
can have access to (see Figure 3.2), we systematically study two different types of
attacks on GANs: fidelity extraction attack and accuracy extraction attack, which
are shown in Figure 3.1.

Fidelity extraction attack. Adversaries mounting fidelity extraction focus on fidelity
and they aim to steal the distribution of a target model. Here, the distribution
of a target generative model also refers to the function of this generative model,
because a generative model is used for learning the distribution of a training set.
For this attack, we assume adversaries have no knowledge of the architecture of
target models, and they either obtain a batch of generated data that the model
owner has publicly released or query the target model to obtain generated data. It
can be considered as a black-box fidelity extraction. After obtaining the generated
data, adversaries can train a copy of the target GAN model. We study two different
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target models: Progressive GAN (PGGAN) [KALL18] and Spectral Normalization
GAN (SNGAN) [MKKY18]. Extensive experimental evaluations show that fidelity
extraction can achieve an excellent performance with only about 50K queries (i.e.,
50K generated samples). When we continue to increase the number of queries, we
find that it cannot bring significant improvement of the accuracy of attack models.
This is mainly because the discriminator of a target GAN model is often better than
its corresponding generator and it is very hard to reach global optimum [AOD+19].
In other words, directly querying the target model enables the attack model to be
more consistent with the target generator rather than the real data distribution of
the target model (see Figure 3.5 for an example). Therefore, it motivates us to
perform accuracy extraction to improve the accuracy of attack models.

Accuracy extraction attack. Adversaries mounting accuracy extraction concentrate
on accuracy and they target at stealing the distribution of the training set of a target
model. In order to achieve a high accuracy model extraction attack, we propose
to utilize subsampling techniques where generated samples far away from the true
distribution are rejected and only samples that are closer to the true distribution are
retained (see Figure 3.5). To achieve this goal, we assume that adversaries can obtain
more background knowledge. In particular, we assume adversaries can obtain the
discriminator from the target GAN model and partial real data. We utilize the
discriminator to subsample generated samples. These refined samples are more
close to real data distribution, compared to samples that are directly generated by
the target model (see Figure 3.5(e)). Then, we use these refined samples and partial
real data to train our attack model. Extensive experimental evaluations show that
our accuracy extraction attack indeed brings improvement of the accuracy of attack
models, compared to fidelity extraction attacks (see Figure 3.6). This indicates that
the risks of partially releasing training data can be further exacerbated under this
type of attack.

Case study. We perform one case study to further demonstrate the impact of model
extraction attacks on a large-scale scenario. In this case study — model extraction
based transfer learning (Section 3.7), we show that stealing a state-of-the-art GAN
model can enable adversaries to enhance the performance of their own GAN model
by transfer learning. Specifically, for the target model StyleGAN trained on the 3
million bedroom images [YSZ+15], the adversary first launches a fidelity extrac-
tion attack, and the attack performance with 4.12 FID on fidelity and 6.97 FID on
accuracy can be achieved under 50K queries. Furthermore, the adversary trans-
fers the extracted knowledge to new domains, and experimental evaluations show
that compared with training from scratch on LSUN-Classroom dataset with 20.34
FID [KALL18], model extraction based transfer learning achieves 16.47 FID, which
is the state-of-the-art performance on the LSUN-Classroom dataset.

Defenses. Both fidelity extraction and accuracy extraction attacks on GANs com-
promise the intellectual property of model providers. In particular, accuracy extrac-
tion aiming to steal the distribution of the training set of a target model can further
severely breach the privacy of the training set. Therefore, we propose possible de-
fense techniques by considering two aspects: fidelity and accuracy (Section 3.8). In
terms of fidelity of model extraction, limiting the number of queries is an effective
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method. In terms of accuracy of model extraction, we believe that a high accuracy at-
tack model requires adversaries to have access to generated data which can be much
closer to real data distribution. The performance of model extraction attacks will be
attenuated if adversaries only obtain a partial or distorted distribution of generated
data. Thus, we propose two types of perturbation-based defense strategies: input
and output perturbation-based approaches, to reveal less distribution information
by increasing the similarity of samples or lowering the quality of samples [ASTG19].
The input perturbation-based approaches include linear and semantic interpola-
tion perturbation while the output perturbation-based approaches include random
noise, adversarial example noise, filtering and compression perturbation. Exten-
sive experimental evaluations show that, compared to queries from the prior dis-
tribution of the target model, the equal amount of queries by perturbation-based
defenses can effectively degrade the accuracy of attack models (Figure 3.12(a)).

Organization. The rest of this chapter is organized as follows. The next section 3.2
reviews related work. Section 3.3 taxonomizes the space of model extraction attacks
on GANs. Section 3.5 and Section 3.6 introduce the fidelity extraction and accuracy
extraction, respectively. Section 3.7 presents one case study. In Section 3.8, we
discuss possible defense mechanisms. Section 3.9 concludes this chapter.

3.2 Related Work

Generative adversarial networks (GANs). GANs have achieved impressive perfor-
mance in a variety of areas, such as image synthesis [RMC16, SGZ+16, MKKY18,
KALL18, BDS19, KLA19, KLA+20, LCC+19], image-to-image translation [ZKSE16,
PLWZ19, LHM+19], and texture generation [LW16, XSA+18], since a framework
of GAN was first proposed by Goodfellow et al. in 2014 [GPAM+14]. For im-
age synthesis tasks, the current state-of-the-art GANs [MKKY18, KALL18, BDS19,
KLA19] are able to generate highly realistic and diverse images. For instance,
SNGAN [MKKY18] generates realistic images by a spectral normalization method
to stabilize the training process. PGGAN [KALL18] proposed by Karras et al. is
the first GAN that successfully generates real-like face images at a high resolution
of 1024 × 1024, applying a progressive training strategy. Unlike the PGGAN train-
ing in an unsupervised method, BigGAN [BDS19] proposed by Brock et al. aims
to generate high-quality images from a multi-class dataset by conditional GANs
which leverage information about class labels. Recently, StyleGAN [KLA19] has
further improved the performance of GANs on high-resolution images through
adding neural style transfer [HB17]. In this chapter, we choose SNGAN and PGGAN
as the target models to be attacked by model extraction, considering their impressive per-
formance on image generation. StyleGAN is also used as a target model in a case study in
Section 3.7.

Model extraction attacks. With the availability of machine learning as a service
(MLaaS), model extraction attack has received much attention from the research
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community [TZJ+16, KTP+20, CJM20, JCB+20, CGZ+21], which aims to dupli-
cate (i.e., ‘steal’) a machine learning model. This type of attack can be catego-
rized into two classes: accuracy model extraction and fidelity model extraction. In
terms of accuracy model extraction, it was first proposed by Tramèr et al. [TZJ+16],
where the objective of the attack is to gain similar or even better performance on
the test dataset for the extracted model. Since then, various methods attempting
to reduce the number of queries have been developed for further improving the
attack efficiency, such as model extraction using active learning [PGS+20, CCG+20]
or semi-supervised learning [JCB+20]. In terms of fidelity model extraction, it re-
quires the attack model to faithfully reproduce predictions of the target model,
including the errors which occur in the target model. Typical works include model
reconstruction from model explanation [MSDH19], functionally equivalent extrac-
tion [JCB+20] and cryptanalytic extraction [CJM20]. In addition to model extraction
attacks on images, there are several work about model extraction in natural lan-
guage processing [KTP+20, TYF20]. Krishna et al. [TYF20] mount model extraction
attacks against BERT-based models and the performance of the extracted model is
slightly worse than that of the target model. Overall, these studies mainly focus on
discriminative models, such as regression and convolutional neural networks for
classification, and recurrent neural networks for natural language processing. Un-
like the existing studies, our work aims to study model extraction attacks against GANs.

In addition to model extraction attacks, there are other types of attacks in relation
to privacy and security [XMSM20, CTW+21, WG18], such as membership infer-
ence attacks [SSSS17, SZH+19, SSZ19, HMDDC19, CYZF20] and property inference
attacks [GWY+18]. Some efforts have been also made to investigate membership
inference attacks against GANs, where queries to a GAN model can reveal infor-
mation about the training dataset [HMDDC19, CYZF20, HHB19]. Overall, these
studies mainly focus on privacy on the training dataset, while model extraction at-
tacks in this chapter concentrate on machine learning model itself.

Model extraction defenses. Defense for model extraction can be broadly classi-
fied into two categories: restricting the information returned by models [TZJ+16,
LEMS19] and differentiating malicious adversaries from normal users [JSMA19].
Tramèr et al. propose a defense where the model should only return class labels
instead of class probabilities [TZJ+16]. Recently, a technique PRADA has proposed
to guard machine learning models by detecting abnormal query patterns [JSMA19].
Watermarking ML models as a passive defense mechanism recently has been pro-
posed to claim model’s ownership [JCCCP21, CJG21, LWZZ19]. However, these
defense techniques are used to protect discriminative models where models return
probabilities or labels. In this chapter, we focus on defense approaches safeguarding
generative adversarial networks where models return images.

3.3 Taxonomy of Model Extraction against GANs

In this section, we start with adversary’s goal and formally elaborate on our attacks.
Next, we illustrate adversary’s background knowledge where an adversary can
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Figure 3.1: Fidelity extraction and accuracy extraction.

mount attacks according to the obtained information. Finally, we detail the metrics
to evaluate the attack performance.

3.3.1 Adversary’s Goals

In general, model extraction based on adversary’s goals can be categorized into
either fidelity extraction or accuracy extraction. Unlike supervised discriminative
models aiming at minimizing errors on a test set, unsupervised generative models
target at learning the distribution of a data set.

Therefore, for model extraction attacks on GANs, fidelity extraction aims to mini-
mize the difference of data distribution between attack models and target models,
while accuracy extraction aims to minimize the distribution between attack models
and the training set of target models.

Specifically, as shown in Figure 3.1, the goal of fidelity extraction is to construct a G̃
minimizing S( p̃g, pg), where S is a similarity function, p̃g is the implicit distribution
of the attack generator G̃, and pg is the implicit distribution of the target generator
G. In contrast, accuracy extraction’s goal is to construct a G̃ minimizing S( p̃g, pr),
where pr is the distribution of the training set of the target generator G. In this
work, we use Fréchet Inception Distance (FID) to evaluate the similarity between
two data distributions, mainly considering its computational efficiency and robust-
ness [HRU+17]. It is elaborated in Section 3.3.3. In our work, we study the fidelity
extraction in Section 3.5, and accuracy extraction in Section 3.6.

3.3.2 Adversary’s Background Knowledge

Adversaries can mount model extraction attacks at different levels based on their
obtained information about the target GAN. The more background knowledge ad-
versaries acquire, the more effective they should be in achieving their goals. In
general, four components of a GAN can be considered by an adversary. As shown
in Figure 3.2, they are respectively: (1) generated data; (2) latent codes used by
interactively querying a generator; (3) partial real data from the training dataset of
the target GAN; (4) a discriminator from the target GAN.

In the following attack settings, we assume an adversary obtains different levels of
background knowledge to achieve accuracy extraction or fidelity extraction.
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Table 3.1: Notations

Notation Description

pr distribution of training set of a GAN
pg implicit distribution of a target generator
p̃g implicit distribution of an attack generator
fidelity FID (p̃g, pg)
accuracy FID (p̃g, pr)

3.3.3 Metrics

Metrics for GANs. We use the widely adopted FID [HRU+17] to evaluate the per-
formance of GANs. FID measures the similarity between pg and pr. Specifically,
on the basis of features extracted by the pre-trained Inception network ϕ, it models
ϕ(pr) and ϕ(pg) using Gaussian distribution with mean µ and covariance Σ, and the
value of FID between real data pr and generated data pg in convolutional features
is computed as: FID(pr, pg) =

∣∣∣∣µr − µg
∣∣∣∣2 + Tr(Σr + Σg − 2(ΣrΣg)1/2), where Tr

refers to the trace of a matrix in linear algebra. A lower FID indicates that the dis-
tribution’s discrepancy between the generated data and real-world data is smaller
and the generated data is more realistic. In this chapter, FID is computed with all
real samples and 50K generated samples.

Metrics for attack performance. In this chapter, we use two FID-based metrics:
fidelity and accuracy, to evaluate the attack performance. Fidelity measures the con-
sistency between pg which is an implicit distribution of a target generator and p̃g

which is an implicit distribution of an attack generator. Note that, fidelity not only
measures how close the attack model and the target model are, but also indicates
how well the performance of the model itself is. In contrast, accuracy measures the
consistency of data distribution between pr and p̃g. Similar to FID, the smaller the
fidelity and accuracy values are, the better performance attack models achieve. When
it is clear from the context, we refer to accuracy and fidelity as accuracy value and
fidelity value, respectively. The summarized notations of this chapter can be seen in
Table 3.1.

Fidelity extraction focuses on fidelity and adversaries aim to steal the distribution
of a target model. After obtaining an attack model which steals from a target
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Table 3.2: Dataset description

Dataset LSUN-Bedroom LSUN-Kitchen CelebA
Size of dataset 3,033,042 2,212,277 202,599

Dataset LSUN-Classroom LSUN-Church
Size of dataset 168,103 126,277

model, they can directly utilize it to generate new samples. Additionally, they can
also transfer knowledge of the stolen model to their own domains through transfer
learning. In contrast, accuracy extraction concentrates on accuracy and adversaries
target at stealing the distribution of the training set of a target model. This type of
attack can severely violate the privacy of the training data and it also means that
adversaries may steal valuable commercial datasets from a trained GAN. Addition-
ally, adversaries can utilize the stolen high-accuracy model to mount other novel
attacks and we leave it for future work.

3.4 Experimental Setups

3.4.1 Dataset Description

We utilize five different datasets in this chapter, which are all widely adopted in im-
age generation. Among them, four datasets are from the LSUN dataset [YSZ+15]
which includes 10 scene categories and 20 object categories and we define them
as LSUN-Bedroom, LSUN-Church, LSUN-Classroom, and LSUN-Kitchen, respec-
tively. CelebA dataset [LLWT15] consists of about 200K high-quality human face
images. Datasets including LSUN-Bedroom, LSUN-Classroom, and LSUN-Kitchen
are only used in Section 3.7 to illustrate the attack effects in a case study. The details
of the datasets are shown in Table 3.2.

3.4.2 Implementation Details

We implement PGGAN1 and SNGAN2 based on following codes indicated in the
footnotes. We choose the ResNet architecture for SNGAN and the architecture of
PGGAN is the same as the official implementation. We use hinge loss for SNGAN
and WGAN-GP loss for PGGAN. For target GAN on synthetic data in Figure 3.5,
we use four fully connected layers with ReLU activation for both generator and
discriminator and the prior is a 2-dimensional standard normal distribution. The
training data is a mixture of 25 2-D Gaussian distributions (each with standard de-
viation of 0.05). We train it using standard loss function [GPAM+14]. In Section 3.7
about case study, we directly use the pre-trained StyleGAN3 trained on LSUN-
Bedroom dataset as our target model. We resize all images used in our chapter to
64× 64, except for the case study where images with a resolution of 256× 256 are
used. The dimension of latent space of SNGAN, PGGAN and StyleGAN is 256, 512

1https://github.com/tkarras/progressive_growing_of_gans
2https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
3https://github.com/NVlabs/stylegan

https://github.com/tkarras/progressive_growing_of_gans
https://github.com/christiancosgrove/pytorch-spectral-normalization-gan
https://github.com/NVlabs/stylegan
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and 512, respectively, and their latent codes are all draw from standard Gaussian
distribution. For attack models, we use suggested hyperparameters provided by
original models and only modify some related to computing resources.

In Section 3.8 about semantic interpolation defense, the semantic information is
from attributes of CelebA dataset4, which has labeled for each image. we only
choose 12 (male, smiling, wearing lipstick, mouth slightly open, wavy hair, young,
eyeglasses, wearing hat, black hair, receding hairline, bald, mustache) out of 40
facial attributes to learn semantic hyperplanes, because the number of images for
each attribute varies largely and some attributes is hard to distinguish when they
are applied in target GAN model. We train the prediction model for each attribute
based on ResNet-50 model pre-trained on ImageNet5. The magnitude of semantic
interpolation is set as 3.

3.5 Fidelity Extraction

In this section, we instantiate our fidelity extraction attack strategy. we assume
that adversaries have access to either generated samples provided by the model
producer or querying the target model to obtain data (see Figure 3.2). We start with
target models and attack models. Then, we describe our attack performance. Next,
we study the effect of the number of queries. In the end, we perform experiments
to deeply understand model extraction on GANs.

3.5.1 Target Models and Attack Models

We choose representative GANs: Progressive GAN (PGGAN) [KALL18] and Spec-
tral Normalization GAN (SNGAN) [MKKY18] as our target models, which both
show pleasing performances in image generation. The implementation details can
be seen in Section 3.4.2. For training sets LSUN-Church and CelebA, we first resize
them to 64 × 64 and use all records of each dataset to train our target models. As
shown in Table 3.3, target GAN models achieve an excellent performance on these
datasets and the performance of PGGAN is better than that of SNGAN.

We use GANs as our attack models to extract target models. In practice, adversaries
may not know the target model’s architecture. Therefore, we study the performance
of attack models with different architectures. Specifically, we choose SNGAN and
PGGAN as our attack models. There are four different situations for their combi-
nations. For simplification, we define each situation as an attack-target model pair,
and they are respectively SNGAN-SNGAN, SNGAN-PGGAN, PGGAN-SNGAN
and PGGAN-PGGAN. The reason why we choose SNGAN and PGGAN as the re-
search object is that: 1) they both show good performance in image generation; and
2) they have significant differences in the aspects of training, loss function and nor-
malization, which all facilitate us to study the performance of attack models with
different architectures.

4http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
5https://download.pytorch.org/models/resnet50-19c8e357.pth

http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
https://download.pytorch.org/models/resnet50-19c8e357.pth
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Table 3.3: Performance of target GANs.

Target model Dataset FID

SNGAN LSUN-Church 12.72
SNGAN CelebA 7.60
PGGAN LSUN-Church 5.88
PGGAN CelebA 3.40

3.5.2 Methodology

As shown in Figure 3.1, for fidelity extraction, we assume that an adversary obtains
the generated data by the model provider or querying the target GAN. This sce-
nario is practical, because some model owners need to protect their models through
providing the public with some generated data or a black-box GAN model API. In
this case, the adversary uses the generated data to retrain a GAN to extract the tar-
get model. We do not distinguish whether generated data is from queries or model
providers, because our approach only relies on these generated data. However, in
Section 3.5.3, we also present the attack performance on queries with different prior
distributions.

Note that model extraction on GANs is different from machine learning on GANs.
This is because machine learning on GANs requires users to train a GAN on real
samples which are collected from the real world. In contrast, model extraction on
GANs enables users to train a GAN on generated data from a target GAN model. In
essence, model extraction on GANs approximates the target GAN which is a much
simpler deterministic function, compared to real samples which usually represent
a more complicated function.

3.5.3 Results

Attack performance on different models. Table 3.4 shows the fidelity extraction’s
performance with 50K queries to the target model. In general, attack models
can achieve an excellent performance6. For instance, our attack performance of
PGGAN-PGGAN on the CelebA achieves 1.02 FID on fidelity, which means that
the attack model can achieve a perfect extraction attack for the target model. It is
noticeable that the attack model achieves such performance only on 50K generated
images while the target model is trained on more than 200K images. In Section 3.7,
our case study further illustrates that even for a GAN model trained on 3 million
samples, our attack still can achieve 4.12 fidelity with only 50K queries. In other
words, adversaries are able to obtain a good GAN model only by access to the
generated data from the target model instead of collecting their own data which is
usually labor-intensive and time-consuming.

For the target model PGGAN, if the attack model is SNGAN, we observe that the
performance of model extraction is very efficient on both CelebA and LSUN-Church

6We say model extraction attacks achieve an excellent performance because we choose the state-
of-the-art StyleGAN [KLA19] trained on the LSUN-Bedroom dataset as a reference, where it has the
lowest FID 2.65.
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Table 3.4: The performance of fidelity extraction with 50K queries to the target model.

Target model Attack model Dataset Fidelity Accuracy

FID(p̃g, pg) FID (p̃g, pr)

PGGAN

SNGAN LSUN-Church 6.11 14.05

SNGAN CelebA 4.49 9.29

PGGAN LSUN-Church 1.68 8.28

PGGAN CelebA 1.02 4.93

SNGAN

SNGAN LSUN-Church 8.76 30.04

SNGAN CelebA 5.34 17.32

PGGAN LSUN-Church 2.21 14.56

PGGAN CelebA 1.39 9.57

datasets and the attack model SNGAN can learn more from the target model PG-
GAN, compared to the SNGAN-SNGAN case, which indicates that attacking a
state-of-the-art GAN is valuable and viable for an adversary. Furthermore, this
case SNGAN-PGGAN is the most common situation in the actual attack scenarios,
because generally we implicitly assume that the performance of the adversary’s
model may often be weaker than that of the target model and the structure of the
attack model is inconsistent with that of the target model.

We also report accuracy in Table 3.4 and find that for model extraction on GAN mod-
els, the accuracy of attack models is always higher than that of the target model, in
which accuracy of attack models represents the similarity between distribution of
real dataset pr and distribution of the attack model p̃g and for accuracy of a target
model, also called FID of target model, it represents the similarity between distri-
bution of real dataset pr and distribution of the target model pg. For example, when
the target model SNGAN has 12.72 FID on the LSUN-Church dataset, accuracy of
the attack model SNGAN will increase to 30.04. Even for the PGGAN-PGGAN case,
its accuracy increases from 3.40 to 4.93 on the CelebA dataset. This is mainly be-
cause although theoretically, the distribution of the target model pg is equal to that
of the real training dataset pr, it is actually not equal because GAN cannot achieve
the global optimum. However, we will discuss how to reduce accuracy values and
achieve high accuracy extraction in Section 3.6.

For the target model SNGAN, if the attack model is PGGAN, the fidelity of model
extraction is lower than that of the attack model SNGAN. It is mainly because the
PGGAN model itself is stronger and able to more accurately approximate the target
model. Similarly, PGGAN as an attack model has more lower accuracy, in contrast
with SNGAN as an attack model. For instance, compared to SNGAN-SNGAN with
17.32 of accuracy on CelebA dataset, the accuracy of PGGAN-SNGAN is only 9.57,
which largely improves the attack performance on accuracy. This indicates that
using an attack model which is larger than the target model is an efficient approach
to improve attack performance.

Overall, fidelity extraction can achieve an excellent performance in terms of fidelity.
In general, adversaries can steal a fidelity model, and then use the extracted model
for their own purpose. However, unlike discriminative models where adversaries
can directly utilize their extracted model, the extracted model of a GAN only gener-
ates target model’s images. Therefore, in Section 3.7, we will perform a case study
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Table 3.5: Performance of fidelity extraction attack with different prior distributions. We
use standard normal distribution and uniform distribution over an interval -1 and 1 to
generate latent codes. The number of queries is fixed to 50K.

Attack model Prior distribution Fidelity Accuracy

FID(p̃g, pg) FID (p̃g, pr)

PGGAN Gaussian 1.02 4.93

PGGAN Uniform 0.98 4.85

SNGAN Gaussian 4.49 9.29

SNGAN Uniform 4.29 9.16
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Figure 3.3: Attack performance on the number of queries.

where adversaries can effectively leverage the extracted model to generate images
for their own applications rather than target GANs’ images through transfer learn-
ing.

Attack performance on queries from different prior distributions. Adversaries
can query the target model via trying common prior distributions to generate latent
codes if they do not know the prior distribution of a target model. Gaussian dis-
tribution and uniform distribution are widely used in almost all GANs [KALL18,
BDS19, RMC16, MKKY18, KLA19, KLA+20]. Table 3.5 shows the attack perfor-
mance with two prior distributions. We choose PGGAN trained on CelebA dataset
with standard normal prior distribution as the target model. From Table 3.5, we
find that adversaries can obtain a similar attack performance no matter what the
prior distribution of latent codes is.

Attack performance on the number of queries. We choose PGGAN trained on
CelebA dataset as the target model to study the effect of the number of queries
due to the best performance among our target models. Figure 3.3 plots the attack
performance with respect to the number of queries which are also the size of the
training dataset of attack models. As expected, we observe that the attack per-
formance increases with an increase in the number of queries. This indicates that
releasing a small number of data by the model owner or restricting the number of
queries is a relatively safe measure.

We estimate the monetary cost of the number of queries. Taking the Google Cloud
Vision API7 as an example, the price is $1.50 per 1K queries with the first 1K queries

7https://cloud.google.com/vision/pricing

https://cloud.google.com/vision/pricing
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Figure 3.4: Class distribution differences.

Table 3.6: JS distances between models. A smaller value indicates a better performance.
The JS distance between the training data and the target model PGGAN is 4.14× 10−3. The
JS distance between the training data and the target model SNGAN is 16.36× 10−3. The JS
value shows a consistent trend with Figure 3.4.

Target model Attack model JSfidelity (×10−3) JSaccuracy (×10−3)

PGGAN
SNGAN 5.88 15.95

PGGAN 1.83 9.10

SNGAN
SNGAN 8.90 34.12

PGGAN 1.60 18.56

are free for each month. Thus, the price of the number of queries from 10K to 90K is
from $13.50 to $133.50. Although the attack cost is not high in our attacks, design-
ing a more powerful attack to reduce the number of queries is still an interesting
research direction. We leave it as future work.

Understanding fidelity extraction on GANs in-depth. We further dissect the dif-
ference of distributions between target models and attack models to understand the
nature of model extraction on GANs. Specifically, we first transform the training
data into 2048-dimension feature vectors by the pre-trained Inception-v3 model8

which is widely utilized in the evaluation of a GAN model [HRU+17]. Then these
feature vectors are clustered into k classes by a standard K-means algorithm. Fi-
nally, we calculate the proportions of each class, which can be also considered as
a distribution of the training data [BZW+19, RW18]. The blue bar in Figure 3.4(a)
shows the distribution of the training data where we set k to 30. For target models
and attack models, we query the model to obtain 50K images, then perform the
same procedures as the training data.

Figure 3.4(a) shows distribution differences among the training data, the target
model PGGAN and attack models. We observe that for the high proportions of
classes, which can be considered as prominent features of a distribution, target
models can learn more features about these classes while attack models further
learn more features by querying the target models. In contrast, for the low propor-
tions of classes, target models learn less features about these classes while attack
models further learn less features about these classes. This is one reason why at-
tack models always have higher accuracy values than target models. In terms of

8https://pytorch.org/hub/pytorch_vision_inception_v3/

https://pytorch.org/hub/pytorch_vision_inception_v3/
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fidelity, we observe that there is a consistent trend on proportions of classes for tar-
get models and attack models. This is the reason why we can achieve a satisfying
performance about fidelity.

We also summarize this difference in a single number by computing the Jensen-
Shannon (JS) divergence on this representation of distributions, which is shown in
Table 3.6. Note that, based on accuracy and fidelity defined in Section 3.3.1, we mark
JSfidelity as the JS divergence between the target model and the attack model, and
JSaccuracy as the JS divergence between the training data and the attack model.

We also analyze the target model SNGAN trained on CelebA dataset, and similar
results are shown in Figure 3.4(b) and Table 3.6.

3.6 Accuracy Extraction

In this section, we instantiate our accuracy extraction attack strategy. In addition to
fidelity extraction’s assumptions, we also assume that adversaries have more back-
ground knowledge in order to achieve accuracy extraction, such as partial real data
and the target model’s discriminator. We start with the motivation and problem for-
mulation of accuracy extraction. Then, we describe the methodology of accuracy
extraction. In the end, we present the performance of accuracy extraction.

3.6.1 Motivation and Problem Formulation

As shown in Figure 3.1, fidelity extraction can be implemented through querying
the generator of the target GAN, because pg is the generator’s distribution. As
for accuracy extraction, it is much more difficult due to the lack of availability of
real data distribution pr. Although an approach is to use pg as an approxima-
tion of pr, we observe that with the increase in the number of queries, accuracy of
attack models reaches its saturation point and is hard to be improved, which is
shown in Figure 3.3(b). For instance, as we increase the number of queries from
50K to 90K for the PGGAN-PGGAN case on CelebA dataset, accuracy of the attack
model has smaller and smaller improvements from 4.93 to 4.44, while the ideal ac-
curacy is 3.40 which is also the performance of the target model. Note that the case
PGGAN-PGGAN is the best for the attacker; the attack will perform even worse
if the attackers do not choose the same architectures and hyperparameters as the
target model.

The reason why there exists a gap between the attack model and the target model
in terms of accuracy is that the target GAN model is hard to reach global equilib-
rium and the discriminator is often better than the generator in practice [AOD+19].
As a result, real data distribution pr is not completely learned by the generator of
the target model, which means that pg ̸= pr. Therefore, directly using the gener-
ator’s distribution pg does not guarantee the high accuracy and it only minimizes
the distribution discrepancy between the attack model and the target model. We
explain this by a simple example on Figure 3.5, which is popular in the GAN liter-
ature [AOD+19, THF+19, DWW20].
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(a) Real Samples 50K (b) Direct Sampling 5k (c) Direct Sampling 10K

(d) Direct Sampling 50K (e) MH Subsampling 50K

Figure 3.5: Difference of distribution between training data and generators. The percentage
of “high-quality” samples for Figure 3.5(b), Figure 3.5(c), Figure 3.5(d) and Figure 3.5(e) is
94.36%, 94.31%, 94.15% and 95.64%, respectively. The more we query, the more bad-quality
samples we obtain, which affects the performance of model extraction. But if we reduce
the number of queries, the performance of attack models still be poor due to insufficient
training samples.

Figure 3.5(a) presents real samples drawn from a mixture of 25 two-dimensional
Gaussian distributions (each with standard deviation σ of 0.05). Figure 3.5(b) -
Figure 3.5(d) show samples which are generated by a target GAN with different
queries. We define a generated sample as “high-quality" if its Euclidean distance
to its corresponding mixture component is within four standard deviations (4σ =
0.2) [AOD+19]. The architecture and setup information of the target GAN is shown
in Section 3.4.2. Overall, we can observe that target GAN’s distribution is not com-
pletely the same as the training set’s distribution, which means that directly extract-
ing a model from the generator of the target GAN makes its distribution similar to
the target model’s distribution rather than its training dataset’s distribution.

Therefore, a natural approach to achieving accuracy extraction is that the adversary
can get more high-quality samples that are closer to the real data distribution.

3.6.2 Methodology

Our approach to obtaining high-quality samples is based on subsampling. The
key insight here is that we can reject some poor samples from generated samples
based on some prior knowledge. In order to achieve it, we suppose that adversaries
can obtain additional background information. This is a common assumption that
can be found in many works in relation to the security and privacy of machine
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Algorithm 1: MH subsampling
Input: target generator G, target discriminator D,

partial real samples Xr = {xr1, xr2,. . . , xrm}
Output: N refined images
1: Sample m fake images Xg = {xg1, xg2,. . . , xgm} from G
2: Train a calibrated classifier:

C ← LogisticRegression(D(Xr), D(Xg))
3: images← ∅
4: while |images| < N do
5: x ← a real image from Xr
6: for i = 1 to K do
7: Sample x′ from G
8: Sample u from Uniform(0, 1)
9: Compute real image’s density ratio:

r(x) = C(D(x))
1−C(D(x))

10: Compute fake image’s density ratio:
r(x′) = C(D(x′))

1−C(D(x′))

11: p = min(1, r(x′)
r(x) )

12: if u ≤ p then
13: x ← x′

14: end if
15: end for
16: if x is not a real images then
17: Append(x, images)
18: end if
19: end while

learning [JLG+15, SSSS17, HMDDC19]. As shown in Figure 3.2, we assume that
adversaries can have limited auxiliary knowledge of the discriminator of the target
model and partial training samples. This is because the discriminator from the
target model can reveal the distribution information of the training data [AOD+19].
Thus, using the information provided by the discriminator, we can subsample the
generated data to make the obtained data closer to the real dataset’s distribution,
which improves accuracy extraction.

Specifically, for accuracy extraction, we first leverage the discriminator of the tar-
get model to subsample the generated samples. As a result, these refined sam-
ples are much closer to the true distribution. In this work, we use Metropolis-
Hastings (MH) subsampling algorithm [THF+19] to subsample the generated data.
MH subsampling algorithm utilizes the discriminator through Metropolis-Hastings
algorithm [Tie94] to refine samples which are generated by the generator. The dis-
criminator generally needs to be calibrated by partial real samples from training set
of the target GAN model, considering that some discriminators of GANs output a
score rather than a probability.

We detail MH subsampling in Algorithm 1. Inputs of this algorithm are a target
generator (only used to query), a white-box discriminator which is used to sub-
sample generated samples and partial real samples which are used to calibrate the
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discriminator (Algorithm 1, line 2). Outputs are refined samples whose distribu-
tion is much closer to the distribution of real training data. In our experiments, all
discriminators are calibrated through logistic regression. Then we train the attack
model on those refined samples. After the training process of the attack model is
stable, we add partial real data to further train the attack model.

In this scenario, although the number of queries will increase due to subsampling
samples, we assume that adversaries eventually obtain 50K refined samples in order
to make a comparison with fidelity extraction. Partial real samples used to calibrate
the discriminator are fixed to 10% of training data. In addition, these partial real
samples will be added into training process of the attack models. Here, we refer
the former where only refined samples are used to train the attack model to MH
accuracy extraction which is also considered as an indicator to show how well
these refined samples are beneficial to accuracy. We refer the latter where both
refined samples and partial real data are used to train the attack model to white-
box accuracy extraction. We refer fidelity attack in Section 3.5 to black-box fidelity
extraction.

It is worth noting that we cannot directly choose the lowest accuracy value in real
attack scenarios due to unavailability of training dataset from target models. There-
fore, the accuracy value reported in this chapter is chosen when its corresponding
fidelity value is the lowest in the training process.

3.6.3 Results

Attack performance. Figure 3.6 plots not only the results of the MH accuracy ex-
traction and the white-box accuracy extraction on both CelebA and LSUN-Church
datasets, but also the black-box fidelity extraction for comparison. We can observe
that MH subsampling is an effective approach to improve accuracy of attack models.
For example, when target model is SNGAN, the MH accuracy extraction can signif-
icantly improve attack model’s accuracy on both datasets because MH subsampling
algorithm selects high-quality samples from generated samples of the target model
SNGAN. For the MH accuracy extraction and the white-box accuracy extraction
which both leverage the refined samples in the training process, the white-box ac-
curacy extraction can further improve accuracy. This is because partial real data can
further correct the distribution of the attack model and make it closer to the real
distribution.

Understanding accuracy extraction on GANs in-depth. Following the same proce-
dure illustrated in Section 3.5.3, we also dissect distribution differences for accuracy
extraction. Specifically, we choose the PGGAN-PGGAN case as an example (see
Figure 3.6) and the attack models is PGGAN. From Figure 3.7, we observe that for
CelebA, white-box accuracy extraction which has minimal accuracy values among
these methods is more consistent with the distribution of the training data by low-
ering the highest proportions of classes. For LSUN-Church, similar results also can
be observed. Table 3.7 summarizes these differences statistically.
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(b) Accuracy on LSUN-Church

Figure 3.6: Comparison on accuracy for different attack approaches.
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Figure 3.7: Distribution differences for accuracy extraction.

Table 3.7: JS distances between models. For the JS distance between training data and the
target model, the target model PGGAN on CelebA is 4.14 × 10−3 and the target model
PGGAN on LSUN-Church is 14.78× 10−3.

Dataset Methods JS f idelity (×10−3) JSaccuracy (×10−3)

CelebA

Black-box fidelity extraction 1.83 9.10

MH accuracy extraction 1.42 8.17

White-box accuracy extraction 1.17 7.53

LSUN-Church

Black-box fidelity extraction 2.32 19.14

MH accuracy extraction 2.28 19.89

White-box accuracy extraction 1.61 18.65

3.7 Case Study: Model Extraction based Transfer Learning

In this section, we present one case study where the extracted model serves as a pre-
trained model and adversaries transfer knowledge of the extracted model to new
domains by means of fine-tuning to broaden the scope of applications based on
extracted models. We start with methods of transfer learning on GAN and demon-
strate how adversaries can benefit from model extraction, in addition to directly
leveraging the extracted model to generate images.

We consider the state-of-the-art GAN model StyleGAN [KLA19] that was trained
on more than 3 million bedroom images as the target model. StyleGAN produces
high-quality images at a resolution of 256× 256, with 2.65 FID on LSUN-Bedroom
dataset [YSZ+15]. We suppose adversaries only query the target model StyleGAN
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and have no other background knowledge, which is also called black-box fidelity
extraction in our chapter. Although an adversary can obtain an extracted model, the
model only generates images which are similar to the target model. In this case,
the extracted model can only generate bedroom images due to the target model
trained on LSUN-Bedroom dataset. Therefore, the adversary’s goal is to use the
PGGAN as the attack model to extract the target model StyleGAN and leverage
transfer learning to obtain a more powerful GAN which generates images that the
adversary wishes. The attack is successful if the performance of models training by transfer
learning based on the extracted GAN outperforms models training from scratch.

Transferring knowledge of models which steal the state-of-the-art models to new
domains where adversaries wish the GAN model can generate other types of im-
ages can bring at least two benefits: 1) if adversaries have too few images for train-
ing, they can easily obtain a better GAN model on limited dataset through transfer
learning; 2) even if adversaries have sufficient training data, they can still obtain a
better GAN model through transfer learning, compared with a GAN model train-
ing from scratch. Therefore, we consider two variants of this attack: one where the
adversary owns a small target dataset (i.e., about 50K images in our work) and the
other one where the adversary has enough images (i.e., about 168k images in our
work).

More specifically, after querying the target model StyleGAN and obtaining 50K
generated images, adversaries train their attack model PGGAN on the obtained
data, as illustrated in Section 3.5.2. Here, fidelity of the attack model PGGAN is
4.12 and its accuracy is 6.97. Then, we use the extracted model’s weights as an
initialization to train a model on the adversary’s own dataset which is also called
the target dataset in the section. We conduct the following two experiments:

1. We first randomly select 50K images from LSUN-Kitchen dataset as a limited
dataset. Then, we train the model on these selected data by transfer learning
and from scratch, respectively.

2. We train a model on the LSUN-Classroom dataset including about 168k im-
ages by transfer learning and from scratch, respectively.

Results. Table 3.8 shows the performance of models trained by transfer learning
and training from scratch. We can observe that the performance of training by trans-
fer learning is always better than that of training from scratch on both large and
small target datasets. To be specific, on the limited LSUN-Kitchen dataset which
contains 50K images, the FID of the model trained by transfer learning decreases
from 8.83 to 7.59, compared with the model trained from scratch. It indicates that
the extracted model is useful for models trained on other types of images. On the
large LSUN-Classroom dataset which contains more than 168k classroom images,
the performance of the model significantly improves from model training from
scratch with 20.34 FID9 to training by transfer learning with 16.47 FID. This is also
the best performance for PGGAN on the LSUN-Classroom dataset, in contrast with

9This value is not equal to 20.36 [KALL18] due to randomness.
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Figure 3.8: Comparison between transfer learning based on model extraction and training
from scratch on LSUN-Kitchen and LSUN-Classroom dataset.

Table 3.8: Comparison between transfer learning based on model extraction and training
from scratch. The target model is StyleGAN trained on the LSUN-Bedroom dataset, and
the attack model uses PGGAN.

Target dataset Methods FID

LSUN-Kitchen Transfer Learning 7.59

LSUN-Kitchen Training from Scratch 8.83

LSUN-Classroom Transfer Learning 16.47

LSUN-Classroom Training from Scratch 20.34

20.36 FID reported by Karras et al. [KALL18]. We also plot the process of training
for both settings on the two datasets, which is shown in Figure 3.8. We can obvi-
ously and consistently observe that training by transfer learning based on model
extraction is always better than training from scratch during the training process,
which indicates that the extracted model PGGAN which duplicates the state-of-
the-art StyleGAN on the LSUN-Bedroom dataset can play a significant role in other
applications rather than only on generating bedroom images. That reminds us that
model extraction on GANs severely violates the intellectual property of the model
owners.

3.8 Defenses

Model extraction attacks on GANs leverage generated samples from a target GAN
model to retrain a substitutional GAN which has similar functions to the target
GAN. In this section, we introduce defense techniques to mitigate model extraction
attacks against GANs.

According to the adversary’s goals as defined in Section 3.3.1, we discuss defense
measures from two aspects: fidelity and accuracy. In terms of fidelity of model
extraction, it is difficult for model owners to defend except for limiting the number
of queries. This is because adversaries can always design an attack model to learn
the distribution based on their obtained samples. The more generated samples
adversaries obtain, the more effective they achieve.
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Figure 3.9: Semantic interpolation defense.

In terms of accuracy of model extraction, its effectiveness is mainly because adver-
saries are able to obtain samples generated by latent codes drawn from a prior
distribution of the target model, and these samples generated through the prior
distribution are close to real data distribution [ASTG19]. However, if adversaries
obtain some generated samples which are only representative for partial real data
distribution or a distorted distribution, accuracy of attack models becomes poor.
Based on this, we propose two types of perturbation-based defense mechanisms:
input perturbation-base and output perturbation-based approaches. In the rest of
this section, we focus on defense approaches which are designed to mitigate accu-
racy of attack models.

3.8.1 Methodology

Input perturbation-base defenses. For this type of defense, we propose two ap-
proaches based on perturbing latent codes: linear interpolation defense and seman-
tic interpolation defense.

• Linear interpolation defense. For n latent codes queried from users, model
providers randomly select two queried points and interpolate k points between the
two points. This process is repeated for ⌈n/k⌉ times to get n modified latent codes.
These modified latent codes are used to query the target model. In our experiments,
we interpolate 9 points. See Figure 3.10(a) for visualization.

• Semantic interpolation defense. Unlike linear interpolation defense where target
models return a batch of random images, semantic interpolation defense returns
various semantic images that are predefined by model providers, which restricts
the space of images the adversary queries. Generally, semantic information can be
any information that humans can perceive. For instance, for a human face image, it
includes gender, age and hair style. We adopt the semantic interpolation algorithm
proposed by Shen et al. [SGTZ20].
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Specifically, the process of semantic interpolation defense is shown in Figure 3.9. Se-
mantic interpolation defense consists of two phases: finding semantic hyperplanes
and generating semantic images. In the first phase, we first train a prediction model
for each semantic information. Then the trained prediction model is used to predict
semantic score s for each image generated through latent code z. As a result, we
get latent code-score pairs and label the highest k scores as positive and the lowest
k scores as negative. Finally, we train a linear support vector machine (SVM) on
dataset where latent codes as training data and scores as labels. A trained linear
SVM contains a hyperplane which separates one semantic information. In the sec-
ond phase, we can obtain a semantic image for each semantic hyperplane through
interpolation. A latent code interpolates points along the normal vector of the hy-
perplane and corresponding semantic images can be obtained. In our experiments,
we train each prediction model for each semantic information, and the prediction
model is built on the basis of ResNet-50 network [HZRS16] trained on ImageNet
dataset [RDS+15]. In this work, we totally explore 12 semantic information on
CelebA dataset. See Figure 3.10(b) for visualization.

Output perturbation-base defenses. Instead of perturbing latent codes, this type
of defense directly perturbs the generated samples. Specifically, we propose four
approaches: random noise, adversarial noise, filtering and compression. See Fig-
ure 3.11 for visualization.

• Random noise. Adding random noises on generated samples is a straightforward
method. In our experiments, we use Gaussian-distributed additive noises (mean =
0, variance = 0.001).

• Adversarial noise. We generate adversarial examples through mounting targeted
attacks where all images are misclassified into a particular class by the classifier
ResNet-50 trained on ImageNet dataset. In our experiments, all face images are
misclassified into the class — goldfish and the C&W algorithm [CW17b] based on
L2 distance are used.

• Filtering. The Gaussian filter is used to process generated samples. In our ex-
periments, we use Gaussian filter (sigma = 0.4) provided by the skimgae pack-
age [vdWSN+14].

• Compression. The JPEG compression algorithm is used to process generated
samples. In our experiments, we use the JPEG compression (quality = 85) provided
by the simplejpeg package [Fol20].

3.8.2 Results

In this experiment, we choose PGGAN trained on CelebA dataset as the target
model to evaluate our defense techniques, considering its excellent performance
among our target models. We only show the effectiveness of defense techniques on
black-box fidelity extraction, considering its more practical assumption: adversaries
obtain samples by model providers or queries.
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Table 3.9: Defense utility. Each score is an average of 50K image score. Lower is better.

Metrics No Defense Semantic Linear Gaussian Noise

NIQE 18.87 18.87 18.87 18.87

PIQE 42.66 40.04 42.62 23.64

Metrics JPEG Compression Gaussian Filter Adversarial Noise

NIQE 18.87 18.87 18.87

PIQE 35.99 47.80 37.91

Query 1    Linear interpolation      Query 2

(a) Linear interpolation defense. These linear interpolated images are
returned.

Query Bald Black hair Eyeglasses
Mouth 

slightly open
Mustache

Receding 
hairline

Wavy hair
Wearing 

hat
Young Male Smiling

Wearing 
lipstick

(b) Semantic interpolation defense. For one latent code, 12 latent codes containing semantic informa-
tion are generated through semantic interpolation and corresponding images are shown above. These
semantic interpolated images are returned.

Figure 3.10: Returned images after input perturbation-based defense techniques. Queried
images and interpolated images both show good quality in visual comparison, and images
generated by linear interpolation show more similarity than that by semantic interpolation.

Defense utility. We quantitatively and qualitatively evaluate the defense util-
ity, i.e. the quality of generated images after deploying defense measures. Fig-
ure 3.10 and Figure 3.11 show returned images for input perturbation-based and
output perturbation-based defenses. Table 3.9 shows image quality scores. We
use two widely-adopted no-reference image quality scores: Naturalness Image
Quality Evaluator (NIQE) [MSB12] and Perception based Image Quality Evalua-
tor (PIQE) [VPB+15]. Overall, our defense measures do not significantly impact the
quality of generated images.

Defense on black-box fidelity extraction. Figure 3.12(a) plots results of attack
model PGGAN on defenses. We observe that attack performance is weakened
when the target model PGGAN uses these defense approaches, compared to the
target model without any defenses. Gaussian noise and semantic interpolation
defenses show stable performance while other defense techniques’ performance
is gradually weakened with an increase in the number of queries. Figure 3.12(b)
also shows similar defense performance for the attack model SNGAN. We further
evaluate the defense utility, i.e. the quality of generated images after deploying de-
fense measures. Our quantitative and qualitative measures show that these defense
techniques do not impact the visual quality of generated images (see Figure 3.10,
Figure 3.11 and Table 3.9).

Defense in terms of fidelity. Figure 3.13 shows fidelity of attack models under
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(a) Output images. From top to bottom: gen-
erated images, Gaussian noise images, Adver-
sarial noise images, Gaussian filter images and
JPEG compression images.

(b) Noises. For the top two rows, they are
Gaussian noises and adversarial noises, respec-
tively. For the third row, it is the differences
between Gaussian filter images and generated
images. For the last row, it is the differences
between JPEG compression images and gener-
ated images.

Figure 3.11: Returned images after output perturbation-based defense techniques.
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Figure 3.12: The performance of attack model PGGAN under various defenses.

different defenses for the black-box fidelity extraction scenario. We observe that
fidelity values of attack models can be largely decreased with an increase in the
number of queries.

10k 30k 50k 70k 90k
Queries

1

4

7

10

13

Fi
de

lit
y

No Defense
Semantic
Linear
Gaussian Noise
JPEG Compression
Gaussian Filter
Adversarial Noise

(a) The performance of attack model PGGAN

10k 30k 50k 70k 90k
Queries

3

6

9

12

15

18

21

Fi
de

lit
y

No Defense
Semantic
Linear
Gaussian Noise
JPEG Compression
Gaussian Filter
Adversarial Noise

(b) The performance of attack model SNGAN

Figure 3.13: Fidelity of attack models under different defenses for black-box fidelity extrac-
tion scenarios. Fidelity values of attack models can be largely decreased with an increase in
the number of queries.
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Discussion. The reason why input perturbation-based defenses can work is at least
explained from two aspects: increasing the similarity of generated samples and a
distribution mismatch between latent codes produced by interpolation and drawn
from prior distributions. For the former, we can see that interpolation operations
increase the similarity of images from Figure 3.10. For the latter, latent codes pro-
duced by interpolation operations are different from latent codes drawn from the
prior distribution that the target model was trained on. This is because latent codes
produced by linear operation do not obey the prior distribution of the target model,
which also brings a benefit in disguising the true data distribution [ASTG19].

Output perturbation-based defenses can work because they directly perturb these
generated samples. In practice, this type of defense requires model providers to
trade-off image quality and the model’s security through magnitudes of changes.
Although Gaussian noise defense shows the best performance, it is possible for
adversaries to remove noise.

3.9 Conclusion

In this chapter, we have systematically studied the problem of model extraction
attacks on generative adversarial networks, and devised, implemented, and evalu-
ated this attack from the perspective of fidelity extraction and accuracy extraction.
For fidelity extraction, extensive experimental evaluations show that adversaries
can achieve an excellent performance with about 50K queries. For accuracy ex-
traction, adversaries further improve the accuracy of attack models after obtaining
additional background knowledge, such as partial real data from the training set
or the discriminator of the target model. Furthermore, we have also performed
a case study where the attack model which steals a state-of-the-art target model
can be transferred to new domains to broaden the scope of applications based on
extracted models.

These effective attacks also motivate us to design two types of defense techniques:
input and output perturbation-based defense. They mitigate model extraction at-
tacks through perturbing latent codes and generated samples, receptively. Exten-
sive experimental evaluations show that semantic interpolation and Gaussian noise
defenses achieve stable performance.

Finally, we also identify a number of directions for future work. Because GAN mod-
els generally are considered as intellectual properties of model owners, protecting
GANs through verifying the ownership is an interesting direction. In addition,
stealing a GAN model also means the leakage of distribution of the training set.
Therefore, training with differential privacy techniques can be utilized to protect
the privacy of training data of a model [ACG+16]. However, training time and
stability of the training process are big challenges for GANs. For further work, we
plan to design new methods based on differential privacy techniques to mitigate
accuracy of model extraction.
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Chapter 4

Ownership Protection in
Generative Adversarial Networks

In the previous chapter, we systematically illustrated model extraction attacks in
generative adversarial networks (GANs) and proposed several countermeasures to
mitigate the attacks by sacrificing model utility. In this chapter, we shift to pro-
tecting GANs by verifying their ownership, which can be considered a deterrence
against malicious adversaries and does not suffer from the loss of model utility.
Specifically, we first propose a new ownership protection method based on the com-
mon characteristics of a target model and its stolen models. Extensive experimental
results show that our new method can achieve the best protection performance,
compared to the state-of-the-art methods. Then, we demonstrate the effectiveness
of our method with respect to the number of generations of model extraction at-
tacks, the number of generated samples, different datasets, different target models,
and adaptive attacks.

4.1 Introduction

GANs, as one of the most successful generative models, have exerted revolution-
ary influences on many application domains, such as image synthesis [GPAM+14,
MKKY18, KLA19, BDS19, SSG22a], and image editing [ZSZZ20, SZ21, XZY+22].
However, building a well-trained state-of-the-art GAN model is not straightfor-
ward. It usually requires the complicated and exhausting process of data collec-
tion, expert-level knowledge in model architecture design, elaborate hyperparam-
eter tuning, and extensive computing resources. Therefore, a high-quality GAN
model is incredibly costly and should be regarded as the intellectual property of
the model owner.

As GAN models are valuable, this simultaneously incentivizes adversaries to steal
these models in various ways. On the one hand, adversaries can physically steal a
GAN model via malware infection or insider attacks [Sch02]. An insider attack can
directly copy the target model (i.e. victim model) through those who are authorized
to access the full model. As a result, the stolen model is totally the same as the tar-
get model. On the other hand, adversaries can functionally steal a GAN model via
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model extraction attacks [HP21b]. This threat exists because an increasing num-
ber of technology companies provide Machine Learning as a Service (MLaaS) to
their customers, such as Amazon AWS, Google Cloud, and Microsoft Azure. A
model extraction attack enables adversaries to obtain a substitute model via ex-
posed interfaces. As a consequence, the stolen model is functionally similar to the
target model. In general, both physical stealing attacks and model extraction at-
tacks seriously jeopardize the intellectual property of legitimate model owners. It
is paramount to develop ownership protection methods to safeguard the intellec-
tual property of GANs.

Despite confronting these threats, research on ownership protection for GANs is
somehow much less explored. There is one work that proposes to verify ownership
of GANs by watermarks [OCN+21]. On the one hand, this method needs to retrain
target models to embed watermarks, which may compromise the models’ genera-
tion performance. On the other hand, it relies on specific inputs (i.e. triggers) to
extract watermarks. Such dependency might result in its failure to verify models
from model extraction attacks.

In this chapter, we develop a new ownership protection method for GANs, which
can protect ownership on both physical stealing and model extraction attacks. Our
method claims the ownership of a GAN by leveraging common characteristics of
a target model and its stolen models. The rationale for our method is that stolen
models are derived from the target model while honest models are not. Thus, these
common characteristics can be leveraged to differentiate stolen models from honest
models. More specifically, we utilize generated samples from GANs to build a
discriminative classifier to learn these characteristics. This is because the objective
of a GAN is to learn the distribution of a training dataset and the learned implicit
distribution of a GAN can be represented by these generated samples [BKP+20]
(see Section 4.4.3).

We comprehensively evaluate our new method by comparing it with two state-of-
the-art works: watermark-based method (abbreviation as Ong method) [OCN+21]
and fingerprint-based method (abbreviation as Yu method) [YSAF21]. Here, note
that fingerprint-based methods are proposed for deepfake detection and attribu-
tion [MGVP19, YDF19, WWZ+20, YSAF21, YSC+22]. In this work, we are the first
to introduce them to the ownership protection field, considering their common objec-
tive: fingerprints can be used to infer whether a suspect sample is from the model.
Extensive experiments show that our method achieves the best performance in all
evaluations among these ownership protection methods. In contrast, the other two
methods cannot work in many cases, especially for model extraction attacks (see
Section 4.6).

Furthermore, we analyze the protection performance by visualizing the character-
istics learned by our method (see Section 4.7.1). We also show the stability of our
method on the number of generations of model extraction attacks, which is a new
emerging threat in the generative AI domain. In contrast, the protection perfor-
mance of the Yu method presents a significant linear decrease and the Ong method
completely fails in providing any protection (see Section 4.7.2). Our analysis with
respect to the number of generated samples and different datasets further shows the
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effectiveness of our method. Finally, extensive evaluations under adaptive attacks
also demonstrate that our method is still effective and robust even if adversaries
obtain partial knowledge of our method (see Section 4.8).

4.2 Related Work

Generative adversarial networks. GANs have undoubtedly achieved a series of
successes in image generation [MKKY18, KALL18, BDS19, KLA19, KLA+20], im-
age manipulation [SGTZ20, SZ21], and image super-resolution [LTH+17, ZLDQ19].
The seminal GAN introduced in 2014 [GPAM+14] presents a promising result in
image synthesis, which significantly inspires more and more researchers to pro-
pose various methods to further advance the performance of GANs. Karras et
al. [KALL18] propose a progressive training strategy that enables a GAN to syn-
thesize high-resolution images. In addition to generating high-resolution images,
Karras et al. [KLA19] further introduce neural style transfer structures into the ar-
chitecture of GANs and it empowers GANs to generate a variety of style images.
Takeru et al. [MKKY18] introduce spectral normalization to normalize the weights
of each layer to improve the quality of synthetic images. Overall, each improvement in
GANs requires talented researchers to devote tremendous efforts. In this chapter, instead of
further improving the performance of GANs, we target at developing a technique to protect
the intellectual property of valuable GANs.

Ownership protection. There are numerous works aiming to protect ownership
of discriminative models [UNSS17, ZGJ+18, LHZG19, LZK21, JCCCP21, CWP+22,
DDK+22, CHZ22]. These works can be generally classified into three groups: em-
bedding watermarks into model parameters [UNSS17], using predefined inputs
as triggers [ABC+18] and utilizing unique features of models [MYP20, CWP+22].
However, methods on discriminative models cannot be applied to generative models since
they are different machine learning models.

There are only a few works on ownership protection of generative models. Ong
et al. [OCN+21] propose a protection framework for GANs by adding a novel
regularization term to the existing loss function. Some works on fingerprints of
GANs can be applied into this field. Yu et al. [YSAF21] propose to add fingerprints
into training data and then verify the fingerprints on GANs. Additionally, Yu et
al. [YSC+22] add a novel fingerprint embedding layer to modulate the generation
of fingerprinted images. However, these works do not perform evaluations on emerg-
ing model extraction attacks. In this chapter, we propose a novel protection method and
thoroughly evaluate these works on various attacks, including model extraction attacks.
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4.3 Background

4.3.1 Paradigms of Ownership Protection

Current paradigms of ownership protection on GANs can be divided into two
classes: watermark-based methods and fingerprint-based methods. Watermark-
based methods initially are proposed in the work [OCN+21]. The key idea is
that model owners embed specific inputs and outputs into a GAN in the train-
ing phase. Then, if specific outputs (e.g. watermarked generated samples) can be
obtained from a suspect GAN through specific inputs (e.g. triggers), model own-
ers claim ownership of this GAN. For example, Ong et al. propose a protection
framework for GANs by adding a novel regularization term to the existing loss
function [OCN+21]. For simplicity, we refer to this ownership protection method
by the first author’s name, i.e, Ong [OCN+21].

Fingerprint-based methods are initially proposed for deepfake detection and attri-
bution [YSAF21, YSC+22]. In this work, we are the first to apply these methods to protect
ownership of GANs. This is because they share a common objective that fingerprints
can be used to infer whether a suspect sample is from their model. Specifically, the
key idea of fingerprint-based methods is that if the fingerprint extracted from gen-
erated samples from a GAN is identical to the true fingerprint, model owners can
claim ownership of the GAN. To achieve this goal, various methods are proposed,
such as adding fingerprints on the training set of a GAN [YSAF21], and designing
new architectures of a GAN and loss functions [YSC+22].

In this chapter, considering their excellent performance and the diversity of meth-
ods, we choose one watermark-based method—Ong [OCN+21] and one fingerprint-
based method—Yu [YSAF21] to evaluate the performance in ownership protec-
tion and make comparisons with our proposed method. Note that although there
are some works [MGVP19, YDF19, DTL21] about fingerprints of GANs, they fo-
cus on differentiating different types of GANs, such as PGGAN [KALL18] and
SNGAN [MKKY18]. Thus, we do not compare these methods because they cannot
distinguish different GANs from the same type.

4.3.2 Details of Obfuscations

In this subsection, we introduce obfuscation operations, including input perturba-
tion, output perturbation, overwriting, and fine-tuning, which is used to evaluate
the robustness of ownership protection methods in Section 4.6.3.

Input perturbation. Given a trained GAN model G, we can get a generated sample xg

from the GAN by a latent code z which is drawn from prior distribution P, i.e.,
xg = G(z), z ∼ P. Input perturbation aims to modify the queries, i.e., latent codes.
The reason why we consider this is that some works verify the ownership by specific
latent codes z′ = T(z). T is a function to transform a normal latent code z to a
specific latent code z′. Therefore, an adversary can perturb latent codes to evade this
type of verification. in this work, we adopt random input perturbation. Specifically,
for any query, a target model resamples latent codes from Gaussian distribution.
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Output perturbation. In addition to perturbing latent codes, an adversary can per-
turb generated samples. in this work, we consider the following four common
operations.

a. Random Noise. This operation adds noises into a generated sample xg. Com-
mon noises include Gaussian noise and Poisson noise. in this work, we choose
Gaussian noise and the mean µ and the variance σ control the strength of
noises.

b. Filtering. This operation aims to enhance some characteristics of an image.
Common operations include mean filter, median filter and Gaussian filter. in
this work, we choose the Gaussian filter.

c. Blurring. This operation makes a generated sample xg less sharp by con-
volution. Common blurring operations include box blurring and Gaussian
blurring. in this work, we choose Gaussian blurring.

d. Compression. This operation is to compress the size of an image without sig-
nificantly degrading the image quality. Common compression operations in-
clude lossless compression JPEG and lossy compression JPG. in this work, we
choose JPEG compression.

Overwriting. This attack is to target a class of ownership protection methods uti-
lizing watermarks or fingerprints. An adversary can encode a different water-
mark/fingerprint to overwrite the original watermark/fingerprint. Ideally, an own-
ership protection method should still verify the ownership in this case. In this work,
our proposed method does not rely on watermarks and fingerprints, thus intrinsi-
cally eliminating the threat of this attack.

Fine-tuning. After obtaining a substitute model, an adversary may further fine-tune
the model on their own dataset. Generally, an adversary can partially or wholly
fine-tune the model. Wholly fine-tuning refers that all weights of the model are fine-
tuned while partially fine-tuning refers that the weights of some layers are frozen
and the remaining are fine-tuned. In this work, we consider wholly fine-tuning in
which we take the weights of the stolen model as initialization and retrain a GAN
model on a new dataset.

4.4 A New Ownership Protection Method

Unlike these paradigms that require forcibly implanting watermarks or finger-
prints into target models and retraining target models which are introduced in
Section 4.3.1, our method provides a novel paradigm: the common characteristics
of a target model and its stolen models are exploited to claim ownership, motivated
by emerging model extraction attacks [TZJ+16, HP21b].
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4.4.1 Threat Model

We assume that defenders, i.e. model providers who deploy an ownership protec-
tion method on their target model, only have access to generated samples from a
suspect model deployed by the adversaries. Thus, the defenders make an owner-
ship infringement decision only based on these generated samples. This is the most
practical and strictest assumption for defenders.

4.4.2 Key Observations

The first key observation is that physical stealing and model extraction attacks are
two fundamental but different types of ownership infringement. Physical steal-
ing attacks refer that an adversary physically copies a model Gsub from the tar-
get model Gtar. Therefore, Gsub is totally the same as Gtar. Model extraction at-
tacks [HP21b] refer that an adversary retrains a substitute model Gsub on generated
samples from a target model Gtar. These generated samples can be obtained by an
adversary when model owners release generated samples or provide a querying
interface. Thus, Gsub is functionally similar to Gtar.

The second key observation is that as stolen models (i.e. constructed by physical
stealing or model extraction attacks) are derived from the target model but honest
models are not, it is thus natural to assume that stolen models and the target model
share common characteristics which do not exist in honest models. Therefore, we
can learn and leverage such characteristics as an evidence to differentiate stolen
models from honest models.

4.4.3 Ownership Protection Algorithm

Overview. In order to extract the characteristics for a target model, our method
proposes to learn these characteristics by training a binary classifier on generated
samples. Generated samples from model extraction and physical stealing are la-
belled as positive while samples from honest models, i.e. independently trained
models, are labelled as negative. The reason why we use generated samples is that
a GAN model is to learn the distribution of a training set. The learned distribution
is implicit, which can be represented through these generated samples [BKP+20].
This process is also illustrated in the deployment phase of Figure 4.1.

In practice, it is impossible for the defenders to consider all independently trained
models and all models constructed by model extraction. Therefore, our method
constructs positive and negative GAN models only by the limited knowledge of the
defenders: the architectures of the target model and the training set. Specifically,
the architectures of all models (i.e. Gtar, Gsub, Gind) in the deployment phase are
the same. The independent set Dind and the target set Dtar are from the same
distribution but disjoint. Dind can be easily obtained, e.g. the defenders split a
dataset into two parts: one as the independent set and the other as the training set.
We emphasize that our method is practical as suspect models constructed by the
adversaries can be trained on any (unknown for the defenders) GAN architectures
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Figure 4.1: Overview of our method. 1 A target model is trained on a dataset Dtar. 2 A
substitute model is constructed by model extraction. 3 An independent model is trained
on a dataset Dind that has the same distribution as the dataset Dtar, but it is disjoint with
Dtar. 4 A classifier is trained to discriminate between stolen models and honest models.
5 The classifier is used for the verification of a suspect model. Here, the target model

can also refer to the physically stealing model. The defenders do not have any information
about a suspect model Gsus, except generated samples, in the verification phase.

and datasets. Our extensive experiments in Section 4.6.4, demonstrate our method
can well generalize beyond these unknown GANs and correctly recognize them.

Details of the algorithm. As illustrated in the function buildProtection of Algo-
rithm 2, specifically, given the generator of a target model Gtar and an independent
dataset Dind, we first construct a substitute model Gsub by extracting the target
model Gtar. Next, we train a GAN Gind on the independent dataset Dind. Sam-
ples from Gsub and Gtar are labeled as positive while samples from Gind are labeled
as negative. These samples are used for training a classifier and in this work we
choose ResNet50 [HZRS16] as the classifier.

After obtaining the trained classifier, we start to perform the verification of owner-
ship. We first collect m generated samples released by a suspect model Gsus. These
samples are fed into the classifier and m predictions can be obtained. We calcu-
late the percentage of these positive predictions. If it is larger than a predefined
threshold, the suspect model is inferred as stealing from the target model. We
also analyze how the number of generated samples m affects our performance in
Section 4.7.3. This process is also illustrated in the function performVerification of
Algorithm 2. Note that the classifier used for ownership verification should remain
confidential. It is exclusively utilized by model owners and does not provide any
interface, such as querying, with users or adversaries.
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Algorithm 2: The GAN-Guards Algorithm.
Input: a target model: Gtar; an independent dataset Dind; m samples Xsus from a

suspect model Gsus.
Output: ownership decision: OwDecision

1 def buildProtection(Gtar,Dind):
2 Sample ñ samples Xgen from Gtar;
3 Gsub ← trainGAN(Xgen);
4 Gind ← trainGAN(Dind);
5 Sample n samples Xgen from Gtar; ▷ labelling positive for physical stealing.
6 Sample n samples Xsub from Gsub; ▷ labelling positive for model extraction.
7 Sample 2n samples Xind from Gind; ▷ labelling negative for the honest model.
8 Classifier← trainClassifier(Xgen, Xsub, Xind);
9 return Classifier

10 def performVerification(Classifier, Xsus, τ):
11 Initialize prediction array pred of length m with 0;
12 for i = 0 to m− 1 do
13 pred[i]← Classifier(Xsus[i]); ▷ Prediction: 1 or 0.

14 ConfiSocre = sum(pred)/m ;
15 ▷ Make a decision based on multiple samples.
16 if ConfiSocre > τ then OwDecision = 1;
17 else OwDecision = 0;
18 return OwDecision

4.5 Experiments

4.5.1 Datasets

We evaluate our method on two datasets: FFHQ [KLA19] and Church [YSZ+15].
They are typically used in image generation. The FFHQ dataset is designed for
human face image synthesis and includes 70,000 images. The Church dataset is
from the LSUN dataset, which contains 126,277 outdoor church images.

All images are resized to 64× 64. For each dataset, we randomly split the dataset
into three disjoint equal parts and mark each part as the corresponding dataset
name plus ‘I’, ‘II’, and ‘III’, respectively, such as FFHQ-I and FFHQ-II. Dataset I,
i.e. Dtar, is used to train a target GAN model. Dataset II is used to train a GAN and
later the model (i.e. Ind-a illustrated in Section 4.5.2) is used as negative to test the
ownership protection methods. Dataset III, i.e. Dind, is used to train a GAN model
and later the model is used for building a classifier together with the target model.
Specifically, we set the size of each part of FFHQ and Church as 20,000 and 40,000,
respectively.

4.5.2 Suspect Models

We consider various suspect models. Positive suspect models are considered own-
ership infringement and these models are derived from the target models via phys-
ical stealing and model extraction, and obfuscation attacks, such as input pertur-
bation, output perturbation, overwriting, and fine-tuning attacks. Negative suspect
models are host models and they are built from independent training. Similar to



4.5. Experiments 55

the settings of negative suspect models used in the work [CWP+22], here we also
consider two types: Ind-a trained on dataset II with the same architectures of target
models, and Ind-b that is trained on dataset I, with the same architectures of target
models but uses different seeds, i.e. different random initializations.

Implementation details of suspect models. For positive suspect models, models
from physical stealing (marked as PS) are the same as target models. We use model
extraction attacks proposed in the work [HP21b] to construct models from model
extraction (marked as ME). Specifically, given m generated samples from a target
model Gtar, the adversaries retrain a model (also called the substitute model or
attack model) on m generated samples. Attack models can use any architecture,
such as SNGAN, PGGAN, or StyleGAN. We study protection performance under
model extraction attacks with different GANs as attack models in Section 4.6.4.

For negative suspect models, Ind-a is trained with the same architectures of target
models but on dataset II. Ind-b is trained with the same architectures and datasets
of target models but uses different seeds, i.e. different random initializations. Using
different seeds means models trained on different training environments and op-
timization processes. Theoretically, models trained with different seeds should be
different, because they do not derive from model extraction and physical stealing,
and they are honest models with independent training. Thus, an ownership protec-
tion method should be able to differentiate them. Here, setups for negative suspect
models are very similar to those for target models because we aim to test whether
a protection method hurt honest model providers in the strong assumption setting.
This requires that a protection method should be extremely robust.

4.5.3 Metrics

We use FID [HRU+17] to measure the performance of a GAN. 50K generated sam-
ples from a GAN and all training samples are used to compute the FID value.

In terms of protection performance, the Ong method [OCN+21] utilizes the SSIM
[WBSS04] score to measure the similarity between the groundtruth watermark and
the watermark extracted from a suspect model. If the SSIM score of an image is
higher than a threshold, the image is more likely from the target model. The Yu
method [YSAF21] calculates a bitwise accuracy between the groundtruth finger-
print and an extracted fingerprint. Claiming ownership of a model based on only
one image is not robust enough. Therefore, we make a final decision by computing
a confidence score on multiple samples. Specifically, given m samples and each
sample gets an output o ∈ {0, 1} from a method, the confidence score that recog-

nizes a suspect model as positive is computed by: ConfidenceScore = ∑m−1
i=0 oi
m . In this

work, we set threshold τ of all methods as 90% for consistency. Thus, a suspect
model is predicted as positive (stolen model) if τ ≥ 90%. We fix the number of
samples m as 1,000.
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Table 4.1: Performance of target model SNGAN trained on FFHQ-I on different methods.
(↓ is better).

Methods Ong Yu Ours

FID(D, G̃) ↓ 20.14 26.46 20.25

4.5.4 Experimental Setups

In terms of GANs, we use SNGAN [MKKY18], PGGAN [KALL18] and Style-
GAN [KLA19]. These all can achieve excellent performance in image synthesis.
We use the official implementation of each GAN to train GANs. For model ex-
traction attacks, considering a trade-off between attack cost and performance, we
set the number of generated samples as 50,000, which is also suggested by the
work [HP21b].

For our protection method, we use ResNet50 [HZRS16] pre-trained on ImageNet
[RDS+15] dataset for our classifier. The SGD optimizer with a learning rate of 0.003
is used and the number of epochs is fixed as 5. As shown in Algorithm 2, we
use the Gaussian prior distribution to obtain generated samples and the number of
samples n is set as 100,000. Therefore, 400,000 samples in total are used for training
the classifier. For the Ong method [OCN+21] and the Yu method [YSAF21], we
adopt their official implementations with suggested hyperparameters.

4.6 Evaluation

In this section, we compare our method with two state-of-the-art methods: the
Ong method [OCN+21] and the Yu method [YSAF21], and both have been already
discussed in Section 4.3.1. We evaluate them from various perspectives, including
model utility, verification performance, robustness to obfuscations, and robustness
to more model extractions. Through these evaluations, we show how prior works
fail in model extraction attacks and our work can perform well on both physical
stealing attacks and model extraction attacks.

4.6.1 Model Utility of Target Models

Table 4.1 shows the performance of the target model SNGAN trained on FFHQ-I
with different protection methods. The FID is computed by the original training
set D and the protected GAN G̃. Overall, the watermark-based method Ong and
our method achieve similar outstanding performance, while the fingerprint-based
method Yu shows worse performance. This is because the Yu method needs to add
fingerprints into a training set, which is at the cost of sacrificing model utility.

4.6.2 Verification Performance

Figure 4.2 presents verification performance on different ownership protection meth-
ods. The red dashed line is the threshold τ of the confidence score. A model is
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Figure 4.2: Verification performance of all methods. The target model SNGAN is trained on
FFHQ-I. PS and ME are positive suspect models while Ind-a and Ind-b are negative suspect
models. Note that green and orange bars in some cases cannot be observed because their scores are
0%.

predicted as a stolen (positive) model if τ ≥ 90%. PS refers to models from physi-
cal stealing while ME refers to models from model extraction. Note that here ME,
Ind-a, Ind-b models used in the verification phase are not the same models used in
our deployment phase (detailed in Section 4.5.2). Overall, our method can correctly
differentiate all positive and negative suspect models, achieving 100% accuracy.
However, the Ong method and the Yu method are unable to defend against model
extraction attacks.

Additionally, the Ong and Yu methods mistakenly recognize the suspect model
Ind-b trained with different initializations as a stolen model. This is because em-
bedded watermarks or fingerprints cannot be changed only owing to different ini-
tializations of a training process. Thus, their methods lead to false alarms and hurt
honest model providers. In contrast, our method can perfectly deal with this case
because our method builds on a well-trained model. Note that the setting of the
suspect model Ind-b is also adopted by classification models to detect whether an
ownership protection method produces false alarms [CWP+22].

4.6.3 Robustness to Obfuscations

In order to evade verification, advanced adversaries may utilize obfuscation tech-
niques to obfuscate stolen models. In this work, we consider four types of obfus-
cation techniques: input perturbation, output perturbation, overwriting and fine-
tuning. Input perturbation aims to modify the queries, i.e., latent codes, to evade
special queries. Here, we adopt random input perturbation. That is, for any query,
a target model resamples latent codes from Gaussian distribution. For brevity, we
rename it Inp. Output perturbation refers to perturbing generated samples by var-
ious post-processing techniques. We use four different output perturbations: addi-
tive Gaussian noise, Gaussian filter, Gaussian blurring, and JPEG compression. We
briefly rename them Oup-a, Oup-b, Oup-c, and Oup-d, respectively. The magni-
tude of these perturbations is set as 0.01, 0.4, 0.5, and 0.85, respectively. Overwriting
refers to encoding a different watermark/fingerprint to overwrite the original wa-
termark/fingerprint. Our method does not rely on watermarks and fingerprints,
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(a) Input perturbation.
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(b) PS + output perturbation.
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(c) ME + output perturbation.

Figure 4.3: Robustness to Obfuscations. Protection performance for target model SNGAN
trained on FFHQ-I. Again, green and orange bars in some cases cannot be observed because
their scores are 0% and cannot defend against these attacks.

thus intrinsically eliminating the threat of this attack. In this work, we consider
wholly fine-tuning where we take the weights of the stolen model as initialization
and retrain a GAN model on a different dataset FFHQ-II. Because these obfuscation
operations can be added into physical stealing (PS) or model extraction (ME), there
are different combinations between obfuscation operations and PS and ME. Here,
we mark them as ’PS+‘ and ’ME+‘ corresponding obfuscation operations, such as
PS+Inp. Details have been illustrated in Section 4.3.2.

Results. Figure 4.3 shows the protection performance under input and output per-
turbation operations. Overall, our method can still remain 100% accuracy against
input perturbation and output perturbation attacks. In contrast, the Ong method
totally cannot resist the input perturbation attack, as shown in Figure 4.3(a) and
the Yu method cannot defend against additive Gaussian noise of output perturba-
tion attacks (PS+Oup-a and ME+Oup-a). Again, Figure 4.3(c) shows that the Ong
and Yu methods cannot defend against ME+Output perturbation. We analyze the
reasons for the Ong and Yu methods in Section 4.6.5.

We perform the evaluation under the overwriting attack. Figure 4.5 shows a new
watermark that is used for overwriting attacks for the Ong method. The original
watermark is shown in Figure 4.6 (a). We do not report results for our method
because our method does not rely on watermarks or fingerprints. We summarize
the results in Table 4.2. Overall, the Ong and Yu methods cannot defend against this
type of attack and both confidence scores are 0%. It indicates that the overwritten
watermarks and fingerprints make their methods unable to extract the expected
outputs.

We evaluate the protection performance under the fine-tuning attack. We adopt
wholly fine-tuning where all weights of each model are fine-tuned on FFHQ-II.
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Table 4.2: Protection performance on overwriting. The target model SNGAN is trained on
FFHQ-I. The suspect model PS is the model obtained by physical stealing. Confi.: confi-
dence; Pred.: prediction.

Types Ong Yu

Confi. Score(%) Pred. Confi. Score(%) Pred.

PS 0.00 0 0.00 0

Table 4.3: Protection performance on fine-tuning. Target model SNGAN is trained on
FFHQ-I.

Types Ong Yu Ours

Confi.

Score(%)
Pred.

Confi.

Score(%)
Pred.

Confi.

Score(%)
Pred.

PS 0.00 0 0.00 0 40.10 0

ME 0.00 0 0.00 0 28.00 0

Specifically, we take the weights of the stolen model as initialization and retrain a
GAN model on FFHQ-II. Table 4.3 reports protection performance under the fine-
tuning attack. We observe that all protection methods cannot be robust against this
attack. We analyze that this is because the fine-tuned GAN model has learned a
different distribution in a new training set and neural networks suffer from catas-
trophic forgetting [Fre99, GMX+13]. The former makes that our method recognizes
this model as an independent training model while the latter makes that the Ong
and Yu methods forget embedded watermarks and fingerprints. This also inspires
us to think about the ownership boundary of a GAN and develop more powerful
protection work in future.

4.6.4 Robustness to More Model Extraction

When mounting model extraction attacks, adversaries can utilize various archi-
tectures of GANs to extract a target model. Figure 4.4 shows the results of all
methods in terms of robustness to model extraction attacks with different GANs as
attack models. The target model is SNGAN. We see that our method still performs
well, while the other two methods recognize them as honest models. This shows
our method can recognize models constructed by model extraction attacks regardless of the
GAN architectures of adversaries.

4.6.5 Understanding for Different Methods

Figure 4.6 shows SSIM scores of watermarks under different output perturbations.
Specifically, Figure 4.6 (a) is the watermark used in the Ong method. Figure 4.6 (b)
- Figure 4.6 (e) show the watermark under different output perturbations. We can
observe that only if the Ong method can extract watermarks, output perturbation
attacks do not have a significant impact on the final decision. This can explain
the reason why the Ong Method on PS+output perturbation can perform well, as
shown in Figure 4.3(b).
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Figure 4.4: Protection performance under model extraction attacks with different GANs as
attack models. The target model SNGAN is trained on FFHQ-I.

Figure 4.5: Watermarks used for overwriting attacks.

(a) (b) (c) (d) (e)

Figure 4.6: Watermarks under different output perturbations. (a) is the original watermark.
From (b) to (e), the output perturbation operations are Additive Gaussian Noise, Gaussian
Filtering, Gaussian Blurring, and JPEG Compression, respectively. The corresponding SSIM
scores between (a) and each output perturbation are 84.085%, 97.47%, 99.34%, 95.43%, re-
spectively.

However, model extraction attacks and their derivative attacks (i.e. ME+obfuscations)
make the Ong and Yu methods fail. This is because these attacks severely under-
mine watermarks and fingerprints. It indicates that methods based on watermarks
and fingerprints are not robust to model extraction attacks and are too easily per-
turbed.

4.6.6 Performance of Suspect Models

In this subsection, we summarize the performance of suspect models used in Sec-
tion 4.6. Overall, we choose suspect models with the best performance in each
setting. For positive suspect models, that is these models which are obtained by
physical stealing or model extraction attacks, we use FID(pg̃, pr) and FID(pg̃, pg)
to demonstrate the performance. Here, pg̃ is the implicit distribution of a suspect
model or an attack model. pr is the implicit distribution of a training set. pg is the
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Table 4.4: Performance of suspect positive models. The target model is SNGAN trained on
FFHQ-I. It is corresponding to Figure 4.2.

Types Ong Yu Ours

Attack Performance Attack Performance Attack Performance

FID(pg̃, pr) FID(pg̃, pg) FID(pg̃, pr) FID(pg̃, pg) FID(pg̃, pr) FID(pg̃, pg)

PS 20.14 0.00 26.46 0.00 20.25 0.00

ME 25.47 2.52 30.83 3.23 27.60 3.13

Table 4.5: Performance of suspect negative models. The target model is SNGAN trained on
FFHQ-I. FID(pr, pg) is used for evaluation.

Types Ong Yu Ours

Ind-a 17.84 17.84 17.84

Ind-b 20.63 29.13 17.15

implicit distribution of a target model. FID(pg̃, pg) represents the similarity between
an attack model and a target model, while FID(pg̃, pr) represents the similarity be-
tween an attack model and the training set of a target model. In the work [HP21b],
they are also called fidelity and accuracy, respectively. Here, we explicitly use
FID(pg̃, pr) and FID(pg̃, pg) to report the performance of suspect positive models.
For negative suspect models, we use FID(pr, pg) for evaluation.

Table 4.4 and Table 4.5 show positive and negative suspect models for target model
SNGAN trained on FFHQ. Table 4.6 shows the performance of suspect positive
models constructed by model extraction with different GANs. Overall, all suspect
models show excellent performance.

4.7 Analysis

In this section, we intensively examine the protection performance of our method
in terms of the learned characteristics, the number of generations of model extrac-
tion attacks, and the number of generated samples. We also show its protection
performance on different datasets and target models.
Table 4.6: Performance of suspect positive models. The target model is SNGAN trained on
FFHQ-I. It is corresponding to Figure 4.4.

Attack Models Ong Yu Ours

Attack Performance Attack Performance Attack Performance

FID(pg̃, pr) FID(pg̃, pg) FID(pg̃, pr) FID(pg̃, pg) FID(pg̃, pr) FID(pg̃, pg)

SNGAN 25.47 2.52 30.83 3.23 27.60 3.13

PGGAN 23.58 2.33 29.29 1.80 23.11 2.56

StyleGAN 21.62 2.70 27.27 2.62 21.07 2.97
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Figure 4.7: T-SNE visualization of characteristics learned by our method for stolen models
and honest models.

4.7.1 Visualization of Characteristics

Figure 4.7 shows the T-SNE visualization of characteristics learned by our method.
We plot the T-SNE figure by using outputs from the penultimate layer of the clas-
sifier and the dimension of the outputs is 2,048. We clearly see that characteristics
from stolen models including PS and ME are entangled together and have a clear
boundary with that from honest models.

4.7.2 Generations of Model Extraction Attacks

Theoretically, model extraction attacks on GANs can continue forever like the pro-
cess of biological heredity, as shown in Figure 4.8. Models produced during this
process, such as G(i), should be correctly identified by ownership protection meth-
ods. This motivates us to investigate whether the protection performance will de-
crease with the number of generations of model extraction attacks. We emphasize
this is our newly identified threat, which is not discussed in the literature about
GAN ownership protection. Moreover, this threat will become more common con-
sidering the popularity of generative AI.

Here, we fix the number of generated samples as 1,000 and the target model is
SNGAN trained on FFHQ-I. We mark the target model SNGAN as SNGAN(0), and
the first generation of model extraction is marked as SNGAN(1), which means an
adversary uses an attack model SNGAN to extract the target model SNGAN. We
do not show the performance of the Ong method because it cannot defend against
model extraction attacks.

As shown in Figure 4.9, we can clearly observe that with the increase in the number
of generations of model extraction, the Yu method becomes less and less confident.
It also indicates that the fingerprint is not robust and more and more generated
samples cannot extract the corresponding fingerprint. In contrast, our method still
remains almost 100% confident to verify ownership of the target model.
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Figure 4.8: Generations of model extraction attacks.
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Figure 4.9: Protection performance with regard to the number of generations of model
extraction attacks.
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Figure 4.10: Protection performance with regard to the numbers of generated samples.

4.7.3 Number of Generated Samples

Figure 4.10 presents the protection performance of our method under the different
numbers of generated samples. The target model SNGAN is trained on FFHQ-I.
The ground truth of PS and ME is positive while that of Ind-a and Ind-b is negative.
We can clearly see that the confidence scores gradually remain stable after 1,000
generated samples on all suspect models. It also shows that our protection method
has advantages with respect to the efficiency, i.e. it requires as few as 1,000 samples.



64 Chapter 4. Ownership Protection in Generative Adversarial Networks

PS ME Ind-a Ind-b
Suspect Models

0

20

40

60

80

100

Co
nf

id
en

ce
 S

co
re

 (%
)

(a) Verification performance.
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(b) Input perturbation.
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(c) PS + output perturbation.
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(d) ME + output perturbation.

Figure 4.11: Protection performance on target model SNGAN trained on Church-I.

4.7.4 Different Datasets

We now present the performance of our method on the Church dataset which is
widely used in scene synthesis. The detail of this dataset is also discussed in Sec-
tion 4.5.1. The target model is SNGAN trained on the Church-I dataset and achieves
12.96 FID.

Overall, our method on the Church dataset can achieve the same exceptional pro-
tection performance as that on the FFHQ dataset. Figure 4.11(a) shows verification
performance on our method. We can clearly observe that our method can verify
the positive suspect models as positive with high confidence. As shown in Fig-
ure 4.11(b), Figure 4.11(c) and Figure 4.11(d), our method can still remain 100%
accuracy under the input perturbation and output perturbation. In terms of the
protection performance of our method on fine-tuning attacks, we take the weights
of the stolen model as initialization and retrain a GAN model on Church-II. Our
evaluation shows that it fails to recognize positive suspect models as positive.

Figure 4.12 shows the results of our method in terms of robustness to different
model extractions. We observe that our method still performs perfectly regardless
of the types of attack models.

4.7.5 Different Target Models

We also show the protection performance of our method on the target model Style-
GAN. The StyleGAN is trained on FFHQ-I and achieves 8.76 FID.
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Figure 4.12: Robustness to more model extraction attacks. Protection performance under
model extraction attacks with different GANs as attack models. Target model SNGAN is
trained on Church-I.
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(b) Input perturbation.
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(c) PS + output perturbation.
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(d) ME + output perturbation.

Figure 4.13: Protection performance on target model StyleGAN trained on FFHQ-I.

Overall, our method still has competitive protection performance on the target
model StyleGAN. Our method can achieve 100% accuracy on verification perfor-
mance for all suspect models, as shown in Figure 4.13(a). In terms of obfuscations,
100% accuracy can be seen on input perturbation attacks and four types of output
perturbation attacks, as depicted in Figure 4.13(b), Figure 4.13(c) and Figure 4.13(d)
respectively. In the face of fine-tuning attacks, our method still fails to recognize
these positive suspect models. Figure 4.14 shows the results of our method in terms
of robustness to different model extractions. We observe that our method still per-
forms perfectly regardless of the types of attack models.
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Figure 4.14: Robustness to more model extraction. Protection performance under model
extraction with different GANs as attack models. Target model StyleGAN is trained on
FFHQ-I.
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Figure 4.15: Protection performance under the adaptive attack I. The target model SNGAN
is trained on FFHQ-I.

4.8 Adaptive Attacks

Although researchers studying defense techniques strongly advocates that a new
defense should be evaluated on adaptive attacks [TCBM20], prior works on owner-
ship protection on GANs do not adopt it. In this work, we present the performance
of our method under adaptive attacks. That is, we assume that adversaries have
some knowledge of our protection method, and design a series of specific attacks
to evade our method.

We discuss two types of adaptive attack scenarios. The main design principle is that
we assume that adversaries perceive our method which is based on the common
characteristics of a target model and its stolen models. Therefore, the adversaries
attempt to decrease the confidence score of our method by sacrificing model utility
(i.e. the quality of generated images). Specifically, in adaptive attack I, adversaries
choose an inferior performance GAN from multiple snapshots of a GAN when
mounting model extraction attacks. In adaptive attack II, adversaries evade our
verification by designing a series of output perturbations by choosing the magni-
tude of the perturbation.
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Table 4.7: Magnitudes of output perturbation of the adaptive attack II. a: Additive Gaussian
Noise; b: Gaussian Filtering; c: Gaussian Blurring; d: JPEG Compression.

Strategy Output Perturbation

a b c d

I 0.001 0.1 0.1 95

II 0.005 0.2 0.3 90

III 0.01 0.4 0.5 85

4.8.1 Results on Adaptive Attack I

Figure 4.15 shows protection performance under the adaptive attack I. Here, we
choose an attack model SNGAN to extract the target model SNGAN trained on
FFHQ-I. We choose eight snapshots of SNGAN during model extraction attacks.
The performance of the attack model SNGAN, i.e. FID(pg, pg̃), ranges from 22 to
2, as depicted in the red line. pg and pg̃ are the implicit distribution of the target
model and the attack model, respectively. We can observe that confidence scores
begin to decrease, then increase and remain at 100%, with the decrease in FID of
the attack model SNGAN. In particular, the confidence scores of all snapshots are
above 98%, which indicates that our method can correctly recognize all snapshots
as stolen models.

4.8.2 Results on Adaptive Attack II

Considering the model utility, we design three strategies (strategy I, strategy II and
strategy III) based on different magnitudes of four types of output perturbation.
Table 4.7 summarizes the magnitudes of output perturbation of each strategy. Note
that we combine four types of output perturbation instead of single output pertur-
bation. Figure 4.16 shows visually present images generated by each strategy and
the quality of generated images becomes much noisier and blurrier from strategy I
to strategy III. Generally, adversaries need to trade off model utility, i.e. the quality
of generated images, and copyright infringement risks.

Figure 4.17 shows protection performance under the adaptive attack II. Overall, we
can observe in Figure 4.17 that our method still can recognize all positive suspect
models, although the confidence score of each suspect model decreases from strat-
egy I to strategy III. In addition, although strategy III can lower the confidence of
our method, the model almost cannot be used due to the low quality of generated
images visually. In practice, the loss in model utility can make the adversaries less
competitive in market share, compared to legitimate model owners.

4.9 Conclusion

In this chapter, we have proposed a novel method to protect GAN ownership by
leveraging the common characteristics of a target model and its stolen GANs. Ex-
tensive experimental evaluations demonstrate that: (a) In terms of model utility,



68 Chapter 4. Ownership Protection in Generative Adversarial Networks

(a) No perturbation.

(b) Strategy I.

(c) Strategy II.

(d) Strategy III.

Figure 4.16: Adaptive attack II. From (a) strategy I to (c) strategy III, the magnitude of
output perturbation gradually increases. The corresponding magnitudes are shown in Ta-
ble 4.7. The average SSIM score for strategy I, strategy II, and strategy III is 92.20%, 82.97%,
and 82.10%, respectively.
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Figure 4.17: Protection performance under the adaptive attack II. The target model SNGAN
is trained on FFHQ-I.

our method can bring lossless fidelity, compared to models without protection, be-
cause it does not modify well-trained target models. (b) In terms of robustness, our
method can achieve new state-of-the-art protection performance, compared with
watermark-based methods and fingerprint-based methods. Furthermore, we have
also shown that our method is still effective under two types of carefully designed
adaptive attacks. (c) In terms of undetectability, our method is undetectable for
adversaries because it builds on a target model with normal training and does not
rely on watermarks or fingerprints. (d) In terms of efficiency, our method requires
about 1,000 generated samples to confidently verify the ownership of a GAN. Fi-
nally, we also have performed a fine-grained analysis of our method from various
aspects, such as visualizing learned characteristics, the stability of the performance
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with regard to the number of generations of model extraction attacks, the number
of generated samples, different datasets, and different target models.

Fine-tuning attacks remain a challenge for ownership protection on GANs. In fu-
ture, we plan to design more powerful methods to defend against these types of
attacks. In addition, applying our protection method to other domains, such as
table data synthesis and text generation, is also an interesting research direction.
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Part II

Data Privacy in Generative Models
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Chapter 5

Membership Inference in
Diffusion Models

In addition to the privacy risks of the model itself elaborated in the first part of
this dissertation, how about the training set privacy of a generative model? In this
chapter, we present a comprehensive study about membership inference attacks
against the latest generative model - diffusion models, which aims to infer whether
a sample was used to train the model. Two attack methods are proposed, namely
loss-based and likelihood-based attacks. Then our attack methods are evaluated
on several state-of-the-art diffusion models, over different datasets in relation to
privacy-sensitive data. Furthermore, we exhaustively investigate various factors
which can affect membership inference. Finally, we evaluate the membership risks
of diffusion models trained with differential privacy.

5.1 Introduction

Diffusion models [SDWMG15] have recently made remarkable progress in image
synthesis [HJA20, SSDK+21, KAAL22], even being able to generate better-quality
images than generative adversarial networks (GANs) [GPAM+14] in some situa-
tions [DN21]. They have also been applied to sensitive personal data, such as the
human face [SE19, KAAL22] or medical images [PTD+22, KAH+22], which might
unwittingly lead to the leakage of training data. As a consequence, it is paramount
to study privacy breaches in diffusion models.

Membership inference (MI) attacks aim to infer whether a given sample was used
to train the model [SSSS17]. In practice, they are widely applied to analyze the
privacy risks of a machine learning model [SM20, MS20]. To date, a growing
number of studies concentrate on classification models [SSSS17, SZH+19, CCN+22,
YMMS22, LZBZ22], GANs [HMDDC19, CYZF20], text-to-image generative mod-
els [WYL+22], and language models [CLE+19, CTW+21]. However, there is still
a lack of work on MI attacks against diffusion models. In addition, data protec-
tion regulations, such as GDPR [PotEU16], require that it is mandatory to assess
privacy threats of technologies when they involve sensitive data. Therefore, all of
these drive us to investigate the membership vulnerability of diffusion models.
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In this chapter, we systematically study the problem of membership inference of
diffusion models. Specifically, we consider two threat models: in threat model I,
adversaries are allowed to obtain the target diffusion model, and adversaries also
can calculate the loss values of a sample through the model. This scenario might
occur when institutions share a generative model with their collaborators to avoid
directly sharing original data [PMG+18, LJW+20]. We emphasize that obtaining
losses of a model is realistic because it is widely adopted in studying MI attacks
on classification models [SSSS17, CCN+22, YMMS22, LZBZ22]. In threat model II,
adversaries can obtain the likelihood value of a sample from a diffusion model.
Providing the exact likelihood value of any sample is one of the advantages of
diffusion models [SSDK+21]. Thus, here we aim to study whether the likelihood
value of a sample can be considered as a clue to infer membership. Based on both
threat models, two types of attack methods are developed respectively: loss-based
attack and likelihood-based attack. They are detailed in Section 5.2.

We evaluate our methods on four state-of-the-art diffusion models: DDPM [HJA20],
SMLD [SE19], VPSDE [SSDK+21] and VESDE [SSDK+21]. We use two privacy-
sensitive datasets: a human face dataset FFHQ [KLA19] and a diabetic retinopathy
dataset DRD [Kag15]. Extensive experimental evaluations show that our methods
can achieve excellent attack performance, and provide novel insights into member-
ship vulnerabilities in diffusion models (see Section 5.4). For instance, the loss-
based attack demonstrates that different diffusion steps of a diffusion model have
significantly different privacy risks, and there exist high-risk regions which lead to
leakage of training samples. The likelihood-based attack shows that the likelihood
values of samples from a diffusion model provide a strong indication to infer train-
ing samples. We also analyze attack performance with respect to various factors
in Section 5.5. For example, we find that the high-risk regions still exist with the
increase in the number of training samples (see Figure 5.6). This indicates that it
is urgent to redesign the current noise mechanisms used by almost all diffusion
models. Finally, we evaluate our attack performance on a classical defense - differ-
ential privacy [Dwo08] (see Section 5.6). Specifically, we train target models using
differentially-private stochastic gradient descent (DP-SGD) [ACG+16]. Extensive
evaluations show that although the performance of both types of attack can be al-
leviated on models trained with DP-SGD, they sacrifice too much model utility,
which also gives a new research direction for the future.

In the end, we want to emphasize that although we study membership inference
from the perspective of attackers, our proposed methods can directly be applied to
audit the privacy risks of diffusion models when model providers need to evaluate
the privacy risks of their models.

5.2 Methodology

The objective of MI attacks is to infer if a sample was used to train a model. This
offers model providers methods to evaluate the information leakage of models. In
this section, we first introduce threat models and then present our MI methods.
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5.2.1 Threat Models

Threat Model I. In this setting, we assume adversaries can only obtain the target
model, i.e. the victim diffusion model. This setting is realistic because institutions
might share generative models with their collaborators instead of directly utilizing
original data, considering privacy threats or data regulations [PMG+18, LJW+20].
We emphasize that adversaries do not gain any knowledge of the training set. Ob-
taining the target model indicates that adversaries can get the loss values through
the model, and this is realistic because most MI attacks on classification models
also assume adversaries can get loss values [SSSS17, CCN+22, YMMS22, LZBZ22].
Under this threat model, we propose a loss-based MI attack.

Threat Model II. In this setting, we assume adversaries can have access to the likeli-
hood values of samples from a diffusion model. Diffusion models have advantages
in providing the exact likelihood value of any sample [SSDK+21]. Here we aim
to study whether the likelihood values of samples can be utilized as a signal to
perform membership inference. Under this threat model, we propose a likelihood-
based MI attack.

5.2.2 Intuition

We propose MI attacks based on the following two intuitions.

Intuition I. As introduced in Section 2.1.2, a diffusion model aims to minimize the
loss values over the training set in the training phase. One intuition is that member
samples, i.e. the training samples, should have smaller loss values, compared to
nonmember samples. This is because training/member samples involve the train-
ing process and their loss values could be minimized.

Intuition II. A diffusion model is a generative model that learns the distribution of
a training set. Therefore, the likelihood values of training/member samples should
be higher than these of nonmember samples. This is because training/member
samples are from the distribution of the training set.

5.2.3 Attack Methods

Problem Formulation. Given a target diffusion model Gtar, the aim of MI attacks is
to infer whether a sample x from a target dataset Xtar is used to train the Gtar.

Loss-based Attack. For threat model I and following intuition I, we develop a loss-
based attack. As illustrated in Section 2.1.2, diffusion models can add an infinite
or finite number of noise distributions, which correspond to continuous or discrete
SDE, respectively. Therefore, we can calculate the loss value of a sample at each
diffusion step t. Specifically, based on Equation 2.9, the loss of a sample x at t
diffusion step of DDPM is calculated by:

L =
1
m ∑ ||ε− εθ⋆(

√
αtx +

√
1− αtε, t)||2, (5.1)
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where m is the dimension of x and εθ⋆(.) is the trained network. By Equation 2.10,
the loss of a sample x at t diffusion step of SMLD is calculated by:

L =
1
m ∑ λ(σt)||sθ⋆(xt, σt)−∇xt log q(xt|x)||2, (5.2)

where sθ⋆(.) is the trained network. Based on Equation 2.12, the loss of a sample x
at t diffusion step of VPSDE and VESDE is:

L =
1
m ∑ λ(t)||sθ⋆(xt, t)−∇xt log q(xt|x)||2. (5.3)

Then, we make a membership inference directly based on the loss value of a sample
at one diffusion step. Namely, if a sample’s loss value is less than certain thresholds,
this sample is marked as a member sample. For one sample, we can get T or
infinite losses, depending on continuous or discrete SDEs. In this work, in order
to thoroughly demonstrate the performance of our attack, we compute losses of all
diffusion steps T for the discrete case. We randomly select T diffusion steps for the
continuous case although it has infinite steps.

Likelihood-based Attack. For threat model II and following intuition II, we pro-
pose to utilize the likelihood value of a sample to infer membership. We com-
pute the log-likelihood of a sample x based on the following equation proposed
by [SSDK+21].

log p(x) = log pT(xT)−
∫ T

0
∇ · f̃θ⋆(xt, t)dt, (5.4)

where∇· f̃θ⋆(x, t) is estimated by the Skilling-Hutchinson trace estimator [GCB+18].
If the log-likelihood value of a sample is higher than certain thresholds, this sam-
ple is predicted as a member sample. As introduced in Section 4.3, the work
SSDE [SSDK+21] is a unified framework. In other words, DDPM, SMLD, VPSDE
and VESDE can be described by Equation 2.11. Therefore, Equation 5.4 can be ap-
plied to these models to estimate the likelihood of one sample. In this work, we
compute the likelihood values of all training samples.

5.3 Experiments

5.3.1 Datasets

We use two different datasets to evaluate our attack methods. They cover the hu-
man face and medical images, which are all considered privacy-sensitive data.

FFHQ. The Flickr-Faces-HQ dataset (FFHQ) [KLA19] is a new dataset that contains
70, 000 high-quality human face images. In this work, we randomly choose 1, 000
images to train target models. We also explore the effect of the size of the training
set in Section 5.5.1.

DRD. The Diabetic Retinopathy dataset (DRD) [Kag15] contains 88, 703 retina im-
ages. In this work, we only consider images that have diabetic retinopathy, which
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is a total of 23, 359 images. Furthermore, we randomly choose 1, 000 images to train
target models. Note that images in all datasets are resized to 64× 64 just for the
purpose of computation efficiency.

5.3.2 Metrics

Evaluation metrics for diffusion models. We use the popular Fréchet Inception
Distance (FID) metric to evaluate the performance of a diffusion model [HRU+17].
A lower FID score is better, which implies that the generated samples are more
realistic and diverse. Considering the efficiency of sampling, in our work the FID
score is computed with all training samples and 1, 000 generated samples.

Evaluation metrics for MI attacks. We primarily use the full log-scale receiver op-
erating characteristic (ROC) curve to evaluate the performance of our attack meth-
ods, because it can better characterize the worst-case privacy threats of a victim
model [CCN+22]. We also report the true-positive rate (TPR) at the false-positive
rate (FPR) as it can give a quick evaluation. We use average-case metrics — accuracy
as a reference, although it cannot assess the worst-case privacy.

5.3.3 Experimental Setups

In terms of target models, we use open source codes [Son21] to train diffusion
models, and their recommended hyperparameters about training and sampling are
adopted. More specifically, the number of training steps for all models is fixed at
500, 000. For discrete SDEs, T is fixed as 1, 000 while T is set as 1 for continuous
SDEs. In terms of our attack methods, we evaluate the attack performance using all
training samples as member samples and equal numbers of nonmember samples.

5.4 Evaluation

In this section, we first present the performance of target models. Then, we show
the performance of our two attacks: loss-based and likelihood-based attacks.

5.4.1 Performance of Target Models

Considering their excellent performance in image generation, we choose DDPM
[HJA20], SMLD [SE19], VPSDE [SSDK+21] and VESDE [SSDK+21] as our target
models. These diffusion models are detailed as preliminaries in Section 2.1.2. They
are trained on the FFHQ dataset containing 1k samples. Target models with the best
FID during the training progress are selected to be attacked. Table 5.1 shows the
performance of the target models. Figure 5.1 shows the qualitative results for these
target models. Overall, all target models can synthesize high-quality and realistic
images.
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(a) DDPM (b) SMLD (c) VPSDE (d) VESDE

Figure 5.1: Generated images from different target models trained on FFHQ.

Table 5.1: The performance of target models on FFHQ.

Target Models DDPM SMLD VPSDE VESDE

FID 57.88 92.81 20.27 63.37

5.4.2 Performance of Loss-based Attack

We present our attack performance from two aspects: TPRs at fixed FPRs for all
diffusion steps and log-scale ROC curves at one diffusion step. The former aims
to provide the holistic performance of our attacks in diffusion models. In contrast,
the latter concentrates on one diffusion step and is able to exhaustively show TPR
values at a wide range of FPR values, which is key to assessing the worst-case
privacy risks of a model.

TPRs at fixed FPRs for all diffusion steps. Figure 5.2 shows the performance of our
loss-based attack on four target models trained on FFHQ. We plot TPRs at different
FPRs with regard to diffusion steps for each target model. Recall DDPM and SMLD
models are discrete SDEs while VPSDE and VESDE models are continuous SDEs.
Thus, the number of diffusion steps for DDPM and SMLD is finite and is fixed as
1,000, while for VPSDE and VESDE models, we uniformly generate 1, 000 points
within [0, 1] and compute corresponding losses. Overall, all models are vulnerable
to our attacks, even under the worst-case, i.e. TPR at 0.01% FPR, depicted by the
purple line of Figure 5.2.

We observe that our attack presents different performances in different diffusion steps. To
be more specific, there exist high privacy risk regions for diffusion models in terms
of diffusion steps. In these regions (i.e. diffusion steps), our attack can achieve as
high as 100% TPR at 0.01% FPR. Even for the SMLD model, close to 80% TPR at
0.01% FPR can be achieved. Recall the training mechanisms of diffusion models.
Different levels of noise at different diffusion steps are added during the forward
process. DDPM and VPSDE and VESDE progressively introduce the growing levels
of noise while SMLD starts with maximum levels of noise and gradually decreases
the levels of noise. Thus, we can see that these models (DDPM and VPSDE, and
VESDE) are more vulnerable to leak training samples in the first half part of the dif-
fusion steps while the SMLD model shows membership vulnerability in the second
half part of the diffusion steps.

In addition, as shown in Figure 5.2, we also see that four curves that represent the
true positive rate at different false positive rates almost overlap or are very close
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(d) VESDE

Figure 5.2: Performance of the loss-based attack on all diffusion steps. Target models are
trained on FFHQ.

in most diffusion steps. It indicates that our attack can still be effective and robust
even at the low false positive rate regime. Note that TPR at low FPR is able to
characterize the worst-case privacy risks.

In brief, all models are prone to suffer from membership leakage in low levels of
noise while they become more resistant in high levels of noise. In fact, in these
diffusion steps where high levels of noise are added to training data, perturbed
data is almost close to pure Gaussian noise, which can to some degree enhance the
privacy of training data. We also notice that at the starting diffusion step, our attack
performance suffers from a decrease. This is because there is an instability issue at
this step during the training process [SSDK+21]. Despite this, these peak regions
still show the effectiveness of our attack.

Log-scale ROC curves at one diffusion step. Figure 5.3 plots full log-scale ROC
curves of the loss-based attack on four target models. We choose six different diffu-
sion steps for each target model. The rules of choosing diffusion steps for discrete
SDEs (i.e. DDPM and SMLD) are: starting and ending diffusion step and the dif-
fusion step that experiences significant changes in terms of attack performance.
For continuous SDEs (i.e. VPSDE and VESDE), we first get 1, 000 points that are
uniformly sampled from [0, 1]. Then, we choose diffusion steps from these points
based on the same rule of discrete SDEs. Overall, our excellent attack performance
is exhaustively shown through log-scale ROC curves.

We can observe that when the levels of noise are not too large, our method can
achieve a perfect attack, such as at t = 200 for the DDPM model, t = 800 for the
SMLD model, and t = 0.21 for the VPSDE and VESDE models. Again, we can
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Figure 5.3: Performance of the loss-based attacks at one diffusion step. Target models are
trained on FFHQ.

Table 5.2: Performance of the loss-based attack on target models trained on FFHQ.

Models T TPR@ TPR@ TPR@ TPR@ Accuracy Models T TPR@ TPR@ TPR@ TPR@ Accuracy

10%FPR 1%FPR 0.1%FPR 0.01%FPR 10%FPR 1%FPR 0.1%FPR 0.01%FPR

DDPM

0 63.50% 36.40% 22.50% 21.10% 78.25%

SMLD

0 7.90% 0.80% 0.00% 0.00% 51.20%

200 100.00% 100.00% 100.00% 100.00% 100.00% 200 11.20% 0.70% 0.10% 0.00% 52.30%

500 100.00% 99.50% 80.80% 72.50% 99.30% 500 88.50% 64.40% 56.10% 35.70% 89.50%

600 59.50% 18.80% 4.30% 2.30% 81.15% 800 99.10% 91.70% 78.60% 76.10% 96.40%

800 13.90% 2.50% 0.60% 0.30% 52.80% 900 85.80% 52.00% 22.80% 15.30% 88.80%

999 12.60% 1.70% 0.00% 0.00% 52.45% 999 41.50% 8.60% 1.90% 0.10% 70.55%

VPSDE

1.97× 10−4 93.00% 85.00% 81.60% 77.60% 93.15%

VESDE

1.97× 10−4 100.00% 100.00% 100.00% 100.00% 100.00%

0.21 100.00% 100.00% 100.00% 100.00% 100.00% 0.21 100.00% 100.00% 100.00% 100.00% 100.00%

0.52 100.00% 100.00% 99.50% 78.40% 99..90% 0.52 100.00% 100.00% 100.00% 99.90% 99.95%

0.62 66.50% 14.50% 8.20% 4.30% 85.70% 0.62 96.00% 53.60% 18.60% 14.20% 93.25%

0.72 17.90% 3.70% 1.20% 0.20% 57.30% 0.82 13.10% 1.90% 0.50% 0.30% 52.50%

9.99× 10−1 13.00% 1.8% 0.40% 0.10% 52.20% 9.99× 10−1 11.60% 1.70% 0.30% 0.10% 51.50%

clearly see that the ROC curves on all target models are more aligned with the grey
diagonal line with the increase in the magnitudes of noise. The grey diagonal line
means that the attack performance is equivalent to random guesses. For example,
the ROC curves are almost close to the grey diagonal line when the maximal level
of noise is added, such as the DDPM model at t = 999, the SMLD model at t = 0,
and the VPSDE and VESDE models at t = 9.99× 10−1. It is not surprising because
at that time the input samples are perturbed as Gaussian noise data in theory and
indeed do not have something with original training samples.

Table 5.2 summarizes our attack performance on four target models with regard to
diffusion steps and FPR values. We also report the average metric accuracy for ref-
erence. Here, we emphasize that only focusing on average metrics cannot assess the
worst-case privacy risks. For instance, for the DDPM model at t = 800, the attack
accuracy is 52.80%, which indicates the model at this diffusion step almost does not
lead to the leakage of training samples, because it is close to 50% (the accuracy of
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random guesses). In fact, the TPR is 0.3% at the false positive rate of 0.01%, which
is 30 times more powerful than random guesses. It means that adversaries can infer
confidently member samples under extremely low false positive rates.

Figure 5.4 shows perturbed data of four target models under different diffusion
steps. The diffusion steps in Figure 5.4 are corresponding to those in Figure 5.3.
We observe that even when some perturbed data that is almost not recognized by
human beings is used to train the model, it seems not to prevent model memo-
rization. For example, for the DDPM model at t = 600, the perturbed image is
meaningless for humans. However, the attack accuracy is as high as 81.15%. At the
same time, the TPR at 0.01% FPR is 2.30%, which is 230 times more powerful times
than random guesses. It indicates that models trained on perturbed data, except for
Gaussian noise data, can still leak training samples. The noise mechanism of diffusion
models does not provide privacy protection.

(a) DDPM (b) SMLD

(c) VPSDE (d) VESDE

Figure 5.4: Perturbed data of four target models under different diffusion steps. The diffu-
sion steps correspond to these in Figure 5.3. Specifically, from left to right for each model:
DDPM (0, 200, 500, 600, 800, 999); SMLD (0, 200, 600, 800, 900, 999); VPSDE (1.97× 10−4,
0.21, 0.52, 0.62, 0.72, 9.99× 10−1); VESDE (1.97× 10−4, 0.21, 0.52, 0.62, 0.82, 9.99× 10−1).

5.4.3 Performance of Likelihood-based Attack

Figure 5.5(a) demonstrates our likelihood-based attack performance on four target
models. Overall, our attacks still perform well on all target models. For example,
our attack on the SMLD and VPSDE models almost remains 100% true positive
rates on all false positive rate regimes. For the VESDE model, attack results are
slightly inferior to the SMLD model, yet still higher than the 10% true positive rate
at an extremely low 0.001% false positive rate.

Table 5.3 shows our attack results at different FPR values for all target models.
Once again, we can clearly see that even at the 0.01% FPR, the lowest TPR among all
models is as high as 23.10%, which is 2, 310 times than random guesses. In addition,
we also observe that the attack accuracy is above 98% for all target models. Our
attack results also remind model providers that they should be careful when using
likelihood values.

5.4.4 Takeaways

Our loss-based attack utilizes loss values to make a membership inference. Al-
though the loss-based attack requires adversaries to choose a suitable diffusion
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(a) Likelihood-based attack on different target
models.
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(b) Likelihood-based attacks on target models
trained on different sizes of datasets.

Figure 5.5: Performance of the likelihood-based attack.

Table 5.3: Likelihood-based attack. Target models are trained on FFHQ.

Models TPR@ TPR@ TPR@ TPR@ Accuracy

10%FPR 1%FPR 0.1%FPR 0.01%FPR

DDPM 98.00% 89.00% 79.70% 71.00% 95.75%

SMLD 100.00% 100.00% 100.00% 100.00% 100.00%

VPSDE 100.00% 99.60% 98.90% 98.20% 99.45%

VESDE 100.00% 93.80% 58.40% 23.10% 98.50%

step to mount the attack, our extensive experiments identify the high privacy risk
region. More importantly, our loss-based attack reveals the relationship between
membership risks and the generative mechanism of diffusion models. This pro-
vides a new angle to mitigate membership risks by designing novel noise mecha-
nisms of diffusion models. Our likelihood-based attack does not need to choose a
diffusion step and infers membership directly based on likelihood values. Both loss
and likelihood information can lead to the leakage of training samples.

5.5 Analysis

In this section, we first analyze our attack performance with regard to the size of a
training set. Then, we report our results on a medical image dataset DRD.

5.5.1 Effects of Size of a Training Dataset

We study attack performance with regard to different sizes of the training set of
a target model. Here, we choose the DDPM models trained on FFHQ as target
models. We use FFHQ-1k, FFHQ-10k, and FFHQ-30k to represent different sizes of
a dataset, which refer to 1, 000, 10, 000, and 30, 000 training samples in each dataset
respectively. The FID of the target model DDPM trained on FFHQ-1k, FFHQ-10k,
and FFHQ-30k are 57.88, 34.34, and 24.06, respectively. In the following, we present
the performance of both attacks.
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(c) TPR at 0.1% FPR

Figure 5.6: Performance of loss-based attack with different sizes of datasets. The target
model is DDPM trained on FFHQ. Each subfigure shows attack performance with different
sizes of datasets on fixed FPRs.
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(b) FFHQ-10k.
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Figure 5.7: Performance of loss-based attacks with different sizes of datasets. The target
model is DDPM trained on FFHQ. Each subfigure shows attack performance with different
FPRs on fixed dataset sizes.

Performance of loss-based attack. Figure 5.6 depicts the performance of loss-based
attacks on all diffusion steps under different sizes of a training set. Overall, we can
observe that attack performance gradually becomes weak when the size of training
sets increases. For example, at diffusion step t = 200, the TPR at 10% FPR decreases
from 100% to about 15% when the training samples increase from 1k to 30k. Here,
note that the starting points of the y-axis in Figure 5.6 are not 0 and we set them as
the probability of random guesses. Thus, as long as the lines can be shown in the
figure, it indicates this is an effective attack.

However, the peak regions still exist even if the number of training samples increases to 30k
and the FPR value is as low as 0.1%. For instance, as shown in Figure 5.6(c), it shows
our attack performance of 0.1% FPR on all models. Diffusion steps in the range
of 0 to 400 are still vulnerable to our attack, compared to other steps. It indicates
that these diffusion steps indeed lead a model to more easily leak training data. We
further show the attack performance based on each dataset in Figure 5.7. Again, we
can observe that the peak regions exist, even if the size of a training set increases.

Figure 5.8 shows ROC curves of our attack against target models trained on differ-
ent sizes of training sets. Based on the same rules described in Section 5.4.2, we
select several different diffusion steps and plot their ROC curves. On the one hand,
we can see that indeed models become less vulnerable as the number of training
samples increases. For instance, Figure 5.8(c) shows the DDPM trained on FFHQ-
30K is more resistant to MI attacks on the full log-scale TPR-FPR curve. On the
other hand, when diffusion step t equals 250, our attack shows higher attack per-
formance than random guesses at the low false positive rate, such as 10−4. This is
also corresponding to the peak steps in Figure 5.6.
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Figure 5.8: Performance of loss-based attack with different sizes of datasets. The target
model is DDPM. TPR-FPR Curves under different diffusion steps.

We also observe from Figure 5.8 that TPR values in diffusion steps of high pri-
vacy risks do not further go down with the increase in FPR values, especially in
extremely low FPR regimes. Take the DDPM trained on FFHQ-30K as an example
(see Figure 5.8(c)), the TPR value at diffusion step t = 250 are still about 10−4 at
the FPR value of 10−5, while at t = 999, the TPR value at 10−5 FPR value is 0.
This indicates that at t = 250, there are some training samples whose loss values
are always smaller than the minimal loss value of the nonmember sample. Oth-
erwise, the green line (t = 250) will go down to zero, similar to the brown line
(t = 999). In other words, there are partial training samples that can be inferred
with 100% confidence at this diffusion step. Note that in reality, even if only one
sample can be inferred as a member confidently, it still constitutes a severe privacy
violation [LF20, HP21a, CCN+22].

Performance of likelihood-based attack. Figure 5.5(b) shows the performance of
likelihood-based attacks in terms of different sizes of training sets. Similar to the
loss-based attack, the performance of the likelihood-based attack decrease with an
increase in the sizes of training sets. Specifically, the likelihood-based attack shows
perfect performance on the target model trained on FFHQ-1k. When the size of a
training set increases to 10K, there is a significant drop but still better than random
guesses on the full log-scale ROC curve. In particular, in the extremely low false
positive rate regime, such as 10−4, the true positive rate is about 6× 10−4, which is
6 times more powerful than random guesses. In the model trained on FFHQ-30K,
the ROC curve is almost close to the diagonal line, which indicates that adversaries
are difficult to infer member samples through likelihood values.

5.5.2 Effects of Different Datasets

In this subsection, we show our attack performance on a medical image dataset
about diabetic retinopathy. We choose the medical image dataset because the
number of images that have diabetic retinopathy is usually insufficient in prac-
tice [KAH+22]. These types of images could be used for training a diffusion model
and later the trained model is utilized to generate more novel images. We have
described this dataset DRD in Section 5.3.1. We choose the SMLD as the target
model and the number of training samples is 1, 000. Overall, the SMLD model can
achieve excellent performance in image synthesis, with an FID of 33.20. Figure 5.9
visualizes synthetic samples, which all show good quality.
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Figure 5.9: Generated images from the target model SMLD trained on the DRD dataset.
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Figure 5.10: Attack performance on the DRD dataset.

Performance of loss-based attack. Figure 5.10 shows the performance of loss-
based attacks for the target model SMLD trained on DRD. Here, note that the
levels of the noise of the SMLD model gradually become small with an increase in
diffusion steps. Figure 5.10(a) shows the performance of our loss-based attack on
all diffusion steps. Figure 5.10(b) depicts ROC curves for different diffusion steps
on target model SMLD trained on DRD. We can again observe our attacks can still
perform perfectly on DRD at diffusion steps of low levels of noise. Similar to FFHQ,
peak (high-risks) regions can be also seen on SMLD trained on DRD.

Performance of likelihood-based attack. Figure 5.10(c) reports the performance
of our likelihood-based attack on the SMLD model trained on DRD. As expected,
our attack still shows excellent performance. We can clearly find that the attack
achieves 100% TPR on all FPR values, which means that all member samples are
inferred correctly. Table 5.4 reports the quantitative results of both attacks.

Table 5.4: Quantitative results of our attacks on SMLD trained on DRD.

Attack T TPR@ TPR@ TPR@ TPR@ Accuracy

10%FPR 1%FPR 0.1%FPR 0.01%FPR

Loss-based 0 7.50% 1.10% 0.00% 0.00% 50.25%

200 11.20% 0.70% 0.10% 0.00% 52.25%

700 80.60% 50.50% 33.34% 18.80% 85.45%

800 93.30% 72.20% 60.00% 40.10% 92.25%

900 79.80% 42.40% 17.70% 12.30% 86.35%

999 43.60% 9.70% 2.00% 0.10% 70.95%

Likelihood-based - 100.00% 100.00% 100.00% 99.90% 99.95%
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5.6 Defenses

Differential privacy (DP) [ACG+16, Dwo08] is considered as a common defense
measure for preventing the leakage of training samples of a machine learning
model. In practice, although differential privacy can guarantee individual-level
privacy, it often sacrifices significantly model utility, especially for the quality of
generated images, when it is applied to generative models. In this section, we
present our attack results on diffusion models using the DP defense technology.

We adopt differentially-private stochastic gradient descent (DP-SGD) [ACG+16]
to train diffusion models. DP-SGD is widely used for privately training a ma-
chine learning model. Generally, DP-SGD achieves differential privacy by adding
noise into per-sample gradients. In our work, we implement DP diffusion mod-
els through the Opacus library [YSS+21] which allows us to set privacy budgets
through hyperparameters. Here, we set the clip bound C and the failure probabil-
ity δ as 1 and 5× 10−4. The batch size and the number of epochs are 64 and 1, 800.
Thus, the final privacy budget ϵ is 19.62. Generally, a smaller privacy budget means
a higher privacy setting and more severe model utility loss. The common choice
of privacy budget is ϵ ≤ 10 [YSS+21, ACG+16], and in this chapter, we choose a
higher privacy budget because we consider the utility of a diffusion model. We
choose the DDPM model as the target model. It is trained on FFHQ containing
1, 000 training samples, and the FID is 393.94.

Performance of loss-based attack. Figure 5.11 shows the performance of both types
of attacks on DDPM trained with DP-SGD on FFHQ. In Figure 5.11(a), we present
the performance of the loss-based attack on all diffusion steps. Clearly, we can
see that although differentially training DDPM, i.e. DDPM with DP-SGD, indeed
can significantly decrease the membership leakages, the peak regions can be still
identified between 400 and 800 diffusion step. Figure 5.11(b) further shows ROC
curves of our loss-based attack on different diffusion steps. Again, we can observe
that in the low FPR regimes some training samples are still inferred with a higher
probability, such as 10−2 TPR at 10−4 FPR at t=500. This is higher than 100 times
than random guesses (TPR is 10−4 at 10−4 FPR).

Performance of likelihood-based attack. Figure 5.11(c) shows the performance of
the likelihood-based attack on DDPM training with DP-SGD on FFHQ. Again, we
can see that differentially private training of a diffusion model indeed can mitigate
our attack. At the same time, we also see at the low false positive rate regime, our
attack still remains at 0.1% true positive rate, which illustrates the effectiveness of
our attack even in the worst-case. Here, we also note that the FID of the target
model is 393.94, which means that the utility of the target model suffers from a
severe performance drop. We leave developing more usable techniques to train a
diffusion model with DP-SGD as future work. Table 5.5 summarizes the quantita-
tive results of both attacks.
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Figure 5.11: Attack performance on DDPM with DP-SGD.

Table 5.5: Quantitative results of our attacks on DDPM trained with DP-SGD.

Attacks T TPR@ TPR@ TPR@ TPR@ Accuracy

10%FPR 1%FPR 0.1%FPR 0.01%FPR

Loss-based 0 8.80% 1.40% 0.00% 0.00% 52.25%

200 8.60% 1.40% 0.40% 0.30% 53.20%

500 10.70% 1.60% 0.90% 0.90% 51.85%

600 13.00% 2.30% 1.00% 1.00% 51.85%

800 11.60% 2.10% 0.30% 0.30% 51.75%

999 10.40% 0.60% 0.00% 0.00% 53.90%

Likelihood-based - 8.40% 1.10% 0.20% 0.10% 51.75%

5.7 Related Work

Diffusion models. Diffusion models have attracted increasing attention in the past
years. Sohl-Dickstein et al. [SDWMG15] first introduce nonequilibrium thermody-
namics to build generative models. The key idea is to slowly add noise into data in
the forward process and learn to generate data from noise through a reverse pro-
cess. Ho et al. [HJA20] further propose to use parameterization techniques in diffu-
sion models, which enable diffusion models to generate high-quality images. Song
et al. [SE19] present to train a generative model by estimating gradients of data dis-
tribution, i.e. score. Furthermore, Song et al. [SSDK+21] propose a unified frame-
work to describe these diffusion models through the lens of stochastic differential
equations. Beyond image synthesis, diffusion models are also applied to various
domains, such as image restoration [SCC+22, WYZ22], and text-to-image trans-
lation [NDR+21, RDN+22], even audio and video synthesis [KPH+21, HSG+22].
However, in this work, we study diffusion models from the perspective of privacy.

Membership inference attacks. There are extensive works on membership infer-
ence (MI) attacks on classification models [SSSS17, SZH+19, CCN+22, YMMS22,
LZBZ22]. Various attack methods under different threat models are proposed,
such as using fewer shadow models [SZH+19], using loss values [SSSS17, CCN+22,
YMMS22, LZBZ22] and using labels of victim models [CCTCP21, LZ21].

In addition to classification models, there are several MI attacks on early generative
models [HMDDC19, HHB19, CYZF20]. Hayes et al. [HMDDC19] leverage the dis-
criminator of a GAN to mount attacks. Chen et al. [CYZF20] perform MI attacks by
finding a reconstructed sample on the generator of a GAN. Nevertheless, all attacks
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are more specific to GANs and heavily rely on the unique characteristics of GANs,
such as discriminators or generators. They cannot be extended to diffusion mod-
els, because diffusion models have different training and sampling mechanisms.
Therefore, our work on MI of diffusion models aims to fill this gap.

Another recent work proposed by Somepalli et al. [SSG+22b] investigates data repli-
cation in diffusion models. However, their work is different from our work. Data
replication assumes that adversaries can have the whole training set. Given a gen-
erated sample from the diffusion model, they search the training set based on sim-
ilarity metrics. If the similarity value is higher than a threshold, it is considered
a replication for this generated sample. In contrast, our work does not assume
that adversaries obtain the training set. Our work aims to infer whether a training
sample is used to train the model, given a diffusion model.

Membership inference attacks in diffusion models. In this paragraph, we dis-
cuss our work and its relation to several similar/concurrent works studying MI
attacks in diffusion models. Wu et al. [WYL+22] study MI attacks against text-
to-image generative models. One diffusion-based text-to-image generative model,
LDM [RBL+22], is attacked by their methods based on query data pair, i.e. text
and corresponding output image. Unlike text-to-image generative models, we fo-
cus on unconditional diffusion models. Furthermore, our MI attack methods, such
as the loss-based attack, are totally different from their methods [WYL+22]. Subse-
quently, there are several concurrent works that investigate MI attacks against diffu-
sion models based on the loss information [CHN+23, MMY23, DKW+23, ZCGF23].
However, they only consider discrete diffusion models where the number of noise
distributions is finite. Our work systematically studies both discrete and continuous dif-
fusion models. Although Carlini et al. [CHN+23] design more sophisticated and
effective methods, they require extraordinarily huge computation resources, such
as training hundreds of shadow diffusion models or millions of queries from dif-
fusion models. In contrast, our method only utilizes loss values, which is much
more computationally efficient. In addition to the attack method based on the loss
information, we also propose the likelihood-based method which is not considered
in these works [CHN+23, MMY23, DKW+23, ZCGF23].

5.8 Conclusion

In this chapter, we have developed two types of attack methods: loss-based attack
and likelihood-based attack. We have evaluated our methods on four state-of-the-
art diffusion models and two privacy-related datasets (human faces and medical
images). Our methods have demonstrated the connection between membership
inference risks and the generative mechanism of diffusion models. To be more
specific, our loss-based attack reveals that in terms of diffusion steps, there exist
high-risk regions where training samples can be inferred with high precision. Al-
though membership inference becomes more challenging with the increase in the
number of training samples, the high-risk regions still exist. Our experimental re-
sults on classic privacy protection mechanisms, i.e. diffusion models trained with
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DP-SGD, further show that DP-SGD alleviates our attacks at the expense of severe
model utility.

Designing an effective differential privacy strategy to produce high-quality images
for diffusion models is still a promising and challenging direction. Moreover, devel-
oping novel noise mechanisms for diffusion models to prevent leakage of training
samples from the loss-based attack, is an appealing research avenue. Finally, it is an
interesting direction to study MI attacks of diffusion models in stricter scenarios,
such as only obtaining synthetic data.
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Chapter 6

Property Inference in Diffusion
Models

In the previous chapter, we studied membership inference risks of diffusion mod-
els, which focus on inferring individual samples of a training set. In this chapter,
we investigate property inference risks of diffusion models, which concentrate on
extracting the sensitive global information of a training set from a well-trained dif-
fusion model, such as the proportion of the training data for certain properties.
Specifically, we consider the most practical attack scenario: adversaries are only
allowed to obtain synthetic data. Under this realistic scenario, we evaluate the
property inference attacks on different types of samplers and diffusion models.
Furthermore, one case study on off-the-shelf pre-trained diffusion models is also
performed in practice. Finally, we propose a new model-agnostic plug-in method
PriSampler to mitigate the property inference of diffusion models. PriSampler shows
its significantly superior performance to diffusion models trained with differential
privacy on both model utility and defense performance.

6.1 Introduction

Diffusion models [SDWMG15], as an emerging class of generative models, have
gained widespread adoption in a large number of application areas, such as image
synthesis [SE19, HJA20, SSDK+21, KAAL22], text-to-image generation [NDR+21,
RDN+22], even text generation [LTG+22, GLF+23], and video creation [KPH+21,
HSG+22]. However, when sensitive and private datasets, such as human face data,
are applied to train diffusion models, it might cause various privacy breaches.

In general, there are two main types of attacks in relation to privacy: membership
inference attacks [SSSS17] and property inference attacks [AMS+15]. Membership
inference attacks aim to infer whether one sample was used for training a machine
learning model. Recent works have already demonstrated that diffusion models are
vulnerable to membership inference attacks and can memorize some training sam-
ples [WYL+22, HP23a, CHN+23, MMY23, DKW+23, ZCGF23]. Unlike membership
inference attacks focusing on revealing the privacy of the individual samples of a
training dataset, the goal of property inference attacks is to infer global properties
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of the whole training set of a machine learning model, such as inferring the propor-
tion of certain sensitive properties of a training set. Although a considerable body
of works has studied property inference attacks in classification models, such as
support vector machines [AMS+15], fully-connected neural networks [GWY+18],
convolution neural networks [SE22, MGC22, CAO+23], and generative adversarial
networks[ZCSZ22], even graph neural networks [ZCB+22], property inference of
diffusion models has not been explored to date. Considering the popularity of dif-
fusion models and the fact that diffusion models are now the dominant paradigm
in deep generative modeling [DN21, KAH+22, YZS+22], it is paramount to system-
atically study the property inference risks of diffusion models.

Attacks. In this chapter, we investigate the privacy risks of diffusion models through
the lens of property inference attacks. Our threat model assumes that adversaries
can only have access to generated samples from a diffusion model. Based on gen-
erated samples, our property inference attack aims to estimate the proportion of
various properties of a diffusion model by a property classifier (see Section 6.3.2).
We explore four different types of diffusion models, including the discrete variance
preserving (VP) model — DDPM [HJA20], the discrete variance exploding preserv-
ing (VE) model — SMLD [SE19], the continuous VP model — VPSDE [SSDK+21]
and the continuous VE model — VESDE [SSDK+21]. Unlike other generative
models, such as generative adversarial networks [GPAM+14] or variational autoen-
coder [KW14], for a trained diffusion model, there are different sampling methods
to generate samples, in which these methods aim to improve the quality of gen-
erated samples or sampling speed during the sampling process. Therefore, we
study three samplers over two different types of sampling mechanisms, including
stochastic sampling — PC sampler [SSDK+21] and deterministic sampling — the
black-box ODE sampler [DP80] and the DPM sampler [LZB+22].

Our comprehensive experiments on the human face dataset CelebA [LLWT15] show
that state-of-the-art diffusion models and their samplers are vulnerable to property
inference attacks (see Section 6.3.4). Adversaries can precisely infer the proportion
of sensitive properties with 0% absolute difference in the best case and below 7%
absolute difference in the worst case, where the absolute difference refers to the
difference between the inferred proportion and the real proportion. We further
explore the performance of property inference in terms of different properties, the
number of generated samples, model performance, and the size of training sets.

Case study. We conduct one case study where target models are from off-the-shelf
diffusion models EDM [KAAL22] trained on a human face dataset FFHQ [KLA19].
We again see similar excellent attack performance on EDM models. Our attack
results show that at least 0.23% absolute difference and at most 3.97% absolute dif-
ference can be achieved on inferring the property Young. For the property gender,
the absolute difference does not exceed 1.23%, which indicates the inferred propor-
tion is highly close to the real proportion (see Section 6.4).

Defenses. To defend against property inference attacks, we propose a property
aware sampling method — PriSampler, which manipulates diffusion models in the
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sampling process to conceal the real proportion of sensitive properties. More specif-
ically, our defense method first finds the hyperplanes of properties in the diffusion
models, and the learned hyperplanes are utilized to guide one sampler to synthe-
size samples in this property space (see Figure 6.8). We show the effectiveness
of our defense method PriSampler on different types of samplers, diffusion mod-
els, more properties, and the number of generated samples and different diffusion
steps (see Section 6.5.5). We also compare PriSampler with differentially private
diffusion models (DDPMs) [DCVK22], and evaluations show that PriSampler is su-
perior to DDPMs on model utility and defense performance (see Section 6.5.6).
More importantly, PriSampler does not require re-training a diffusion model.

6.2 Motivation and Threat Model

We elaborate on the motivations for our research in Section 6.2.1 and introduce our
threat model in Section 6.2.2.

6.2.1 Motivation

Diffusion models are widely used in many application domains [YZS+22, KAH+22],
and one of the primary purposes is to leverage these state-of-the-art diffusion mod-
els to generate a diversity of novel images. Beyond these purposes, malicious ad-
versaries might reveal some sensitive information of a training dataset through
diffusion models, which usually do not intend to be shared by model owners or
model providers. For example, a diffusion model trained on a human face dataset
is used to generate various different and realistic images. When malicious adver-
saries obtain this model, instead of only synthesizing novel samples, they could use
the shared model to infer sensitive properties, such as the proportion of gender, eth-
nicity, age, or sentiment. Similarly, even if adversaries only have access to generated
samples that are released by model owners, it is possible to infer sensitive informa-
tion of the training set leaked through generated samples. As a consequence, by
successfully inferring sensitive information from a training set, the adversaries can
know the proportion of gender or ethnicity of a training set, even the sentiment
inclination (negative or positive). These sensitive properties are usually protected
and model owners do not intend to share them.

In addition, some properties, such as gender, usually are related to the fairness of
a machine learning model. Even though model owners can ensure the fairness of a
training set in terms of these properties, a diffusion model might induce unfairness
from other factors, such as generative algorithms themselves. Once the adversaries
correctly estimate the proportion of these properties and make them public, model
owners will face accusations from data regulation institutions.

Therefore, in this chapter, our goal is to systematically study the feasibility of prop-
erty inference attacks against diffusion models by considering different state-of-the-
art diffusion models and their samplers. Furthermore, based on a wide range of
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investigations in property inference of diffusion models, we will develop a brand-
new and effective defense method to mitigate this type of attack. In the end, we
hope our work can elevate the awareness of preventing property inference attacks
and encourage privacy-preserving synthetic data release.

6.2.2 Threat Model

Our threat model considers that adversaries only obtain generated samples from
a diffusion model. The adversaries do not know the type of diffusion models and
the type of their samplers, which is usually the strictest and most practical scenario.
Furthermore, we assume that the adversaries have a shadow dataset which contains
properties that adversaries intend to infer.

6.3 Property Inference Attacks

The objective of a property inference attack is to predict the proportion of a property
in the training set of a trained diffusion model. This makes adversaries reveal some
sensitive information that is not shared by model owners. For instance, in addition
to directly utilizing generated samples from a diffusion model, adversaries could
also attempt to infer sensitive information disclosed by these generated samples,
such as the proportion of the property male. It is thus important to investigate the
feasibility of property inference attacks against diffusion models. This section starts
with problem formulation, we then introduce the attack method and experimental
setups. Finally, we present attack results and novel insights.

6.3.1 Problem Formulation

A training dataset D has different properties including sensitive ones. Each prop-
erty is binary and has a real proportion psi in dataset D. A diffusion model G
is trained on the dataset D. Now, given m generated samples X from the diffu-
sion model G, and a property si, adversaries aim to infer the proportion of the
property p̂si , in order to make p̂si as close psi as possible. More specifically, the
adversaries need to design an attack algorithm A to estimate p̂si = A(X).

6.3.2 Attack Method

The intuition of our attack is that generated samples have a similar distribution
to the training set because a diffusion model learns the distribution of a training
set and these generated samples are produced by the diffusion model. Therefore,
adversaries might infer the proportion of the (sensitive) properties of the training
set from these generated samples. To achieve this, we will first deploy a property
classifier to predict the property of generated samples, and then use the average
statistics of these generated samples containing the property as the inferred pro-
portions.
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Figure 6.1: The attack process of the property inference attack.

Figure 6.1 illustrates the attack process of the property inference attack. Firstly, a
property classifier is trained on a shadow training set. The shadow training set is
labeled by the property that adversaries are interested in. P refers to one sample
containing this property while P̄ refers to one sample not containing this property.
After finishing the training on the shadow data set, the property classifier takes
as input generated data from the diffusion model and outputs binary predictions.
Finally, the inferred proportion of one property is estimated by p̂si = ∑ P

m . For k
properties, we will train k property classifiers. Note that, unlike property infer-
ence attacks that consider them as a classification problem, i.e. inferring whether a
machine learning model contains a property [GWY+18, MGC22, ZCB+22], here we
directly estimate the proportion of a property for diffusion models, which is more
precise.

6.3.3 Experimental Setups

Datasets. We conduct our experiments on the CelebA dataset which includes
202,599 images of celebrity faces [LLWT15]. The reason why we choose this dataset
is that it provides a large number of property information. This allows us to more
systematically study property inference attacks by considering different propor-
tions of properties. Specifically, the CelebA dataset annotates 40 binary proper-
ties for each image. Similar to works [GWY+18, MGC22, ZCSZ22, CAO+23], we
choose four representative properties including male, young, smiling, and wearing
eyeglasses, which are related to gender, age, sentiment, and personal style. In
this chapter, when it is clear from the context, we will interchangeably use the
property name annotated by CelebA, such as male and young, and the high-level
semantic name, such as gender and age.

We design ten datasets with five different proportions of private properties and two
different sizes of the training set (i.e. 10 = 5× 2), to investigate the privacy risks
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of diffusion models. Two sizes of training set include 1k samples and 50k samples,
respectively. Five different proportions refer to that male face images account for
10%, 20%, 30%, 40%, and 50% in a dataset, respectively. Different proportions of
the male property also mean different proportions of the other properties, such
as young and smiling, although the proportions of these properties are not as in
sequential order as that of the property male. To briefly express its meaning, we
mark a dataset as CelebA-size-proportion, such as CelebA-1k-10%. All datasets are
resized to 64× 64, considering the factors of computation efficiency.

Target models and samplers. We use four types of diffusion models: DDPM,
SMLD, VPSDE, and VESDE, as the target models, which have been introduced in
Section 2.1.2. DDPM and VPSDE are trained on 1k samples with five different pro-
portions, while SMLD and VESDE are trained on 50k samples with five different
proportions. In total, 20 diffusion models are trained on different training sets. We
use open source codes in this library1 with their suggested training hyperparame-
ters to train each diffusion model. Specifically, the number of training steps for all
models is fixed at 500, 000.

We choose three typical samplers: one stochastic sampling — PC sampler, and
two deterministic samplings — ODE sampler and DPM sampler. We detail these
samplers in Section 2.1.3. We adopt this library1 for PC and ODE samplers and
this library2 for the DPM sampler. The recommended sampling hyperparameters
in each implementation are adopted. Specifically, the number of sampling steps of
DPM is fixed at 40. For the PC sampler, the number of steps of predictor and correc-
tor is 1,000 and 1, respectively. We only study PC samplers for VESDE and SMLD,
because they do not support deterministic samplings. However, we investigate all
types of samplers for DDPM and VPSDE.

Attack models. We use the ResNet-503 pre-trained on ImageNet [RDS+15] to train a
property inference classifier. The shadow training set used for training the classifier
is from the remaining samples of the CelebA dataset. In other words, one part of
the whole CelebA dataset is used for training diffusion models while the other
part, i.e. the shadow training set, is used for training property classifiers. Note
that they are disjoint. This is a common practice in the community of privacy in
machine learning [GWY+18, ZCSZ22, CAO+23]. In the case study of Section 6.4, we
show that the classifier works just as well for diffusion models trained on different
humane face datasets. More specifically, we train classifiers with the stochastic
gradient descent optimizer. The learning rate and weight decay of all property
classifiers are both 0.01, except for the classifier of the property young where both
values are set as 0.005. The number of training epochs is set as 5.

Metrics. In terms of the performance of diffusion models, we use the widely-
adopted Fréchet Inception Distance (FID) metric. A lower FID means that a sampler
of a diffusion model can generate more realistic and diverse samples. In this work,
by default, we compute an FID with all training samples and 50k generated samples

1https://github.com/yang-song/score_sde_pytorch
2https://github.com/LuChengTHU/dpm-solver
3https://download.pytorch.org/models/resnet50-19c8e357.pth

https://github.com/yang-song/score_sde_pytorch
https://github.com/LuChengTHU/dpm-solver
https://download.pytorch.org/models/resnet50-19c8e357.pth
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Figure 6.2: Attack performance on different diffusion models, different samplers, and dif-
ferent proportions of the private property. Here, the sensitive property is male.

for the ODE and DPM samplers, and 500 generated samples for the PC sampler.
This is because the PC sampler requires a much longer time to synthesize data,
compared with deterministic ODE and DPM samplers.

In terms of attack performance, our property inference attacks predict a real num-
ber, i.e. the proportion of a property. Thus, we show the attack performance by
directly presenting the predicted value. In addition, we also report the absolute
difference ∆si between the predicted value and the real value, i.e. ∆si = | p̂si − psi |.
A smaller absolute difference value means a more precise inference.

6.3.4 Attack Results

In this section, we present the attack results in terms of different samplers, diffusion
models, properties, the number of generated samples, FID values, and the size of
training sets.

Attack performance on different samplers. Figure 6.2 shows attack performance
with regard to different samplers over four types of diffusion models. Each type
of diffusion model is trained on datasets with different proportions of the sensitive
property male. Here, the real proportion of the property male is set as 10%, 20%,
30%, 40%, and 50%, respectively. An ideal attack means that the inferred proportion
is equal to the real proportion. We take it as a reference and it is shown as the grey
diagonal line in Figure 6.2. Overall, all types of samplers cannot defend against
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the property inference attack. Our inferred proportions are consistently close to the
real proportions with the increase in the real proportion of the property male. We
do not show the attack performance on the ODE sampler and DPM sampler for
SMLD and VESDE models, because both samplers do not support these models.

In Table 6.1, we show the corresponding quantitative attack results. Again, we can
observe that the best inference performance can be seen on the PC sampler for the
DDPM trained on CelebA-1k-10%, where the absolution difference is 0%. Even in
the worst case for adversaries, at most 6.8% absolution difference can be achieved on
the PC sampler for the VESDE trained on CelebA-50k-30%. Table 6.2 summarizes
attack performance in terms of different samplers. We can see that our attacks
show the best performance in the PC sampler and slightly inferior performance
on the ODE sampler. In a nutshell, our attacks can have at most a 2.78% absolute
difference among the three types of samplers.

Table 6.1: The qualitative attack results for the sensitive property male. Prop.: proportion.
Abs. Diff. : absolute difference.

Model

Real

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

FID Model

Real

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

FID Model

Real

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

FID Model

Real

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

FID

PC Sampler ODE Sampler

DDPM

10 10.00 0.00 24.45

SMLD

10 7.80 2.20 23.24

DDPM

10 6.66 3.34 16.80

VPSDE

10 10.19 0.19 5.59

20 19.20 0.80 24.85 20 15.60 4.40 24.64 20 14.49 5.51 17.12 20 19.11 0.89 5.64

30 28.00 2.00 25.55 30 28.20 1.80 24.72 30 24.47 5.53 17.41 30 27.93 2.07 5.97

40 41.60 1.60 26.57 40 36.20 3.80 25.08 40 35.77 4.23 17.61 40 38.14 1.86 5.95

50 48.60 1.40 28.96 50 52.00 2.00 25.48 50 46.03 3.97 18.46 50 49.75 0.25 6.22

PC Sampler DPM Sampler

VPSDE

10 11.00 1.00 19.22

VESDE

10 6.40 3.60 37.75

DDPM

10 7.05 2.95 22.60

VPSDE

10 10.29 0.29 8.26

20 20.80 0.80 20.97 20 14.00 6.00 42.08 20 14.85 5.15 23.47 20 19.18 0.82 8.54

30 28.20 1.80 20.22 30 23.20 6.80 35.94 30 24.99 5.01 23.34 30 28.16 1.84 8.68

40 41.00 1.00 20.62 40 37.20 2.80 55.89 40 36.56 3.44 23.43 40 38.57 1.43 8.75

50 49.20 0.80 21.65 50 50.20 0.20 39.31 50 46.37 3.63 24.47 50 49.37 0.63 8.96

Table 6.2: Summary of attack performances with different types of samplers and diffusion
models. Here, we report the average absolution difference (with standard deviation in
parentheses) and the best and worst absolution difference.

Average (%) Best (%) Worst (%)

Sampler PC 2.24 (1.84) 0.00 6.80

ODE 2.78 (2.02) 0.19 5.53

DPM 2.52 (1.78) 0.29 5.15

Model DDPM 3.24 (1.75) 0.00 5.53

VPSDE 1.04 (0.62) 0.19 2.07

SMLD 2.84 (1.18) 1.80 4.40

VESDE 3.88 (2.64) 0.20 6.80

Attack performance on different diffusion models. As shown in Figure 6.2, we
present the attack performance on twenty diffusion models encompassing four dif-
ferent types. Each subfigure presents the attack performance of each type of diffu-
sion model. Table 6.1 shows the corresponding quantitative results of each diffusion
model. Overall, all diffusion models are vulnerable to property inference attacks.
Although each trained diffusion model can utilize different samplers, we can see
that adversaries can still efficiently extract these sensitive information of a training
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Figure 6.3: Attack performance on different properties.

set, regardless of the used samplers. In particular, our attack can achieve almost
perfect inference on VPSDE models for all samplers. The reason why the property
inference attack is effective on these diffusion models is that all existing samplers
mainly focus on improving the quality of generated samples or sampling speed.
The other equally important issue, i.e. privacy, is not considered in their design. In
Section 5.6, we will take the first step to provide privacy protection by developing
a property aware sampling method for diffusion models.

Table 6.2 summarizes attack results about different types of diffusion models. We
can see our attacks show the best performance on the VPSDE with an average
absolution difference of 1.04%, and show marginally worse performance on the
VESDE where the average absolute difference is 3.88%.

Attack performance on different properties. In addition to the property male, we
also choose other properties. As introduced in Section 6.3.3, we choose three more
properties based on their different proportions in the CelebA dataset. The three
properties are eyeglasses, smiling, young and their real proportions are roughly
below 10%, close to 50%, and above 70%, respectively. The specific real proportions
of these properties are plotted by blue bars in Figure 6.3. Here, we choose each
type of the model with 50% male as the target model. Again, we can observe that
our attack still remains effective on inferring the proportions of these properties
on all diffusion models and samplers. No matter what the smaller proportion of
the property, such as eyeglasses, or the larger proportion of the property, such as
young, the inferred proportions are very close to the real proportions.

Attack performance on different numbers of generated samples. Figure 6.4 shows
the attack performance on different numbers of generated samples. Here, we
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Figure 6.4: Attack performance with respect to different numbers of generated samples.
The target model is DDPM trained on CelebA-1k-30%.
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Figure 6.5: Performance with respect to different FID values. The target model is VPSDE
trained on CelebA-1k-30%.

choose the DDPM model trained on a dataset that contains 30% male training sam-
ples, as the target model. We can observe that with the increase in the number
of generated samples, the attack performance will gradually become stable. Our
attack can be still successful on the PC sampler and DPM sampler even if model
owners publish only 50 generated samples, where the absolute difference of both
samplers is still below 5%. On the other hand, our attack requires more generated
samples for the case of ODE sampler in to achieve a good inference performance
but its attack performance shows stable after 500 generated samples.

Attack performance on different FID values. Figure 6.5 shows attack performance
in terms of different FID values of target models. Here, we choose the DPM sam-
pler and the VPSDE model trained on CelebA-1k-30%. Furthermore, we choose ten
snapshots of VPSDE during the training process. The left axis presents the absolu-
tion difference of a target model marked as the blue line, while the right axis shows
the FID values of a target model which is marked as the red line. Overall, our at-
tack becomes more accurate with the increase in the performance of target models.
Note that a smaller FID means a better utility performance of a target model. This
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Figure 6.6: Attack performance with respect to different sizes of training sets. The target
models are DDPM models trained on CelebA with the property male of 30%.

also indicates that pursuing the good utility performance of a diffusion model can
lead to more severe privacy risks. Both model utility and privacy risks should be
considered when diffusion models involve sensitive data.

Attack performance on different sizes of training sets. Figure 6.6 plots attack per-
formance in terms of sizes of training sets. Here, the target models are the DDPM
models trained on a dataset containing 30% male training samples. Therefore, the
real proportion of the property male is 30%. We can see that the inference perfor-
mance slightly decreases with the increase in the size of training sets. For example,
for the DPM sampler, when the size of training sets increases from 10k to 50k, the
inferred proportions decrease from about 29% to around 26%. Overall, the inferred
proportions for all samplers fluctuate between 25% and 30%.

Takeaways. In summary, (1) both stochastic sampling and deterministic sampling
are susceptible to the property inference attack. (2) Different types of diffusion
models cannot defend against this attack. (3) No matter how large or small the
proportion of certain properties is, our attack can precisely infer them. (4) Inference
performance becomes gradually stable after releasing 500 generated samples. (5)
The better the utility performance of a diffusion model is, the better the attack
performance of property inference.

6.4 Case Study: Attacks in Practice

In this section, we further demonstrate the property inference risks in practice
through one case study in which we perform property inference attacks against
publicly available well-trained diffusion models.

We choose EDM models proposed by Karras et al. [KAAL22] as target mod-
els. EDM models achieve competitive performance in image synthesis by a de-
sign space to decouple complex components. Similar to SSDE introduced in Sec-
tion 2.1.2, EDM models include VP and VE formulations, and in this chapter, we
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Figure 6.7: Attack performance on the EDM models.

call them VPEDM and VEEDM, respectively. For each model type, they also have
two types of sampling methods to synthesize samples: stochastic sampling and de-
terministic sampling. In our experiments, we conduct property inference attacks on
VPEDM and VEEDM. They are both trained by their original authors on the Flickr-
Faces-HQ (FFHQ) dataset which contains 70,000 human face images [KLA19]. All
samples of the FFHQ dataset used for training have 64× 64 resolution.

Similarly, we assume that only generated samples can be obtained by adversaries.
Because the FFHQ dataset does not annotate the properties of each image, here we
use the proportion of the property in the training set inferred by our property infer-
ence classifier as the real proportion. Although this might bring some errors due to
a lack of human annotation, we report the attack performance by both the inferred
proportion and the absolute difference. The absolute difference can eliminate this
type of error because it shows attack performance by how close the real and in-
ferred proportions are. In this case study, we directly use the property classifier
used in Section 6.3 to infer the proportion of different properties, which also illus-
trates the shadow dataset does not have to be from the same dataset of the target
models. 50,000 generated samples for all sampling methods and diffusion models
are used to perform the property inference. We choose four properties: eyeglasses,
smiling, young and male.

Results. Figure 6.7 presents the performance of property inference attacks against
EDM models over four properties. Overall, our attack can achieve a rather precise
estimation for the proportion of each property. Although the real proportion of
these four properties has wide ranges from 29% to 53%, we can observe that the in-
ferred proportions of various private properties are all close to the real proportions.
In addition, different types of sampling methods show similar high privacy risks in
all properties and diffusion models.

Table 6.3 describes quantitative attack results on the EDM models. We can see that
all samplers can achieve a good performance, obtaining an FID value between 2 and
3. We also report the absolute difference. The minimal absolute difference is 0.23%,
which can be seen in inferring the property young on VEEDM using deterministic
sampling. When inferring the property young in VPSDE under the stochastic sam-
pling, our attack shows a little inferior performance with an absolute difference of
3.97%. To sum up, our attack on the EDM models can achieve at most a 4% absolute
difference.
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Table 6.3: Quantitative attack results on the EDM models. Stoch.: Stochastic; Deter.: Deter-
ministic.

Model Sampler FID Property

Real

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

VPEDM

Stoch. 2.87

Eyeglasses 29.39 26.73 2.66

Smiling 34.61 37.54 2.93

Young 42.25 38.28 3.97

Male 53.62 53.01 0.61

Deter. 2.47

Eyeglasses 29.39 27.83 1.56

Smiling 34.61 35.54 0.93

Young 42.25 41.44 0.81

Male 53.62 54.85 1.23

VEEDM

Stoch. 2.85

Eyeglasses 29.39 26.44 2.95

Smiling 34.61 37.47 2.86

Young 42.25 39.27 2.98

Male 53.62 52.55 1.07

Deter. 2.57

Eyeglasses 29.39 27.54 1.85

Smiling 34.61 35.85 1.24

Young 42.25 42.02 0.23

Male 53.62 54.3 0.68

6.5 Defenses

In this section, we shift our focus to mitigating property inference attacks. We
first discuss several potential defenses. Then we will introduce a property aware
sampling method and present the defense results. Finally, we discuss the defense
of diffusion models trained with differential privacy.

6.5.1 Key Idea of Defenses

Property inference attacks leverage generated samples from a diffusion model to
estimate the proportions of the properties. To defend against this type of attack,
model owners could manipulate the output of a diffusion model to disguise the
real proportion of the property psi .

In this work, we consider a binary sensitive property si, i.e. si = {0, 1} and
psi + p̄si = 1. The goal of our designed defenses is to make adversaries infer the
proportion of a property p̃si as close as 0.5.4 There are at least two reasons. Firstly,
it can disguise the real proportion of the sensitive property. Secondly, because
some properties, such as gender, are usually related to fairness, this choice can also
ensure the fairness of a diffusion model.

4This can also be a predefined value by the model provider.
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6.5.2 Potential Defenses

Based on the key idea that the designed defenses make adversaries infer the pro-
portion of a property as about 0.5, we discuss the following potential defenses.

Dropping some samples of a larger proportion of the property. If the real propor-
tion of a property psi is not equal to 0.5, model owners can choose to drop some
generated samples of a larger proportion of the property to achieve a balance. To
achieve this, model owners need property classifiers for protected sensitive prop-
erties and calculate the real-time statistics. In detail, model owners first collect
all generated samples before releasing these samples. Then, model owners train a
property inference classifier for each property. Finally, the trained classifier is used
for predicting properties and some generated samples that have a high proportion
of the properties will be dropped.

We assume there are n binary and independent sensitive properties. Furthermore,
the proportion of the property si satisfies psi + p̄si = 1 and psi ∈ (0, 0.5), where psi

is the proportion containing this property and p̄si is the proportion not containing
this property. In the worst case, the proportion of dropping samples is, at most
1− 2n ∏n

i=1 psi . For instance, considering that there is one sensitive property and
its real proportion is 10%, i.e. ps1 = 10% and n = 1, then 80% samples among
all generated samples will be discarded to achieve the balance, which is quite not
economical. In particular, the sampling of diffusion models is time-consuming. For
the number of sensitive properties more than one, the number of dropping samples
is exponentially increasing. Therefore, this method is simple but not scalable.

Using a balanced dataset for sensitive properties. This method requires model
owners to prepare a balanced dataset for sensitive properties, such as using a
dataset containing 50% male samples for the property gender. Our extensive exper-
iments in Section 6.3.4 show that this method indeed has a positive effect to some
degree. However, in some cases even for balanced properties, we also observe that
the learned diffusion models will still produce imbalanced generated samples. For
instance, the DPM sampler on the DDPM model trained on a 50% male dataset
produces male samples which are about 46.37% of all generated samples. In addi-
tion, it is complicated to collect sufficient training samples if we need to consider
balancing more sensitive properties.

Property aware sampling. In addition to above discussed methods, we can design
a new type of sampling mechanism that can automatically balance the proportion
of sensitive properties. In this way, we can avoid the waste of generated samples
and fastidious dataset selection. We illustrate this method in the next subsection.

6.5.3 Defense Method — PriSampler

The main purpose of the property aware sampling method is to balance the pro-
portion of sensitive properties in the sampling process of diffusion models. As
a result, the inferred proportion always remains at about 0.5. Our method is in-
spired by the semantic latent space of generative adversarial network (GANs) in
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this work [SGTZ20]. Due to the essential difference in the sampling process be-
tween diffusion models and GANs, we adapt the method to be well suitable for
diffusion models and propose PriSampler as a general-purpose defense for diffu-
sion models.

The key idea of PriSampler is to guild one sampler to generate novel samples in the
latent space of sensitive properties. For instance, for the gender property, given the
corresponding property hyperplane, samplers generate male samples on the side
of this hyperplane and female samples on the opposite of this hyperplane. In order
to find such a hyperplane, we use a linear support vector machine (SVM) to learn
a decision boundary for each sensitive property. Then, given a base sampler, we
directly use the boundary to guild the sampler to synthesize new samples. Here,
the base sampler can be any sampler that is used for sampling in prior work.

The process of PriSampler. Figure 6.8 shows the process of our defense — PriSam-
pler. It consists of two phases: generating hyperplanes and sampling via hyper-
planes. In phase I, our method aims to find a latent space in terms of a sensitive
property from the diffusion model. To achieve this goal, we leverage a linear SVM
to learn the hyperplane of the sensitive property. To be more specific, given a dif-
fusion model, we can get many different types of generated samples from different
diffusion steps. As shown in the left part of Figure 6.8, starting from Gaussian noise
sample xT ∼ N (0, I), the diffusion model can produce the sample xt at intermedi-
ate diffusion step t and the final sample x0 at the t = 0 step. The final sample x0 is
also the sample that we finally use. Then, the samples X0 = {x(0)0 , x(1)0 , ..., x(n)0 } are
inputted to a property prediction classifier and the corresponding prediction scores
can be obtained, i.e. S = {s(0), s(1), ..., s(n)}. Instead of using X0, we pair Xt and
S. The data samples (Xt, S) will be used for training a linear SVM. A hyperplane
corresponding to this property can be obtained from the well-trained SVM.

In phase II, our method aims to sample via the learned hyperplane. As shown in the
right part of Figure 6.8, our method manipulate samples at the t diffusion step. To
be specific, given Gaussian noise sample xT ∼ N (0, I), we can get the sample xt. At
the t diffusion step, we change the sampling direction via the learned hyperplane,
and the samples with and without the corresponding sensitive property can be
obtained. In the remaining diffusion step, the samples will continue to synthesize
in the specific sensitive property latent space. Finally, samples with the balanced
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sensitive property can be generated. For different numbers of sensitive properties,
the generated samples are calculated as follows.

Single property. Given a hyperplane h obtained in phase I, and a sample xt at step
t, we can get x′t:

x′t = xt + αh. (6.1)

α is a hyperparameter, and we take a value α > 0 means that a positive sample x
′+
t

is obtained and it has this property. A value α < 0 means a negative sample x
′−
t

is obtained and does not have this property. In this work, depending on different
base samplers and diffusion models, we choose different α. We provide the details
in Table 6.4.

Multiple properties. When there are multiple sensitive properties, the key idea
is that we manipulate one property while keeping others unchanged. That is, we
need to find a new hyperplane that is orthogonal to other hyperplanes. Take two
properties as an example, we first manipulate the first one and manipulate the
second condition on the first one. In this way, we can get generated samples with
balanced properties. To be more specific, given two hyperplanes h1 and h2 obtained
in phase I and a sample xt. We first get a new hyperplane:

h′2 = h1 − (hT
1 h2)h2, (6.2)

where (hT
1 h2)h2 is the projection of h1 onto h2. The new hyperplane h′2 equals

the vector difference between h1 and the projection of h1 onto h2. Therefore, h′2
is orthogonal to h1. Put another way, h′2 can achieve that the second property
is changed without impacting the first property. Then, based on Equation 6.1,
we can get x′t through xt and h1. Given x′t and h′2, we can obtain x′′t . Here, we
require that the hyperplanes of multiple properties are independent, i.e. they are
not in the same space. Otherwise, it is hard to find a hyperplane to guarantee that
manipulating samples in this hyperplane does not affect the others. As introduced
in Section 2.1.3, there are two types of samplings for diffusion models: stochastic
sampling and deterministic sampling. Therefore, we implement our method on the
PC sampler and the DPM sampler. In the following, we provide the implementation
details of this algorithm.

Implementation details of PriSampler. Specifically, in Algorithm 3, the function
GeneratingHyperplanes is utilized to learn the hyperplanes of properties from a
given diffusion model, which corresponds to Phase I of Figure 6.8, while the func-
tion sampling is utilized to synthesize new samples in the learned hyperplanes,
which corresponds to Phase II of Figure 6.8. For a single property, we use the
function samplingSingle to synthesize samples while the function samplingMulti
is used to generate samples for the cases of multiple properties.

In our defense, we consider two types of sampling: stochastic sampling — the PC
sampler, and deterministic sampling — the DPM sampler. Therefore, the base sam-
pler qθ(xt−1|xt) of Algorithm 3 in the concrete implementation is the PC sampler
and the DPM sampler, respectively. Note that the PC sampler consists of a predictor
and a correcter in their original paper [SSDK+21]. We only use the predictor of the
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Algorithm 3: The PriSampler Algorithm
Input: a frozen pre-trained diffusion model: Gθ ; a base sampler: qθ(xt−1|xt); the

trained property classifier of the private property si: Psi ; the number of
generated samples: m; the number of hyperplanes: k;

Output: Generated samples: Xgen

1 def generatingHyperplanes(Gθ ,Psi , qθ , k):
2 H= [];
3 for i = 1 to k do
4 Sample n samples X and n intermediate samples Xt from Gθ using a base

sampler qθ(xt−1|xt);
5 S← Psi (X); ▷ get prediction scores.
6 L ← trainLinearSVM(Xt, S);
7 h← getHyperplanes(L);
8 H.append(h);

9 return H

10 def sampling(H, m, qθ):
11 Xgen = [];
12 while i < ⌈ m

k+1⌉ do
13 initial sample xT ∼ N (0, I);
14 if k == 1 then
15 Xgen.append(samplingSingle(H,qθ ,xT)); ▷ For single property.

16 if k > 1 then
17 Xgen.append(samplingMulti(H,qθ ,xT)); ▷ For multiple properties.

18 return Xgen

19 H← generatingHyperplanes(G`,Psi ,qθ , k);
20 Xgen ← sampling(H,m,qθ);
21 return Xgen

Algorithm 4: The samplingSingle Algorithm

1 def samplingSingle(H, qθ , xT):
2 for i = T − 1 to 0 do
3 if i > t then
4 xi−1 ← qθ(xi−1|xi);
5 ▷ Denoise when i > t.

6 if i == t then
7 x

′+
i , x

′−
i ← getSamples(H[0], xi);

8 ▷ At the t step, get samples in the corresponding hyperplane by
Equation 6.1.

9 if i <= t then
10 ▷ Continue denoising when i <= t.
11 x

′+
i−1 ← qθ(x

′+
i−1|x

′+
i );

12 x
′−
i−1 ← qθ(x

′−
i−1|x

′−
i );

13 return x
′+
0 , x

′−
0

PC sampler when i <= t, in order to avoid the change of the sampling direction by
the correcter.
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Algorithm 5: The samplingMulti Algorithm

1 def samplingMulti(H, qθ , xT):
2 for i = T − 1 to 0 do
3 if i > t then
4 xi−1 ← qθ(xi−1|xi);

5 if i == t then
6 x

′+
i , x

′−
i ← getSamples(H[0], xi);

7 ▷ get samples in the H[0] by Equation 6.1.
8 h

′
2 ← getCondHyper(H[0], H[1]);

9 ▷ get a new hyperplane by Equation 6.2.
10 x

′′++
i , x

′′+−
i ← getSamples(h

′
2, x

′+
i );

11 ▷ get samples in the h
′
2 by Equation 6.1.

12 x
′′−+
i , x

′′−−
i ← getSamples(h

′
2, x

′−
i );

13 ▷ get samples in the h
′
2 by Equation 6.1.

14 if i <= t then
15 x

′′++
i−1 ← qθ(x

′′++
i−1 |x

′′++
i );

16 x
′′+−
i−1 ← qθ(x

′′+−
i−1 |x

′′+−
i );

17 x
′′−+
i−1 ← qθ(x

′′−+
i−1 |x

′′−+
i );

18 x
′′−−
i−1 ← qθ(x

′′−−
i−1 |x

′′−−
i );

19 return x
′′++
0 , x

′′+−
0 , x

′′−+
0 , x

′′−−
0

6.5.4 Experimental Setups

Experimental setups. We apply our method on two base samplers: one PC sam-
pler for stochastic sampling and one DPM sampler for deterministic sampling. We
directly use trained diffusion models from Section 6.3.3. In our defense, we use the
library Sklearn to implement Linear SVM. We directly use trained property clas-
sifiers in Section 6.3.3 to predict scores S. We choose different diffusion steps for
different samplers of diffusion models to manipulate. We summarize them in Ta-
ble 6.4. As discussed in Section 6.3.3, 500 generated samples for stochastic sampling
and 50,000 generated samples for deterministic sampling are used for computing
FID values.

Hyperparameters of PriSampler. As introduced in Section 6.5.3, our method PriSam-
pler has two hyperparameters: α and t. α controls the distance of the desired sam-
ples x

′
t from an intermediate sample xt. t is the diffusion step in which we manip-

ulate an intermediate sample in the t step. Table 6.4 shows the hyperparameters
α and t used for different samplers and diffusion models. For base samplers, the
total number of sampling steps is 40 for the DPM sampler and 1,000 for the PC
sampler. In terms of the base sampler — DPM sampler, we set its hyperparameter
‘dpm_solver_method’ as ‘singlestep’, and ‘dpm_solver_order’ as ‘3’. Therefore, for
PriSampler applied to the DPM sampler, we set α and t as 50 and 6. Note, here, t = 6
is the index of diffusion steps rather than actual diffusion steps, because the step
size of the DPM sampler is equal to 3, i.e. ‘dpm_solver_order’ = ‘3’. In terms of the
base sampler — PC sampler, we set its hyperparameter ‘predictor’ as ‘ReverseD-
iffusionPredictor’, and ‘corrector’ as ‘LangevinCorrector’. For PriSampler applied
to the PC sampler, we choose different α and t for different diffusion models, as
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Table 6.4: Hyperparameters (α, t) of PriSampler for different samplers and models.

Sampler Model CelebA-1k-10 CelebA-1k-20 CelebA-1k-30 CelebA-1k-40 CelebA-1k-50

α t α t α t α t α t

PC DDPM 150 699 150 699 150 699 140 699 140 699

VPSDE 220 699 150 699 170 699 150 699 140 699

DPM DDPM 50 6 50 6 50 6 50 6 50 6

VPSDE 50 6 50 6 50 6 50 6 50 6

Sampler Model CelebA-50k-10 CelebA-50k-20 CelebA-50k-30 CelebA-50k-40 CelebA-50k-50

α t α t α t α t α t

PC SMLD 40 500 40 500 40 500 40 500 40 500

VESDE 25 549 25 549 25 549 15 549 10 549
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Figure 6.9: Defense performance on the PC sampler.

shown in Table 6.4. This is because the PC sampler is stochastic sampling where
fresh noise will be added in the sampling process, which may affect the generated
samples in the protected property space. Therefore, we adjust α and t to achieve
the desired proportion.

6.5.5 Defense Results

Defense performance on different samplers. Figure 6.9 and Figure 6.10 present
our defense performance to protect the sensitive property male for the PC sampler
and the DPM sampler, respectively. Overall, our defense can achieve excellent per-
formance. Even if the real proportion is 10%, our method can make adversaries get



110 Chapter 6. Property Inference in Diffusion Models

10 20 30 40 50
Real Proportion (%)

10

20

30

40

50

In
fe

rre
d 

Pr
op

or
tio

n 
(%

)

DPM Sampler with defense
DPM Sampler
Ideal

(a) DDPM.

10 20 30 40 50
Real Proportion (%)

10

20

30

40

50

In
fe

rre
d 

Pr
op

or
tio

n 
(%

)

DPM Sampler with defense
DPM Sampler
Ideal

(b) VPSDE.

Figure 6.10: Defense performance on the DPM sampler.

an inferred proportion of 50%.

Table 6.5: Defense performances on a single property. Desi. Prop.: Desired Proportion.

Model

Real

Prop.

(%)

Desi.

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

FID Model

Real

Prop.

(%)

Desi.

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

FID

PC Sampler

DDPM

10 50 48.40 1.60 56.35

VPSDE

10 50 48.60 1.40 58.72

20 50 51.00 1.00 46.80 20 50 51.40 1.40 41.26

30 50 50.40 0.40 40.00 30 50 50.40 0.40 38.89

40 50 50.60 0.60 48.04 40 50 51.20 1.20 51.61

50 50 51.00 1.00 49.58 50 50 49.60 0.40 42.82

SMLD

10 50 48.40 1.60 38.40

VESDE

10 50 49.80 0.20 61.32

20 50 50.20 0.20 44.68 20 50 50.40 0.40 68.95

30 50 50.40 0.40 45.52 30 50 51.00 1.00 57.47

40 50 50.40 0.40 45.17 40 50 50.20 0.20 77.57

50 50 50.60 0.60 46.95 50 50 50.60 0.60 49.75

DPM Sampler

DDPM

10 50 48.25 1.75 44.70

VPSDE

10 50 49.28 0.72 52.44

20 50 50.02 0.02 47.87 20 50 50.22 0.22 52.78

30 50 50.04 0.04 44.41 30 50 50.50 0.50 50.66

40 50 50.19 0.19 45.90 40 50 51.06 1.06 53.00

50 50 50.26 0.26 47.68 50 50 51.68 1.68 45.33

Table 6.5 shows the corresponding quantitative results. Here, the absolute dif-
ference is the absolute difference between the inferred proportion p̂si and desired
proportion p̃si , i.e. | p̂si − p̃si |. The best defense performance can be seen at SMLD
trained on CelebA-50k-20% for the PC sampler and DDPM trained on CelebA-
1k-20% for the DPM sampler. Their absolute differences are 0.2% and 0.02%, re-
spectively. The worst defense performance is 1.6% for the PC sampler for DDPM
trained on CelebA-1k-10%, and 1.68% for the DPM sampler for VPSDE trained on
CelebA-1k-10%. Table 6.7 summarizes the results for each sampler among different
diffusion models. For the single property male, the average absolute difference is
0.75% for the PC sampler and 0.64% for the DPM sampler. It indicates that our
defense method can control the error of an inferred proportion below 1.00%.

Defense performance on different diffusion models. Figure 6.9 and Figure 6.10
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Figure 6.11: Defense performance for multiple properties.

present our defense performance on four types of diffusion models. Similarly, we
can observe that the inferred proportions almost remain 50% for diffusion models
trained on different datasets. It means our method can be effectively applied to
these different diffusion models.

Defense performance on more than one property. Figure 6.11 shows the defense
performance to protect two sensitive properties male and young. Here, we choose
the models trained on CelebA-1k-30% as target models. That is, the real proportion
of the property male is 30%. The corresponding real proportion of the private
property young is 79.4%. Overall, we can observe that the inferred proportions
of both properties are about 50%, no matter the larger proportion or the smaller
proportion.

Table 6.6 shows the corresponding quantitative results. Table 6.7 summarizes the
result for male+young properties on both samplers. We can see that the average
absolute difference is 3.55% for the PC sampler and 1.97% for the DPM sampler.
We also note that the absolution difference on two properties is larger than that
on the single property. One of the reasons is that these properties are entangled
together in diffusion models. As a result, it might lead the hyperplane not to
completely separate these properties. We will take this as our future work to design
disentangled generative algorithms for diffusion models from the perspective of the
training process to improve our defense performance on multiple properties.

Table 6.6: Defense performances on multiple properties.

Model

Real

Prop.

(%)

Desi.

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

Real

Prop.

(%)

Desi.

Prop.

(%)

Inferred

Prop.

(%)

Abs.

Diff.

(%)

FID

PC sampler

DDPM Male 30 50 51.00 1.00 Young 79.40 50 57.40 7.40 48.74

VPSDE Male 30 50 51.60 1.60 Young 79.40 50 54.20 4.20 45.95

DPM sampler

DDPM Male 30 50 50.53 0.53 Young 79.40 50 52.28 2.28 40.25

VPSDE Male 30 50 52.73 2.73 Young 79.40 50 52.33 2.33 42.29

Defense performance on different numbers of generated samples. Figure 6.12
shows the defense performance on different numbers of generated samples. Here,
we choose the DDPM model trained on CelebA-1k-30% as the target model. The
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Table 6.7: Summary of defense performances. Here, we report the average absolution differ-
ence (with standard deviation in parentheses) and the best and worst absolution difference.

Property Sampler Average (%) Best (%) Worst (%)

Male
PC 0.75 (0.48) 0.20 1.60

DPM 0.64 (0.65) 0.02 1.75

Male+Young
PC 3.55 (2.92) 1.00 7.40

DPM 1.97 (0.98) 0.53 2.73
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Figure 6.12: Defense performance on the number of generated samples.

sensitive property is male. We can clearly see that both types of samplers can
provide good protection for the property male even if model owners only release
only as few as 50 samples. Although the PC sampler shows a slight fluctuation in
the phase of releasing a few samples, it is gradually stable after 500 samples. The
DPM sampler extremely stabilizes no matter how many samples are released. One
of the reason might be that random noise added during the sampling process for
the PC sampler have some effects on generated samples because the PC sampler
belongs to stochastic sampling while the DPM sampler belongs to deterministic
sampling.

Defense performance on different diffusion steps. Figure 6.13 shows defense per-
formance on different diffusion steps. Here, the target model is DDPM trained on
CelebA-1k-30% and we use the PC sampler and the total number of sampling steps
is 1,000, and the sensitive property is male. The blue line and the left axis show the
inferred proportion while the red line and the right axis present the correspond-
ing FID values. Generated samples in the 0 diffusion step are pure Gaussian noise
while generated samples in the 999 step are realistic samples. Overall, we can see
that defense performance and model utility in the latter stage of diffusion steps
show better than that of the former stage. Generally, choosing late middle diffu-
sion steps can obtain a good balance in defense performance, FID values, and the
meaningfulness of generated images.
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Figure 6.13: Defense performance on different diffusion steps.

6.5.6 Comparison with Differential Privacy

Differential privacy [ACG+16, Dwo08] is a common measure for defending against
privacy attacks. In this subsection, we explore the feasibility of differential privacy
to defend against property inference attacks. Furthermore, we make a comparison
with our defense method PriSampler.

We use differentially private diffusion models (DPDMs) proposed by Dockhorn et
al. [DCVK22], because they are the first to apply differentially private stochastic
gradient descent (DPSGD) [ACG+16] to diffusion models and can generate mean-
ingful images. We adopt their suggested hyperparameters to train DPDMs. We set
the number of epochs and batch sizes as 100, and 128 respectively. The image size
is fixed at 64, and we choose different sizes of training sets, i.e. CelebA-1k-30% and
CelebA-50k-30%, and different privacy budgets ϵ, i.e. ϵ = 10 and ϵ = 50. We fix δ

as 10−6 for all models. Here, we synthesize samples by stochastic sampling because
DPDMs [DCVK22] analyze that it can obtain better FID values under differential
privacy conditions.

Table 6.8 presents the comparison between our method and DPDM. Figure 6.14
visually shows synthetic samples. For the CelebA-1k-30% dataset, DPDM almost
cannot generate meaningful images, which leads to an FID value of 446.35. In
contrast, our method can achieve a 40.00 FID value and the inferred proportion is
50.50%. Figure 6.14(b) also shows the good quality of synthetic samples for our
method PriSampler. For the CelebA-50k-30% dataset, we can clearly see that the
generated samples from DPDM only have a vague shape of the human face. Even
if we increase the privacy budget ϵ from 10 to 50, the synthetic human face sam-
ples still are distorted, although we can see that FID decreases from 121.56 to 103.64.
Here, note that ϵ = 10 is usually considered as low amounts of privacy. We also
observe that the inferred proportion for DPDM under ϵ = 10 is 44.00%, while that
for DPDM under ϵ = 50 is 24.20%. It indicates that DPDM under smaller privacy
budgets can disguise the real proportion of certain properties to some extent. How-
ever, the quality of the generated samples is too vague. In contrast, our method can
still synthesize meaningful samples with a balanced proportion.
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Table 6.8: Comparison between PriSampler and DPDM. DDPM* means PriSampler is applied
to the DDPM model. SMLD* means PriSampler is applied to the SMLD model.

CelebA-1k-30% CelebA-50k-30%
DPDM (ϵ = 10) DDPM* DPDM (ϵ = 10) DPDM (ϵ = 50) SMLD*

FID 446.35 40.00 121.56 103.64 45.52
Inferred
Prop.

100.00 50.40 44.00 24.20 50.40

(a) ϵ = 10, DPDM trained on CelebA-1k-30%.

(b) PriSampler for DDPM trained on CelebA-1k-30%.

(c) ϵ = 10, DPDM trained on CelebA-50k-30%.

(d) ϵ = 50, DPDM trained on CelebA-50k-30%.

(e) PriSampler for SMLD trained on CelebA-50k-30%.

Figure 6.14: Visualization of synthetic samples under the defense DPDM and PriSampler.

6.6 Discussion

Our method PriSampler aims to navigate a sampler in the property space and is
operated in the sampling process. Thus, it is a training-free method. Furthermore,
it is a model-agnostic and can be used as a plug-in for a wide range of diffusion
models. In this section, we discuss limitations and future work.

Model utility. Although our method PriSampler can guarantee the defense per-
formance, i.e. achieving the desired proportions that model owners wish, it will
sacrifice model utility to some extent. Nevertheless, we take the first step to pro-
tect diffusion models from property inference attacks. Furthermore, our defense
method is still promising and competitive, compared to diffusion models trained
with differential privacy.
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Non-binary property. Our defense method PriSampler in this work mainly consid-
ers binary property which has two values. For instance, the value of the binary
property gender has 0 (male) and 1 (female). When the property is non-binary,
i.e. the value of a property has multiple categories or is continuous, our method
PriSampler can also be applied by transforming this property as a binary property.

Entangled properties. We observe that when our defense method is applied to
protect multiple sensitive properties, the defense performance, i.e. the average ab-
solute difference, becomes slightly worse, compared to that applied to the single
property. This might be because these properties are entangled together due to the
training mechanism of existing diffusion models. As a result, it is difficult to find
an ideal hyperplane to completely differentiate them. In the future, we intend to
design diffusion models with disentangled properties, which aim to separate entan-
gled properties as large as possible in the training process. In that way, our defense
method can further improve the protection performance for diffusion models.

Membership inference. Membership inference and property inference are two
main types of privacy attacks, but their attack goals are different. Membership
inference involves the privacy of individual training sample of a training set while
property inference involves the privacy of global properties of a training set. In the
future, we plan to study the relationship between two types of privacy attacks and
provide a holistic defense measure.

Attacks via weights. Our attack method only utilizes the synthetic data from a
diffusion model to mount property inference attacks. Prior work on classification
models [GWY+18] has proposed to infer the sensitive properties by the weights of
a full-connected neural network. Therefore, we plan to investigate the feasibility of
property inference attacks by utilizing the weights of diffusion models themselves.

6.7 Related Work

Diffusion models. Diffusion models [SDWMG15, HJA20] have recently drawn im-
mense attention to academia and industry due to their high success in synthesizing
realistic images. Subsequently, various methods [SE19, SSDK+21, SME21, KAAL22,
LZB+22, LZB+22] are proposed to further improve the performance of diffusion
models from the perspective of the training process, sampling mechanisms. Be-
yond image synthesis, they have been applied to a variety of novel applications,
such as image restoration [SCC+22, WYZ22], super-resolution [HSC+22, SHC+23].
However, these works focus on improving the generative performance of diffusion
models. In this chapter, considering the increasing popularity of diffusion models,
we study diffusion models from the viewpoint of privacy.

Property inference attacks. Property inference attacks allow adversaries to infer
global sensitive information of the training set from a machine learning model.
They are firstly studied by Ateniese et al. [AMS+15] on simple machine learning
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models, such as SVM and Hidden Markov Models. Since then, there are a more in-
creasing number of works focusing on property inference in neural network mod-
els, such as fully-connected neural networks [GWY+18], convolution neural net-
works [SE22, MGC22, CAO+23], generative adversarial networks[ZCSZ22], graph
neural networks [ZCB+22], and federated learning models [MSDCS19]. However,
these works mainly focus on attacks, and their attack methods heavily rely on
shadow models which require a large amount of computation. Furthermore, prop-
erty inference attacks on emerging diffusion models have not yet been extensively
studied. In this chapter, we take the first step to explore property inference attacks
against various types of diffusion models under more realistic attack scenarios and
affordable attack costs: the adversaries perform the inference only utilizing syn-
thetic data. More importantly, we propose a set of effective defense measures to
safeguard the sensitive properties of diffusion models.

There are several works studying privacy attacks against diffusion models through
the lens of membership inference attacks [WYL+22, CHN+23, HP23a, MMY23,
DKW+23, ZCGF23]. However, membership inference attacks aim to infer whether
a sample was used for training a machine learning model and focus more on the
privacy of the individual training sample of the training set. In contrast, this work
endeavors to study property inference attacks which aim to infer the globally sen-
sitive information of the training set used for diffusion models.

6.8 Conclusion

In this chapter, we have presented the first study about property inference of diffu-
sion models. Under the property inference attack which only utilizes the synthetic
data, we have investigated the property inference risks on four different types of
diffusion models and two different types of sampling mechanisms (in total twenty
diffusion models and three samplers). Our extensive empirical analysis has shown
that various diffusion models and their samplers are vulnerable to property infer-
ence attacks. For instance, as few as 500 generated samples can precisely infer the
real proportion of a property. More severely, better performance of diffusion mod-
els can lead to a more accurate estimation of property inference, which indicates
that we should consider privacy concerns when consistently pursuing the genera-
tion performance of a diffusion model. We have also shown the property inference
attack is still effective at inferring off-the-shelf pre-trained diffusion models in re-
ality. We also developed a model-agnostic plug-in defense method PriSampler and
demonstrated its effectiveness with various different types of samplers and diffu-
sion models. Our PriSampler further shows significant performance in model utility
and defense performance, when compared with diffusion models trained with dif-
ferential privacy.

We have also identified several directions for future work, including developing
attack methods via weights, designing diffusion models with disentangled prop-
erties, and constructing a holistic defense method by exploring the relationship
between property inference and membership inference.
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Part III

Applications of Generative Models
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Chapter 7

Out-of-Distribution Attacks via
Generative Adversarial Networks

In addition to studying model privacy and data privacy in generative models, it is
essential to unlock the potential of generative models and innovatively apply them
to investigate security risks in discriminative models. In this chapter, we propose a
novel out-of-distribution (OOD) attack: leveraging any pre-trained generative ad-
versarial networks (GANs), an adversary aims to fool a classification model and
make the model misclassify a sample from GANs as a pre-specified target class.
Specifically, we introduce a targeted attack framework through GANs for white-
box and black-box scenarios. Our framework casts this problem as an optimization
problem and a family of attack methods are developed. Extensive experimental re-
sults show that our methods can achieve competitive performance, even compared
with several state-of-the-art adversarial example attacks. Finally, our methods can
evade several widely-used and the latest OOD detection.

7.1 Introduction

Recent years have witnessed significant progress in machine learning (ML), rang-
ing from computer vision [GPAM+14, HZRS16] to natural language processing
[DCLT19, BMR+20]. The success of ML has also driven technology companies
to deploy various ML-based applications in real-world scenarios, including safety-
critical applications such as self-driving cars [FW15, BDTD+16]. However, ML mod-
els face various security threats in the open world [PCYJ17, CXC+19, FLL+22].

There has been a flurry of works revealing that ML models are vulnerable to adver-
sarial example attacks [BCM+13, SZS+14, MMS+18, BRB18, CJW20]. Given a cor-
rectly classified example, an adversary can make an adversarial example by adding
imperceptible perturbations, which causes the ML model to change its prediction
result [SZS+14]. From the perspective of human vision, these imperceptible per-
turbations totally do not affect the category of the example, but the ML model has
made a different decision. In other words, ML models are easy to be fooled by ad-
versarial perturbations and are not robust in knowing what they know. In addition,
another line of research studies demonstrates that for samples that are far from the
training data or are completely unrecognizable to human beings (e.g. noises), ML
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models also misclassify them as a particular class with high confidence. To put it
another way, ML models do not know when they do not know [NYC15, HAB19, MH20].

Indeed, when ML models are deployed in the real world, any type of input sample
could occur and these models face the risk fooled by adversarial samples. Con-
sidering the prevalence and availability of pre-trained GANs, this motivates us to
think about a new potential threat: generated samples from a well-trained GAN
might be utilized by adversaries to fool ML models.

In this chapter, we study a novel out-of-distribution (OOD) attack in which an ad-
versary aims to craft a completely different sample (e.g. cartoon face) to deceive an
ML model into recognizing a certain class that the ML model has learned (e.g. air-
plane). Concretely, leveraging any off-the-shelf pre-trained generative adversarial
networks (GANs), we propose a novel targeted attack framework, which leads ML
models to make a particular prediction for inputs from a GAN. We highlight that
the pre-trained GAN can be any unconditional GAN trained on any dataset. For consis-
tency with prior works [HG17, SBS+19], we refer to these generated examples as
OOD examples and these examples have a different distribution of the training set
of a victim ML model.

In general, ML models make arbitrary predictions for OOD examples because they
indeed do not know OOD examples. Taking advantage of any GAN, our attack
framework attempts to construct generated samples so that the victim ML model
misclassifies them as a particular class that the adversary wishes. More broadly, our
attack fools ML models into knowing what they actually do not know. Although
a straightforward way is to utilize existing adversarial example attacks [SZS+14]
where adversarial perturbations are added to OOD examples, our GAN-based at-
tack methods are not restricted by the magnitude of perturbations. Most impor-
tantly, with the availability of various pre-trained GAN models, our attack frame-
work provides a new angle to find diverse adversarial examples that state-of-the-art
defense mechanisms do not consider.

Technically, we formulate our attack framework as an optimization problem: the at-
tack framework aims to find a generated example from a pre-trained GAN model by
minimizing the distance between its victim model’s prediction and the pre-specified
target class that the adversary defines. Under the white-box and black-box attack
scenarios, gradient-based and non-gradient based optimization methods are pro-
posed to obtain the generated sample. Extensive experimental evaluations demon-
strate that our attack methods are highly effective, achieving over 97% average at-
tack success rate on the white-box scenario and at least 62% average attack success
rate on the black-box scenario (see Section 7.5.1).

Moreover, we compare our attack methods with the five state-of-the-art adversarial
example attacks, i.e. C&W [CW17b] and PGD [MMS+18] in the white-box scenario,
ZOO [CZS+17], DBA [BRB18] and HSJA [CJW20] in the black-box scenario. Exten-
sive experimental evaluations show that the performance of our attack methods is
still competitive (see Section 7.5.3). Here, we underline that the mechanism of our
attack methods is totally different from that of adversarial example attacks, that is,
the OOD adversarial example is generated from a GAN rather than an image with
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perturbations, although both attacks have the same attack objective — fooling ML
models. We further evaluate our attack methods by investigating whether OOD
detection techniques can detect these OOD adversarial examples. Experimental re-
sults demonstrate that our attack methods can evade three state-of-the-art OOD
detection techniques, i.e. ODIN [LLS18], OE [HMD19] and ATOM [CLW+21] (see
Section 7.5.3). We also analyze the effects of different types of loss functions and
optimization methods on attack performance (see Section 7.5.4).

Finally, we want to remark that our proposed methods not only can be applied as
security attacks on ML models. Being a supplementary measure, they also can be
utilized to conduct the white-box and black-box tests when deploying ML models
in the real world.

7.2 Related Work

Adversarial example attacks. Depending on whether the adversary has access
to the whole victim model, adversarial example attacks generally can be catego-
rized into two types: white-box and black-box. White-box adversarial example
attacks generally utilize gradient information of the victim model to perturb exam-
ples [BCM+13, SZS+14, GSS15, CW17b, MMS+18]. Goodfellow et al. propose a fast
gradient sign method to generate adversarial examples under the ℓ∞ norm. This
attack method only involves a single-step gradient update [GSS15]. Furthermore,
Madry et al. propose an iterative method — Projected Gradient Descent, to gener-
ate more powerful adversarial examples, and an adversarial training method is also
proposed [MMS+18]. Unlike previous works, the C&W attack method utilizes new
objective functions and converts the box constrained optimization problem into an
unconstrained problem to construct adversarial examples [CW17b].

Because it is impossible to directly compute the gradients based on the victim
model under the black-box scenario, various gradient estimation attack methods
are proposed. The ZOO attack method chooses to estimate the gradients through
monitoring the changes of prediction confidence [CZS+17]. Chen et al. utilize
the binary information at the decision boundary to estimate the gradient direc-
tion [CJW20]. Instead of making an estimate of gradient information, Brendel et al.
propose an iterative black-box attack method by rejection sampling [BRB18]. Unlike
our proposed methods where examples are generated from any pre-trained GAN, these attack
methods construct adversarial examples by adding adversarial perturbations.

There exist several works generating adversarial examples with GANs. Baluja et al.
propose an adversarial transformation network that is trained to directly produce
adversarial examples [BF18]. Xiao et al. propose a conditional GAN where it first
generates a perturbation and an adversarial example is constructed by adding the
perturbation into the original sample [XLZ+18]. Similarly, Song et al. propose an
auxiliary classifier GAN to model the class-conditional distribution of data samples
and utilize it to generate samples [SSKE18]. However, these approaches require a
tailored GAN when constructing adversarial examples. Additionally, extra data is
required not only for a substitute model training in the black-box scenario but also
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for a tailored GAN training, whereas these data have to have the same distribution
of the training set of the victim model and may not be easily obtained by the ad-
versary. In contrast, our work proposes a targeted attack framework for both white-box and
black-box scenarios and any off-the-shelf pre-trained GAN can be directly leveraged. Even
in the black-box scenario, our methods do not require training a substitute model.

Out-of-distribution detection. There are many works attempting to enhance the
robustness of ML models in the open world through out-of-distribution (OOD)
detection [YZLL21, SLH+21, FLL+22]. Hendrycks et al. propose a baseline of
OOD detection by utilizing probabilities from softmax distributions. This method
is based on the insight: compared to OOD examples, correctly classified examples
tend to have a higher prediction probability [HG17]. Liang et al. further improve
the performance of OOD detection by utilizing temperature scaling and adding
small perturbations to the inputs, which results in a larger separation between in-
distribution and out-of-distribution samples [LLS18]. Hendrycks et al. improve de-
tection performance by leveraging an auxiliary dataset of outliers to train anomaly
detectors [HMD19]. Chen et al. propose to carefully select informative outliers from
an auxiliary OOD dataset and utilize adversarial training to further enhance detec-
tion performance [CLW+21]. We note that almost all works evaluate their detection
performance on OOD datasets collected from the real world. Although Chen et
al. present their detection performance on adversarial examples, these examples
are constructed by adding adversarial perturbations [CLW+21]. Our GAN-based at-
tack methods have a different mechanism in generating OOD examples, which may provide
supplementary testing means to thoroughly evaluate the performance of OOD detection.

Generative adversarial networks. Goodfellow et al. first propose generative adver-
sarial networks (GANs) in 2014 [GPAM+14]. Since then, various GAN models are
proposed to generate more realistic and diverse images [RMC16, ACB17, MKKY18,
KALL18, BDS19, KLA+20]. Martin et al. propose to utilize the Wasserstein distance
to stabilize the training process to further improve the quality of images [ACB17].
Karras et al. propose a growing strategy to stabilize the training process, which
allows GAN models to produce more realistic and high-quality images [KALL18].
The StyleGAN introduces a novel hierarchical latent style layer, which allows GAN
models to produce diverse styles of images [KLA19]. With the emergence of GANs,
we are no longer limited to collecting data on our own or utilizing existing datasets
when needing images. Benefiting from this advantage, in this chapter, we aim to di-
rectly find adversarial OOD examples from any pre-trained GAN, especially utilizing these
state-of-the-art GANs.

7.3 Methodology

7.3.1 Background

A typical unconditional GAN consists of a generator G and a discriminator D.
During the training process, the generator G learns to synthesize an image xg =

G(z), where a latent code z ∈ Rn is drawn from a prior distribution pz, such
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Figure 7.1: Attack overview. Our proposed attack constructs out-of-distribution samples by
any pre-trained GAN to make a victim model classify them as certain classes that an adver-
sary wishes. For instance, OOD samples, such as human faces or cartoon faces generated
from GANs, are recognized as certain classes, such as airplanes, by the victim classifier
trained on CIFAR-10.

as Gaussian distribution. The discriminator D is responsible for distinguishing
between fake samples xg generated by the G and real samples xr from the training
set X. Once the GAN model finishes training, only the generator G is used to
produce a novel image through a latent code z, i.e. x = G(z). We consider an
m-class classifier F(·) as the victim model. It takes as input an image x and returns
a full prediction y = F(x). Here, the full prediction y = F(x) refers to logits or
probabilities. ymax refers to a predicted label.

In this chapter, we also call victim models without any defenses as raw models. In
addition, if the distribution of examples is different from that of the training set
of the victim model, we refer to these examples as OOD examples. For instance,
an image of a horse is considered as an OOD example for a victim model trained
on the cat/dog dataset. Adversarial OOD examples refer to OOD examples that are
manipulated by an adversary, and they are classified into two types: restricted
adversarial OOD examples and unrestricted adversarial OOD examples. Restricted
adversarial OOD examples refer to OOD adversarial examples that are constructed
based on norm-bounded perturbations, while unrestricted adversarial OOD examples
refer to OOD adversarial examples from a pre-trained GAN model. When it is
clear from the context, we interchangeably use OOD examples, adversarial OOD
examples, restricted adversarial OOD examples, and unrestricted adversarial OOD
examples.

7.3.2 Attack Overview

We provide a high-level description of our attack, as depicted in Figure 7.1. A victim
model is trained on an in-distribution dataset. On the one hand, the victim model
can correctly recognize in-distribution samples, such as airplane and cat, which is
shown in the left part of Figure 7.1. On the other hand, human face images and
cartoon face images that are completely different from these in-distribution samples
can be all recognized as certain classes that the adversary wishes, as illustrated
in the right of Figure 7.1. Our attack framework provides one approach to craft
the generated samples that are misclassified as a pre-specified class by the victim
model.



124 Chapter 7. Out-of-Distribution Attacks via Generative Adversarial Networks

7.3.3 A Unified Attack Framework

Generally, attack goals can be categorized into two classes: untargeted and targeted.
An untargeted attack aims to lead to a victim model’s misclassification while a
targeted attack aims to change a victim model’s prediction to a pre-defined target
class. In this chapter, we only consider the targeted attack for raw models, because
any OOD example is regarded as a successful untargeted attack.

Specifically, the objective of our attack is to find a generated sample from a given
GAN, which leads this sample to be classified as a pre-defined class by the victim
model. Formally, we cast it as an optimization problem as follows:

z′ = arg min
z

ℓ(F(G(z)), F(xref )), (7.1)

where ℓ(·) is the loss function, xref is a reference sample from the target class t that
the adversary wishes. By minimizing the distance of the victim model’s outputs be-
tween the generated sample F(G(z)) and the reference sample F(xref ), Equation 7.1
aims to find a latent code z′ and causes the victim model to classify the generated
image x′ = G(z′) into the pre-specified class t.

Equation 7.1 is agnostic to any type of unconditional GAN. Thus, the generator G
of any pre-trained GAN models can be utilized. In this work, we choose the cross-
entropy loss and the StyleGAN [KLA19] as our loss function and the pre-trained
GAN model to attack raw models. Therefore, Equation 7.1 can be reformulated as:

z′ = arg min
z

ℓCE(F(G(z)), t) (7.2)

Other types of loss functions can be utilized to further improve attack performance
for models with defenses, which is detailed in Section 7.5.3. We leave the explo-
ration of different GAN models as future work.

We consider two typical attack scenarios: white-box and black-box. In these attack
scenarios, different optimization methods are proposed to solve the Equation 7.2.

White-box scenario. In this attack scenario, the adversary can obtain the whole
model, including its weights and architecture. Therefore, the gradient information
can be easily obtained for the adversary. Any gradient-based optimization methods
can be used to solve the Equation 7.1. In our work, we apply the stochastic gradient
descent (SGD) [RM51] for its computational efficacy. We discuss different types of
optimizations in Section 7.5.4.

Black-box scenario. In this attack scenario, the adversary is only allowed to query
the model and has access to the model’s outputs. Gradient-based optimization
methods cannot be applied due to the unavailability of the whole victim model.
Here, we adopt Powell’s conjugate direction method (Powell) [Pow64] to optimize
Equation 7.1, because it does not require the gradient of the victim model. Specif-
ically, Powell’s method first creates a set of mutually conjugate directions for the
latent code z and then finds the local minimum by line search along with these
directions.
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Algorithm 6: Attack procedure
1: Input: a victim model F, a target class t, a pre-trained GAN G, the maximum

number of iterations K, the learning rate α, flag
2: Output: an unrestricted adversarial OOD example x

3: Initialization: draw a latent code z from the standard normal distribution
4: for k = 0, 1, . . . , K−1 do
5: if F(G(z))max == t then
6: break ▷ Early stopping
7: end if
8: L = computeLoss(F(G(z)), t) ▷ Equation 7.2
9: if flag is white-box then

10: z← z− α∇zL ▷ Stochastic gradient descent
11: else if flag is black-box then
12: z← Powell( L) ▷ Powell optimization
13: end if
14: end for
15: return x = G(z)

The attack procedure for both the white-box and black-box scenarios is described
in Algorithm 6.

7.4 Experiments

7.4.1 Datasets

We use five datasets in this chapter to conduct our experiments. These datasets
can be further divided into three types: in-distribution, out-of-distribution, and
auxiliary datasets. We refer to a dataset used to train a victim model as an in-
distribution dataset, while an out-of-distribution dataset refers that its distribution
is different from that of the training set of the victim model. Auxiliary datasets are
also out-of-distribution datasets but they are commonly used in OOD detection to
improve the robustness of machine learning models.

In-distribution datasets. We use CIFAR-10 [Kri09] and the German Traffic Sign
Recognition Benchmark (GTSRB-43) [SSSI12] as in-distribution datasets to train vic-
tim models. CIFAR-10 has 10 classes and contains 50,000 training images and 10,000
test images, while GTSRB-43 has 43 classes of traffic signs and includes 39,209 train-
ing images and 12,630 test images.

Out-of-distribution datasets. We use FFHQ [KLA19] and iCartoonFace [ZZR+20]
as out-of-distribution datasets. These datasets are used for GAN training. In ad-
dition, they are utilized to make adversarial examples when we compare our work
with adversarial example attacks. FFHQ consists of 70,000 high-quality human face
images and these images have a large amount of variation in the aspect of age, eth-
nicity, identity, and accessories. iCartoonFace contains 389,678 cartoon face images
and these images are collected from 1,302 cartoon albums.
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Auxiliary datasets. The ImageNet dataset [RDS+15] is used as the auxiliary dataset.
It is widely used in various OOD detection methods to help improve the robustness
of ML models. The ImageNet dataset consists of 1,281,167 diverse images and 1,000
classes.

7.4.2 Victim Models

We choose the WideResNet [ZK16] with depth 28 and widening factor of 4 and
the DenseNet [HLVDMW17] with depth 100 and growth rate 12 as the architec-
ture of victim models to be attacked, considering their excellent performance and
widespread adoption in various application areas. They are also widely used in the
research community of machine learning security [CW17a, TCBM20].

7.4.3 Evaluation Metrics

We use Attack Success Rate (ASR) to evaluate attack performance. The ASR is the
ratio of success samples in all test samples. In our attack, an example is considered
a success if it is recognized as a pre-specified class. With the aim to thoroughly
evaluate attack methods and reveal the vulnerability of victim models, we further
report average ASR, best ASR, and worst ASR from the perspective of classes of
victim models.

The average ASR reports the mean of ASRs of all classes. The best ASR refers to
the best ASR in all classes while the worst ASR reports the worst ASR in all classes.
The best ASR indicates the attack success rate of the most vulnerable category in
a victim model, which can be regarded as the most vulnerable point of the model.
The worst ASR represents the probability of success for the least vulnerable class in
a victim model. The worst ASR of 0 means that there exist classes that are harder
to attack in the model. For computing efficiency, in our work, 10 test samples are
used to compute the ASR of each class. Thus, we totally use 100 samples and 430
samples for CIFAR-10 and GTSRB-43, respectively. Note that in practice the attack
is successful even if only one sample can fool the model.

7.4.4 Experimental Setups

In this chapter, we use the standard split of CIFAR-10 and GTSRB-43 to train victim
models. As for OOD datasets, all samples in FFHQ are used for GAN training.
Due to various image sizes in iCartoonFace, images whose size is equal to or larger
than 128 are chosen. Consequently, we obtain 35,2459 images in total. Similarly,
these images are used for GAN training. Samples that are utilized to make unre-
stricted adversarial OOD examples are randomly selected from the OOD datasets.
All images in all datasets are resized to 32× 32 and rescaled to [0, 1].

All victim models are trained with SGD optimizer and an initial learning rate of 0.1.
For CIFAR-10, the number of training epochs is set to 100 and the learning rate is
decayed by a factor of 0.1 at the 50th, 75th, and 90th epochs. For GTSRB-43, we set
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Table 7.1: Performance of raw models on CIFAR-10 and GTSRB-43.

Dataset Model Accuracy

CIFAR-10
WideResNet 95.16%
DenseNet 94.43%

GTSRB-43
WideResNet 96.46%
DenseNet 96.08%

the number of training epochs to 20 and the learning rate is decayed by a factor of
0.1 at the 7th, 12th, and 17th epochs. For GAN models, StyleGAN is chosen due to
its excellent performance on image generation and the suggested hyperparameters
in its original publication are used for training [KLA19].

For our attack methods, in the white-box scenario, the learning rate of SGD and the
maximum number of iterations is set as 0.1 and 5,000, respectively. Early stopping
is allowed when OOD examples are found successfully. In the black-box scenario,
the maximum number of queries is set as 25,000.

7.5 Evaluation

We first present our attack results for raw models. Next, we compare our methods
with five state-of-the-art adversarial examples attacks. We further evaluate our
attack performance on models with the protection of three representative defense
measures. Finally, we explore diverse factors to better delineate the properties of
our attack methods.

7.5.1 Attack Performance on Raw Models

Performance of raw models. Table 7.1 shows the performance of raw victim mod-
els trained on different datasets. All models achieve close to state-of-the-art per-
formance. For instance, at least 94% accuracy and 96% accuracy can be seen on
CIFAR-10 and GTSRB-43, respectively.

Results. Table 7.2 shows attack performance on raw models trained on various
datasets for both white-box and black-box scenarios. Overall, all raw models on
both scenarios are vulnerable to our proposed attack methods.

In the white-box scenario, the adversary can achieve an extraordinarily high average
ASR among all victim models, ranging from 97.44% to 100.00%. For example, the
attack method can achieve an average ASR of 100% on CIFAR-10, no matter which
victim models are attacked. Even in terms of the worst ASR, the attack method
still remains an attack success rate of 100% for CIFAR-10 and no less than 80%
for GTSRB-43. This indicates that a victim model without any protection is easily
fooled and our proposed method can always find a sample from the pre-trained
GAN model and make the victim model recognized as a pre-specified class.
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Table 7.2: Attack performance on raw models trained on various datasets. SD: standard
deviation.

White-box Black-box

In-distribution

Dataset
Victim Model OOD Dataset

Average

ASR (SD) %

Best

ASR %

Worst

ASR %

Average

ASR (SD) %

Best

ASR %

Worst

ASR %

CIFAR-10

WideResNet
FFHQ 100.00 (0.00) 100.00 100.00 90.00 (10.00) 100.00 70.00

iCartoonFace 100.00 (0.00) 100.00 100.00 97.00 (4.58) 100.00 90.00

DenseNet
FFHQ 100.00 (0.00) 100.00 100.00 83.00 (17.35) 100.00 50.00

iCartoonFace 100.00 (0.00) 100.00 100.00 95.00 (6.71) 100.00 80.00

GTSRB-43

WideResNet
FFHQ 100.00 (0.00) 100.00 100.00 91.86 (13.16) 100.00 50.00

iCartoonFace 99.07 (2.90) 100.00 90.00 89.07 (13.61) 100.00 40.00

DenseNet
FFHQ 99.77 (1.51) 100.00 90.00 68.60 (27.50) 100.00 10.00

iCartoonFace 97.44 (5.32) 100.00 80.00 62.09 (27.75) 100.00 10.00

In the black-box scenario, the attack method can still achieve above 83% average
ASR on CIFAR-10 and 62% average ASR on GTSRB-43, although the performance
is inferior to that of the white-box scenario. We observe that even in the black-box
scenario, 100% best ASR can be seen on all raw models, which means that some
classes of victim models are extremely vulnerable. In spite of restrictions of the
black-box scenario where the adversary cannot have access to the model and only
be allowed to obtain output information, the vulnerability of the victim model, i.e.
these classes, could not be reinforced. At the same time, we also see that all worst
ASR values in the black-box scenario show a decline, compared with that in the
white-box scenario. For example, the attack method achieves 10% worst ASR on
the victim model DenseNet trained on GTSRB-43. This might be because classes
that are hard to be fooled become even harder to be fooled in the black-box scenario.

Note that OOD examples constructed by our methods are all from a pre-trained
GAN model which produces totally different images from that of victim models.
The principle of our attack method is based on the fact that ML models do not
know when they do not know. The success of our attack methods in white-box and
black-box scenarios reminds model providers that when deploying an ML model
in the open world, it is necessary to guarantee the legitimacy of each input. Other-
wise, the ML model could make unexpected predictions for illegal inputs and this
characteristic can be abused by an adversary to mount a novel security attack.

7.5.2 Comparison with Adversarial Example Attacks

We compare our methods with state-of-the-art adversarial example attacks. To-
tally, five powerful adversarial example attack methods are chosen: C&W [CW17b]
and PGD [MMS+18] that are used in the white-box scenario, and ZOO [CZS+17],
DBA [BRB18] and HSJA [CJW20] that are used in the black-box scenario. Note that
although there is a work studying OOD attack [SBS+19], this work only applies the
PGD method to OOD dataset. Therefore, we do not explicitly compare this work
and the attack method of this work can be considered as equivalent to the PGD
method.
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Table 7.3: Comparison with different attack methods on the white-box and black-box sce-
nario.

CIFAR-10 GTSRB-43

Scenarios Method OOD Dataset
Average

ASR (SD) %

Best

ASR %

Worst

ASR %

Average

ASR (SD) %

Best

ASR %

Worst

ASR %

White-box

CW
FFHQ 90.00 (10.48) 100.00 66.67 71.86 (21.05) 100.00 20.00

iCartoonFace 95.56 (7.37) 100.00 77.78 71.86 (16.32) 100.00 30.00

PGD
FFHQ 100.00 (0.00) 100.00 100.00 99.30 (3.34) 100.00 80.00

iCartoonFace 100.00 (0.00) 100.00 100.00 95.58 (6.58) 100.00 70.00

Ours
FFHQ 100.00 (0.00) 100.00 100.00 100.00 (0.00) 100.00 100.00

iCartoonFace 100.00 (0.00) 100.00 100.00 99.07 (2.90) 100.00 90.00

Black-box

ZOO
FFHQ 24.44 (28.89) 88.89 0.00 2.09(4.60) 20.00 0.00

iCartoonFace 23.33 (21.34) 55.56 0.00 2.56(20.00) 20.00 0.00

DBA
FFHQ 91.11 (10.89) 100.00 66.67 22.33 (20.78) 80.00 0.00

iCartoonFace 84.44 (14.23) 100.00 55.56 25.12(18.60) 70.00 0.00

HSJA
FFHQ 97.78 (4.44) 100.00 88.89 25.35(19.09) 80.00 0.00

iCartoonFace 85.56 (12.22) 100.00 55.56 26.74(16.24) 80.00 0.00

Ours
FFHQ 90.00 (10.00) 100.00 70.00 91.86 (13.16) 100.00 50.00

iCartoonFace 97.00 (4.58) 100.00 90.00 89.07 (13.61) 100.00 40.00

We implement the five algorithms by the open-source library — Adversarial Ro-
bustness Toolbox [ART18] and the suggested hyperparameters are used. WideRes-
Net is chosen as the architecture of victim models. All restricted adversarial OOD
examples are constructed under the ℓ∞ distance. Following the tradition of prior
work [CJW20], we set the maximum perturbation as 8/255. An example is con-
sidered a success if it is recognized as a pre-specified class and the magnitude of
perturbation does not exceed the maximum perturbation. In addition, the maxi-
mum number of queries in the black-box scenario is set as 25,000 per image for all
attack methods.

Note that C&W and PGD are not used in the black-box scenario because both
methods are required to train a substitute model which requires extra training data
whose distribution has to be similar to that of the training set of the victim model.
Instead, we choose ZOO, DBA, and HSJA in the black-box scenario, which all show
promising attack performance. Here, we highlight that our proposed framework
can be applied in both scenarios without any additional data.

Results. Table 7.3 and Figure 7.2 show results of our attack methods and adversar-
ial example attack algorithms on both the white-box and black-box scenario. Over-
all, our methods achieve similar or superior attack performance on both scenarios,
compared with the five state-of-the-art adversarial example attacks.

In the white-box scenario, our method can achieve a 100% average ASR on CIFAR-
10. Similar performance can be seen for the PGD method on CIFAR-10 but the C&W
method shows a slightly inferior attack performance. More than 99% average ASR
on GTSRB-43 can be achieved by our method, while both the C&W and PGD attack
method cannot achieve better performance where the average ASR of C&W and
PGD is 71.86% and 95.85%, respectively. One possible reason is that due to the sig-
nificant difference between in-distribution samples and out-of-distribution samples,
ℓ-norm-based adversarial example attacks indeed require much larger magnitudes
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Figure 7.2: Comparison with different attack methods.

of perturbations. We also notice that all attack methods show perfect performance
with respect to best ASR, while the attack performance presents significant dif-
ferences in the aspect of worst ASR. For example, the worst ASR on GTSRB-43 is
90.00% for our attack methods, whereas it is only 70.00% and 20.00% for the PGD
method and the C&W method, respectively.

In the black-box scenario, our method further shows superior attack performance
on both datasets. For example, ours can achieve over 90.00% average ASR on
CIFAR-10 and 89.07% average ASR on GTSRB-43, while the method ZOO only gains
no more than 24.44% and 2.56% average ASR on CIFAR-10 and GTSRB-43, respec-
tively. Although DBA and HSJA can obtain similar attack performance in compar-
ison with our method on CIFAR-10, the significant advantages of our method can
be seen on GTSRB-43. For instance, the average ASR of our method on GTSRB-43
is at least higher 62% than that of DBA and HSJA where the best performance is
at most 26.74% average ASR. This also reminds model owners that when evaluat-
ing the robustness of their models in the open world, it is not sufficient to directly
apply current adversarial example attacks.

7.5.3 Attack Performance on Models with Defenses

We further investigate whether our proposed methods can evade state-of-the-art
defense measures.

Existing works mainly focus on the detection of OOD samples to improve the ro-
bustness of models in the open world. To do this, these methods first compute a
score for each sample based on the outputs of the model. The score can be regarded
as the probability that this sample is an in-distribution example. Then, a sample
is an in-distribution example if its score is larger than a pre-defined threshold τ.
Specifically, given a victim model F, an OOD detector can be represented as:

Detector(x) =

{
1 F(x) > τ

0 F(x) ≤ τ
(7.3)

Depending on whether or not the victim model F needs to be changed, OOD meth-
ods can be divided into two categories. The first category does not require any
changes of the victim model F. In other words, this type of defense can be di-
rectly applied to a model without retraining and it detects OOD examples based on
the confidence scores of models. We choose one classic and widely-used defense
method ODIN [LLS18], considering its excellent performance in this category. The
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second category requires changes of models, such as retraining models with novel
loss functions, adding auxiliary datasets into the training process, and even intro-
ducing adversarial training. One classic defense method OE [HMD19] and the latest
state-of-the-art defense method ATOM [CLW+21] are considered in this work. A
brief introduction of each defense is given as follows.

•ODIN. This defense [LLS18] utilizes the model’s outputs, i.e. confidence scores, to
detect OOD examples. The main assumption is that neural networks tend to output
higher confidence scores to in-distribution examples than OOD examples. The de-
fense utilizes temperature scaling [HVD15] and adversarial perturbations [GSS15]
to further enlarge the differences between in-distribution and OOD examples. In
detail, for a given example x, a perturbed example x̃ is obtained by adding adver-
sarial perturbations and the calibrated confidence score of x̃ can be calculated by
temperature scaling. An example belongs to in-distribution if the score is greater
than a pre-defined threshold τ. This defense can be considered as a post-processing
technique and does not require model owners to retrain victim models.

In our experiments, we utilize the ImageNet dataset to choose hyperparameters.
For WideResNet, we set the perturbation magnitude as 0 for both CIFAR-10 and
GTSRB-43. For DenseNet, the perturbation magnitude is set as 0.0004 for CIFAR-10
and 0.001 for GTSRB-43, respectively. The temperature scaling is set as 1000 in all
settings.

• OE. This defense [HMD19] makes use of auxiliary OOD datasets to train anomaly
detectors that can generalize and detect unseen OOD examples. It introduces a new
loss function that cannot only learn the original classification objective but also
learn heuristics to detect whether a sample is an OOD example by the auxiliary
OOD dataset. This approach requires retraining a model.

• ATOM. This defense [CLW+21] combines adversarial training and an auxiliary
OOD dataset to collaboratively enhance the performance of OOD detection. More
specifically, this approach first selects informative outliers from an auxiliary OOD
dataset, and then these selected OOD samples and in-distribution samples are
utilized to adversarially train the model. The projected gradient descent method
[MMS+18] is adopted for adversarial training. This approach also requires retrain-
ing a model.

For all these defense methods, we follow the convention of the research community
in OOD detection and the threshold τ is chosen when the true-positive rate (TPR) is
95% where the TPR refers to the ratio of in-distribution examples correctly classified
as in-distribution examples. For OE and ATOM, the ImageNet dataset is used as the
auxiliary OOD dataset for training. We train the models with the SGD optimizer
and the suggested hyperparameters of their papers are used.

All hyperparameters of our attack methods on defense models are the same as
those on raw models, except for loss functions. Specifically, we use loss function f 4
for OE and cross-entropy loss function f 3 for the victim model DenseNet trained
on GTSRB-43 in the black-box scenario and ℓ2 loss function f 2 is used for the
remaining victim models. The reason is that these loss functions show better attack
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Table 7.4: Performance of victim models with defense measures. ↓ means smaller is better
while ↑ means larger is better.

Method Dataset Model FPR % ↓ Accuracy % ↑

ODIN

CIFAR-10
WideResNet 54.978 92.10

DenseNet 46.024 91.12

GTSRB-43
WideResNet 8.502 93.11

DenseNet 11.400 92.86

OE

CIFAR-10
WideResNet 0.110 91.99

DenseNet 0.226 91.38

GTSRB-43
WideResNet 0.002 93.71

DenseNet 0.014 93.23

ATOM

CIFAR-10
WideResNet 0.014 90.16

DenseNet 0.038 89.05

GTSRB-43
WideResNet 0.016 92.34

DenseNet 0.096 91.43

performance and it is hard to achieve the best performance only by one loss function
for various defense measures. We detail different loss functions in Section 7.5.4.
Again, we only consider the targeted attack for models with defenses, because a
successful targeted attack also indicates a successful untargeted attack. Note that
the ASR in the defenses has a higher requirement: one successful attack refers to
that one sample needs to first evade the OOD detection and is recognized as a
pre-specified class that the adversary wishes.

Defense performance of models. Table 7.4 shows the performance of various de-
fense measures. Here, the false-positive rate (FPR) refers to the ratio of OOD sam-
ples that are predicted as in-distribution samples. A lower FPR value indicates
better detection performance. Accuracy refers to the ratio of samples that is pre-
dicted as an in-distribution sample and is recognized as a correct class. We can
see that almost all models show outstanding detection performance and prediction
performance, although the method ODIN on CIFAR-10 shows poor OOD detection
performance.

Results. Table 7.5 shows the attack performance of our proposed methods under
different defense measures. Overall, all defenses cannot prevent our attacks on the
white-box and black-box scenarios, although these defenses can lower our attack
success rate to some degree. The defense measures mainly concentrate on decreas-
ing the worst ASR of our methods, while the best ASR is hardly reduced. The attack
performance in the white-box scenario generally is better than that in the black-box
scenario.

For the defense method ODIN, the average ASR in the white-box scenario is above
86.00% on CIFAR-10 and 69.38% on GTSRB-43 while in the black-box scenario the
attack performance shows a decrease where the average ASR is more than 40.00%
on CIFAR-10 and 9.53% on GTSRB-43. With regard to the best ASR, our attack
performance remains 100.00% in the white-box scenario and more than 60.00%
in the black-box scenario. We observe that the worst ASR value of 0.00% can be
seen on several victim models in the black-box scenario, indicating that the ODIN
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Table 7.5: Attack performance on various defense methods. SD refers to standard deviation.

Defense

Method

In-distribution

Dataset

Victim Model OOD Dataset

White-box Black-box

Average

ASR (SD) %

Best

ASR %

Worst

ASR %

Average

ASR (SD) %

Best

ASR %

Worst

ASR %

ODIN

CIFAR-10

WideResNet
FFHQ 96.00 (4.90) 100.00 90.00 45.00 (38.28) 100.00 0.00

iCartoonFace 87.00 (14.87) 100.00 60.00 59.00 (24.27) 90.00 20.00

DenseNet
FFHQ 93.00 (12.69) 100.00 60.00 40.00 (38.73) 100.00 0.00

iCartoonFace 86.00 (12.81) 100.00 60.00 50.00 (20.00) 90.00 20.00

GTSRB-43

WideResNet
FFHQ 93.72 (8.08) 100.00 70.00 37.21 (31.28) 100.00 0.00

iCartoonFace 75.12 (18.97) 100.00 20.00 31.40 (25.30) 90.00 0.00

DenseNet
FFHQ 87.91 (17.33) 100.00 30.00 13.72 (23.13) 80.00 0.00

iCartoonFace 69.38 (22.11) 100.00 10.00 9.53 (13.63) 60.00 0.00

OE

CIFAR-10

WideResNet
FFHQ 44.00 (15.62) 60.00 10.00 35.00 (29.41) 100.00 0.00

iCartoonFace 13.00 (11.87) 30.00 0.00 63.00 (19.52) 90.00 40.00

DenseNet
FFHQ 56.00 (20.10) 90.00 20.00 44.00 (28.00) 100.00 10.00

iCartoonFace 41.00 (15.78) 70.00 20.00 75.00 (17.46) 100.00 40.00

GTSRB-43

WideResNet
FFHQ 73.26 (17.75) 100.00 30.00 7.44 (14.16) 70.00 0.00

iCartoonFace 42.09 (13.90) 70.00 10.00 5.81 (11.05) 40.00 0.00

DenseNet
FFHQ 53.64 (21.52) 100.00 10.00 4.19 (12.24) 70.00 0.00

iCartoonFace 23.26 (18.26) 60.00 0.00 1.16 (3.21) 10.00 0.00

ATOM

CIFAR-10

WideResNet
FFHQ 86.00 (8.00) 100.00 70.00 23.00 (24.52) 80.00 0.00

iCartoonFace 56.00 (14.97) 80.00 40.00 34.00 (22.00) 80.00 0.00

DenseNet
FFHQ 78.00 (15.36) 100.00 50.00 11.00 (14.46) 50.00 0.00

iCartoonFace 58.00 (15.36) 90.00 40.00 18.00 (13.27) 50.00 0.00

GTSRB-43

WideResNet
FFHQ 59.30 (26.80) 100.00 10.00 0.93 (3.61) 20.00 0.00

iCartoonFace 54.65 (21.50) 90.00 10.00 1.40 (5.10) 30.00 0.00

DenseNet
FFHQ 62.79 (23.06) 100.00 0.00 0.23 (1.51 ) 10.00 0.00

iCartoonFace 56.98 (22.26) 100.00 0.00 2.56 (4.87 ) 20.00 0.00

defense indeed improves the robustness of some victim models’ classes to some
extent.

For the defense method OE, the average ASR in the white-box scenario varies from
13.00% to 56.00% on CIFAR-10 and from 23.26% to 73.26% on GTSRB-43. In con-
trast, in the black-box scenario, the average ASR is above 35.00% on CIFAR-10 and
1.16% on GTSRB-43. We can also see that the best ASR is still high in both sce-
narios. Compared with the white-box scenario, the worst ASR has a lower value
in the black-box scenario. We also observe that different GAN models have effects
on attack performance. For instance, the GAN trained on FFHQ can achieve better
performance than that on iCartoonFace in the white-box scenario.

For the defense method ATOM, our attack methods can achieve at least an average
ASR of 54% for all victim models in the white-box scenario. As a comparison,
the average ASR fluctuates from 11.00% to 34.00% on CIFAR-10 and from 0.23% to
2.56% on GTSRB-43. Although the worst ASR value is low, especially in the black-
box scenario, our attack performance shows promising performance with respect
of the best ASR. That is, some vulnerable classes of the victim model are still easily
fooled. We should emphasize that usually the robustness level of a model largely
depends on the most vulnerable point.

Our attack methods can successfully evade these defenses and achieve targeted
attacks in both scenarios. Although a majority of worst ASR values is low and
even 0, as shown in the worst ASR column in Table 7.5, the fact that these defense
measures cannot decrease the best ASR means that the real threats of a model
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cannot be alleviated. Our work also reminds model owners that when assessing
their defense measures, the most vulnerable classes of a model should be focused
on.

7.5.4 Analysis of Attack Performance

In this section, we analyze attack performance in terms of different types of loss
functions and optimization methods. We also depict the attack process of our at-
tack methods in both scenarios. In this section, we fix the victim models as the
WideResNet model trained on CIFAR-10 and choose StyleGAN trained on FFHQ.

Effects of loss functions. Loss functions play an important role in generating adver-
sarial OOD examples. As shown in Equation 7.1, our attack framework constructs
an adversarial OOD example by minimizing a loss function. There are many differ-
ent types of loss functions and in this work, we study the following loss function f:

f1 = |F(G(z))− F(xref )| (7.4)

f2 = (F(G(z))− F(xref ))
2 (7.5)

f3 = CrossEntropy(F(G(z)), (F(xref ))max) (7.6)

f4 = f2 + λ · (−max(softmax(F(G(z))))) (7.7)

f5 = f2 + λ · (softmax(F(G(z)))m+1) (7.8)

λ is a hyperparameter. f1, f2, f3 are ℓ1 loss, ℓ2 loss, and cross-entropy loss function,
respectively. They are common and basic loss functions. Loss function f4 is de-
signed for OE defense measures but can be widely applied to attack these defense
techniques that detect OOD samples based on higher output scores. It adds a new
item that aims to maximize the output scores of a sample, which makes the attack
evade detection more efficiently. Loss function f5 is designed for ATOM defense
measure and it adds a new item that aims to minimize the output scores of the
OOD class of a sample. Similarly, this loss function can be applied to attack these
defense techniques that add a new OOD class m + 1 in ML models besides the nor-
mal number of classes m. The new class m + 1 of this type of defense is specially
used for OOD detection and a higher output score of this class means a higher
OOD probability.

Table 7.6 and Figure 7.3 present attack performance across different loss functions
in both scenarios. Overall, we can see that different loss functions indeed have
different attack performances. For example, loss functions are hard to show the
difference when attacking raw models in the white-box scenario. In contrast, the
loss function f3 excels in raw models in the black-box scenario. When mounting
attacks against victim models with defenses, it becomes somewhat more difficult
to choose a loss function that is applied for all defenses, because the attack perfor-
mance of these loss functions fluctuates. However, loss function f1, f2 and f3 can be
regarded as good starting points for an attack. We also observe that f4 and f5 loss
functions also show a good performance, comprehensively considering both attack
scenarios.
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Table 7.6: Attack performance in terms of different types of loss functions. SD: standard
deviation.

White-box Black-box

Method Loss function
Average

ASR(SD) %

Best

ASR%

Worst

ASR%

Average

ASR(SD) %

Best

ASR%

Worst

ASR%

Raw

f1 100.00 (0.00) 100.00 100.00 52.00 (34.58) 100.00 0.00

f2 100.00 (0.00) 100.00 100.00 74.00 (26.15) 100.00 20.00

f3 100.00 (0.00) 100.00 100.00 90.00 (10.00) 100.00 70.00

ODIN

f1 91.00 (11.36) 100.00 70.00 25.00 (35.28) 100.00 0.00

f2 96.00 (4.90) 100.00 90.00 45.00 (38.28) 100.00 0.00

f3 75.00 (18.03) 100.00 50.00 44.00 (33.23) 100.00 0.00

OE

f1 55.00 (23.35) 90.00 20.00 34.00 (31.69) 100.00 0.00

f2 27.00 (15.52) 60.00 10.00 34.00 (30.40) 100.00 0.00

f3 37.00 (30.02) 100.00 0.00 37.00 (27.95) 100.00 10.00

f4 44.00 (15.62) 60.00 10.00 35.00 (29.41) 100.00 0.00

ATOM

f1 93.00 (11.87) 100.00 60.00 18.00 (19.90) 60.00 0.00

f2 86.00 (8.00) 100.00 70.00 23.00 (24.52) 80.00 0.00

f3 16.00 (14.29) 40.00 0.00 26.00 (26.53) 80.00 0.00

f5 75.00 (12.04) 90.00 60.00 24.00 (25.77) 90.00 0.00
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(a) White-box scenario
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(b) Black-box scenario

Figure 7.3: Attack performance on various models in terms of different types of loss func-
tions.

Effects of optimization methods. We study two types of optimization methods:
SGD [RM51] and Adam [KB15]. Both optimization methods are used in the white-
box scenario because they require computing gradients. We do not consider other
optimization methods in the black-box scenario in addition to the Powell method.
This is because existing black-box optimization methods are hard to be applied to
the current attack scenario and a new black-box optimization needs to be proposed.
We leave it for further work.

Figure 7.4 and Table 7.7 show attack performance on different types of optimization
methods. We can observe that the Adam optimizer shows better attack performance
on victim models with defense measures, compared with the SGD optimizer. For
example, the Adam optimizer can increase the average ASR by 22.00% on OE and
the attack performance on ATOM can be improved to 99.00%. For raw models, both
optimizers achieve amazing performance and do not show a difference.

Optimization processes. Figure 7.5 illustrates the optimization processes when
attacking the raw model trained on CIFAR-10. Cross-entropy loss is used in both



136 Chapter 7. Out-of-Distribution Attacks via Generative Adversarial Networks

Table 7.7: Attack performance on various models in terms of different types of optimizers.
SD refers to standard deviation.

Method Optimizer
Average

ASR (SD) %
Best

ASR %
Worst

ASR %

Raw
SGD 100.00 (0.00) 100.00 100.00
Adam 100.00 (0.00) 100.00 100.00

ODIN
SGD 96.00 (4.90) 100.00 90.00
Adam 99.00 (3.00) 100.00 90.00

OE
SGD 27.00 (15.52) 60.00 10.00
Adam 49.00 (25.87) 90.00 10.00

ATOM
SGD 86.00 (8.00) 100.00 70.00
Adam 99.00 (3.00) 100.00 90.00
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Figure 7.4: Attack performance on various models in terms of different types of optimizers.
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(a) SGD optimization in the white-box.
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(b) Powell optimization in the balck-box.

Figure 7.5: The optimization process of our attacks on both scenarios. The target label is 0.

scenarios. SGD optimizer and Powell optimizer is used in the white-box and black-
box scenario, respectively. Here, the target label that the adversary wishes is labeled
0. We can observe that with the decreases in loss values, attack methods in the
white-box and black-box scenarios can succeed to find target samples.
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7.6 Discussion

Our attack methods craft adversarial OOD examples through any pre-trained GAN
model to fool a victim classification model. In other words, our proposed frame-
work builds a mapping where vulnerable points of a victim classification model,
i.e. adversarial OOD examples, can be found in one GAN model. Here, we em-
phasize that this is different from perturbation-based adversarial example attacks
in essence. Although adversarial example attacks can find adversarial OOD ex-
amples, these examples are discrete and isolated. In contrast, adversarial OOD
examples constructed by our methods are from a GAN model. Although our novel
attack methods can fool ML models and circumvent state-of-the-art OOD detection,
it is still possible to mitigate our attacks. For instance, as illustrated in Section 7.5.3,
one possible efficient method is to design OOD detection that focuses on the most
vulnerable classes of a victim model.

7.7 Conclusion

Real-world ML models face various input examples, including OOD examples that
have a different distribution from the training set. In this chapter, we have pro-
posed a novel attack that causes ML models to misclassify an OOD example as
a pre-specified class that the adversary wishes. By leveraging any off-the-shelf
pre-trained GAN model, our framework attempts to craft the OOD example by
minimizing the distance between the victim model’s output and the pre-specified
class. Based on different attack scenarios: white-box and black-box, different attack
methods are proposed. We conduct extensive experiments on different victim mod-
els on different datasets. Our experimental results show that our attack methods
achieve comparable performance on both scenarios, compared with five adversarial
example attacks. Moreover, our evaluation also demonstrates that even for victim
models deploying defense mechanisms, our attack methods can still achieve com-
petitive performance on the white-box and black-box scenarios.

Our proposed attack methods can utilize any off-the-shelf unconditional GAN. Be-
sides, our methods can also craft OOD examples in a unified framework, which can
be applied to both the white-box and black-box scenarios. More importantly, our
methods have a different attack mechanism from existing attack methods. There-
fore, it is possible to consider our methods as a supplementary test tool to evaluate
the robustness of real-world ML models. In future, we plan to develop defense
measures to mitigate our attack. In addition, it is a promising direction to design
an attack that aims to reduce the number of queries in the black-box scenario.
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Chapter 8

Conclusion and Future Work

The demand for building generative AI systems for various fields, such as health-
care, artistic creation, and social media, is on the rise. Studying the privacy risks
of generative AI systems can help to guarantee that they are utilized responsibly.
Additionally, breakthroughs in generative AI can provide innovative perspectives
to investigate trustworthy discriminative models.

8.1 Conclusion

In this dissertation, we discussed the privacy risks of generative models and the
security risks of classification models. We have demonstrated a wide range of pri-
vacy attacks against generative models from the perspectives of model privacy and
data privacy. In terms of model privacy, we have shown powerful model extrac-
tion attacks on GANs. We then have demonstrated a protection method, which
can verify the ownership of GANs on both physical stealing and model extraction
scenarios. In terms of data privacy, we have shown the membership inference risks
of diffusion models, and revealed the relationship between leakage of training sam-
ples and generative mechanisms of diffusion models. We then have presented the
property inference risks of diffusion models, and proposed a model-agnostic and
plug-in defense method. In addition to studying privacy in generative models, we
have shown that adversaries can perform more powerful evasion attacks by utiliz-
ing off-the-shelf GAN models.

8.2 Future Work

Although these works have revealed the privacy risks of generative models and
novel security risks of classification models, there are several exciting directions for
future research.

Model privacy on multimodal generative models. Our work on model privacy of
GANs shows that as long as model owners allow adversaries to sufficiently query a
victim GAN model, such as 50K queries, adversaries can nearly duplicate the victim
GAN model without all the hard work that model owners did, such as collecting
datasets, designing advanced architectures. Indeed, very recent work on generative
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language models has shown that Sandford’s researchers can steal the OpenAI’s text-
davinci-003 model (GPT-3.5) by querying the exposed interface [TGZ+23]. The re-
sulting model Alpaca utilizes 52K instruction-following demonstrations generated
from the text-davinci-003 model and can achieve qualitatively similar performance
on self-instruct evaluation sets. Certainly, these attacks that compromise model pri-
vacy can raise significant apprehensions for model owners about their intellectual
property. Worsely, these apprehensions are being further compounded because
more and more multimodal and larger generative models have been developed,
such as multimodal text-to-image generative models and text-to-audio generative
models. Therefore, it is essential to investigate model privacy risks of multimodal
generative models. More importantly, from the perspective of defense, studying
ownership protection methods for these generative models is urgent.

Novel protection mechanisms on data privacy. Our work on membership infer-
ence of diffusion models reveals that training samples have much higher privacy
risks in medium amounts of noise in the whole diffusion time steps, which indi-
cates that the current noise mechanism used in diffusion models might need to
be redesigned. Indeed, very recent work from the DeepMind team proposes a
differentially private diffusion model to defend against privacy attacks, in which a
modified timestep noise mechanism motivated by our findings is utilized to replace
the original uniform distribution [GBG+23]. On the one hand, studying diffusion
models with differential privacy and improving better quality of generated samples
is still a promising direction. On the other hand, it is very valuable to explore novel
protection mechanisms to mitigate model memorization. One possible example is
to design novel algorithms that aim to erase memorized training samples via edit-
ing a well-trained model, which can avoid the issue of model training and enjoy
computation-friendly advantages.

Trustworthy applications via generative models. Our work on OOD attacks via
pre-trained GANs shows that it is useful to apply generative models to reveal the
security risks of discriminative models. Currently, the robustness of discrimina-
tive models is still a big challenge when they are deployed in an open world. For
example, discriminative models in autonomous driving systems might make inap-
propriate decisions for certain new samples. Given the success of generative models
in synthesizing new and unseen samples, improving the robustness performance
of discriminative models via the generation capability of generative models is an
important direction.

Looking forward, we believe that progress in privacy in generative models not only
benefits the responsible use of generative AI, but also deepens our understanding
of generative techniques.
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