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Abstract

We investigate the presence of ineffi ciency in slot allocation when a coordinator al-

locates slots on destination markets served by monopoly and duopoly airlines, and the

number of available peak-time slots is constrained by airport capacity. When an airport

maintains regulated per-passenger fees, we observe the emergence of allocative ineffi ciency.

Conversely, in scenarios where an airport has the autonomy to set fees, we find that, in

line with empirical evidence, fee deregulation resolves these allocative ineffi ciencies by

increasing per-passenger fees. However, the improvement in allocation effi ciency may be

counterbalanced by the rise in fees, potentially impacting overall welfare.
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1 Introduction

In the past decades, growth in air traffi c has outstripped the development of runways and other

passenger-handling infrastructures. As a result, many airports are experiencing critical short-

ages of infrastructure capacity, particularly during their demand peak times. As a consequence,

air transport authorities must be increasingly concerned with the allocation of airport slots (or

permits) that are attributed to airlines for the access to airport infrastructure necessary for

the departure or landing of their fleets within specific time frames. A proper evaluation of the

industry’s conduct about slot allocation seems very much welcome.

In addition to that, the recent trends in airport regulation are moving towards less govern-

mental involvement. First, many traditionally public-owned airports have undergone privati-

zation. Starting with the privatization of airports in the UK in the late 1980s, more and more

airports have been (either fully or partially) privatized worldwide (e.g. Oum et al. 2004, Win-

ston, C., Ginés 2009). According to IATA (2017), the share of fully privately owned airports in

Europe increased from 9% to 16% between 2010 and 2016 while the share of mixed ownership

models increased from 13% to 25% over the same period.1 As the ownership of airports changes

from public to private, the objective of airports is expected to shift from social benefits to profit

maximization.2

Second, there are calls for the dismantlement of regulation and less stringent price moni-

toring. As pointed out in ACI (2017), “The role of a regulator and its oversight function is to

monitor and ensure there is no significant abuse of market power. Strict forms of price regula-

tion result in allocative ineffi ciencies which affect economic incentives adversely.”For instance,

some airport authorities determine a ceiling on the increase in passenger revenues obtained

from basic airport services.3

To this matter, the most relevant regulatory point is the management of per-passenger fees.

Indeed, the airports’ income in the past years was mainly based on passenger charges (i.e.

passenger service charges, security, and transfer charges), rather than fees that apply directly

to aircraft operators (ICAO, 2013).4 In Europe, for example, airport passenger charges paid on

the average airfare to fly from European airports more than doubled between 2006 and 2016

(ICAO, 2013, IATA, 2017). Given the growing importance of the per-passenger revenue, the

analysis of the impact of the deregulation on this revenue on the overall airport slot strategy

1Worldwide, among the 100 busiest airports for passenger throughput, 46% have private sector participation.
And 41% of global airport traffi c is handled by airports that are managed and/or financed by private stakeholders
(IATA, 2017).

2In addition, many public airports are self-financed and operated under binding budget constraints, which
entices them to implement profit-oriented activities.

3This then defines the maximum annual revenue per passenger for each year in the regulatory period (e.g.,
Airports Regulation Document 2017-2021, 2017).

4The passenger-based revenues represent 63% of total aeronautical income according to ICAO (2013). In
this regard, see Zhang (2012) and Czerny et al. (2017) for discussions about airport improvement fees, which
are used to charge passengers for airport infrastructure development and/or debt repayment, and are becoming
a more important revenue source for airports.

2



seems highly policy relevant.

The purpose of the present paper is to revisit the slot allocation problem in a setting where

airport authorities liberalize the level of charges to passengers. The key assumption is that an

airport can generate per-passenger revenue, which reflects real world practice.5 Traditionally

airports levied a single uniform Departing Passenger Charge (DPC), payable by the airline,

which was perceived to meet the cost of providing terminal services.6 Airport liberalization

thus brings a question about the size and the effect of the markups that unregulated airports

charge to passengers above their costs.

Given the problem at hand, the purpose is to represent the functioning of airports listed

as “Level 2”or “Level 3”in the Worldwide Airport Slot Guidelines (WASG, 2022). These are

airports whose capacity infrastructure is not generally adequate to meet the demands of airport

users at peak times. In level 2 or 3 airports, slot allocation is managed by slot “facilitators”

or “coordinators”, respectively.7 The coordinators/facilitators are organizations responsible for

slot allocation in line with the national slot regulations. In their operating process, these orga-

nizations must follow the instructions described in the Worldwide Airport Slot Guidelines and

“optimize the benefits of consumers, taking into account the interests of airports and airlines”

(WASG, 2022, p. 8). However, these organizations are predominantly operated and funded

by airports whose revenues increase with the number of passengers. In the EU, the organiza-

tion structure of slot coordinator implies a strong influence of (big) airports: for example, the

Spanish coordinator is part of AENA, a public industrial entity that is the owner and manager

of almost all Spanish airports (Ranieri et al., 2013).8 Our modeling of slot allocation mir-

rors the fact that, twice a year, the International Air Transport Association (IATA) organizes

scheduling conferences where slot coordinators and airlines collaborate to enhance the initial

slot assignments for the upcoming season (Lenoir, 2016).

Our framework is based on Picard et al. (2019), where a capacity-constrained airport

serves destinations with duopoly airlines and establishes its slot allocation. Consistent with

empirical evidence,9 their result shows the existence of slot allocation ineffi ciency. The present

paper extends this analysis to a situation where monopoly and duopoly airlines serve airport

destinations, a slot coordinator performs the slot allocation, and airports have the freedom to

5Airports are allowed to levy a uniform per-passenger fee for flight activities. Regarding passenger service
charges, ICAO (2012) recommends that “these (passenger service) charges should be levied through the aircraft
operators where practicable. The need for consultations between airport entities and users at the local level
with a view to alleviating collection problems should be emphasized.”

6The charge covers all the terminal infrastructure, provision of check-in desks, baggage system and security
screening. The DPC can be split into separate charges for passengers (mainly basic infrastructure and security
screening), a fee per bag, rental of the check-in desk, self-service check-in kiosks, etc. All these charges are
levied on the airline.

7The roles of the facilitator at a Level 2 airport and the coordinator in a Level 3 airport are administratively
similar, but are governed by different principles for managing scheduling processes.

8Slot coordinators operating within the EU and the UK include ACL, ACS, AENA, Assoclearance, COHOR,
FHKD, SACN and SCA (European Commission, 2011).

9See, among others, Zografos et al. (2013), Katsaros and Psaraki (2012) and Airports Council International
Europe (2009).
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set their passenger fees.

More specifically, we assume that slot allocation is handled by a slot coordinator/facilitator

whose aim is to “optimize the benefits of consumers, taking into account the interests air-

ports and airlines”(WASG, 2022, p.8). We consider slot allocation among destination markets

served by both monopolies and duopolies.10 Then, we analyze the case in which the airport

is “unregulated”, in the sense that it is free to set per passenger fees without any regulatory

constraint.11 Our findings confirm the existence of allocative ineffi ciency in a more general

setting than Picard et al. (2019). In addition, we show that allocative ineffi ciency resulting

from unused peak slots would vanish at an unregulated private airport. The distortion of price

sets downward pressure on the distortion of allocative effi ciency, and no allocative ineffi ciency

appears. Interestingly, in an unregulated environment, the airport fee would never be set to a

too low level by a private airport. These results are consistent with empirical regularities. For

instance, Bel and Fageda (2010) find that the airports controlled by private companies that are

not subject to regulation fix higher prices than regulated airports.

Next, the paper investigates the effect of liberalizing per-passenger fees in terms of social

welfare. As said above, liberalization solves allocation ineffi ciency and in turn has a positive

effect on welfare. By contrast, the increase in per-passenger fees decreases passengers’surplus

for given slot allocation. It follows that, if the airport profit maximizing per passenger fees

are very high, the negative effect on welfare offsets the positive effect of slot reallocation. The

latter scenario maintains the usual reserves against the liberalization of fees even if the use of

resources is more effi cient.

Our model abstracts away from the practice of airport-slot grandfathering. While grand-

fathering is common at many airports, it is not endorsed by organizations such as IATA for

Level 2 and 3 airports where slot utilization is constrained. For instance, the IATA’s recent

Worldwide Airport Slot Guidelines explicitly state: “the concepts of historic precedence and

series of slots do not apply at Level 2 airports”(WASG 2022, p.30). It however leaves room

for grandfathering by suggesting later on to prioritize “approved services that plan to operate

unchanged from the previous equivalent season”(ibidem). Thus, in the aviation industry, slot

coordinators apply grandfathering by giving a priority only to airlines on the slots that they

occupy at least 80% of the time during the previous season.

In practice though, slot coordinators possess a definite degree of flexibility in their decision-

making. To comply with the capacity declared by airports, they are able to displace or reject

slot requests in accordance with the guidelines defined by the WASG. As a case in point,

approximately 10% of the slots end up being either relinquished or canceled by the conclusion

of the season (Odoni, 2020). Similarly, 32% of slots were free to be reshuffl ed by the slot

coordinator in CDG airport in 2018 (Pouget et al., 2023). Hence, the priority of historical

10By contrast Picard et al. (2019) assumed the airport serving either only monopoly or only duopoly airlines.
11Throughout the paper, we will use the term regulated to the case where the passenger-based airport revenue

is determined exogenously by policymakers throughout, and unregulated to the case where this revenue is
determined by the airport.
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slots is applicable only in the short term and does not equate to a ‘right’ conferred by a

formal grandfathering system. In the long run, all slots get reallocated in some or other ways

according to economic interests and technical possibilities. The implications of slot reallocation

procedures are therefore important to understand. This paper investigates a long-run situation

where slot coordination seeks to augment the number of passengers and therefore impacts

airport revenues. This creates incentives for slot discrimination in competitive destinations

while airport deregulation may mitigate the associated ineffi ciencies.

Related literature. The present study, to the best of our knowledge, is the first that
combines the analysis of slots and pricing policies, and thus, it is related to both literatures.

In the literature on slot allocation, as well as Picard et al. (2019), Barbot (2004) models

different slot periods as vertically differentiated products with high or low quality, by letting

airlines determine their number of flights. Verhoef (2010) and Brueckner (2009) evaluate the

effect of the adoption of a slot allocation in comparison with the alternative policy of congestion

pricing. Both contributions show that slot trading or auctioning and the first best congestion

pricing give the same level of passenger volume and welfare. Unlike the present contribution,

they do not let the airport allocate slots without charges. Verhoef (2010) and Brueckner (2009)

are generalized by Basso and Zhang (2010), who introduce airport profits into the analysis. In

this case, the adoption of slot allocation or congestion pricing brings about different results.

The literature on airport pricing policies is rich. To cite some relevant contributions, Ivaldi

et al. (2015) and Martín and Socorro (2009) assume that airports negotiate prices with the

airlines and charge them for the use of the aeronautical facilities at the airport, and they charge

the passengers through the prices of non-aeronautical facilities. Lin and Zhang (2017) assume

private airports levy per-flight charges on hub carriers, which could be either movement-related

or weight-related, and per-passenger charges to maximize profits. Czerny (2013) assumes in

the area of aeronautical services, the airport is a monopoly provider and charges a price per

passenger to airlines. These papers, however, do not discuss the interplay between optimal

per-passenger fee choice and slot allocation.

The remainder of this paper is organized as follows. The baseline model is presented in

Section 2, while the results are outlined in Section 4. A welfare appraisal is developed in

Section 6, and Section 7 develops a numerical example. Section 8 sets forth the conclusion.

2 The Model

We study an airport that offers a continuum of destinations with mass M served by a single

airline (monopolies) and a continuum of destinations with mass N served by two airlines. Each

destination has a market size z ∈ [z, z]. Market sizes of monopoly destinations are distributed

with c.d.f. F and p.d.f. f > 0; those of duopoly market destinations with c.d.f. G and p.d.f.

g > 0. Accordingly, the mass of destinations with size dz is given by Mf(z)dz and Ng(z)dz in

the monopoly and duopoly destinations.
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Every destination market is vertically differentiated with respect to peak and offpeak travel.

A peak period represents the time window that consists of the most desirable travel times in

a day, whilst an offpeak period contains all the rest time intervals. Examples of peak periods

are 7:00-9:00 a.m. for a morning peak and 5:00-7:00 p.m. for an afternoon peak.

Under vertical differentiation (Gabszewicz and Thisse, 1979), all potential passengers have

preferences for peak load hours. The slot qualities for peak and offpeak slots are given by s1
and s0, respectively, where s1 > s0 > 0. Passengers differ by their peak-travel taste v ∈ [0, 1],

v being uniformly distributed. They are endowed with the utility function, Ui(v, pi) = vsi − pi
where pi is the ticket price with i = 1 if they fly at peak or i = 0 off peak. The peak and

offpeak times capacities are denoted as K and L. We consider that the peak period can be

running at full capacity while, as in many airports, offpeak period capacity is unconstrained

and can accommodate the movements in all monopoly destinations and the double movements

in duopoly destinations.12 This means that K < M + 2N < L.

Our analysis studies the behavior of a “slot coordinator”that manages the slot allocations

and may be called “coordinator” for the sake of brevity. The airport activity is rewarded

by passenger fees φ ≥ 0. Passenger fees can be collected directly from passengers or may

be collected as charges on aircraft movements that are proportional to aircraft sizes, i.e. the

number of passengers. We consider regulated and unregulated airports. For this purpose, we

consider that regulation carries over passenger fees so that unregulated airports are authorized

to set their passenger fees. For simplicity, the airport and the airlines operate under constant

returns to scale. Given the linear demand system (see below), we can normalize the marginal

cost to zero without loss of generality. Hence, airline fares and passenger fee can be interpreted

as markups.

The timing is as follows. In the first stage, the unregulated airport sets its preferred per-

passenger fees. If the airport is regulated, the fee is exogenously given by the regulation

authority. In the second stage, the slot coordinator allocates peak and offpeak slots to airlines

of the airport. In the third stage, if a destination is served by a single airline, the monopoly

operator sets its seat supplies based on the slot allocation. If two airlines serve a destination,

they non-cooperatively choose their seat supplies based on the slot allocation. The equilibrium

concept is the Cournot-Nash equilibrium. Finally, passengers choose to travel, purchase flight

tickets and pursue their travel.

We begin by determining the passenger and airline choices, then discuss the slot coordinator

choice and finally the airport choice with and without regulation on the passenger fee.

12Evidence of unconstrained slots during offpeak times can be found, among others, in Barnhart et al., (2012)
for Newark airport (EWR), Swaroop et al. (2012) for several American airports, and Dray (2020) in a study of
worldwide airports.
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3 Passenger and airline choices

In this section, we study the passengers’seat demand and airline’seat supply. Because destina-

tions are independent for both travellers and airlines, travel demand and airline decisions can

be studied separately for each market. We therefore study destinations served by monopolies

and duopolies separately.

3.1 Monopoly destination markets

We identify each monopoly airline by its market size z and time period i ∈ {0, 1}. Given
the above preference, at a price pi(z), the mass of passengers choosing to travel is equal to

qi(z) = z [1− pi(z)/si]. The inverse demand function is therefore pi(q, z) = (1− q/z) si and,

the monopoly airline profit πi(q, z) = [pi(q, z)− φ] q. It can readily be shown that the profit

maximizing number of seats is equal to qi(z) = zqi where

qi =
si − φ

2si
.

Because q1 > q0, the number of passengers is larger at peak time. The resulting travel prices

are equal to pi(z) = pi = (si + φ) /2, which are also larger at peak time. The optimal monopoly

profit πi(z) = z (si − φ)2 / (4si) is positive for any slot under the assumption φ ≤ s0.

3.2 Duopoly destination markets

Duopoly airlines engage in a seat capacity competition that results in a Cournot-Nash equilib-

rium (see Picard et al., 2019). Let us consider two airlines a and b flying to a same destination

with market size z. For conciseness, we dispense with reference to market size z when it does

not lead to confusion.

Same time slot Consider that the two airlines a and b supply qa and qb seats in each

flight departing in the same slot i ∈ {0, 1}. Passengers choose to travel only if siv−p ≥ 0. The

total travel demand is thus given by q = z (1− p/si). This gives the inverse demand function
p
(
qa, qb; z

)
= si

[
1−

(
qa + qb

)
/z
]
. Airline a’s profits is given by πa =

[
p
(
qa, qb; z

)
− φ
]
qa(z)

while airline b’s profit has a symmetric expression. In a Cournot-Nash equilibrium, each airline

chooses the number of seats that maximizes its profit, taking as given by the competitor’s seat

capacity. After establishing and solving the first order conditions, one gets the equilibrium seat

capacities qa(z) = qb(z) = zqii where

qii ≡
si − φ

3si
, (1)
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and where double subscript ii ∈ {00, 11}, indicates whether the two airlines are flying during
offpeak (00) or peak (11) slots, respectively (we use two subscripts for duopoly destinations).

Quite naturally, seat supplies are proportional to the market size z and fall with passenger fee.

Seat supply and profits are positive under the above assumption of low enough passenger fee,

φ ≤ s0. The equilibrium prices are equal to pa(z) = pb(z) = pii where pii ≡ (si + 2φ) /3. Since

the passenger fee is a cost for airlines, prices are increasing functions of φ.

Different time slots Consider now that airlines a and b supply qa and qb seats in flights

departing respectively in the offpeak and peak slot. In the equilibrium, there exist two ticket

prices pa and pb such that passengers decide to fly on and off the peak time. Let us say without

loss of generality that flight a uses the offpeak slot. The passenger indifferent between flying

and staying, is given by a taste parameter va = pa/s0. The passenger indifferent between flying

on and off peak has taste parameter given by vb =
(
pb − pa

)
/ (s1 − s0). Therefore, demands

for off and on peak flights are equal to qb = z(1−vb) and qa = z(vb−va). Plugging the previous
values in those expressions gives the inverse demand functions pa

(
qa, qb

)
= s0

[
1−

(
qa + qb

)
/z
]

and pb
(
qa, qb

)
= s1

[
1−

(
qas0/s1 + qb

)
/z
]
, which gives the profits πa =

[
pa
(
qa, qb

)
− φ
]
qa and

πb =
[
pb
(
qa, qb

)
− φ
]
qb. In a Cournot-Nash equilibrium, each airline chooses the aircraft seat

capacity that maximizes its profit, taking as a given the competitor’s seat capacity. Establishing

and solving first order conditions yields the equilibrium seat capacities qa(z) = z q01 and

qb(z) = z q10 where

q01 ≡
s0s1 − φ (2s1 − s0)

(4s1 − s0)s0
and q10 ≡

2s1 − s0 − φ
4s1 − s0

, (2)

where double the subscripts 01 and 10 denote the respective airlines on offpeak and peak times.

Again, seat capacities linearly increase in market size z. As it can be shown that q01 < q10,

offpeak flights supply fewer seats than peak ones. Offpeak flights have also lower price-cost

margins and are therefore less profitable. To ensure positive seat supplies and profits, we

assume the condition φ < φ where

φ ≡ s0s1
2s1 − s0

.

The seat supplies of the above slot configurations rank as follows: q10 > q11 > q00 > q01.

Peak flights carry larger numbers of passengers than offpeak ones; this difference is more acute

when airlines are allocated to different travel periods. Furthermore, one can check that more

passengers fly when both airline are not off the peak: q01 + q10 > 2q00. Finally, more passenger

fly when duopoly airlines as are set apart for low enough fees. More formally, iff

q01 + q10 > 2q11 ⇐⇒ φ < φ̂ ≡ s0s1
2 (3s1 − s0)

< φ.

One can check that, under this condition, duopoly airlines serve more passengers than monop-

olies for given z (2q11 > q1 and q01 + q10 > q1).
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4 Slot coordinator choice

According to the Worldwide Airport Slot Guidelines, the prime objective of airport slot coor-

dination is to organize available airport capacity “in order to optimize benefit to consumers,

taking into account the interest of airports and airlines”(WASG 2022, p.8). Given its limited

information on each passenger surplus, the slot coordinator’s board can only take into account

the flow of passengers in the airport. We therefore consider that it allocates slots with the

objective of finding the larger passenger traffi c subject to the peak capacity constraint of the

airport.

The slot coordinator problem is to assign monopoly and duopoly aircraft movements to

peak or offpeak slots. We associate each monopoly destination with market size z with the

index m0(z) = 1 to monopoly airlines using in an offpeak slot and m1(z) = 1 and to ones

using a peak time slot (m0(z) + m1(z) = 1). We similarly associate a duopoly destination

with market size z with the index n11(z) if the two airlines take the peak slot, n01(z) if one

airline takes the peak slot and the other does not, and n00(z) if the two airlines take the

offpeak slot (n00(z) + n01(z) + n11(z) = 1). For the sake of conciseness, we dispense the reader

with references to specific market size z and support [z, z̄] whenever it creates no ambiguity.

Accordingly, the slot coordinator chooses the sets of slot allocation functions n = (n00, n01, n11)

and m = (m0,m1) that maximizes the number of passengers

P (m,n, φ) =

∫
z (q0m0 + q1m1)MdF +

∫
z [2q00n00 + (q01 + q10)n01 + 2q11n11]NdG, (3)

subject to ∫
m1MdF +

∫
(n01 + 2n11)NdG ≤ K, (4)

m0 +m1 = 1, (5)

n00 + n01 + n11 = 1. (6)

Replacing m0 and n0 from (5) and (6), we can write the Lagrangian function as

L =

∫
z { [q0 (1−m1) + q1m1]Mf − µm1Mf

+ [2q00 (1− n01 − n11) + (q01 + q10)n01 + 2q11n11]Ng

− µ (n01 + 2n11)Ng } dz + µK, (7)

where µ ≥ 0 is the Khun-Tucker multiplier associated to the capacity constraint. This solution

approach extends Picard et al. (2019) to a mix of monopoly and duopoly destinations.

Pointwise differentiating the Lagrangian function (7) with respect to m1 (·), one readily
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finds the marginal benefit to set monopoly destinations z on the peak slot

L1 (z) ≡ ∂L
∂m1

= [z (q1 − q0)− µ]Mf. (8)

This marginal benefit in terms of passenger number L1(z) increases in z and has a root at

L1(z) = 0 at

z1 ≡
µ

q1 − q0
=

2µ (s0s1)

φ(s1 − s0)
. (9)

As a result, monopoly airlines are put on-peak if z ≥ z1 and offpeak otherwise.

Further pointwise differentiation with respect to n01 (·) and n11 (·) gives the marginal benefits
for different slots and for same peak slots in the destination with market size z. That is,

L01 (z) ≡ ∂L
∂n01

= [z (q01 + q10 − 2q00)− µ]Ng,

L11 (z) ≡ ∂L
∂n11

= [z (2q11 − 2q00)− 2µ]Ng.

As a result, the coordinator has incentives to put the two airlines on the same peak slot if

L11 (z) ≥ max{L01 (z) , 0}, on two different slots if L01 (z) ≥ max{L11 (z) , 0} and on the
same offpeak slot if 0 ≥ max{L01 (z) ,L11 (z)}. The marginal benefits L01 (z) and L11 (z) are

increasing in z with intercepts at −µ and −2µ. They have positive roots at :

z01 ≡
µ

q01 + q10 − 2q00
=

3µs0 (4s1 − s0)
(s1 − s0) (s0 + 2φ)

, (10)

z11 ≡
µ

q11 − q00
= µ

3s0s1
φ (s1 − s0)

.

One can note that the configuration of slot allocation depends on the level of per-passenger

fees. More specifically, if φ ∈ [0, φ̂) (“small passenger fees”), the slope of L01 (z) is larger than

of that L11 (z) and the root z01 is lower than z11. In this case, L01 (z) > L11 (z) for all z > 0.

The opposite applies for φ ∈
[
φ̂, φ

)
(“large passenger fees”).

It is convenient to study the slot coordinator choice according to the level of per-passenger

fees. Figure 1 shows differences in terms of marginal benefits according to the two scenarios. It

illustrates the marginal benefits to passengers from destination markets served by monopolies

and duopolies, according to whether φ ∈
[
0, φ̂
)
and φ ∈

[
φ̂, φ

]
. Here, z represents the size

of the destination market. To ease the exposition, the marginal benefits of monopolies are

displayed in red. The slot coordinator sets peak slots to destination markets z that ensure

the highest marginal benefit. In particular, he sets the monopoly flights on the peak for every

destination market with size with L1 (z) ≥ 0, i.e. with z ≥ z1, and offpeak for every destination

market with size L1 (z) < 0 (z ∈ (0, z1)).

Likewise, the slot coordinator sets the two duopoly flights on the peak if L11 (z) ≥ max {L10 (z) , 0},
and assigns only one duopoly flight on the peak if L01 (z) ≥ max {L11 (z) , 0}. As illustrated

10



in Figure 1 it becomes apparent that, with small fees
(
φ ∈

[
0, φ̂
))
, duopolies adopting peak-

offpeak slot configurations consistently accommodate a larger number of passengers compared

to peak monopolies. Peak monopolies, in turn, carry more passengers than duopolies with

peak-peak slot configurations. In contrast, when facing high fees
(
φ ∈

[
φ̂, φ

])
, the optimal

configuration for maximizing passenger numbers depends on the market size. Larger duopoly

markets, for instance, are assigned two peak slots, leading to the highest passenger count. Fur-

ther discussion of this topic will take place below, with a detailed focus on small and high fees

separately.

Figure 1: Passengers’marginal benefits by destination

Small passenger fees For φ ∈
(

0, φ̂
)
, the slot coordinator’s marginal benefit L01 (z) is

always larger than L11 (z). This means that the slot coordinator never chooses to put both

duopoly airlines on the peak slot. Rather, duopoly airlines are put both on-peak and offpeak

(n11(z) = 0, n01(z) = 1) if z > z01 and offpeak and offpeak (n11(z) = n01(z) = 0) otherwise.

Let us consider the case where some slots are unused because the capacity constraint is not

met. That is,

M [1− F (z1)] +N [1−G(z01)] < K.

Since the multiplier is then equal to µ = 0, the thresholds z1 and z01 are also equal to zero and

the values of c.d.f. G(z1) and F (z01) are null. This implies that M + N < K. In words, each

destination can be allocated at at least a peak slot. Under this condition, the slot coordinator

has incentives to ‘organize’the discrimination in duopoly airline destinations and restrict one

flight on peak time. This results in stronger passenger discrimination in the destination markets

served by two airlines. When the coordinator allocates one airline to offpeak slot, it is because

11



the latter sets a so low offpeak fare that the total passenger demand increases in this destination.

The existence of unused peak slots results in slot allocative ineffi ciency. There exist empty peak

slots in which a second duopoly flight could be allocated. This condition does not depend on

the market size distributions F and G across monopoly and duopoly destination structures.

Finally, if M + N ≥ K, the airport capacity is too small to allocate a peak slot to every

destination. The above constraint is binding and µ > 0. There is not allocative ineffi ciency.

Furthermore, the slot coordinator trades off allocating peak slots to monopoly and duopoly

airlines as the airport capacity falls. Indeed, in this case, µ rises so that both z1 and z01

increase. The coordinator reduces both the number of monopoly and duopoly destinations on

the peak slot.

For destinations served by monopolies, the number of passengers is always higher if one

peak slot is conceded to the monopoly airline.

Figure 2 shows the total number of passengers in duopoly airline destinations according to

the airport peak slot capacity when per-passenger fees lie in the range φ ∈
[
0, φ̂
)
: the bold

line “10” is the allocation to peak-offpeak duopolies, while the bold line “11” represents the

allocation of peak-peak duopolies. The shaded area “Mix” represents the possible combina-

tions between allocating peak-peak and peak-offpeak duopolies. The allocation of peak-offpeak

duopolies “10”yields a total number of passengers that is higher than the one of peak-peak

duopolies “11”and also any combination of the two allocations in any destinations. Accord-

ingly, the slot coordinator always prefers to allocate just one peak slot rather than two to any

destination served by duopolies.

Figure 2: Total number of airport passengers when φ ∈ [0, φ̂).
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Large passenger fee When passenger fees are set to φ ∈
[
φ̂, φ

)
, the slot coordinator adopts

a richer slot allocation for duopoly airlines. The marginal profit L01 (z) and L11 (z) intersects

at

z∗ ≡ µ

2q11 − q01 − q10
= µ

3s0s1 (4s1 − s0)
(s1 − s0) (6s1 − 2s0)

(
φ− φ̂

) , (11)

where it can be shown that z∗ ≥ z01 for any φ ∈ [φ̂, φ̄]. This means that, duopoly airlines are

set off the peak for z < z01 because both L01 (z) and L11 (z) are negative; then, airlines are

put on different slots for z ∈ [z01, z
∗] because L01 (z) is positive and larger than L11 (z); finally,

both airlines are put on peak slots for z > z∗ as L11 (z) is positive and larger than L01 (z).

As all slot are used by the coordinator, there is no slot allocation effi ciency for large enough

passenger fee, φ > φ̂.

Figure 3 shows the total number of passengers in duopoly airline destinations according to

the airport peak slot capacity when φ ∈ [φ̂, φ̄]. In this case, there exist mixes of peak-peak

and peak-offpeak slot configurations that entice more passengers to fly. The slot coordinator

therefore maximizes the total number of passengers by appointing a mix of peak-peak and

peak-offpeak slots to destinations served by duopoly airlines.

Figure 3: Total number of airport passengers when φ ∈ (φ̂, φ).

We summarize the above analysis in the following proposition:

Proposition 1 For any passenger fees φ < φ̂, the slot allocation is ineffi cient if M +N < K.
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This proposition makes relevant the role of the regulator’s policy about passenger fees in

the allocation of airport slots. By setting a too small fee, it entices coordinators to ineffi ciently

use their peak slots and strengthen the discrimination between passengers. The question is

whether this property holds when the airport is authorized to choose its own fee.

5 Airport choice

For a few decades, airport management has been subject to waves of deregulation and priva-

tization. Airports in Australia and New Zealand are run under private ownership and many

European airports are operated under public and private ownership. Many regulatory con-

straints on their activity revenues have been relaxed. The purpose of this section is to analyze

the impact of airport management on slot allocation. We therefore consider airports that are

not regulated and authorized to choose their passenger fees. We show that airports want to set

passenger fees that refrain the slot coordinator from adopting an ineffi cient slot allocation.

The airport makes profits out of the revenues from the passenger fees. Accordingly, it airport

chooses the level of per-passenger fees φ that maximizes its profit

Π = φP (m∗, n∗, φ) ,

where the number of passenger is given by (3) and the slot allocation functions m∗ and n∗ are

the slot coordinator’s optimal allocations as derived in the previous section.

Note first that the slot coordinator and airport have congruent objective functions in terms

of slot allocation. As a result, the slot allocation that is optimal for the slot coordinator is also

optimal for the airport. Thus, using the fact that the slot allocation function maximizes the

total number of passengers (∂P/∂n = ∂P/∂m = 0 at m = m∗ and n = n∗), the optimal fee is

given by the following first order condition:

dΠ

dφ
=
∂Π

∂φ
= P + φ

∂P

∂φ
= 0. (12)

Note also that the seat numbers qi and qij, i, j ∈ {0, 1}, are linear functions of φ. Hence, at
the coordinator’s optimal allocations m∗, n∗, the function P (m∗, n∗, φ) is also a linear function

of φ. For the sake of clarity, we redefine the seat numbers qi and qij as qi = qoi + q′iφ and

qij = qoij + q′ijφ where q
o
i and q

o
ij are positive intercepts while q

′
i and q

′
ij negative slopes (scalars).

Then, it can be seen that (12) is quadratic function of φ and yields a unique, positive optimal

14



fee given by

φ∗ = −1

2

[ ∫
z (qo0m

∗
0 + qo1m

∗
1)MdF

+
∫
z [2qo00n

∗
00 + (qo01 + qo10)n

∗
01 + 2qo11n

∗
11]NdG

]
[ ∫

z (q′0m
∗
0 + q′1m

∗
1)MdF

+
∫
z [2q′00n

∗
00 + (q′01 + q′10)n

∗
01 + 2q′11n

∗
11]NdG

] > 0, (13)

which is a function of the chosen slot allocation (m∗, n∗). Can the coordinator choose an

ineffi cient slot allocation where duopoly airlines cannot fly on peak time to the same destination?

We have shown that this situation occurs if the passenger fee is smaller than φ̂.

Small passenger fees If the passenger fee is smaller than φ̂, the slot coordinator never

allocates two flights on peak time to the same destination (n∗11 = 0). For the sake of exposition,

consider the airport that operates only duopoly destinations (N > M = m∗ij = 0). The optimal

fee (13) simplifies to

φ∗ = −1

2

∫
z [2qo00n

∗
00 + (qo01 + qo10)n

∗
01]NdG∫

z [2q′00n
∗
00 + (q′01 + q′10)n

∗
01]NdG

>
2qo00

−2 (q′01 + q′10)
=

7

12
s0

4s1 − s0
s1

,

where we used the fact that qo01 + qo10 > 2qo00 and −(q′01 + q′10) > −2q′00 > 0 to bound the

numerator of the LHS ratio by below and its denominator by above. The last equality results

from substituting and simplifying the values of the intercept qo00 and slopes q
′
01 and q

′
10. The

RHS can be shown to be larger than φ̂. So, the airport never sets a fee small enough that the

coordinator does not use all peak slots, in particular, if N > K. In the next proposition, we

show that the same argument can be repeated for the airport with any mix of monopoly and

duopoly airline destinations. Hence, there exists no equilibrium in the range of fees [0, φ̂).

Proposition 2 In an unregulated airport with a mix of monopoly and duopoly destinations, the
equilibrium passenger fee φ∗ is never lower than φ̂. Hence, slot allocation is always effi cient.

Proof. See Appendix.
Proposition 2 implies that equilibrium passenger fees are larger than φ̂. The striking conse-

quence of Proposition 2 is that allocative ineffi ciency is eliminated once the airport obtains the

right to set its passenger fee. The intuition is as follows: When a regulated airport is imposed

a low fee by the regulation authority, the slot coordinator finds it beneficial to keep some peak

slots unused to entice the duopoly airlines to attract a larger number of passengers in the off-

peak period. This is natural: Since the fee does not change between low and high valuation

passengers, the coordinator chooses to expand the passenger numbers, even if this strategy

leaves slots unused. When the airport faces no fee regulation, the airport would manipulate

fees in such a way that the given schedule is not optimal anymore. In turn, by excluding the

peak-offpeak allocative schedules for each destination, allocation ineffi ciency is also precluded.
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Large passenger fees When φ > φ̂, the airport choice is described by the values of the

thresholds z1, z01 and z∗, and the passenger fee φ that satisfy the definitions (9), (10) and (11)

and the capacity constraint

M [1− F (z1)] +N [G(z∗)−G(z01)] + 2N [1−G(z∗)] ≤ K.

Then, for any type of airport, the optimal fee (13) is given by

φ∗ = −1

2

[
qo0
∫ z1 zMdF + qo1

∫
z1
zMdF

+2qo00
∫ z01 zNdG+ (qo01 + qo10)

∫ z∗
z01
zNdG+ 2qo11

∫
z∗ zNdG

]
[

q′0
∫ z1 zMdF + q′1

∫
z1
zMdF

+2q′00
∫ z01 zNdG+ (q′01 + q′10)

∫ z∗
z01
zNdG+ 2q′11

∫
z∗ zNdG

] . (14)

In the Appendix, we show that this optimal fee exceeds the critical value φ̂ that supports an

equilibrium (i.e. φ∗ > φ̂). However, given the analytical complexity of the present analysis,

we break down this study for the special cases of monopoly and duopoly airlines. We finally

consider the more general case with both monopolies and duopolies in a numerical simulation

in Section 7.

The following proposition shows the equilibrium fees when all airlines are monopoly. For

convenience, denote as

Lm(x) =

∫ F−1(x)

zdF (z)/

∫
zdF (z),

the share of passenger demand below the percentile x of its maximal demand.

Proposition 3 Suppose an airport that is unregulated and serves all monopoly airlines. Then,
the optimal passenger fee is given by:

φ∗M =
1

2

[
1

s1
+

(
1

s0
− 1

s1

)
Lm(1−K/M)

]−1
,

where φ∗M > φ̂.

Proof. In Appendix.
In Proposition 3, the passenger fee increases with an expansion of airport capacity (larger

K) because the airport can put more flights on the peak period where each airline attracts

more passengers. Conversely, the fee decreases with an expansion of the number of destinations

(larger M) because the airport includes more offpeak flights with smaller passenger loads and

therefore lower airport revenues. When slot capacity equates the number of destinations, the

airport is not capacity constrained and sets its passenger fee to s1/2, which is half of the

passenger’s gross surplus from flying on peak time. When slot capacity is close to zero, all

aircraft fly offpeak, the per passenger fee is equal to s0/2, which half that same surplus offpeak.
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Those values reflect the surplus sharing (double marginalization) in the business chain of airport

and airline monopolies.13

We now turn on the analysis in which the airport serves only duopoly destination markets.

The optimal fee is obtained in a similar way but is cumbersome to display (see Appendix). Nev-

ertheless, to get analytical tractability, we can assume that destination markets are uniformly

distributed: G : [0, 1]→ 1, G(z) = z. The following proposition holds.

Proposition 4 Suppose an airport is unregulated and serves only duopoly airlines. Then, the
optimal per-passenger fee is given by:

φ∗D =
1

4

2
(
4
s0
− 1

s1

)2
−
(
1
s0
− 1

s1

)(
2
s0
− 1

s1

) (
2− K

N

)2
1
s1

(
4
s0
− 1

s1

)2
+ 1

s0

(
1
s0
− 1

s1

)(
3
s0
− 1

s1

) (
2− K

N

)2 ,
where φ∗D > φ̂. It is smaller than φ if s1 ≤ 3s0/2.

Proof. In Appendix.
A quick glance to Proposition 4 shows that φ∗D decreases with 2−K/N . Hence, it decreases

with the number of duopoly destinations and increases in the airport’s capacity. Larger slot

capacity allows the airport to put more airlines on peak slots and increases the passengers’

demand, and hence the airport revenues. As the number of destinations increases for the same

capacity, the number of passengers flying at off peak time increases, implying a lower demand

and a lower price. Furthermore, it can readily be checked that a proportional increase in s0
and s1 (by the same multiplier m) increases φ∗D in a proportional way (by m). It can be shown

that an increase of s1/s0 also increases the fee φ∗D (see Appendix).

6 Welfare

In this section, we evaluate the welfare impact of liberalizing per-passenger fees. Since airport

and airline operating costs are normalized to zero, airport profits come from total per-passenger

fees, whereas airline profits are ticket income less total per-passenger fees paid to the airport.

In turn, passenger surplus is represented by the total gross utility generated from flying minus

all ticket payments. Since monetary transfers between airlines and airport cancel out, and so

do transfers between passengers and airlines, then social welfare equals the sum of passengers’

gross utility in all M +N destination markets.

13Finally, this fee is admissible only if monopoly airlines survive in the off-peak market, i.e., if φ∗ < s0. That
occurs if

s1 − 2s0
2s1 − 2s0

< Lm(1−K/M).

This condition imposes a lower boundary on M . If off-peak flights are rare, they are obliged to pay the high fee
that corresponds to on-peak fligths and therefore cannot survive. The condition nevertheless holds if s1 < s0/2.
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We first analyze the airport with only monopolies and then with only duopolies in all

destination markets, respectively. In the Section 7, we will investigate the effects of liberalization

of an airport serving both monopolies and duopolies using a numerical simulation.

6.1 Monopoly destinations

When the slot coordinator assigns slot i to a monopoly airline with market size z, its flight

generates a gross utility equal to z
∫ 1
1−qi vsidv. It can readily be shown that the social welfare

generated in the destination market z is equal to wiz where

wi =
(si − φ)(3si + φ)

8si
, (15)

which falls with higher passenger fee since dwi/dφ = − (φ+ si) / (4si) < 0.

For capacity unconstrained airports (M ≤ K), social welfare is equal toW = M
∫∞
0
zw1dG(z),

which also falls in φ. For capacity constrained airports (M > K), social welfare writes as

W = M

∫ ∞
z1

zw1dG(z) +

∫ z1

0

zw0dG (z) , (16)

where both integrands are functions of w1 and w0, which each fall in φ. By contrast, because z1
satisfies the capacity constraint M (1− F (z1)) = K, it is independent of φ. As a result, social

welfare always decreases with higher φ whatever the capacity level.

Proposition 5 Social welfare decreases with higher passenger fees φ in an airport serving a
set of monopoly destination markets.

The implication of Proposition 5 is that, for given slot allocation, social welfare increases

with an decrease of per passenger fees φ.

6.2 Duopolies

When the slot coordinator assigns two airlines to a destination market z to the same type of

time slot i ∈ {0, 1}, each flight generates a gross utility 1
2
z
∫ 1
1−2qii vsidv. Conversely, when the

coordinator assigns each duopoly airline to different a time slot, the offpeak flight generates a

gross utility equal to z
∫ 1−q10
1−q01−q10 vs0dv while the peak flight yields z

∫ 1
1−q10 vs1dv. Welfare value

of a flight with a destination market size z is equal to zwij, where

wii =
(si − φ)(2si + φ)

9si
, (17)
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for two flights in the same time period i ∈ {0, 1}, and

w01 =
[s1(s0 − 2φ) + s0φ] [3s1s0 + φ (2s1 + s0)]

2s0 (4s1 − s0)2
, (18)

w10 =
s1(2s1 − s0 − φ)(6s1 − s0 + φ)

2 (4s1 − s0)2
, (19)

for two flights in different time periods. We have dwii/dφ < 0 while dw01/dφ > 0, dw10/dφ < 0

and d(w01 + w10) /dφ < 0.

For small enough fees φ < φ̂, social welfare is rewritten as

W01 (φ) =

∫ ∞
z01

z(w01 + w10)NdG(z) +

∫ z01

0

z(2w00)NdG(z), (20)

where z01 is the equilibrium value that depends on µ given by the capacity constraint K ≥∫∞
z01
NdG(z).

For larger fee φ increasing above φ̂, z∗ decreases from infinite value and social welfare

becomes

W11 (φ) =

∫ ∞
z∗

z(2w11)NdG(z) +

∫ z∗

z01

z(w01 + w10)NdG(z) +

∫ z01

0

z(2w00)NdG(z), (21)

where z01 and z∗ are equilibrium values and depend on µ given by K ≥
∫∞
z∗ 2NdG(z) +∫ z∗

z01
zNdG(z).

We first put light on the fact that the slot coordinator ineffi ciently uses peak slots when

capacity accommodates one peak slot in each destination (M +N < K) and the passenger fee

φ is exogenous φ < φ̂. What is thus the welfare benefit resulting by imposing the coordinator

to allocate duopoly airlines with destination market sizes z ∈ [z∗,∞) in the same peak slot?

Denoting the initial threshold as z′01 and the final ones as z01 and z
∗, the welfare difference is

given by

W11 −W01 =

∫ ∞
z∗

z(2w11 − w01 − w10)NdG(z)−
∫ z01

z′01

z(w01 + w10 − 2w00)NdG(z),

where all terms in parentheses are positive. The first integral expresses the benefit for the

passengers flighting on the new peak-peak destinations. The second integral expresses the

welfare loss for the passengers obliged to move onto offpeak time. In the case of unused peak

slots and allocative ineffi ciency (µ = 0), the welfare benefit is definitively positive because z′01
and z01 are both equal to zero. Otherwise, welfare improvement depends on the above balance.

Second, we study the impact of deregulation of the fee φ while letting the coordinator choose

the slot allocation for the given fee. First, consider the case where φ < φ̂. The welfare change
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due to a marginal increase in φ is equal to

dW01

dφ
=

∫ ∞
z01

z
d(w01 + w10)

dφ
NdG(z) +

∫ z01

0

2z
dw00
dφ

NdG(z) (22)

− dz01
dφ

z01 (w01 + w10 − 2w00)Ng(z01), (23)

where the two first terms have negative integrand and the bracket in the third term is positive.

We have
dz01
dφ

=
d

dφ

(
µ

q01 + q10 − 2q00

)
=

d

dφ

(
3µs0 (4s1 − s0)

(2φ+ s0) (s1 − s0)

)
.

On the one hand, if slot capacity is slack, then we have µ = 0 so that dz01/dφ = 0 and

dW01 (φ) /dφ < 0. Although a higher fee mitigates the slot allocation ineffi ciency, social welfare

falls with higher passenger fees. On the other hand, if the slot capacity binds such that K =∫∞
z01
NdG(z), it is clear that z01 is independent of φ. So, dz01/dφ = 0 and therefore dW01/dφ < 0.

To sum up, dW01 (φ) /dφ < 0 for any φ < φ̂. Hence the regulator has no incentives to set small

fees. Secondly, in the case where φ > φ̂, it can be shown that welfare also decreases with higher

fee (see Appendix).

Proposition 6 In an airport serving a set of duopoly destination markets, welfare decreases
with higher φ if φ 6= φ̂. For uniform G, it has a positive jump at φ = φ̂.

Proof. See Appendix.
The second part of the proposition is proven by assuming uniform distribution, but the jump

is also confirmed in the numerical simulation devoted to study the general case with monopolies

and duopolies (see Section 7). Intuitively, the welfare improvement stems from the resolution

of allocative ineffi ciency. This is proven by the fact that no jump occurs in the welfare analysis

when the airport serves only monopolies: indeed, in that situation no allocative ineffi ciency

occurs.

The proposition implies that an increase in passenger fee may improve welfare if it entices

the slot coordinator to reallocate duopoly flights to peak slots when the fee reaches the value

of φ̂. This result may be explained by noticing the increase in competition when the slot

coordinator sets peak/peak or offpeak/offpeak duopolies rather than peak/offpeak ones. Indeed,

with only one peak time per destination offered, passengers gain in terms of relatively lower

prices, irrespective of the benefit in terms of departing hours.

Once the reallocation is set though, social welfare decreases again as per-passenger fees

increase. It follows that deregulation has a positive effect on social welfare only if the optimal

airport choice is not too far from the threshold φ̂. Otherwise, the negative effect of higher fees

would more than offset the positive effect of reallocation.
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7 An example

When we consider destinations served by both monopolies and duopolies, analytical tractability

precludes us to find some findings, namely, (i) we are not able to explicitly obtain a closed form

solution of the optimal per passenger fee in the case where φ > φ̂, and (ii) we cannot derive the

analytical welfare comparison. In this section we cover these aspects by developing a numerical

example, to show that results are consisted with the findings obtained analytically in the rest

of the paper.

In the example, we mimic the situation of an airport like Los Angeles (LAX) with M = 56

monopoly destinations and N = 28 duopoly destinations in April 2023 (other configurations

are disregarded here). For this airport, the passenger distribution in monopoly destinations

can be approximated by the Pareto distribution F (z) = (z/z)αM , where z = 106 (passenger

per year) and αM = 0.25, while the distribution of duopoly destinations is summarized by the

Pareto distribution G (z) = (z/z)αN , where z = 4.9 ∗ 106 (passenger per year) and αN = 0.18.

For the example, we collect all flights into a single pair of peak and offpeak periods and assume

a number of flights given by M + 2N = 114. For the sake of the discussion, we set the peak

capacity to K = 110 so that all flights cannot be allocated to the peak period.

In 2023, average fares at LAX vary about USD 250. We assume that three quarter of the

fare pays for airport and airline marginal costs. Hence, assuming zero airport passenger fee

and considering a monopoly destination, the airline price, or equivalently markup, is equal to

p1 = s1/2 = 0.25 ∗ 250, gives s1 = 125. We finally assume that the consumer’s benefit to fly

on peak is about USD 35 so that s0 = 90. It follows that φ̂ = 19.73 and φ = 70.31. The

total number of airport passengers at K = 110 is equal to 53 ∗ 106 passengers. This is slightly

below the 2023 flow of sixty-six million passengers because of our omission of many airport

movements.

Figure 4 shows the use of slot capacity in this setting. As shown in Proposition 1, allocative

ineffi ciency emerges for φ ∈
(

0, φ̂
)
, since some peak slots are left unused.

We turn now to verify the existence of an equilibrium with liberalized fees and φ ∈
[
φ̂, φ

)
.

Figure 5 shows the optimal per-passenger fee levied by the airport. It shows that φ∗ lies in

the range
[
φ̂, φ

)
, consistent with the slot configuration chosen by the coordinator. In other

words, the numerical simulation ensures that, unlike the case for φ ∈
(

0, φ̂
)
, an equilibrium

with unregulated fees may exist when the airport serves both monopoly and duopoly airlines.

Finally, Figure 6 considers the variation of welfare, airport and airline profits with the

increase in per-passenger fees. The figure shows a decrease in welfare following an increase in

φ, with the exception of the positive jump at φ̂, which we formally presented in Proposition

6. The upward jump at φ̂ implies a drastic welfare improvement in slot allocation, which is

valued at USD 110 million. However, as Figure 2 shows, this improvement is smaller than the

welfare loss of raising the fee from zero to φ̂, which amounts to USD 515 million. Hence, in this

example, airport liberalization cannot improve welfare compared to a regulated airport with
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Figure 4: Use of slot capacity

Figure 5: Airport profit maximizing passenger fee as function of capacity

zero passenger fee. The figure finally shows that the fall in welfare is due to a decrease in the

passengers’welfare, as well as the decrease in airline profits.

8 Conclusions

In this paper we have carried forward the problem of allocative ineffi ciency. Starting from the

findings of Picard et al. (2019) for airports with regulated per-passenger fees serving duopoly

airlines, we have extended the analysis by first considering both monopolies and duopolies in

the regulated case, showing the emergence of allocative ineffi ciency and then by evaluating the

welfare effects of liberalization.

Whenever unregulated per-passenger fees have a positive effect on an effi cient use of airport

infrastructure, it improves welfare because of the allocation effi ciency gain, but the increase in

per-passenger fees also worsens the welfare level. Thus from a policy perspective, liberalization

may have a negative effect on welfare, provided that the number of peak slots available is
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Figure 6: Welfare, airport and airlines profit

relatively limited, and the passengers’benefit fromflying at peak times is suffi ciently higher than

the offpeak alternative. We hope, with our findings, to provide guidance to airport regulators.

A possible limitation of the present analysis is related to the fact that delays are not mod-

elled. In our analysis, the adverse impact of congestion or delay on passenger satisfaction might

be represented through a diminishing function linked to the count of unused slots. In essence,

unutilized slots could generate a favorable external effect. Consequently, the extent of alloca-

tive ineffi ciency associated with unused slots in the existing model could be overestimated. It’s

important to note that this constraint is mitigated when our analysis is concentrated on level-2

airports, where concerns regarding delays are less pronounced.
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Appendix

Proof of Proposition 2

We first determine the optimal passenger fee. As seat numbers as linear functions of φ, we

redefine them as qi = qoi + q′iφ and qij = qoij + q′ijφ where (qoi , q
o
ij) are positive intercept and

(q′i, q
′
ij) negative slopes. Differentiating the Lagrangian function (7) w.r.t. φ yields

Lφ =

∫
z { (q0n0 + q1m1)Mf + (φq′0n0 + φq′1m1)Mf

+ [2q00n00 + (q01 + q10)n01 + 2q11n11]Ng

+ [2φq′00n00 + φ(q′01 + q′10)n01 + 2φq′11n11]Ng }dz + µK.

Given that q′i and q′ij are negative, the marginal profit Lφ is a linearly decreasing function
of φ. Since qoi and q

o
ij are strictly positive, Lφ is strictly positive at φ = 0. Therefore, the

airport always have incentives to raise the fee strictly above zero. Moreover, for any given slot

allocation, the root of Lφ yields a unique, optimal and positive fee given by

φ∗ = −1

2

[ ∫
z (qo0m0 + qo1m1)MdF

+
∫
z [2qo00n00 + (qo01 + qo10)n01 + 2qo11n11]NdG

]
[ ∫

z (q′0m0 + q′1m1)MdF

+
∫
z [2q′00n00 + (q′01 + q′10)n01 + 2q′11n11]NdG

] > 0. (24)

Can the slot coordinator choose an ineffi cient slot allocation where no duopoly airline flies on

peak time to the same destination? We have shown that this situation occurs if the passenger

fee is smaller than φ̂. However, the airport never chooses such a small fee, even if it fills its

capacity. So, let us consider the case where φ < φ̂ so that n11 = 0. The optimal fee reduces to

φ∗ = −1

2

∫
z (qo0m0 + qo1m1)MdF +

∫
z [2qo00n00 + (qo01 + qo10)n01]NdG∫

z (q′0m0 + q′1m1)MdF +
∫
z [2q′00n00 + (q′01 + q′10)n01]NdG

. (25)

First, consider that the airport operates only monopoly destinations: M > N = 0. Then,

its optimal fee reduces to

φ∗ = −1

2

∫
z (qo0m0 + qo1m1)MdF∫
z (q′0m0 + q′1m1)MdF

>
qo0
−2q′0

=
1

2
s0, (26)

where we use qo1 = qo0 and −q′0 > −q′1 > 0 to put lower boundary for the numerator and a higher

boundary for the denominator. It can be shown that the RHS of this inequality is larger than

φ̂.

Second, consider an airport that operates only duopoly destination (N > M = 0). It sets
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an optimal fee equal to

φ∗ = −1

2

∫
z [2qo00n00 + (qo01 + qo10)n01]NdG∫
z [2q′00n00 + (q′01 + q′10)n01]NdG

>
2qo00

−2 (q′01 + q′10)
=

7

12
s0

4s1 − s0
s1

, (27)

where we used qo01 + qo10 > 2qo00 and −(q′01 + q′10) > −2q′00 > 0 to bound the numerator of the

LHS ratio by below and its denominator by above. Again, this can also be shown to be larger

than φ̂.

Finally, consider an airport with monopolies and duopolies (M > 0, N > 0). We can put

the same lower and upper bounds in the numerator and denominator of (24). Then,

φ∗ >
1

2

qo0
∫
zMdF + 2qo00

∫
zNdG

−q′0
∫
zMdF − (q′01 + q′10)

∫
zNdG

=
1

2

qo0 + 2qo00X

−q′0 − (q′01 + q′10)X
, (28)

whereX ≡
(∫

zNdG
)
/
(∫

zMdF
)
is a hyperbolic function ofX with a negative root, a negative

vertical asymptote and a positive horizontal asymptote. As X rises from zero to infinity, the

RHS of (28) monotonically moves between two values that are equal the RHS of (26) and (27).

Since the latter are both larger than φ̂, the RHS of (28) also lies above φ̂. To sum up, there

exist no equilibrium with small fees φ ∈ [0, φ̂).

Proof of Proposition 3

For monopoly airline destinations only (M > N = 0), the above system reduces to the three

conditions

φ∗ = −1

2

qo0
∫ z1 zMdF + qo1

∫
z1
zMdF

q′0
∫ z1 zMdF + q′1

∫
z1
zMdF

=
1

2

∫ z1 zdF +
∫
z1
zdF

1
s0

∫ z1 zdF + 1
s1

∫
z1
zdF

∈ [
s0
2
,
s1
2

],

M [1− F (z1)] ≤ K,

and

z1 =
µ

q1 − q0
=

2µ (s0s1)

φ(s1 − s0)
.

Hence, ifM ≤ K, µ = 0, z1 = 0, and φ∗ = s1/2. Otherwise, ifM ≥ K, z1 = F−1 (1−K/M)

and

φ∗M =
1

2

[
1

s1
+

(
1

s0
− 1

s1

)
Lm(1−K/M)

]−1
∈
[s0

2
,
s1
2

]
,

where Lm(x) =
∫ F−1(x)

zdF (z)/
∫
zdF (z) represents the share of passenger demand below the

percentile x of its total demand. This is an increasing function.
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Proof of Proposition 4

For duopolies N > M = 0, with φ ∈ [φ̂, φ̄], we have four conditions for four variables φ, z01, z∗

and µ.

φ∗ = −1

2

2qo00
∫ z01 zNdG+ (qo01 + qo10)

∫ z∗
z01
zNdG+ 2qo11

∫
z∗ zNdG

2q′00
∫ z01 zNdG+ (q′01 + q′10)

∫ z∗
z01
zNdG+ 2q′11

∫
z∗ zNdG

,

N [G(z∗)−G(z01)] + 2N [1−G(z∗)] ≤ K,

z01 ≡
µ

q01 + q10 − 2q00
=

3µs0 (4s1 − s0)
(2φ+ s0) (s1 − s0)

,

and

z∗ ≡ µ

2q11 − q01 − q10
= µ

3s0s1 (4s1 − s0)
(s1 − s0) (6φs1 − s0s1 − 2φs0)

.

If the capacity constraint is not binding, µ = 0 so that z01 = z∗ = 0. All duopolies fly on peak.

The constraint becomes: 2N ≤ K. The optimal fee is

φ∗ = −1

2

2qo11
∫
zNdG

2q′11
∫
zNdG

=
s1
2
.

The passenger fee is the same as in monopoly airlines. However, the duopolies board more

passengers in so that the airport makes more profit. Their passenger supply is therefore more

elastic to the passenger fee.

If the capacity constraint binds, we get µ > 0. We define

a(φ) ≡ z∗

z01
=
q01 + q10 − 2q00
2q11 − q01 − q10

=
s1 (2φ+ s0)

2φ (3s1 − s0)− s0s1
,

which is function that decreases from (8s1 − 3s0) /s0 to 1 when φ increases from φ̂ to φ̄. We

can express the equilibrium with the following two non-linear equations with two unknowns z01
and φ∗ :

2−K/N = G(z01) +G [z01a(φ)] , (29)

φ∗ =
1

2

2qo11Z
d + (2qo00 − qo01 − qo10)Zd (z01) + (qo01 + qo10 − 2qo11)Z

d [z01a(φ∗)]

−2q′11Z
d − (2q′00 − q′01 − q′10)Zd (z01)− (q′01 + q′10 − 2q′11)Z

d [z01a(φ∗)]
, (30)

where Zd(z) =
∫ z
ζdG(ζ) and Zd =

∫
zdG(z).

Remind the definitions of Ld(x) =
∫ G−1(x)

zdG(z)/
∫
zdG(z) and Zd =

∫
zdG(z). Invert-

ing the capacity constraint, we get z01a(φ) = G−1 [2−K/N −G(z01)]. So, Zd [z01a(φ∗)] =∫ z01a(φ∗) zdG(z) = Ld [2−K/N −G(z01)] ∗ Zd. Also, Zd (z01) = Ld [G (z01)] ∗ Zd. The optimal
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fee writes as the following function of z01:

φ∗ =
1

2

2qo11 + (2qo00 − qo01 − qo10)Ld [G (z01)] + (qo01 + qo10 − 2qo11)L
d [2−K/N −G(z01)]

−2q′11 − (2q′00 − q′01 − q′10)Ld [G (z01)]− (q′01 + q′10 − 2q′11)L
d [2−K/N −G(z01)]

=
3

4
s0s1

2 (4s1 − s0) + (5s1 − s0)
{
Ld [G (z01)]− Ld [2−K/N −G(z01)]

}
s0 (4s1 − s0) + s1 (s1 − s0)Ld [G (z01)] + (s1 − s0) (3s1 − s0)Ld [2−K/N −G(z01)]

.

For uniform distribution G(z) = z on [0, 1] → [0, 1], this gives Zd(z) = z2/2 and Ld(x) =∫ x
zdz/

∫
zdz = x2. The system becomes

φ =
1

2

2qo11 (1 + a(φ))2 − (qo01 + qo10 − 2qo00) (2−K/N)2 − (2qo11 − qo01 − qo10) (a(φ))2 (2−K/N)2

−2q′11 (1 + a(φ))2 − (2q′00 − q′01 − q′10) (2−K/N)2 − (q′01 + q′10 − 2q′11) (a(φ))2 (2−K/N)2
,

z01 =
2−K/N
1 + a(φ)

.

After plugging the values of qoij,q
′
ij and a (φ), we simplify the first equation to

φ∗ =
2s1s0 (4s1 − s0)2 − s1s0 (s1 − s0) (2s1 − s0) (2−K/N)2

4s0 (4s1 − s0)2 + 4s1 (s1 − s0) (3s1 − s0) (2−K/N)2
.

Then one can show that φ∗ > φ̂ if and only if

3 (2s1 − s0)
(
2s1s0 (4s1 − s0)2 − s1s0 (s1 − s0) (2s1 − s0) (2−K/N)2

)
>

s0s1
(
s0 (4s1 − s0)2 + 4s1 (s1 − s0) (3s1 − s0) (2−K/N)2

)
,

which is true for all K/N when holds for K/N = 0, i.e.,

(12s1 − 7s0) (4s1 − s0)2 − 4 (s1 − s0)
(
3s20 − 16s0s1 + 24s21

)
> 0.

This simplifies to

48s21 (s1 − s0) + 40s31 + 8s1 (s1 − s0) + 5s30 > 0.

Hence, φ∗ > φ̂.

We also give the condition for which the optimal solution φ∗ is in the interval [0, φ]. Using

the definition of φ and simplifying, we get φ∗ ≤ φ iff

2
(2s1 − 3s0)

(s1 − s0)
< (2−K/N)2 .

This is always true if the LHS is negative; that is, if s1 < 3s0/2.

We finally show that an increase of s1/s0 also increases the fee φ∗. Indeed, let x = s1/s0 > 1

and y = (2−K/N)2 ∈ [0, 2]. Then, dφ∗/dx > 0 iffy2x2 (x− 1)2+y (4x− 1) (2x− 1) (14x2 + 1)−
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2 (4x− 1)4 < 0. The LHS is a convex quadratic function of y that accepts a single positive root

and has negative values at y = 0 and A = 2. So, the condition holds for all y ∈ [0, 2].

Proof of Proposition 6

We prove that the welfare function decreases in φ and that it has a positive jump at φ̂.

Welfare function decreasing in φ

To prove the first part of the proposition, we need to prove that welfare decreases with higher

φ above φ̂. When φ lies above φ̂, social welfare becomes

dW11

dφ
=

∫ ∞
z∗

2z
dw11
dφ

NdG(z) +

∫ z∗

z01

z
d(w01 + w10)

dφ
NdG(z) +

∫ z01

0

2z
dw00
dφ

NdG(z)

− dz∗

dφ
z∗(2w11 − w01 − w10)Ng(z∗)− dz01

dφ
z01(w01 + w10 − 2w00)Ng(z01), (31)

where the three first terms are negative because their integrands are negative, while the paren-

theses in the last two terms are positive. The values of z01 and z∗ are equilibrium values and

depends on µ given by

K ≥
∫ ∞
z∗

2NdG(z) +

∫ z∗

z01

zNdG(z).

When this capacity constraint is slack, µ = 0 so that dz01/dφ =dz∗/dφ = 0 and therefore

dW01 (φ) /dφ < 0. When the constraint binds, we have µ > 0 and

G(z∗) +G(z01) = 2− K

N
.

This imposes
dz∗

dφ
g(z∗) +

dz01
dφ

g(z01) = 0. (32)

Therefore z∗ and z01 move in opposite directions.

Using the definitions of z01 and z∗ we have

dz01
dφ

=
1

q01 + q10 − 2q00

dµ

dφ
+ µ

d

dφ

(
1

q01 + q10 − 2q00

)
dz∗

dφ
=

1

2q11 − q01 − q10
dµ

dφ
+ µ

d

dφ

(
1

2q11 − q01 − q10

)
where the ratio in each first term is positive for φ > φ̂ and each last term can be checked to

be negative. To be compatible with (32), it must be that dµ
dφ
> 0: by contradiction, if dµ

dφ
≤ 0,

both dz01
dφ

and dz∗

dφ
are negative, which is impossible with (32). Intuitively, capacity constraint

represents a higher value of the private airport when φ is larger.
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Also, let us write

d ln z01
dφ

=
d lnµ

dφ
− d ln (q01 + q10 − 2q00)

dφ

d ln z∗

dφ
=

d lnµ

dφ
− d ln (2q11 − q01 − q10)

dφ

So, we have

d ln z01
dφ

>
d ln z∗

dφ
⇐⇒ d ln (q01 + q10 − 2q00)

dφ
<

d ln (2q11 − q01 − q10)
dφ

After replacement and simplifications, this is equivalent to

d

dφ
ln

(
s0s1 − φ (2s1 − s0)

(4s1 − s0)s0
+

2s1 − s0 − φ
4s1 − s0

− 2
s0 − φ

3s0

)
<

d

dφ
ln

(
2
s1 − φ

3s1
− s0s1 − φ (2s1 − s0)

(4s1 − s0)s0
− 2s1 − s0 − φ

4s1 − s0

)
⇐⇒ 2s0

4s1 − s0
(2φ+ s0) (s0s1 + 2φs0 − 6φs1)

< 0

⇐⇒ s0s1
2 (3s1 − s0)

< φ

⇐⇒ φ̂ < φ

which holds true. Therefore, since z01 and z∗ move in opposite direction, it must be that

d ln z01
dφ

> 0 >
d ln z∗

dφ
⇐⇒ dz01

dφ
> 0 >

dz∗

dφ

Finally, a suffi cient condition for dW11

dφ
< 0 is that the second line in (31) is negative. That

is, we successively get

−dz∗

dφ
z∗(2w11 − w01 − w10)Ng(z∗)− dz01

dφ
z01(w01 + w10 − 2w00)Ng(z01) < 0 ⇐⇒

dz01
dφ

g(z01)z
∗(2w11 − w01 − w10)Ng(z∗) +

dz01
dφ

z01(w01 + w10 − 2w00)Ng(z01) > 0 ⇐⇒

z∗(2w11 − w01 − w10) + z01(w01 + w10 − 2w00) > 0,

which is true.
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Positive jump at φ̂

To prove the existence of a positive jump at φ̂, we need to determine the welfare levels of W11

and W10 about φ̂.

W11

(
φ̂
)
−W01

(
φ̂
)

=

∫ ∞
z∗(φ̂,µ+)

z(2w11)NdG(z) +

∫ z∗(φ̂,µ+)

z01(φ̂,µ+)
z(w01 + w10)NdG(z)

+

∫ z01(φ̂,µ+)

0

z(2w00)NdG(z)−
∫ ∞
z01(φ̂,µ−)

z(w01 + w10)NdG(z)

−
∫ z01(φ̂,µ−)

0

z(2w00)NdG(z),

where we denote the threshold by their components φ and µ, and where superscript − and

+ refer to φ to be on the left
(
φ < φ̂

)
or right

(
φ > φ̂

)
of φ̂, respectively. Rearranging and

simplifying, we get

W11

(
φ̂
)
−W01

(
φ̂
)

= (2w11−w01−w10)N
∫ ∞
z∗(φ̂,µ+)

zdG(z)+(w01+w10−2w00)N

∫ z01(φ̂,µ−)

z01(φ̂,µ+)
zdG(z)

(33)

Notice that the first part of equation (33) is always positive. By contrast, the second part is

positive only if ∫ z01(φ̂,µ−)

z01(φ̂,µ+)
zdG(z) > 0.

To verify it, we have to derive the explicit values of µ and the consequent thresholds z01
(
φ̂, µ−

)
and z01

(
φ̂, µ+

)
when we assume uniform distribution. The values of µ−, µ+, z01

(
φ̂, µ−

)
and

z01

(
φ̂, µ+

)
depend on the value of K compared to N , respectively. Thus we have to find the

values of µ and z01 in four possible cases.

Begin with φ < φ̂, starting from N > K. In this case, we need to verify whether we

have either µ = 0 and slack constraint N [1−G(z01)] < K, or µ > 0 and binding constraint

N [1−G(z01)] = K. Suppose µ = 0, then z01 = 0 and N [1−G(0)] = N > K, which

contradicts the slack constraint N [1−G(z01)] = N < K. It follows that µ > 0 and given by

the binding capacity N [1−G(z01)] = K, we get

N

[
1−G

(
3µs0 (4s1 − s0)

(s1 − s0) (s0 + 2φ)

)]
= K,

⇐⇒
(s1 − s0) (s0 + 2φ)

3s0 (4s1 − s0)
G−1 (1−K/N) = µ,
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which, with uniform distribution, it becomes:

µ = µ−N>K ≡
(s1 − s0) (s0 + 2φ)

3s0 (4s1 − s0)
(1−K/N) .

By plugging µ−N>K into z01, we get

z−01,N>K = 1−K/N.

We now turn to φ < φ̂ when N < K. In this case, we need to verify whether we have

either µ = 0 and slack constraint N [1−G(z01)] < K, or µ > 0 and binding constraint

N [1−G(z01)] = K. Suppose then that N [1−G(z01)] = K implies µ ≤ 0. For this, we

state [1−G(z01)] = K/N > 1 ⇐⇒ G(z01) < 0, which is impossible. So,

µ = µ−N<K = 0 and z−01,N<K = 0.

Consider next φ > φ̂, starting from N > K. Now we need to verify whether we have either

µ = 0 and slack constraint 2N [1−G(z∗)] + N [G(z∗)−G(z01)] < K, or µ > 0 and binding

constraint 2N [1−G(z∗)] + N [G(z∗)−G(z01)] = K. If we suppose µ = 0, then z01 = z∗ = 0,

and the slack constraint is 2N [1−G(0)] + N [G(0)−G(0)] = N < K, which contradicts

N > K. So, it should be that µ > 0 given by 2N [1−G(z∗)] + N [G(z∗)−G(z01)] = K ⇐⇒
2−K/N = G(z∗) +G(z01). For uniform distribution,

µ = µ+N>K ≡
(s1 − s0) (2−K/N)

3s0 (4s1 − s0)
(

s1
(6s1−2s0)(φ−φ̂)

+ 1
(s0+2φ)

) ,
which, for φ = φ̂, becomes limφ→φ̂ µ

+
N>K ≡ 0, from which we get z+01,N>K = 0.

We are left with the case φ < φ̂ If and N < K. Now we need to verify again if we have

either µ = 0 and slack constraint 2N [1−G(z∗)] + N [G(z∗)−G(z01)] < K, or µ > 0 and

binding constraint 2N [1−G(z∗)] + N [G(z∗)−G(z01)] = K. Accordingly, we suppose that

µ = 0. Then, the slack constraint 2N [1−G(0)] + N [G(0)−G(0)] = 2N < K, which cannot

be the case when 2N > K as considered above. So, µ > 0 for 2N > K and, with uniform

distribution, µ = µ+N<K = µ+N>K = 0. To sum up, in the case of a uniform distribution, we get

Table 1

µ z01

φ < φ̂ N > K (s1−s0)(s0+2φ)(1−K/N)
3s0(4s1−s0) 1−K/N

N < K 0 0

φ > φ̂ N > K 0 0

N < K 0 0
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We are now in a position to compareW11 andW01 in the two casesN > K andN < K < 2N .

Consider first N > K. By plugging the results from Table 1 in (33), we get

∫ z01(φ̂,µ−N>K)

z01(φ̂,µ+N>K)
zdG(z) =

∫ 1−K/N

0

zdG(z) > 0.

Second, consider N < K. Then,

∫ z01(φ̂,µ−)

z01(φ̂,µ+)
zdG(z) =

∫ 0

0

zdG(z) = 0.

Therefore, in any possible scenario we have a positive jump in the level of welfare when φ = φ̂,

by assuming uniform distribution.
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