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Abstract

In this paper, a reinforcement learning structure is proposed to auto-tune
PID gains by solving an optimal tracking control problem for robot ma-
nipulators. Taking advantage of the actor-critic framework implemented by
neural networks, optimal tracking performance is achieved while unknown
system dynamics are estimated. The critic network is used to learn the op-
timal cost-to-go function while the actor-network converges it and learns the
optimal PID gains. Furthermore, Lyapunov’s direct method is utilized to
prove the stability of the closed-loop system. By that means, an analytical
procedure is delivered for a stable robot manipulator system to systemat-
ically adjust PID gains without the ad-hoc and painstaking process. The
resultant actor-critic PID-like control exhibits stable adaptive and learning
capabilities, while delivered with a simple structure and inexpensive online
computational demands. Numerical simulation is performed to illustrate the
effectiveness and advantages of the proposed actor-critic neural network PID
control.

Keywords: Reinforcement learning, Actor-critic, PID control, Neural
network, Robot manipulators

1. Introduction

Energy conservation and environmental protection are becoming increas-
ingly important due to the progress of society and the limitation of energy
resources. To deliver energy-efficient systems, the focus of control algorithms
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is shifting to low-energy control developments. Optimal control that aims to
fulfill the control task by consuming the least control source has gained in-
creasing importance in modern technologies [27]. This method is emerging
as one of the fundamental tools in recent dynamical systems studies, driven
by practical needs coupled with the ability to overcome theoretical challenges
[34, 11, 16, 42, 21, 40].

Real-world engineering systems have continuous nonlinear features. The
solution of nonlinear optimal control depends on the solution of the underly-
ing Hamilton–Jacobi-Bellman (HJB) equation [50]. But, the HJB equation
is a first-order nonlinear partial differential equation that is very difficult to
solve [59]. Heretofore, finding an exact analytic solution for such intractable
nonlinear equations has remained an unsolved problem. One practical solu-
tion is linearizing the system. Riccati equation is a typical method to cope
with the optimal control of a linear system [6]. This method can provide an
exact solution using analytical approaches. In our previous work, we stud-
ied an extension of the Riccati equation, named inverse differential Riccati
equation, to deliver a closed-loop optimal control for a fixed-end-point linear
system over a specific time interval [42]. Moreover, several researchers em-
ployed numerical approaches to solve the nonlinear optimal control [8, 43, 22].

Instead of delivering a direct approach to solve the HJB equation, several
algorithms were developed to approximate the solution of nonlinear optimal
controls. Policy iteration [15] involves a computational intelligence tech-
nique that can evaluate, and then improve the cost of a control policy until
converging to the optimal controller. Generalized policy iteration [54] is a
family of optimal learning techniques which has policy iteration at one ex-
treme. Dynamic programming [5] is another method proposed to optimize
nonlinear control. But, this method works in a backward-in-time manner and
thus suffers from the problem of ”dimensional curse”, and computational un-
tenability. Adaptive dynamic programming [33] is a forward-in-time online
learning algorithm based on value iteration. This method is based on an
actor-critic framework in which the critic network is used for value function
approximation while an actor-network is employed for approximation of the
control policy [26, 31, 28].

Reinforcement Learning (RL) [49] can be formulated based on value-based
methods, policy gradient methods, or actor-critic methods, for nonlinear con-
trol problems [17, 61, 46, 57]. In actor-critic RL, typically the critic network
evaluates the performance of the control policy, and the actor-network gener-
ates and improves the controlling action sequence in the system [12, 38, 62].
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Most available actor-critic RL optimal controls for nonlinear systems require
the exact model acknowledged [50, 9]. However, driving the exact model
for real-world nonlinear physical systems is often impossible, leading such
controls to be inefficient in practical engineering implementation. Accord-
ingly, recent studies are tending toward developing RL optimal controls for
systems with unknown nonlinear dynamics. Nonetheless, to compensate for
the dynamics uncertainty, many of those developments require the utiliza-
tion of an adaptive approximation-based identifier [58] or an observer [60],
which increases the computation complexity. Most importantly, almost all
of those algorithms to ensure delivering stable performance, required com-
plicated control with different gains to be tuned [7, 39]. This may result in
complex yet unreliable control which is extremely dependent on extra steps
for gain tuning/estimating.
Proportional–integral–derivative (PID) controls have been known as one of
the most practical tools in engineering applications. It offers a simple yet
efficient solution to many real-world control problems due to its simplicity
and intuitiveness in both structure and concept [13, 48]. Control gain deter-
mination is the key to PID design. For classical PID controllers, the gains
typically remain constant during the execution. It may degrade the over-
all performance of the closed-loop system. Thus, to function satisfactorily,
PID parameters have to be properly designed and tuned [35]. Several tech-
niques like fuzzy logic [51, 52, 14], neural network [1], genetic algorithm,
[67] or particle swarm optimization [19, 45] were developed to present tun-
ing of PID gains. However, integrating such approaches to control design,
increases the complexity of the overall controller. Also, such controllers suf-
fer from stability guarantees, while stability has always been a great concern
with engineering systems since uncertain dynamics or disturbances are prone
to drive the system unstable.

Motivated by the above discussion, we propose a simple actor-critic RL
optimal tracking control for nonlinear robot manipulators. The core of the
proposed control is based on a PID structure with the minimum required
gains to be determined. Actor-critic RL with neural networks is used through
the direct Lyapunov analysis to auto-tuning the PID gains. Bearing the PID
structure, the proposed control is simple in structure, inexpensive in com-
putation, and easy to implement. On the other hand, by taking advantage
of RL framework learning properties, the optimal performance of the system
is addressed. Accordingly, superior tracking control with improved perfor-
mance is achieved.
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Compared with the existing literature, the main advantages of this study
are summarized as follows.

1. This work combines Lyapunov-based PID control with actor-critic RL
to achieve a simple, stable optimal tracking control solution for non-
linear robot manipulators. Accordingly, stable optimal performance is
achieved using an efficient while simple framework. Thus, this study
delivers energy-efficient and practical control frameworks thanks to its
intuitiveness in concept and simplicity in design.

2. Different from most PID controls suffering an ad-hoc and painstak-
ing process to determine PID gains, the proposed method delivers a
systematic way to obtain such gains with the minimum required pa-
rameters to determine. Direct Lyapunov analysis combined with the
learning-based scheme and neural networks is utilized to automatically
and continuously update the gains. This feature allows the dynamics
nonlinearities and uncertainties to be addressed. As a result, a struc-
turally simple self-tuning approach is achieved, which ensures system
stability and guarantees prescribed performance specifications.

3. In contrast to many publishing RL-based optimal control methods like
[66], and [2], our presented actor-critic frameworks do not require model
knowledge. Also, it removes the need for employing an identifier [63] or
observer [30, 41] to compensate for the unknown or uncertain system
dynamics. On top of this, inspired by the behavior of the generalized
PID error signal, we introduced a novel cost function that can properly
improve the tracking performance. All make the proposed approach
practical for real-world nonlinear engineering systems.

The rest of the paper is structured as follows. Section 2 delivers prelimi-
naries and formulates the control problem. Section 3 provides the actor-critic
reinforcement PID control design and analyzes the stability of the system.
Simulations are illustrated to show the effectiveness of the proposed control
framework in Section 4. Section 5 discussed the advantages of the method
and the future direction of the paper. Finally, the conclusion has summarized
the paper in Section 6.

Notations. Throughout this paper, we use R to denote the sets of real
numbers. (•̃) = (•̂)− (•∗), with (•∗), and (•̂), are indicated the optimal, and
the estimated values of (•), respectively. Vertical bars ∥•∥ stand with the
Frobenius norm for matrices or the Euclidean norm for vectors, and, λmax (•)
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and λmin (•) represent the largest and the smallest eigenvalues of a square
matrix (•), respectively.

Note that throughout this article, for simplifying notation, the arguments
in variables or functions are dropped, whenever possible, if no confusion is
likely to occur.

2. Problem Formulation and Preliminaries

2.1. Problem Formulation

Consider the dynamic model of a robot manipulator as

Mq̈ + Cq̇ +G = τ, (1)

where M(q) ∈ Rn×n denotes the mass matrix and q (t) ∈ Rn is the general-
ized joint coordinate vector with n number of joints, C(q, q̇) ∈ Rn represents
the centrifugal and Coriolis forces vector, G(q) ∈ Rn is the vector of grav-
itational forces/torques, and τ(t) ∈ Rn is the vector of generalized torques
acting at the joints.

Property 1 [24], [47]. The mass matrixM is symmetric and positive definite.

In addition, the matrix Ṁ −2C is skew-symmetric, i.e., νT
Ä
2C − Ṁ

ä
ν = 0,

for all ν ∈ Rn.

Property 2 [47], [25]. The mass matrix M is positive definite, and its ma-
trix norm is bounded by ψm > 0, and ψM > 0 such that ψm ≤ ∥M∥ ≤ ψM .
Furthermore, for some unknown positive constants χ and γ, ∥C∥ ≤ χ ∥q̇∥ ,
∥G∥ ≤ γ.

Note that the subsequent development is based on the assumption that joint
coordinate vector q (t), and its first-time derivative q̇ (t) are measurable, and
dynamics gains M(q), C(q, q̇), and G (q) are unknown.

The objective of the paper is to design reinforcement learning-based PID
control law for the robot system (1) such that the system uncertainties are
accommodated adaptively, the robot joint position signal q (t) moves along
a given desired trajectory qd (t), as closely as possible, and all the internal
signals are guaranteed to be bounded while minimizing a desired cost-to-go
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function. To this end, the assumption below is imposed.

Assumption 1. The desired trajectory qd (t) ∈ Rn, and its first and second-
time derivatives, i.e., q̇d (t) ∈ Rn, and q̈d (t) ∈ Rn, respectively, are continu-
ous, bounded and accessible in real-time to the controller.

2.2. Preliminary

A neural network approximation is used to approximate the system un-
certainties and the cost function, and to determine PID gains through a
direct Lyapunov method. Based on its powerful learning abilities, we employ
Radial Basis Function (RBF) neural network [32, 65] to approximate contin-
uous function f (Z) : Rm → R, as f (Z) = ωTh (Z), where Z ∈ Ωz ⊂ Rm

is the neural network input vector with m being the neural network input
dimension, ω ∈ Rr is the neural network weight vector with r is the node num-
ber, h (Z) = [h1 (Z) , h2 (Z) , . . . , hr (Z)]

T is a vector of basis function vector
with hi (Z) being the Gaussian functions for i = 1, ..., r, and expressed as

hi (Z) = exp
Ä
−(Z − αi)

T (Z − αi)
¿
β2
ä
, with αi = [αi1, αi2, . . . , αim]

T be-

ing the center of the ith input element of the neural network, and β being
the width of the Gaussian functions. In [44], it has been shown that by
choosing sufficient number of nodes, the RBF neural network can approx-
imate any continuous function f (Z) over the compact set Ωz ⊂ Rm, as
f (Z) = ω∗Th (Z) + ε (Z) , ∀Z ∈ Ωz ⊂ Rm, where ω∗ is the ideal constant
weight vector, and ε (Z) is the unknown approximation error which is upper
bounded in the sense that ∥ε (Z)∥ ≤ εM , ∀Z, ∈ Ωz ⊂ Rm with εM ∈ R+

being an unknown constant [10].

Lemma 1. [23] For the Gaussian RBF neural network f (Z) = ωTh (Z),
there exists a constant Ch > 0 such that

∥h (Z)∥ ≤ Ch, (2)

where Ch is taken as
∞∑
k=0

3m (k + 2)m−1 exp
(
−2ν2k2

/
β2

)
, and ν is being ν :=

1
2
mini ̸=j ∥αi − αj∥.

Remark 1. It has been shown in [56] that since the infinite series¶
3m (k + 2)m−1 exp

(
−2ν2k2/β2

)©
, (k = 0, 1, . . . ,+∞)
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is convergent by the Ratio Test Theorem [3], the upper bound Ch in (2) is a
limited value. Also, it is clear that Ch is independent of the neural network
input variables, Z, and the dimension of neural weights, r.

Remark 2. A number of parameters including lower or upper bounds are
defined by Property 2, Lemma 1, Remark 1, and in defining the neural net-
works. These bounds will be used to formulate the control frameworks and to
analyze the system’s stability. However, although these parameters exist, they
will not involve in designing the control. Accordingly, actual estimation of
them will not be required in setting up and implementing the control scheme.

Lemma 2. [36] [29] Consider a positive function given by

V (t) =
n∑

i=1

1

2
ei (t)

T Q (t) ei (t)

with Q (t) = QT (t) > 0 is a dimensionally compatible matrix, and initial
bounded condition V (0). If the following inequality holds:

V̇ (t) ≤ −ι1V (t) + ι2, (3)

where ι1, and ι2 are positive constants, then, the error signal ei in the closed-
loop system remain in the compact set Ωr := {Υ| ∥Υ∥ ≤ ℵr}, and they will
finally converge to the convergence compact set Ωc := {Υ| ∥Υ∥ ≤ ℵc}, where
ℵr =

»
2 (V (0) + ι2/ι1), and ℵc =

»
2ι2/ι1.

Lemma 3. [18, 37] Consider

Ξ(t) = 2υe (t) + υ2
∫ t

0

e (t) dρ+ de (t)/dt,

with υ > 0, and e (t) ∈ Rn. Then, the boundedness of Ξ (t) guaranties the
boundedness e (t) ,

∫ t

0
e (t) dρ, and de (t)/dt.

3. Control Design

This work introduces an actor-critic reinforcement learning framework
into a PID control design of robot manipulators. The critic neural network
approximates the cost function, and the actor neural network tunes the PID
gains to generate the control signal. The schematics of the proposed actor-
critic learning-based PID control system are shown in Fig.1.

7

This preprint research paper has not been peer reviewed. Electronic copy available at: https://ssrn.com/abstract=4409551

Pr
ep

rin
t n

ot
 p

ee
r r

ev
ie

wed



Manipulator
q

∫
κ20

d
dt

2κ0

kd

qd

κD

e

τ

Ξ

Critic Networ

Actor Network

Ĵ

Figure 1: The architecture of the proposed actor-critic learning based PID control system

3.1. Reinforcement Learning

3.1.1. Critic Network

A long-term discounted cost is defined as,

J (t) =

∫ ∞

t

e−
m−t
ψ r (m) dm, (4)

where ψ is a time constant for discounting the future cost.
Inspiring by the intuitiveness of PID control in the tracking dynamical sys-
tems, i.e., canceling the steady-state error, boosting the closed-loop system
dynamics, and thus improving the tracking of low-frequency references [4],
we introduce the instant cost function as

r (t) = Ξ (t)TQΞ (t) + τ (t)TRτ (t) , (5)

with Ξ(t) is a PID-like generalized error signal which defines as Ξ(t) =
2υe (t) + υ2

∫ t

0
e (t) dρ + υde (t)/dt, with e (t) = qd (t) − q (t), υ is a posi-

tive constant, and Q and R are positive semi-definite matrices that could
not be zero at the same time. Note that the cost function (5) is different
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from that in the traditional LQR problem, in which first, Ξ(t) is not only
the error or its first-time derivation but also includes the integration of the
error in the execution time which can inclusively improve the tracking per-
formance; and second, R is a positive semi-definite matrix. Thus, in the case
that strictly precise tracking is required, one can set R = 0 to more emphasis
on tracking performance.

Let J = W ∗
c
Thc (Zc) + εc, and Ĵ = Ŵ T

c hc (Zc) with Zc = Ξ, and define
the prediction error as

δ(t) = r(t)− 1

ψ
Ĵ(t) +

˙̂
J(t)

= r(t) + Ŵc

T
Å
ḣc (Zc)−

1

ψ
hc (Zc)

ã
= r(t) + Ŵc

T
Λ,

(6)

where Λ = ḣc − hc/ψ. Note that (6) is similar to the Hamiltonian defined in
[53], and [55]. Consider Ec = 1/2δT δ, then ideal approximation is achieved
if error function Ec is minimized. Utilizing the gradient descent method, the
updating law for the critic network is designed as

˙̂
Wc = −σ ∂Ec

∂Ŵc

= −σ
Ä
r + Ŵ T

c Λ
ä
Λ, (7)

where σ > 0 is the learning rate for the critic network. Ultimately, the so-
called σ−modification term is added to the critic network updating law (7),
to ensure the boundedness of ∥ Ŵc ∥, and to improve the robustness of the
closed-loop system [38, 68, 20]. Then, (7) is formed as

˙̂
Wc = −σ

Ä
r + Ŵ T

c Λ
ä
Λ− σηcŴc, (8)

where ηc is a positive constant.

3.1.2. Actor Network

Consider a positive definite Lyapunov function candidate as

Vr =
1

2
ΞTMΞ. (9)

Note that, according to Lemma 3, the boundedness of the generalized error
Ξ(t), ensures the boundedness of error signal e(t). Thus, the original tracking
control task can boil down to stabilizing Ξ(t). Accordingly, by choosing the
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Lyapunov function (9), and developing a systematic strategy to set the con-
trol input τ(·), such that Ξ is bounded, we can achieve the control objective
on bounding the error signal.

Differentiation Vr with respect to time gives

V̇r = ΞTM Ξ̇ +
1

2
ΞTṀΞ. (10)

Considering the definition of the generalized error Ξ, and using the robot
dynamics (1), we obtain M Ξ̇ = Cq̇ + G − τ +M𭟋 (·) , where 𭟋 (·) = q̈d +
2κ0ė+κ

2
0e, with e (t) = qd (t)−q (t) is a computable term. Since all variables

are accessible, then, considering Properties 1 and 2 and utilizing Young’s
inequality [64], we have

ΞTCq̇ ≤ α∥Ξ∥2χ2∥q̇∥4 + 1/4α,

ΞTG ≤ α∥Ξ∥2γ2 + 1/4α,

ΞTM𭟋 ≤ α∥Ξ∥2ψ2
M∥𭟋∥2 + 1/4α,

1

2
ΞTṀΞ = ΞTCΞ ≤ α∥Ξ∥2χ2∥q̇∥2∥Ξ∥2 + 1/4α,

where α > 0 is a design parameter. Accordingly, considering (10) and utiliz-
ing the above inequalities, we can obtain

V̇r ≤ α∥Ξ∥2
Ä
χ2∥q̇∥4 + γ2 + µ2∥𭟋∥2 + χ2∥q̇∥2∥Ξ∥2

ä
− ΞT τ +

1

4α

≤ −α∥Ξ∥2Γ− ΞT τ +
1

α
,

(11)

with Γ = −
Ä
χ2∥q̇∥4 + γ2 + µ2∥𭟋∥2 + χ2∥q̇∥2∥Ξ∥2

ä
.

We propose PID-like control input as

τ = (kp + κP (·)) e (t) + (ki + κI (·))
∫ t

0

e (t)dρ+ (kd + κD (·)) de (t)
dt

, (12)

with kp, ki, and kd are positive constant. As it is clear in (12), compared with
the traditional PID control that involves only constant gains, our proposed
PID-like control includes time-varying gains κP (·), κI (·), and κD (·). On that
basis, we have six degrees of freedom to select parameters independently. To
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reduce the complexity of the gain tuning parameters, we employed coefficient
υ > 0 to link the gain’s parameters and rewrite them in terms of derivative
gains as: kd = kp/2υ = ki/υ

2; and similarly, κD (·) = κP (·)/2υ = κI (·)/υ2.
Accordingly, by designing υ so that e2 + 2υe+ υ2 is Hurwitz, we can reform
(12) to only require two parameters to determine, i.e., kd, and κD (·). Then,
the PID control is expressed as

τ = (kd + κD (·))
Å
2υe (t) + υ2

∫ t

0

e (t) dρ+
de(t)

dt

ã
. (13)

Accordingly, the complex task of determining PID gains is reduced to choos-
ing two constants kd and υ, plus determining κD(·), which will tune automat-
ically using the actor-network updating law as will explain in the following.

In this work, we estimate the time-varying PID gain κD using neural

networks as κD = −αŴa

T
ha (Za), where α is a constant gain, and Za =[

qT , q̇T , eT , ėT ,𭟋T ,ΞT
]
is the input vector of actor-network. Let W̃a = Ŵa −

W ∗
a , and define the instant estimation error ξa = W̃ T

a ha. The objective of
the updating law of the actor-network is to minimize the estimation error ξa
and the estimated cost function Ĵ , and to improve the tracking performance.
Accordingly, by defining the actor-network integrated error as ςa = ξa +
ΞTΞ+kaĴ , where ka > 0 is a control gain, and minimizing the actor-network
error function

Ea =
1

2
ςTa ςa, (14)

using the gradient descent method, the updating law of actor-network Ŵa

can be obtained as

˙̂
Wa = −α ∂Ea

∂Ŵa

= −α∂Ea

∂ςa

∂ςa
∂ξa

∂ξa

∂Ŵa

= −α
Ä
ξa + ΞTΞ + kaĴ

ä
ha.

(15)

Moreover, since the actual value of ξa is unavailable, we use its estimation as
ξ̂a [38, 68], and further adding a σ −modification term, e.g., αηaŴa, where
ηa > 0, and eventually modify the updating law (15) as

˙̂
Wa = −α

Ä
Ŵ T

a ha + ΞTΞ + kaĴ
ä
ha − αηaŴa. (16)
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Ŵa
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ΞTQΞ + τTRτ
r −σrΛ

−σŴcΛ
2

−σηcŴc

Ŵ T
c hc

Ĵ

Critic Network

Actor Network

Figure 2: The overall proposed actor-critic PID control for robot manipulator system

The detail of the proposed actor–critic PID control structure is shown in
Fig. 2.

3.2. Stability Analysis

Theorem 1. Consider the robot dynamics (1), with Properties 1 and 2.
Suppose Assumption 1 holds. Let the PID control input be given by (13).
Let the critic network and actor-network updating rules be given by (8), and
(16), respectively; then all the closed-loop signals are bounded.

Proof. Consider the Lyapunov function as

V = Vr + Vc + Va, (17)

where Vr is defined at (9), Vc = 1/2σ−1W̃ T
c W̃c, and Va = 1/2W̃ T

a W̃a. We uti-
lize RBF neural networks in order to compensate for the system uncertainties
as Γ = Wa

∗Tha+εa. Then, considering the definition of the generalized error
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Ξ(t), and applying the control (13), (11) becomes

V̇r ≤ −α∥Ξ∥2Γ− ΞT (kd + κD)Ξ +
1

α
,

≤ −ΞT (kd + αεa) Ξ + α∥Ξ∥2W̃ T
a ha +

1

α
.

(18)

First-time derivation of Vc considering (8) leads to

V̇c = σ−1W̃ T
c Ẇc = −W̃c

Ä
r + Ŵ T

c Λ
ä
Λ− ηcW̃

T
c Ŵc. (19)

Since r (t) = J/ψ − J̇ , then

r = −W ∗T
c Λ + ec,

where ec = −ε̇c + εc/ψ. Accordingly (19) can be rewritten as

V̇c = −W̃ T
c

Ä
−W ∗

c + Ŵ T
c

ä
ΛTΛ− W̃ T

c Λec − ηcW̃
T
c

Ä
W̃c +W ∗

c

ä
. (20)

Applying the Young’s inequality one has

−W ∗
c W̃

T
c ≤ 1

2
W ∗2

c +
1

2
W̃ T

c W̃c,

−W̃ T
c Λec ≤ W̃ T

c ΛΛ
T W̃c +

1

4
e2c ,

then, (20) can be rewritten as

V̇c ≤ −ηc
2
W̃ T

c W̃c +
ηc
2
∥W ∗

c ∥
2 +

1

4
e2cMax, (21)

where ecMax is the upper bound of ec.
First-time derivation of Va considering (16) can be obtained as

V̇a = W̃ T
a

˙̂
Wa

= −αW̃ T
a

îÄ
Ŵ T

a ha + ΞTΞ + kaĴ
ä
ha + ηaŴa

ó
= −αW̃ T

a haŴ
T
a ha − αW̃ T

a haΞ
TΞ− αW̃ T

a hakaĴ − αηaW̃
T
a Ŵa.

(22)

Considering

W̃a
T Ŵa = W̃a

T
Ä
W ∗

a + W̃a

ä
= W̃a

TW ∗
a + W̃a

T W̃a,
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and applying the Young’s inequality one has

W̃a
TW ∗

a ≤
Ä
W̃a

T W̃a +Wa
∗TW ∗

a

ä
/2,

leading to

−αηaW̃a
T Ŵa ≤ −αηa

Ä
W̃a

T W̃a −Wa
∗TW ∗

a

ä
/2.

Moreover, considering Ĵ = W ∗
c hcW̃chc, then,

ĴT Ĵ ≤ 2(W ∗
c hc)

TW ∗
c hc + 2(W̃chc)

T W̃chc.

Furthermore, the following inequalities can be obtained by applying Young’s
inequality,

−W̃ T
a haŴ

T
a ha ≤ −

Ä
W̃ T

a ha
ä2

+ W̃ T
a haW

∗T
a ha ≤ −1

2

Ä
W̃ T

a ha
ä2

+
1

2

(
W ∗T

a ha
)2
.

−W̃ T
a hakaĴ ≤ 1

2

Ä
W̃ T

a ha
ä2

+
1

2
k2aĴ

2 ≤ 1

2

Ä
W̃ T

a ha
ä2

+ k2a
Ä
W̃ T

c hc
ä2

+ k2a
(
W ∗T

c hc
)2

Combining with the above inequality, (22) can be rewritten as

V̇a ≤− αW̃ T
a haΞ

TΞ− α

2
ηaW̃

T
a W̃a +

α

2
∥ha∥2∥W ∗

a ∥
2 +

α

2
ηa∥W ∗

a ∥
2

+ αk2a∥W ∗
c ∥

2∥hc∥2 + αk2a∥hc∥
2W̃ T

c W̃c.
(23)

Recalling (18), (21), and (23), one can obtain

V̇ = V̇r + V̇c + V̇a

≤ −ΞT (kd + αεa) Ξ + α∥Ξ∥2W̃ T
a ha +

1

α
− ηc

2
W̃ T

c W̃c +
ηc
2
∥W ∗

c ∥
2 +

1

4
e2cMax

− α∥Ξ∥2W̃ T
a ha −

α

2
ηaW̃

T
a W̃a +

α

2

Ä
ηa + ∥ha∥2

ä
∥W ∗

a ∥
2

+ αk2a∥W ∗
c ∥

2∥hc∥2 + αk2a∥hc∥
2W̃ T

c W̃c

= −ΞT (kd + αεa) Ξ− 1

2

Ä
ηc − 2αk2a∥hc∥

2
ä
W̃ T

c W̃c −
α

2
ηaW̃

T
a W̃a

+
(ηc
2
+ αk2a∥hc∥

2
)
∥W ∗

c ∥
2 +

α

2

Ä
ηa + ∥ha∥2

ä
∥W ∗

a ∥
2 +

1

4
e2cMax +

1

α
.

(24)
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According to Lemma 1, and as detailed in Remark 1, the bounding of the
basis functions ∥hc∥, and ∥ha∥ are expressed as ρmc ≤ ∥hc∥ ≤ ρMc, and
ρma ≤ ∥ha∥ ≤ ρMa, respectively. Then, according to the definition of V =
Vr+Vc+Va, with Vr = 1/2ΞTMΞ, Vc = 1/2σ−1W̃ T

c W̃c, and Va = 1/2W̃ T
a W̃a,

then (24) can be rewritten as

V̇ ≤ −ι1V + ι2, (25)

where ι1, ι2 are defined as follow:

ι1 = min

ß
2
λmin (kd − αεa)

λMax (M)
, ηc − 2αk2aρmc

2, αηa

™
,

ι2 =
(ηc + 2αk2aρ

2
Mc)ω

2
c

2
+
α(ηa + ρ2Ma)ω

2
a

2
+
e2cMax

4
+

1

α
,

with ωc and ωa denote the upper bounds of optimal weights ∥W ∗
c ∥, and

∥W ∗
a ∥, respectively. Correspondingly, design parameters ka, kd, α, and ηc

need to properly select to ensure ι1 > 0. Then, according to Lemma 2,
Ξ,Wc and Wa remain semi-globally uniformly ultimately bounded. Further-
more, using Lemma 3, e (t),

∫ t

0
e (t) dρ, and de (t) /dt, are remained bounded

as Ξ (t) is bounded. Then, according to Assumption 1, q (t) and q̇ (t) are
bounded. Also, since W̃a = Ŵa −W ∗

a , and W̃c = Ŵc −W ∗
c , then Ŵa, and Ŵc

are bounded. Finally, the boundedness of the above-mentioned signals and
considering Lemma 1 which indicates the boundedness of the basis function
vectors ha, and hc, leads to the boundedness of control τ(t) in (13), and even-
tually concluding the boundedness of all closed-loop signals. This completes
the proof.

Remark 3. Note that the existence of ι2 in (25) reveals that the system only
achieves stability, but it could not achieve exponential stability. For com-
pleteness, multiply (25) by eι1t, then d

dt
(eι1tV ) ≤ ι2e

ι1t, and further integrate
it, then

V ≤
Å
V (0)− ι2

ι1

ã
ι2e

−ι1t +
ι2
ι1

≤ V (0) +
ι2
ι1
.

This implies the boundedness of the Lyapunov function V (t), and further
according to Lemma 2 indicates error signals Ξ,Wc and ςa remain in the
compact set defined by

Ωr :=
{
Ψ| ∥Ψ∥ ≤

»
2 (V (0) + ι2/ι1)

}
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and will eventually converge to the compact sets defined by

Ωc :=
{
Ψ| ∥Ψ∥ ≤

»
2ι2/ι1

}
.

4. Illustrative example

In this section, numerical simulations are performed to verify the effec-
tiveness of the proposed actor-critic learning-based PID control in Theorem
1. A simple two-link robot manipulator in the vertical plane is used for the
simulation study. Physical robot parameters were chosen as follows: mass
of the links m1 = m2 = 5kg, length of the links l1 = l2 = 1m. The desired
trajectories are chosen as qd = [sin (t) ; cos (t)], and the initial condition of
each joint is given by q (0) = [−0.5; 0],q̇ (0) = [1; 0]. The cost function pa-
rameters are chosen as Q = 100I, and R = 0.01I, where I is the identity
matrix. Control parameters chosen to be σ = 50, α = 50, kd = 50, ka = 0.1,
ηc = 0.01, ηa = 0.01, υ = 0.5, and ψ = 1000.
To do the simulation study, the unknown dynamic model of the system is
considered, and to approximate uncertainties, a radial basis function neural
network with ten nodes on each hidden layer is chosen. For both the critic
networks and actor networks centers αi are evenly distributed in the span of
input space [−2.5, 2.5] , and widths of β = 1. The starting points of neural
networks weights were chosen as Ŵc (0) = Ŵa (0) = 0. Simulation results are
shown in Figs. 3-7.

The tracking performances of links are shown in 3-5. Figures 3a, and 3b
illustrate that the actual position and velocity signals can follow their desired
trajectories. Figures 4a, and 4b demonstrate the position, and velocity errors,
respectively. Figure 5 shows the generalized PID integrated error function.
Figure 6 shows the boundedness of both critic and actor parameter vectors.
Finally, input control is depicted in Fig. 7. From the above figures, it can
be seen that i) the tracking errors converge to a small zero neighborhood,
which implies that the robot’s joint positions and velocities follow the desired
signals; ii) input control and both critic and actor parameter vectors are
bounded. Therefore, the proposed method can accomplish the control tasks.

5. Discussion

As technology advances, machine learning methods have been treated as
an advantageous part of functional control systems. Optimal control, on the
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(a) Desired trajectories and actual trajectories of joint positions
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(b) Desired trajectories and actual trajectories of joint velocities

Figure 3: Position and velocity tracking
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(a) Trajectories of position error
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(b) Trajectories of velocity error

Figure 4: Tracking error
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Figure 5: Trajectories of the PID integrated error function

other hand, gained significant importance in recent practical control systems,
as it leads to controls with the least input source and thus meets the require-
ment of low-energy control design targets. Also, even though numerous ad-
vanced control frameworks have been developed for dynamical systems due
to their simple structures and functional effectiveness, PID regulators remain
the backbone of most practical control systems. The above discussion moti-
vates our effort to establish a novel framework for constructing an optimal
control structure and endow it with an actor-critic reinforcement learning
mechanism capable of achieving the optimal solution. This development is
delivered to a stable PID-like control for robot manipulators which is en-
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(a) Norms of the critic network
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(b) Norms of the actor network

Figure 6: Norms of the critic-actor network
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Figure 7: Trajectories of control input

riched by analytical development capable of systematically correcting PID
gains.

Traditional PID controls are typically case-based. Also, they require
hand-tuning mainly by trial and error practice. More importantly, their
gains remain constant within the control process. In contrast, our proposed
PID gains include time-varying parts which are tuned automatically during
the entire system operation. Furthermore, different from most available PID
controls, in which gains are selected/tuned independently, thanks to defining
linking parameter υ, in our proposed PID-like control, the gains are deter-
mined correlatively with minimum requested parameters.
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In contrast with several developed RL diagrams, which are suffering from
the problem of learning behavior through trial-and-error interactions with a
dynamic environment, advancing from online tuning weights algorithm, the
presented actor-critic framework has distinguished advantages like shortening
the learning time. Moreover, different from the most traditional RL control
scheme which can not deliver system stability, utilizing the Lyapunov-based
direct analysis, the analytical development is derived for the weight updating
laws, and accordingly, the stability of the closed-loop system is guaranteed.
The proposed learning-based tracking approach relaxed the requirement of
explicit model knowledge, or linearly-in-parameter conditions in robot dy-
namics, making it effective in serving real-world research and engineering
practice. Furthermore, as it is significantly simple and low-cost in imple-
mentation compared with available methods, it can realize to proper control
framework for industrial robot manipulators.

Future work deals with other robotics scenarios like rehabilitative robotics
and assistive robotics, where the interaction with the human should be con-
sidered. Furthermore, since the intelligent control of soft robotics has become
a popular research topic, our next works will extend the work to soft actu-
ators and robotics. Note that since the presented method utilized neural
networks and reinforcement learning, it has good approximation properties
to overcome major soft robotic challenges like the existence of infinite degrees
of freedom.

6. Conclusion

In this paper, we proposed an actor-critic learning-based adaptive PID
control method to address the optimal tracking problem of uncertain robot
manipulators. We developed a new conceptual continuous-time performance
index to evaluate tracking performance and control behavior, and employed
a critic network to approximate it and deliver a reinforcement signal to the
action network. The actor-network then developed a new low-complexity
stable PID control with optimal self-tuning gain structure. Our numerical
simulations demonstrate that the resultant control frameworks are function-
ally effective in controlling robotic manipulators.
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Our study represents a significant contribution to the theoretical devel-
opment of learning-based PID control for robotic manipulators, and paves
the way toward the design of efficient and simple, yet energy-saving control
principles for nonlinear dynamical systems. However, future work will in-
volve experimental validations of our proposed control method in different
robotic scenarios to further validate our findings.
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