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ABSTRACT
In the context of exascale programming, we investigate a parallel
distributed productivity-aware tree-search for exact optimization in
Chapel. To this end, we present the DistBag-DFS distributed data
structure, which is our revisited version of the Chapel’s DistBag
data structure for depth-first search. The latter implements a dis-
tributed multi-pool, as well as an underlying locality-aware load
balancing mechanism. Extensive experiments on large unbalanced
tree-based problems are performed, and the competitiveness of
our approach is reported against MPI+X implementations in terms
of performance. For our best results, we achieve 94% of the ideal
speed-up, using up to 64 computer nodes (8192 cores).
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1 INTRODUCTION
In the context of exascale programming1, we investigate a parallel
distributed productivity-aware tree-search for exact optimization
in Chapel. The focus is put on the backtracking/Branch-and-Bound
(B&B) algorithms, which explore implicitly constructed trees. The
efficient parallel design and implementation of these methods is
challenging because the pattern of computation and communication
captured by these latter is highly irregular. In this work, we consider
the commonly used parallel tree exploration model, which consists
in exploring several disjoint subspaces in parallel (i.e. multiple tree-
searches are performed in parallel). Depth-First Search (DFS) is used
as it provides a good memory efficiency, unlike the other search
strategies (e.g. breadth-first). It is usually implemented as a stack,
operating in a last-in first-out (LIFO) order. In the asynchronous
mode adopted in this work, the search processes communicate in
an unpredictable manner and the sharing of knowledge among
workers becomes non-trivial. Therefore, defining a data structure
to store the work pool and an associated management policy is
highly important for performance. In this paper, we investigate a
multi-pool strategy, in which each search process maintains a work
pool, and dynamic load balancing is required to balance workload.
For that purpose, we consider the Work Stealing (WS) paradigm, in
which idle processes steal work items from another work pool.

To the best of our knowledge, the few existing works in the
context of productivity-aware parallel exact optimization in Chapel
are from some of the co-authors of this paper. In [1], we proposed
an incremental parallel PGAS-based backtracking algorithm. Re-
ported results on the N-queens problem show that the distributed

1Top500 ranking (November 2022): https://www.top500.org/lists/top500/2022/11/.

search achieves up to 80% of the scalability of its MPI+OpenMP
counterpart. The approach is based on the high-productivity itera-
tor features of Chapel. In addition, we propose in [2] an extension
of the previous algorithm to a more difficult problem, which is
the resolution of large Permutation Flowshop Scheduling Problem
(PFSP) instances. The Chapel-based search presents performance
equivalent to MPI+pthreads for its best results on 1024 cores and
reaches up to 84% of the linear speed-up.

Both works mentioned above used data structure specific to per-
mutation problems. The search strategy consist in non-recursive
backtracking that does not use dynamic data structures. Unlike
these papers, we propose in this work a more generic approach
based on the task-parallel features of Chapel. The implementa-
tion relies on the DistBag-DFS distributed data structure, which
provides a distributed multi-pool as well as an underlying locality-
aware WS mechanism. The latter is our revisited version of the
Chapel’s DistBag data structure for DFS.

2 DESIGN AND IMPLEMENTATION
2.1 The DistBag-DFS distributed data structure
2.1.1 Limitations of the DistBag data structure. The Chapel’s
DistributedBag package module2 implements a parallel-safe dis-
tributedmulti-pool implementation, called DistBag. This data struc-
ture is unordered and incorporates a WS mechanism to balance
workload across multiple locales, transparently to the user. While
the bag is safe to use in a distributed manner, each node always
operates on its privatized instance. DistBag can contain either
predefined-Chapel types, user-defined types or external ones (e.g. C
structures). Internally, the DistBag container is composed of mul-
tiple pools (called segments) implemented as unrolled linked-lists.
In the following, we refer to pool and segment without distinction.
By default, there are as many segments per locale as threads. To
ensure correctness, operations on pools (insertion, retrieval, etc.)
are lock-protected.

Preliminary experiments and source-code inspection revealed
that pools do not necessarily operate in LIFO-order and, in addi-
tion, they are not explicitly mapped onto threads. In fact, multiple
pools are maintained to reduce lock contention, but threads remove
and insert elements from any (not necessarily the same) unlocked
pool. Although this may be acceptable for some applications, this
behaviour is not suitable for parallel DFS. In DFS, when a node
is evaluated, the entire subtree below it must be explored before
another sibling node is processed. However, when children nodes
are inserted into a different pool than the one from which the par-
ent was taken, that necessary condition cannot be ensured. As a
2The DistributedBag module (Chapel 1.29.0): https://chapel-lang.org/docs/modules/
packages/DistributedBag.html.
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direct consequence, memory requirements may rapidly grow out
of control. This has been observed in our preliminary experiments,
and is consistent with the Chapel documentation2 which states
that important memory consumption may appear in single-locale
experiments.

The parallel distributed aspect of the DistBag data structure,
as well as the underlying WS mechanism make it particularly at-
tractive in the context of parallel distributed productivity-aware
tree-search. However, as explained above, its segments’ scheduling
policy does not allow us to use it for parallel DFS, nor to have any
control over the order of insertion/retrieval of nodes. This motivates
our redefinition of the data structure and underlying mechanisms.

2.1.2 Our revisited version for DFS. In this work, we revisit the
DistBag data structure in two different ways: (1) we redesign the
work pools implementation, and thus provide a new synchroniza-
tion scheme using non-blocking split deques, and (2) we redefine the
underlying WS mechanism. The resulting data structure is refered
to as DistBag-DFS and its implementation is publicly available [3].

Non-blocking split deques. We extend the segments’ scheduling
policy to support insertion and retrieval from both ends, effectively
supporting both first-in first-out (FIFO) and LIFO orders, like a
deque. This allows threads to perform the local exploration of nodes
in a DFS, whereas the oldest (i.e. shallowest) nodes are stolen in
WS operation.

WS operations require synchronization between thieves and
victim threads. In the DistBag data structure, segments are lock-
protected using one atomic synchronization variable per segment,
i.e. when a thread operates on a segment, the latter is locked until
the end of the operation. In DistBag-DFS, we redesign this syn-
chronization scheme using non-blocking split deques [4, 5]. This
method consists in splitting deques (segments) into a public and a
private portion using an atomic split pointer, as shown in Figure 1.
Under this scheme, all processes push new tasks on the tail of the
queue and pop tasks from the tail to get the next task to execute in
LIFO order, while WS is done at the head in a FIFO manner. This
synchronization scheme allows lock-free local access to the private
portion of the deque and copy-free transfer of work between the
public and private portions of the deque. Work transfer is done
by moving the split pointer in either directions. Thieves synchro-
nize using a lock and the local process only needs to take the lock
when transferring work from a portion to the other of the deque.
Some authors demonstrate the efficiency of such synchronization
scheme at scale using several benchmarks, including the Unbal-
anced Tree-Search benchmark (UTS) [5]. While each segment acts
like a deque, the overall DistBag-DFS semantics does not guaran-
tee a strict deque semantics, in contrast to the Chapel’s DistDeque
data structure3.

Work stealing mechanism. When a thread’s segment becomes
empty during execution, the retrieval operation of the bag transpar-
ently becomes a WS operation, i.e. an attempt is made to steal work
items from another segment. The latter is thus embedded in the
retrieval operation (called remove) of the DistBag-DFS data struc-
ture, which is illustrated in Figure 2. For readability, only one bag

3The DistributedDeque module (Chapel 1.29.0):https://chapel-lang.org/docs/
modules/packages/DistributedDeque.html.

Figure 1: Simplified view of a non-blocking split deque.

Figure 2: Illustration of the DistBag-DFS data structure.

instance is shown (one per Chapel’s locale in practice). In this fig-
ure, we assume that DistBag-DFS is used by 𝑇 threads (per locale)
and that bag instances are initialized with 𝑇 segments (this is the
default behavior). Each thread has a unique identifier 0, . . . ,𝑇 − 1,
mapping threads to segments. The identifier is used in the bag’s
insertion (resp. retrieval) procedure, to specify the segment into
(resp. from) which an element node gets inserted (resp. retrieved).
When a segment 𝑠𝑖 is empty, thread 𝑡𝑖 first tries to steal workload
from another thread’s segment of its locale. If a victim thread fulfills
the stealing request (𝑡𝑇−2 in the figure), 𝑡𝑖 gets its lock and steals
work (this case if referred to as SUCCESS in the remove procedure).
However, if all local attempts fail, the thief tries a global steal. It
means that a victim bag instance is chosen, and its segments are vis-
ited. Since global WS operations generate high parallel overheads,
the thief is expected to steal more work items than it needs. Then,
these extra work items provide work for potential local WS. Thus,
when a thread performs a global steal, other global steal requests
issued by threads in its locale are ignored (FAST_FAIL). Finally, the
remove operation fails if both local and global steals fail (FAIL). The
random victim selection strategy is used for both local and global
WS, and half of the shared region of the victim segment is stolen.

2.2 Parallel distributed DFS
In this work, DistBag-DFS is employed to implement a generic
parallel distributed DFS (i.e. non problem-specific). The problem
as well as its data are passed to the algorithm via a problem class
instantiation. Algorithm 1 shows a simplified view of the imple-
mentation in Chapel. Termination detection as well as the sharing
of global knowledge are omitted to favor readability. First of all,
the bag is initialized and the root node is created and inserted in
it (lines 1-3). Note that DistBag-DFS here contains user-defined
Node data type. In addition, we arbitrarily chose to insert the root in
task 0’s segment. Then, nested concurrent tasks are created using
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the two coforall statements, and synchronized before the search
(lines 5-7). Note that tasks are distributed using the on clause. At this
stage, the parallel exploration starts, and each task is indefinitely
performing:

(1) the retrieval of a parent node into the bag (lines 9-10). As
explain in Section 2.1.2, this procedure also invokes a WS
mechanism if needed.

(2) the checking of the termination detection (line 11). In few
words, it consist of a bi-level mechanism, where the local
tasks’ statuses are first checked, and then globally, if needed.

(3) the sequential decomposition of the parent node into a set
(possibly empty) of children nodes (line 13). This function
contains all the backtracking/B&B logic (e.g. branching,
bounding, pruning).

(4) the insertion of the children nodes in the bag (line 14);
(5) the sharing of global knowledge if any, e.g. the best solution

found so far.
Note that the only difference between DistBag and DistBag-DFS

from a user point of view is that the calling task’s id is now explicitly
gave to the insertion and retrieval procedures to ensure correctness
of the DFS, as discussed in Section 2.1.2. In the following, this algo-
rithm is referred to as P3D-DFS [3] (which stands for Performance-
and Productivity-aware Parallel Distributed Depth-First Search).

Algorithm 1: Simplified view of our parallel distributed
productivity-aware DFS in Chapel

1 var bag = new DistBag_DFS(Node, Locales);
2 var root = new Node(problem);
3 bag.add(root, 0);
4

5 coforall loc in Locales do on loc {
6 coforall taskId in 0..#here.maxTaskPar {
7 allLocalesBarrier.barrier();
8 while true {
9 var (hasWork, parent): (int, Node);
10 (hasWork, parent) = bag.remove(taskId);
11 /* Check termination condition */
12 var children: list(Node);
13 children = problem.decompose(parent);
14 bag.addBulk(children, taskId);
15 /* Share the global knowledge */
16 }
17 }
18 }

3 EXPERIMENTAL EVALUATION
In this section, our Chapel-based parallel distributed tree-search
is evaluated and compared to MPI+X baseline implementations in
terms of performance and scalability. As test-cases, we consider
the B&B method and its application to the PFSP, and the UTS
benchmark. PFSP consists in finding an optimal processing order
for 𝑛 jobs on 𝑚 machines, such that the completion time of the
last job on the last machine is minimized, while UTS consists in
counting the number of nodes in an implicitly constructed tree
that is parameterized in shape, depth, size and imbalance. More
particularly, some of the well-known PFSP Taillard’s instances [6]
are solved (e.g. Ta27, Ta26 and Ta24) as well as synthetic UTS trees.

Different granularities (e.g. B&B lower bound functions) are also
considered. The experiments are conducted on a cluster equipped
with 2 AMD Epyc ROME 7H12 @ 2.6 GHz processors, including a
total of 128 cores and 256 GB RAM per computer nodes. All nodes
are interconnected through a Fast InfiniBand HDR100 network, and
operate under Red Hat Enterprise Linux 8.3, 64 bits. Finally, Chapel
1.29.0 is used with a well-tuned environment for execution. The
following implementations are experimented:

• P3D-DFS: Chapel implementation of backtracking/B&B [3],
described in Section 2.2. It relies on the DistBag-DFS data
structure and is instantiated on the B&B method and its
application to the PFSP, and the UTS benchmark.

• MPI-PBB: MPI+pthread implementation of B&B [7]. It is a
Master-Worker approach using an interval-based encoding
of work units and the IVM data structure [8] (specifically
designed for permutation-based problems) for the imple-
mentation of DFS. Each MPI worker consists of multiple
worker threads performing local WS operations for load
balancing on the intra-node level. Inter-node work load bal-
ancing is performed by the intermediate of the centralized
coordinator process.

• MPI-PUTS: two-sidedMPI+MPI implementation of UTS [9,
10]. In this approach, each MPI process maintains a private
deque, and dynamic WS is done using an explicit polling
progress engine. Aworking processmust periodically invoke
the progress engine in order to observe and service any
incoming steal requests.

Figure 3a shows the absolute speed-up reached by P3D-DFS and
MPI-PBB in distributed setting, using up to 64 computer nodes (8192
cores). First of all, we can see that P3D-DFS outperforms its counter-
part in almost all cases. Indeed, the presence of a master process in
MPI-PBB makes termination detection trivial, however, it becomes
a sequential bottleneck at large scale. Nevertheless, solving the
largest Ta24 instance with the finest granularity, MPI-PBB achieves
better results than P3D-DFS. This can be explained by the fact that
in this experiment, the management overheads of the data structure
and load balancing mechanism are particularly visible, and thus
DistBag-DFS seems to be less efficient than its counterpart. For its
best results, P3D-DFS achieves 94% of the ideal speed-up. Similar
experiments on the UTS are shown in Figure 3b. On the one hand,
one can see that for medium- and coarse-grained experiments, P3D-
DFS outperforms its counterpart. Limited scalability of MPI-PUTS
can be explained by the fact that the implementation does not have
a locality-aware WS mechanism, as P3D-DFS does, meaning that a
thief thread steals a local/remote victim one, without distinction.
On the other hand, P3D-DFS is outperformed at fine grain. In fact,
this is explained by the poor scalability of the latter at the intra-
node parallel level, that leads to limited absolute speed-up. This
is consistent with the observation done in Figure 3a. For its best
results, P3D-DFS reached up to 66% of the linear speed-up.

4 DISCUSSION AND FUTURE PERSPECTIVES
In this section, we discuss the productivity-awareness of P3D-DFS,
as well as the future perspectives. Some authors characterize HPC
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(a) P3D-DFS vs.MPI-PBB on B&B applied to PFSP.
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Figure 3: Absolute speed-up achieved by P3D-DFS and MPI+X baseline implementations on large unbalanced tree-based
problems, considering different granularities (fine, medium, coarse). For each figure, most coarse-grained is top-right, most
fine-grained is bottom-left. Computer nodes vary from 1 to 64.

productivity as a trade-off between performance and programming
effort [11]. Regarding the latter aspect, Chapel’s global view of
control flow and data structures make it straightforward to design
and implement a distributed backtracking/B&B based on a sequen-
tial version. This requires few more lines of code in contrast to
MPI+X, where we have to deal explicitly with inter-node commu-
nications or command line launch parameters for example. On the
other hand, P3D-DFS is generic and general. It is instantiable on
numerous optimization problems. This is facilitated by the object-
oriented programming supported by Chapel, as well as the generic
DistBag-DFS data structure. In addition, as shown in Section 2.2,
the latter hides to the user the multi-pool implementation as well
as the underlying WS mechanism, which has the benefit of mak-
ing the parallel distributed implementation readable and easy to
maintain. Nevertheless, in contrast with DistBag, we have seen in
Section 2.2 that our revisited version introduces a new argument
(the calling task’s id), and it is not ideal since the burden belongs to
the user. A priori, Chapel’s design intentionally avoids supporting
a standard language-level way to query a task’s id. Nevertheless, it
could be possible to exploit the internal chpl_task_ID_t opaque
type, that refers to the task ids that the runtime uses. This will raise
portability issues since Chapel includes different runtime tasking
options (qthreads and fifo), and the support is not guaranteed to
continue across future versions of the language.

From a performance point-of-view, we have seen in Section 3
that DistBag-DFS suffers from high management overheads, espe-
cially visible on fine-grained applications. A future work is thus to
optimize its low-level mechanisms, and to benchmark and compare
its performance with well-established Chapel or C data structures.
In addition, we plan to investigate the performance and scalability

of P3D-DFS at a larger scale, and consider other optimization prob-
lems (e.g. Knapsack problems). Finally, we hope that Chapel will
integrate our efforts over the coming months for the benefit of the
community.

5 CONCLUSION
In this paper, we presented the design and implementation of a
productivity-aware parallel distributed DFS in Chapel, namely P3D-
DFS. The latter is based on the DistBag-DFS distributed data struc-
ture, which is our revisited version of the Chapel’s DistBag data
structure for DFS. It implements a distributed multi-pool, as well as
an underlying locality-aware WS mechanism to balance workload.
Reported results on large unbalanced tree-based problems revealed
that P3D-DFS is competitive against MPI+X baseline implementa-
tions for coarse-grained applications. More precisely, it achieves
up to 94% and 66% of the ideal speed-up using 64 computer nodes
(8192 cores), on the B&B applied to PFSP and the UTS, respectively.
Nevertheless, we note that DistBag-DFS seems to suffer from high
management overheads, especially visible at fine grain, and we plan
to further investigate its design and implementation.
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