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ABSTRACT 17 

MicroRNAs (miRNAs) are a class of regulatory non-coding RNAs that finetune cellular functions by 18 
modulating the stability and abundance of their target mRNAs, thereby contributing to regulation of 19 
tissue homeostasis. MiRNA genes are transcribed similarly to protein-coding genes and recent studies 20 
have enabled their annotation and quantification genome-wide from bulk nascent transcriptomes. Here, 21 
we developed an approach to quantify and integrate miRNA gene signatures into single-cell studies. 22 
To characterize miRNA gene expression dynamics, we first compared the suitability of droplet and 23 
plate-based single-cell RNA-sequencing (scRNA-seq) platforms using the matched datasets provided 24 
by the Tabula Muris Senis and Tabula Sapiens consortiums. We found high concordance between the 25 
platforms and with cell type-specific bulk expression data. Based on the comprehensive aging profiles, 26 
our analysis comparing spleen immune cells between young and old mice revealed a concordant 27 
regulation of miRNAs involved in senescence and inflammatory pathways in multiple immune cell types, 28 
including up-regulation of mmu-mir-146a, mmu-mir-101a and mmu-mir-30 family genes. To study the 29 
aberrant regulation of immune cell homeostasis and tissue inflammation that pre-dispose to aging-30 
related disease development, we collected transcriptome profiles from atherosclerosis development in 31 
LDLR-/-ApoB100/100 mice. We found an elevated myeloid cell proportion in the adipose tissue and further 32 
characterized the cell subtypes based on reproducible transcriptome clusters. We then compared 33 
miRNA gene expression in early versus late disease and upon inflammatory challenge to monitor 34 
different stages during disease progression. At atherosclerotic stage, pro-inflammatory mmu-mir-511 35 
expression increased in several macrophage subtypes, while immunosuppressive mmu-mir-23b~mir-36 
24-2~mir-27b up-regulation was specific to Trem2+ lipid-associated macrophages. The infiltrating 37 
monocytes up-regulated mmu-mir-1938 and mmu-mir-22 expression and in classical monocytes 38 
maturation further increased mmu-mir-221~222, mmu-mir-511 and mmu-mir-155 expression. To 39 
validate that these changes detected from single cell profiles represent miRNA gene transcriptional 40 
regulation, we used nascent transcriptomics data from ex vivo macrophage cultures with pro-41 
inflammatory stimulation, confirming both rapid and long-lasting transcriptional activation of the miRNA 42 
loci studied. Collectively, our work enables integrating miRNA gene analysis to current single cell 43 
genomics pipelines and facilitates characterization of miRNA regulatory networks during aging and 44 
disease development. 45 

 46 
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INTRODUCTION  49 

The study of single-cell (sc) transcriptomes has revolutionized the field of cell biology, enabling 50 
identification of new cell types, cellular states and characterizing cellular transitions across healthy 51 
tissues and during disease development 1. MicroRNAs (miRNAs), a class of regulatory non-coding RNA 52 
molecules, can base pair to their target messenger RNA (mRNA), thereby interfering with their 53 
translation into proteins. Thus, miRNA-mediated post-transcriptional regulation strongly impacts gene-54 
regulatory networks that modulate cell function via controlling cell homeostasis 2. At systems level, 55 
control of cell state transitions deteriorates over time, impairing cellular homeostasis and tissue function. 56 
This process manifests with low-grade tissue inflammation and constitutes a risk for developing 57 
inflammatory-related diseases such as diabetes, atherosclerosis, Alzheimer’s disease, and certain 58 
cancers (reviewed in 3,4).   59 

MiRNA genes correspond to long transcripts called primary miRNAs (pri-miRNA) that are transcribed 60 
by RNA polymerase II similarly as protein-coding genes. Subsequently, miRNA transcripts are 61 
processed into short transcripts, pre-miRNAs, and further into 20-22 nucleotides (nt) long mature 62 
miRNAs. During sample preparation for standard bulk RNA-sequencing, the size selection step 63 
excludes the processed miRNA transcripts. Therefore, separate protocols for small RNA sequencing 64 
have been developed and represent the most common miRNA profiling method (reviewed in 5). 65 
Recently, these were adapted to achieve cellular resolution, however the feasibility of sc-small RNA-66 
seq is limited by low throughput 6,7. 67 

Presently, the comprehensive gene annotations such as Refseq primarily consist of pre-miRNA 68 
coordinates, appropriate for small RNA sequencing data analysis rather than conventional 69 
transcriptome sequencing. As the reference annotation is commonly utilized in single-cell studies, 70 
quantification of miRNA genes and the analysis of their regulation at cell type resolution is lacking. In 71 
consequence, our understanding of how miRNAs integrate into regulatory networks that govern cell 72 
state homeostasis is incomplete. Acknowledging that single-cell transcriptomics captures between 17 73 
to 23% of unspliced reads 8, analysis of pri-miRNA transcripts presents an alternative. In our previous 74 
work, we developed a comprehensive miRNA gene annotation approach based on nascent 75 
transcriptome (Global-run-on coupled with sequencing, GRO-seq), Cap Analysis of Gene Expression 76 
(CAGE) and histone marker data that enabled the quantification of pri-miRNA transcriptional activity in 77 
a multitude of bulk genomics studies in cell lines and primary tissue contexts 9,10.  78 

Here, we leverage our previous approach annotating miRNA gene coordinates to quantify miRNA genes 79 
from single-cell transcriptomes. To discover changes in miRNA gene expression that could impact their 80 
central role in control of cellular homeostasis, and thereby contribute to the progressive loss of healthy 81 
physiology, we used the comprehensive aging mouse dataset, collected by Tabula Muris Senis (TMS) 82 
consortium 11–13, and novel profiles from an atherosclerosis disease model. We demonstrate how 83 
miRNA gene activity is impacted in immune cells by aging and during disease development and provide 84 
these datasets and annotations as an openly available resource to facilitate further characterization of 85 
miRNA regulatory networks.  86 
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RESULTS  87 

Quantification of miRNA gene expression in single-cell transcriptomes 88 

To characterize miRNA gene expression dynamics in single cell transcriptomes collected from mouse 89 
tissues, we first followed the approach described in 9 to obtain mouse transcript coordinates 90 
representing intergenic (transcribed from their own promoter) and intragenic miRNA genes that are co-91 
transcribed from introns of their host genes (see Methods, datasets used are listed in Table S1A). For 92 
simplicity, miRNA genes transcribed from alternative transcription start site (TSS) were summarized by 93 
gene locus, following the current practice of capturing gene-level expression in single-cell datasets (see 94 
Methods, similarly human coordinates were adopted from 9). This annotation, which resulted in 233 95 
intragenic and 135 intergenic miRNA gene loci (368), corresponding to 990 mature miRNAs for mouse, 96 
and 511 and 391 loci, respectively, for human (1896 mature miRNA), was integrated into the GenCode 97 
transcript annotations (Fig. 1A, Table S1B-C: miRNA gene coordinates).  98 

Next, we retrieved the comprehensive aging mouse dataset, collected by the TMS consortium 11–13 to 99 
serve as the first benchmark for miRNA gene quantification at cellular resolution across tissues.  Single-100 
cell transcriptomes collected by TMS were sequenced with 10x Genomics and Switching Mechanism 101 
at the 5′ end of RNA Template (Smart)-seq2 technologies (Table S1C-D). While both methods follow a 102 
poly-A-based priming strategy, 10x Genomics uses 3’-based quantification whereas Smart-seq2 103 
captures reads along the entire transcript 14. To assess which method could more accurately capture 104 
miRNA gene expression dynamics, we quantified read counts from miRNA gene coordinates in splenic 105 
cells from 3-month-old mice from both platforms (matching human data was retrieved from Tabula 106 
Sapiens 15). MiRNA gene dynamics were studied based on the ability of each platform (i) to measure 107 
miRNA gene expression levels, and (ii) the ability to detect miRNA quantified as ‘percentage of 108 
expression’.  109 

In line with previous research, Smart-seq2 libraries performed worse on detecting different miRNA 110 
genes: across cell types, on average 225 miRNA were found with 10x Genomics vs. 66 with Smart-111 
seq2, despite that more reads per miRNA gene detected were captured at the utilized sequencing depth 112 
(98 vs. 83 per miRNA detected, Fig. S1, 7). Overall, expression profiles across cell types correlated well 113 
between the two platforms, with a 0.83 correlation among miRNA gene average expression level 114 
genome-wide and 0.87 comparing the percentage of expression.  115 

To study the relationship between miRNA genes and their corresponding mature forms in individual 116 
transcriptomes, we identified miRNA gene markers (n=6) for the main splenic immune cell populations 117 
including mouse B-, T-, and NK-cells using the statistical tests for cluster comparison in the Single-Cell 118 
Analysis in Python (SCANPY) pipeline (Fig. 1B, dot plot panels). We then retrieved their corresponding 119 
mature forms and quantified their expression from polymerase chain reaction (PCR)-based profiles 120 
available from the immune cell atlas (GSE144081 from 16; Fig. 1B, heatmap right panel). Relative 121 
expression levels amongst the platforms, across species and between the gene and corresponding 122 
mature forms were concordant for highly expressed genes, exemplified by (mmu)-miR-141 with highest 123 
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expression in B-cells and mmu-miR-340 with high expression in NK-cells and B-cells in relation to T-124 
cells (Fig. 1B, notice that miRNA loci marked * did not have corresponding human data). Overall, the 125 
correlations between the percent of expression or average expression in single-cell analysis and mature 126 
miRNA expression were generally weaker (0.44 - 0.47 in all the comparisons). However, as the mature 127 
miRNA levels are also affected by transcript processing and stability, we performed a more direct 128 
benchmark comparison to primary transcription assayed using bulk GRO-seq and parallel 10x 129 
Genomics scRNA-seq in the mouse stromal cell line ST2 (see Methods, Fig. 1C). MiRNA genes were 130 
divided into 10 bins based on their expression in each sequencing technology (plotted from low to high 131 
values in Fig. 1C, light purple indicates 10x Genomics-based scRNA-seq and dark purple GRO-seq 132 
signal). Independently of the data type used to bin miRNA genes, the detected expression level was 133 
highly comparable at bins of high expression (bins from 6 to 10), whereas the bins corresponding to 134 
lower expression levels displayed higher variability. This observation agrees with limitations in efficient 135 
capture of low-expressed transcripts in 10x Genomics scRNA-seq datasets 7. Taken together, 136 
quantifying miRNA gene expression based on 10x Genomics and Smart-seq2 scRNA-seq platforms 137 
has high concordance with cell-specific bulk expression data. Since more miRNA genes were detected 138 
from 10x Genomics-based profiles, we continued with this technology in downstream analyses to 139 
capture miRNA transcription at cellular resolution.  140 

Aging profiles in splenic immune cells reveal coordinated and cell-type-specific changes in 141 
miRNA gene expression 142 

During aging, the immune system deteriorates, manifesting in loss of homeostatic mechanisms 143 
controlling immune responses that can underlie chronic inflammation and thereby risk for developing 144 
various aging-related disease. To gain insights into miRNA expression profiles in aging immune cell 145 
subpopulations, we retrieved mouse samples from the TMS consortium, the largest resource of single-146 
cell datasets to study aging in multiple tissues. We focused on the splenic male samples that covered 147 
the broadest range of time points. The annotation contained seven major splenic cell types that cluster 148 
together independently of the mice age (Fig. 2A and Fig. S2A). During aging, mature NK-cell, T-cells, 149 
and plasma cells proportions increased whereas macrophage, proerythroblast, T-cell, and NK-cell 150 
proportions decreased (Fig. 2B and Fig. S2B), in line with previous results 17. Next, we compared within 151 
each cell type young (1 and 3 months) and old mice (24 and 30 months) to track progressive, gradual 152 
changes in gene expression that are detectable only after sufficient time 13 and distinguished in each 153 
cell type changes in the expression level within cells expressing the transcript (DE category) or 154 
variations in the percentage of cells expressing a particular gene (DZ category) (see Methods, n=6996 155 
cells). In total 131 DZ and 58 DE miRNA genes were identified across the different cell types, 156 
summarized in Fig. 2C (Table S2). Next, miRNA genes were ranked based on combined p-values 157 
(Fisher’s exact test, see Methods) to identify concordant changes amongst the five most abundant 158 
immune cell types, which revealed 187 and 42 significant (combined p-value < 0.05) miRNAs in DZ and 159 
DE categories, respectively. A subset of 94 top ranked miRNA with log2 fold change in detection rate 160 
>0.5 in two cell types are shown in Fig. 2D (refer to Fig. S2C showing their profile in female samples). 161 
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Several previously aging-associated miRNAs are among the top ranked upregulated miRNA genes in 162 
old mice, including elevated expression of mmu-mir-101a, in agreement with its established role in aging 163 
brain tissue 18, and mmu-mir-146a and mmu-mir-147 that regulate NF-κB and Toll-like receptor (TLR) 164 
mediated inflammatory responses and induce pre-mature senescence 19–21. In our analysis, mmu-mir-165 
146a and mmu-mir-147 were concordantly upregulated in the immune cell types analysed and mmu-166 
mir-101a expression increased most in lymphoid cells (T-cells, B-cells, and NK T-cells) of old mice (Fig. 167 
2D, top). Interestingly, female samples comprising young (3 months) and adult mice (18 and 21 months) 168 
only showed common upregulation of mmu-mir-147 and decrease of mmu-mir-146a and mmu-mir-101a 169 
(Fig. S2C).  170 

Further expression changes seen in aged immune cells that may aggravate aging phenotypes include 171 
downregulation of mmu-mir-706 (Fig. 2D, bottom) with recognized function as an oxidative stress 172 
regulator 22, upregulation of mmu-mir-30a~30c-2 and mmu-mir-30b~30d  (upregulated in 4/5 cell types) 173 
representing members of miR-30 family microRNAs that promote senescence (inhibition of DNA 174 
synthesis by targeting B-myb 23), the concordant increase in mmu-mir-705 (regulation of aging-related 175 
cell fate bias 24) and mmu-mir-691 that may promote chronic inflammation (ulcerative colitis 25). 176 

Our analysis also identified highly cell type-specific changes, exemplified by a decrease in mmu-mir-177 
455 transcription in myeloid cells in line with aging-protective function in osteoarthritis 26 (Fig. 2C, E and 178 
Fig. S2D). Similarly, the fraction of cells expressing mmu-mir-511 involved in the regulation of TLR-179 
signalling decreased. In contrast, we observed upregulation of mmu-mir-138-1 and mir-676 180 
transcription towards aging in myeloid cells. Previously similar pattern towards aging has been reported 181 
in keratinocytes were miR-138 promotes cellular senescence via targeting Sirt1 27. These myeloid-182 
lineage specific changes matched specific sub-populations of cells, corresponding to dendritic cells and 183 
macrophages (refer to Fig. 2F showing the respective marker genes: H2-DMb1 for antigen presenting 184 
dendritic cells and Cd163 for macrophages).  185 

Taken together, our analysis revealed aging-related transcriptional changes of miRNA genes involved 186 
in regulatory networks governing senescence, oxidative stress and inflammatory responses, 187 
distinguishing several miRNAs impacted in multiple immune cell types and providing the resolution to 188 
detect highly cell type-specific expression.  189 

Identification of miRNA gene markers for myeloid subpopulations in fat tissue  190 

An unhealthy diet is a risk factor for disease development that can result in elevated white adipose 191 
tissue (WAT) inflammation through altered cytokine and chemokine secretion in which specific immune 192 
cells are key players 28. To model this process and analyse changes in miRNA gene expression, we 193 
collected scRNA-seq profiles from conditions representing progressive atherosclerosis development in 194 
LDLR-/-ApoB100/100 mice fed with a chow or high fat diet (n=5 per group). The experimental setup led to 195 
atherosclerotic plaque formation phenotype resembling early disease state (ED, shorter fat diet) and 196 
late disease (LD, longer fat diet resulting in advanced vascular lesions) (Fig. 3A), confirmed by 197 
examining the vessel wall cell phenotypes at lesions 29. In addition, we included lipopolysaccharide 198 
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(LPS) as an extra inflammatory stimulus introduced during the fat diet (two weeks prior to tissue 199 
collection in ED condition) to achieve an inflammatory challenged state (IC, n=5) (Fig. 3A). In response 200 
to IC and also at LD, the proportions of immune cells (T cells, B cells, and myeloid cells shown in Fig. 201 
3B) were modulated, with concomitant decrease in relative proportion of non-immune tissue-resident 202 
stromal cells. Among the immune cell types, the myeloid cell fraction increased the most between 203 
different conditions.  204 

To characterize further the myeloid compartment, we defined reproducible cell phenotype states by 205 
computing a cell similarity graph from the scRNA-seq profiles using the MetaCell pipeline 30. To 206 
annotate the 27 nodes found that each represent a unique transcriptome state (Fig. 3C), we obtained 207 
marker genes and visualized their expression alongside the expression of literature-based markers (Fig. 208 
3D, Fig. S3A, Table S3A). 209 

Macrophage (MP) markers were highly expressed in Nodes 1-10. Specifically, node 1 had elevated 210 
expression of genes such as Retnla and Fn1 (termed the reparatory-like MPs). Node 2 showed elevated 211 
expression of Trem2 that is a well-known marker of lipid-associated macrophages (termed the LAMs) 31. 212 
Nodes 3 and 5-10 showed a higher expression of genes encoding for innate immune protein C1q 213 
expression that in macrophages was previously suggested to alleviate inflammation present during 214 
atherosclerosis disease progression 32. Accordingly, cells matched to nodes 5-10 predominantly 215 
represented LD condition and showed a relatively higher expression of late-stage MP markers (Apoe, 216 
Selenop, and Cd63 33). In addition to node 2, nodes 5 and 6 had elevated expression of Trem2, 217 
indicating a LAM-like transcriptional signature. Node 9 showed a high expression of Cd163, Lyve1, and 218 
Folr2 (termed as the tissue-resident MPs 33). Interestingly, nodes 4 and 7 were enriched in genes 219 
associated with chemokine-signaling such as Cxcl2 and Ccl4, suggesting that node 4 is composed of 220 
chemokine MPs and node 7 compose of C1q+ MPs with also chemokine secretion. Additionally, node 221 
7 showed an intermediate expression of Cd163 and Folr2 further implying a tissue-resident-like MP 222 
phenotype.  223 

Node 11 showed a distinct transcriptional state with a high expression of Ccr7, Ccl22, and Fscn1 (Fig. 224 
3D, Fig. S3A). Cell populations enriched with these markers have previously been termed the migratory 225 
dendritic cells (DC) 33 and the classical DC2A 34. Xcr1 and Clec9a were high expressed only in nodes 226 
12 and 13 suggesting cDC1 phenotype 33,35. Additionally, node 12 was enriched in genes encoding the 227 
members of Cdc45/Mcm2-7/GINS (CMG) complex (Mcm5 and Mcm6); thus, this node was termed as 228 
proliferating cDC1. Nodes 14, 15, and 16 had elevated expression of Cd209a together with major 229 
histocompatibility complex (MHC) II class genes (H2-Eb1, H2-Ab1, H2-Aa, H2-DMb1) and therefore 230 
defined as MHCII DC 33. Plasmacytoid DC markers (Siglech, Ccr9, Cox6a2, Atp1b1, Ly6d 33) were 231 
exclusively expressed in node 17. 232 

Node 18 showed a mixture of different signatures: monocyte-derived MP (Ccr2), interferon (INF) 233 
(Isg15), chemokine (Cxcl10), and active DNA replication (Top2a) suggesting that they are actively 234 
replicating MPs undergoing transition potentially towards INF or chemokine MPs (Fig. 3D). Markers of 235 
mixed Mo/MP (Ccr2 together with Fcgr1, and Itgam 33) were present in node 19. Since nodes 20-22 236 
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showed upregulation of Ace and Ear2 together with downregulation of Ccr2 and Ly6c2, they were 237 
defined as non-classical monocytes (ncMo 33) (Fig. S3A). In contrast, nodes 24 and 27 showed 238 
upregulation of Ccr2 and Ly6c2 together with high expression of Chil3 and Plac8, and these nodes were 239 
thus defined as classical monocytes (cMo 33). Nodes 23 and 25 showed mixed patterns of Mo and MP 240 
such as intermediate expression of Ccr2 (Mo-derived MP), Isg15, Isg20 (INF), Fcgr1, and Itgam (Early 241 
MP) (Fig. 3D). Node 26 was enriched in genes associated with INF signatures such as Isg15 and Isg20 242 
and was therefore defined as Mixed Mo (Fig. S3A). 243 
 244 
Comparison of relative cell proportions revealed that macrophage nodes 1-3, 5-10, 19, and 23 had high 245 
representation of cells in LD condition whereas ncMo nodes 20-22 and cMo/Mo-MP nodes 24-27 were 246 
predominant in the IC condition (Fig. 3E, Fig. S3B). We next examined miRNA gene expression specific 247 
to the metacell subpopulations. Highly node-specific expression of several immunomodulatory miRNA 248 
genes distinguished the macrophage subtypes, in comparison to more subtle subtype-level differences 249 
between DC and monocyte (Mo) cell subtypes (Fig. 3E). The macrophage miRNA markers included 250 
highest mmu-mir-22 levels (regulation of proinflammatory cytokine expression 36) within reparatory MP, 251 
LAM-specific expression of mmu-mir-23b~24-1~27b (regulation of proinflammatory cytokine 252 
expression, downregulated miRNA in patients with autoimmune diseases 37), high mmu-mir-221~222 253 
in Cq1+ MP and mmu-mir-15a~16-1 (regulating phagocytosis 38) in MP node 7. The most distinct 254 
miRNA gene expression among DC was found in cDC2 (e.g. mmu-mir-706 with possible unconventional 255 
nuclear function 39) and in n15 cells corresponding to MHCII DC phenotype, that express mmu-mir-155, 256 
known to function as a “master regulator miRNA” in DCs and MPs 40. In DCs mmu-mir-142a has key 257 
role in regulation of proinflammatory cytokines in DCs 41. In agreement, our analysis identified it as a 258 
broadly expressed DC marker miRNA. 259 

Disease progression alters miRNA gene expression in macrophage subpopulations  260 

Next, we compared the miRNA gene expression distributions in ED and LD conditions in myeloid cells. 261 
Across all cells, our analysis identified 21 upregulated and 6 downregulated miRNA genes (Fig. 4A, Fig. 262 
S4A, Table S4). Among immunomodulatory miRNAs with potential to aggravate tissue inflammation, 263 
we noted increased expression of mmu-mir-511 42 driven by nodes 2-8 (Fig. 4A). An opposite change 264 
was observed for mmu-mir-101b expression (negative regulator of pro-inflammatory response 43, with 265 
strongest repression in nodes 23 and 25 (nodes panel, Fig. 4A). In comparison, immunosuppressive 266 
mmu-mir-23b~24-1~27b  expression increased in Trem2 and Trem2-like MPs (nodes 2 and 5) (nodes 267 
panel, Fig. 4A) and miRNA genes encoding classical nuclear factor kappa B (NF-κB)-modulating 268 
miRNAs mmu-mir-146a and mmu-mir-21 42 increased in expression in several MP nodes, mmu-mir-269 
146a most strongly in node 7. Taken together, our results demonstrate that disease development 270 
strongly modulates miRNA gene expression and that these changes include both pro- and anti-271 
inflammatory regulatory pathways with distinct expression across macrophage subtypes.  272 

Tissue-infiltration of monocytes and transition into mature phenotypes strongly modulates 273 
miRNA gene expression 274 
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The prominent increase in myeloid cells in adipose tissue at late disease, or at early disease upon LPS-275 
stimulus, prompted us next to examine changes in gene regulation during myeloid maturation into 276 
tissue-resident cells. We hypothesized that the cytokine environment within tissue could trigger changes 277 
in gene regulation and thereby miRNA expression. Thus, we collected additional scRNA-seq profiles 278 
from blood monocytes and integrated these with the myeloid cell profiles from WAT. The monocytes in 279 
blood are typically short-lived, representing a reference naïve state for the comparison. The cells 280 
obtained from blood and WAT clustered primarily based on their tissue-of-origin (Fig. 5A, UMAP), 281 
however with similar sub-populations (ncMO; cMO; DC) from both tissues placed adjacent to each 282 
other, as defined using marker genes (Fig. S5A, see also Fig. 3 and Fig. S3). We focused on the main 283 
monocyte and DC subtypes and performed statistical comparison of their tissue vs blood expression 284 
profiles (Fig. 5B, Table S5A-B, refer also to Fig. S5B for DC comparison). In total, our analysis detected 285 
significant changes in 45 and 95 miRNA genes in ncMo and cMo, respectively. Among the top 286 
upregulated miRNA genes, mmu-mir-1938 and mmu-mir-22 are highly upregulated in both monocyte 287 
types, while the most significant changes in cMo (more pro-inflammatory monocyte type) include also 288 
upregulation of mmu-mir-221~222, mmu-mir-511, and mmu-mir-155. The comparison of top miRNAs 289 
and classical LPS-responsive genes (Dusp1, Il1b, Ccl5) in blood and WAT (Fig. 5C) highlights 290 
increased expression of these pro-inflammatory genes (dot size and darker red color tone) upon tissue 291 
infiltration that is further elevated in IC condition, most prominently in ncMo. 292 

To validate that the changes detected from scRNA-seq profiles represent regulation of the 293 
transcriptional activity at pri-miRNA loci, we used GRO-seq datasets (see Methods) collected from two 294 
different experimental setups: ex vivo LPS stimulation of bone-marrow derived CD14+ macrophages 295 
(referred to as BMDM) and LPS stimulation of peritoneal MPs (referred to as PM, resembling tissue-296 
resident MP). Three intergenic miRNA gene loci highlighted in the scRNA-seq analysis (Fig. 5A and B) 297 
are shown in Fig. 5D. The elevated GRO-seq signal levels within the gene regions confirm that 298 
upregulation of mmu-mir-22 and mmu-mir-221~222 transcription occurs rapidly in both BMDM and PM 299 
cultures and remains high 180 h after LPS stimulus (see Table S5C-D for differential expression 300 
statistics and summary). In comparison, mmu-mir-155 is significantly upregulated with delay at 60 h in 301 
BMDM, representing a more immature cell model. In peritoneal cells its gene regulatory dynamics are 302 
more rapid (upregulation at 1 h) and comparable to the two other miRNA loci, overall in agreement with 303 
their increased expression in the tissue microenvironment and following LPS-stimulation in the in vivo 304 
scRNA-seq profiles. 305 

  306 
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DISCUSSION  307 

MiRNAs are key modulators in maintaining tissue homeostasis by post-transcriptionally regulating gene 308 
expression. Thus, an imbalance in their expression has been associated with disease progression and 309 
aging-related cellular processes including senescence 44,45. Here, we aimed to characterize miRNA 310 
gene transcription in single-cell datasets to study cell-type specific miRNA expression. We provided 311 
primary transcript annotations for mouse and human genomes that can be added to scRNA-seq 312 
quantification pipelines and demonstrated feasibility to capture miRNA gene expression from both 313 
droplet- and plate-based platforms. Based on this approach, we quantified and analysed miRNA gene 314 
expression during aging in splenic immune cells and delineated changes in myeloid cell populations 315 
upon atherosclerosis disease progression in blood and adipose tissue. The identified changes in miRNA 316 
gene expression at cellular resolution include well-established miRNAs that control inflammation, 317 
senescence, and metabolic responses in immune cells, supported by previous functional studies and 318 
analysis of nascent transcription in ex vivo cell culture models. We provide the miRNA gene profiles 319 
across the aging and atherosclerosis time series as an openly available resource to facilitate further 320 
characterization of miRNA gene expression changes related to tissue homeostasis.  321 

In this study, we extended reference transcript annotation with miRNA gene coordinates and evaluated 322 
how two commonly used scRNA-seq platforms serve in miRNA gene detection and cell subpopulation 323 
identification. The larger number of cells profiled using the 10x Genomics allows a better estimation of 324 
the heterogeneity of a cell population 7,46. In line with previous results, the TMS 10x Genomics profiles 325 
captured a higher proportion of non-coding transcripts compared to Smart-seq2 data 7. Plate-based 326 
studies, on the other hand, often aim at higher sequencing depth per cell and have full gene body signal 327 
coverage. This could benefit the characterization of differences in alternative transcripts within miRNA 328 
gene loci. However, if strand specificity is lacking, this analysis has similar limitations as chromatin 329 
immunoprecipitation (ChIP)-seq based analysis of transcriptional activity, described in 10. In both 330 
platforms, the detection of miRNA gene transcription suffers from limited number of intronic reads 331 
captured. In future, as more nascent transcriptome single cell profiles become available, better capture 332 
of miRNA gene expression levels could be achieved. Among existing data, scRNA-seq profiles 333 
generated from nuclei already provide higher capture of intronic reads 47 that will improve miRNA gene 334 
detection 48. As the signal within pri-miRNA gene loci in standard scRNA-seq libraries can arise from 335 
random priming at unspliced introns or polyA-based capture of incompletely processed primary 336 
transcripts, we chose to base the miRNA gene annotation on integrated GRO-, CAGE- and ChIP-seq 9 337 
and Drosha knockout (KO) profiles 49, extending here to cover both human and mouse genomes. 338 
Alternative transcript assembly-based approach 50 can leverage the data only partially, and as key 339 
limitation its feasibility is impacted by insufficient cell numbers per cell type. Furthermore, quantification 340 
of miRNA genes based on the pre-defined coordinates we provide here extends to other data types, as 341 
it can be readily introduced into single-cell sequencing assay for transposase-accessible chromatin 342 
(scATAC-seq) and scMultiome data analysis pipelines to analyse chromatin accessibility at miRNA loci, 343 
enabling the identification of their corresponding regulatory elements residing in open chromatin. 344 
Previous studies extending to chromatin signatures have provided key new insight on cell type-specific 345 

preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for thisthis version posted October 11, 2023. ; https://doi.org/10.1101/2023.10.09.561173doi: bioRxiv preprint 

https://doi.org/10.1101/2023.10.09.561173


 10 

gene regulatory network activity focusing on transcription factors 51. The joint analysis of miRNA genes 346 
will enable a more comprehensive analysis of gene regulatory networks that govern tissue homeostasis 347 
at transcriptional and post-transcriptional levels.   348 

Aging is a stepwise process characterized by changes in tissue homeostasis and cellular heterogeneity. 349 
For example, changes in adipose depots distribution along the body dramatically affect tissue growth, 350 
plasticity and function leading to metabolic dysfunction and low-grade inflammation 52. Cross-talk 351 
between adipose tissue and immune cells is crucial for the maintenance of normal healthy adipose 352 
tissue function and systemic metabolism 53. Consequently, better understanding of the miRNA post-353 
transcriptional regulatory networks that fine tune cytokine expression and response dynamics upon 354 
inflammatory challenge can provide new approaches to predict and prevent progression of age-related 355 
functional changes 54. Mature miRNAs are highly stable and therefore ideal biomarker candidates for 356 
monitoring disease progression. Moreover, new therapeutic approaches based on miRNA-delivery into 357 
tissues are in development, with promise to reduce the burden of aging and immune dysfunction-related 358 
disease including type 2 diabetes, atherosclerosis, dyslipidaemia, thermal dysregulation and skin ulcers 359 
among others 55. In this study, we performed comparisons of miRNA gene expression in immune cells 360 
from different tissues, including bone marrow-derived blood cells and more mature splenic and tissue-361 
resident populations. Our analysis identified altered expression of several miRNA genes (mmu-mir-101, 362 
mmu-mir-30, mmu-mir-709) in spleen that have established function in regulation of 363 
immunosenescence and apoptosis that throughout the body presents with alterations of immune cell 364 
homeostasis and an overall decline in immune efficacy 56. The TMS atlas affords opportunity to extend 365 
these comparisons to additional tissues. We limited the statistical comparisons to male mice, which is 366 
different from earlier comparisons that included both sexes 13. Our more conservative choice relates to 367 
the lack of representation of both sexes in certain age groups, with more timepoints available in male 368 
mice with sufficient time difference 13. For example, in spleen tissue our analysis of male data included 369 
young (1 and 3 months) versus old (21 and 30 months) comparison, while the female data corresponded 370 
to adult (18 and 21 months) versus young (3 months) comparison. Concordantly, the profiles from our 371 
atherosclerotic mouse model represent male mice, enabling comparison to TMS data without 372 
confounding sex effect. The different aging profile of mmu-mir-146a in females suggests that miRNA 373 
gene regulation is impacted by sex and is in agreement with a recent human study reporting that the 374 

miR-146a age-related trajectory was confirmed only in men 57. Therefore, in future studies it would be 375 
important to collect data representing more comprehensively both male and female aging. More 376 
broadly, sex-biases in immune responses are well-established and known to strongly influence disease 377 
prevalence 58,59. As the technologies mature, integrating cell-specific mature miRNA profiles will expand 378 
the analysis of miRNA genes from the TMS and similar aging atlases, leading to better understand the 379 
functional impact of miRNA dysregulation that can account for concomitant changes in RNA processing 380 
that occur during aging 60,61, including decreased levels of the miRNA processing enzyme Dicer both in 381 
mouse and human 62. Furthermore, analysis of immune cell types at finer resolution should be pursued, 382 
as was carried out here for myeloid cell subtypes, guided by updates to atlas cell type annotations and 383 
improved understanding of the functional differences between the new cell subtypes identified from 384 
single cell studies.  385 
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Traditionally, macrophages were categorized as pro-inflammatory (M1) and anti-inflammatory (M2) 386 
macrophages that show distinct miRNA profiles, for example miR-511 expression is increased in M2 387 
and decreased in M1 macrophages both in vitro and in vivo 63. However, several studies have 388 
suggested this dichotomy to be obsolete and that M1 and M2 stages rather represent the extremes of 389 
a spectrum in a multidimensional space 64,65. Recent single cell studies have characterized macrophage 390 
subpopulations within the fat tissue, revealing subtypes involved in obesity disease progression, 391 
including the description of Trem2+ lipid-associated macrophages 34. Similarly, single cell profiling of 392 
alveolar macrophages revealed novel macrophage subdivisions based on proliferation capacity and 393 
inflammatory programming in the context of lung inflammation 66. Here, we conducted analysis guided 394 
by unbiased clustering of cells into nodes showing distinct transcriptional phenotypes. WAT myeloid 395 
subtypes differed in miRNA gene expression, with highest basal miR-511 levels in tissue-resident 396 
macrophages (nodes 9 and 10) and increased expression found across multiple subtypes upon disease 397 
progression. The highest expressed miRNA genes in Trem2+ macrophages were mmu-mir-221~222 398 
and mmu-mir-23b~24-1~27b loci. Previous studies have demonstrated a functional role for miR-399 
221/222 in inhibiting adipogenesis and preventing diet-induced obesity. At systemic level, 400 
Mir221/222AdipoKO mice used in these studies did not show significant improvement of insulin 401 
sensitivity. Instead, lower expression of these genes may promote apoptosis upon hyperglycaemia 67. 402 
Furthermore, mmu-mir-23b~24-1~27b locus from which miR-23b, miR-27b, miR-24-1 originate from 403 
encodes miRNAs that each have a central role in regulation of lipid metabolism 68–70. Thus, changes in 404 
their expression could strongly impact the lipid-associated functions of the Trem2+ cell phenotype. 405 
Moreover, a recent study that generated a specific mouse KO of this miRNA locus showed impaired 406 
glucose tolerance 71, emphasizing the critical role of miRNAs in maintenance of homeostasis. Here we 407 
observed that upon inflammatory challenge (LPS stimulation) mmu-mir-221~222 expression increased, 408 
while mmu-mir-23b~24-1~27b and Trem2 levels decreased in the Trem2+ macrophage. Thus, future 409 
studies examining the connection between Trem2-specific cell-intrinsic regulatory networks and 410 
systemic glucose and lipid metabolism balance are warranted.  411 

Infiltration of immune cells, especially those with pro-inflammatory function, into tissues is a known 412 

hallmark of aging 52. We found that several key miRNA genes were regulated upon monocyte 413 

recruitment into tissues. Among them, miR-155 induces pro-inflammatory activation of monocytes and 414 
through increased expression of human leukocyte antigen (HLA)-DR in the myeloid cells, it also 415 
modulates activation of T cells and can thereby aggravate tissue inflammation, promoting disease 416 
progression in inflammatory-disease such as arthritis 72. However, the induction of mmu-mir-155 417 
coincided with elevated expression of miRNA genes typical of M2-like cells, such as miR-146a and 418 
miR-511 73. In addition, our analysis identified several less well-characterized miRNAs, including mmu-419 
mir-1938, that merit future functional characterization. The top target prediction for miR-1839 is Laptm5 420 
(TargetScanMouse 7.1), encoding a lysosomal protein that modulates pro-inflammatory signalling in 421 
macrophages 74. Elucidating the mRNA targets using immunoprecipitation of argonaute family members 422 
followed by RNA sequencing or reporter-based screens 75 can provide a more comprehensive 423 
understanding of how the miRNAs that are transcriptionally regulated upon tissue entry collectively 424 
impact tissue cytokine environment, immune-cell interactions, and tissue homeostasis.  425 
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In summary, our work provides an unbiased and genome-wide evaluation of miRNA loci at cellular 426 
resolution during aging and upon disease development and new tools for single-cell genomics research 427 
to define miRNA regulatory networks with coordinated and cell type-specific activities across tissues. 428 

 429 

MATERIAL AND METHODS 430 

Annotation of miRNA gene coordinates in mouse genome 431 
To distinguish primary transcripts corresponding to miRNA genes in mice, we followed the strategy we 432 
introduced in 9. To define mouse pri-miRNA genes, GRO-seq and CAGE-seq data aligned to the mm9 433 
genome were used to define genomic intervals that correspond to active primary transcription, 434 
separated by active TSS. Due to fewer mouse GRO-seq samples available, the known RefSeq and 435 
UCSC known gene (2018) transcript data 76,77 was included as external data to complement the de 436 
novo transcript discovery. TSS coordinates were refined based on CAGE-seq, while the extension of 437 
transcript ends was defined based on signal change point analysis from GRO-seq, or if the available 438 
annotated gene region matched the candidate transcript the longer transcript region between the 439 
annotated and discovered transcribed region was kept. Finally, the pre-miRNA annotations from 440 
GenCode v19 and miRbase v.20 60 were used to annotate the subset of primary transcripts that 441 
overlapped miRNA coordinates. The coordinates were then converted to mm10 using UCSC liftOver 442 
tool 78 to be compatible with the most recent genome version. 443 
 444 
Building a custom transcript annotation for scRNA-seq gene quantification workflows in mm10 445 
and hg19 genomes 446 
Typical scRNA-seq quantification workflows, including the 10x Genomics Cell Ranger pipeline 79, allow 447 
users to build their own custom transcript annotation based on existing reference annotation data that 448 
describes gene, transcript and exon information. To develop a custom reference suitable to quantify the 449 
transcriptional activity of miRNA genes, we defined miRNA genes as the merged region starting from 450 
the most distal TSS mapped to the miRNA and extending until the longest transcript end, using the 451 
GRO- and CAGE-seq-based annotation for previously defined human coordinates9 and mouse 452 
coordinates described above. This region was included in the GTF file as a single exon (pri-miRNA) 453 
transcript. However, also alternative transcript and exon structures have been experimentally defined 454 
for miRNA genes based on knockout of the key processing enzyme Drosha 49. Therefore, the annotation 455 
was extended by adding these candidate alternative transcript structures and at annotated coding gene 456 
regions exons were included from GenCode (2018 and 2013 for mouse and human genomes 457 
respectively), motivated by manual examination of splicing patterns captured in 10x Genomics and 458 
Smart-seq2 scRNA-seq data. Cell Ranger requires that GTF files are preformatted using ‘cellranger 459 
mkgtf’ command and that a FASTA file (reference genome) containing the nucleotide sequences of the 460 
selected transcripts is provided. The generated GTF with miRNA genes and the FASTA file for mouse 461 
mm10 or human hg19 genome were used as input for the ‘cellranger mkref’ command. The additional 462 
quantification for the miRNA genes was combined in downstream analyses with the default GenCode-463 
based count matrix.  464 
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 465 
TMS and Tabula Sapiens Data 466 
The TMS and Tabula Sapiens consortia generated single-cell libraries that were produced either using 467 
single-cell suspensions combined with droplet detection (10x Genomics) or by fluorescence-activated 468 
cell sorting (FACS) sorting individual cells combined with Smart-seq2 technology hereafter referred as 469 
“Plate-seq” as denoted in the original TMS publications 11–13,15. In this work, we used data from spleen. 470 
However quantified data is shared for Liver, Heart and Aorta, Fat and Bone Marrow tissues at 1 month, 471 
3 months, 18 months, 21 months, 24 months, and 30 months of age for the tissues that were available. 472 
Selected files were downloaded from the amazon cloud as described in the GitHub repository available 473 
for this work (https://github.com/anahSG/scMIR/). A list of samples used can be found in Table S1D-E.  474 
 475 
10x Genomics datasets were downloaded in .fastq format and processed with the default Cell Ranger 476 
pipeline (v.3.0.2). The detection of cell-containing droplets in 10x Genomics data was performed using 477 
the default count matrix, and the miRNA gene counts were added based on matching cell barcodes and 478 
quantified with the option –include-introns (v.6.1.1). Smart-seq2 samples denoted as ‘Plate-seq’ were 479 
downloaded in bam format and quantified with FeatureCounts (Subread package v.2.0.1, 80) using the 480 
custom GTF reference genome with default options (in this case, the libraries are strandless).   481 
 482 
Droplets assigned by the Cell Ranger pipeline as cell-containing droplets (filtered matrix) were further 483 
quality controlled, filtered by QC metrics and processed using a standard SCANPY-based workflow 484 
described in 17 with minor modifications.  485 
 486 
Animal samples  487 
LDLR -/-ApoB100/100 transgenic mice have a phenotype characterized by high accumulation of fat in the 488 
tissues as they lack the ability to remove circulating lipid particles using the low-density lipoprotein 489 
receptor (LDLR) 81,82. This model is commonly used to follow atherosclerotic plaque formation in veins 490 
and arteries. To model disease progression, the transgenic mice were fed with a combination of chow 491 
diet and after, fat diet (HFD; 0.2% total cholesterol, Teklad TD.88137) for one month, capturing early-492 
disease (ED) state. To study the impact of elevated pro-inflammatory signalling on immune cell tissue 493 
infiltration during disease progression, mice following ED diet were injected with LPS during the HFD 494 
phase two weeks prior to sacrifice. Late-disease (LD) state was achieved by feeding a fat diet for three 495 
months 29. C57BL/6J mice fed with a chow diet were as an additional control for this study (see 496 
annotation of cell types). We timed diet-starting age to equalize the age at sample collection between 497 
all groups (8 months old). Throughout the study, mice were maintained on a 12-h light-dark cycle and 498 
had access to food and water ad libitum. 499 

All animal experiments were approved by the national Project Authorization Board (permission number 500 
ESAVI/4567/2018) and were carried out in compliance with the EU Directive 2010/EU/63 on the 501 
protection of animals used for scientific purposes. 502 
 503 
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Tissue harvest, cell dissociation, and TotalSeq antibody staining  504 

Mice were anesthetized with isoflurane and euthanized by cervical dislocation. Cardiac puncture was 505 
carried out with 10 mL of ice-cold PBS supplemented with 20 U/mL heparin and the mice were place 506 
into ice for dissection. ~200 mg of epididymal WAT of each mouse (n=3 for each condition) was minced 507 
and added to 2.5 µl of Miltenyi Adipose Tissue Dissociation solution (supplemented with BSA and 508 
HEPES) and incubated for 45 min at 37 °C on an end-over-end rotator. During dissociation, the tissue 509 
was triturated 3 times (at 25 min, 35 min and 45 min) to break up cell aggregates. Tissue samples were 510 
passed through a 30 µm cell strainer and washed with 3 ml of RPMI. Cells were centrifuged at 400 g 511 
for 8 min at 4°C and the pellet was resuspended in 300 µl of FACS buffer (PBS with 1% BSA). Red 512 
blood cells were lysed using 1X RBC Lysis Buffer, Multi-species (eBioscience #00-4300-54) by mixing 513 
300 µl of cell suspension with 2.7 ml of ice cold 1X RBC lysis buffer and incubating for 3 min on ice. 2 514 
ml of FACS buffer was added to normalize the buffer and the cells were collected by centrifugation at 515 
400 g for 8 min at 4°C. After RBS lysis, the cells collected from each mouse were stained with Total-516 
Seq Mouse Hashtag antibody-DNA conjugates (BioLegend) containing a unique barcode sequence 517 
according to the manufacturers’ recommendations. The cell pellets were resuspended with TotalSeq 518 
Mouse Hashtag Ab-DNA conjugate in FACS buffer. The cell suspension was incubated in ice for 15-20 519 
min to allow for hashtag Ab binding. Afterwards, cells were washed two times with FACS buffer to 520 
removed unbound hashtag Abs. Dead cells were removed with Miltenyi Dead Cell Removal kit (Miltenyi 521 
Biotec #130-090-101) as described before (Örd et al., 2023). The cell pellets were resuspended in PBS 522 
containing 0.04% BSA and counted by hemocytometry with trypan blue staining. Cell viability was 523 
between 74% and 85%. For each condition, approximately 18,000 cells (pooled from 3 mice) were 524 
loaded into the Chromium Controller microfluidics chip (10x Genomics). 525 

Blood samples for monocyte isolation were processed by first performing erythrocyte lysis by mixing 526 
aliquots of 500 µl of EDTA blood with 4.5 ml of ice-cold 1x RBC lysis buffer and incubating on ice for 3 527 
min. Subsequently, cells were centrifuged at 500 g for 5 min at 4°C, supernatants were discarded, and 528 
erythrocyte lysis was repeated. The cells were washed with 5 ml FACS buffer, followed by staining with 529 
TotalSeq Mouse Hashtag Ab-DNA conjugates in FACS buffer for 15-20 min on ice. Following staining, 530 
the cells were washed once with FACS buffer and once with MACS buffer (PBS with 0.5% BSA and 531 
2mM EDTA). After staining, the CD115+ monocytes were enriched using Miltenyi Biotec MicroBead 532 
kit (# 130-096-354) as described by the manufacturer. The stained cells from individual mice (three per 533 
condition) were pooled in 90 µl MACS buffer, combined with 10 µl of the FcR Blocking Reagent (Miltenyi 534 
Biotec), and incubated for 10 min at 4°C. 10 µl of CD115-Biotin conjugates were added and the 535 
suspensions were mixed and incubated for 10 min at 4°C and the cells were pelleted by centrifugation 536 
at 300 g for 5-10 min at 4°C. The supernatants were discarded, and the cell pellets were resuspended 537 
in 80 µl of MACS buffer. 20 µl of Anti-Biotin MicroBeads were added to the solution, mixed and 538 
incubated for 15 min at 4 °C. The cells were washed with 1-2 ml of MACS buffer and centrifuged at 300 539 
g for 5-10 min at 4°C. The cells were resuspended in 500 µl of buffer. MS columns were placed in the 540 
magnet and the samples were passed through 30 µm cell strainers before applying them to the MS 541 
columns. All the subsequent steps were performed at 4°C. The columns were washed three times with 542 
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500 µl of MACS buffer. After removing the column from the magnet, 1 ml of elution buffer was added, 543 
and the cells were flushed out by firmly pushing the plunger into the column. 544 

The cells collected from both tissues were centrifuged at 300 g for 5-10 min at 4 °C, resuspended in 545 
PBS containing 0.04% BSA, and counted by hemocytometry with trypan blue staining. Cell viability was 546 
between 74% and 85%. For each condition, approximately 30,000 cells (pooled from 3 mice) were 547 
loaded into the Chromium Controller microfluidics chip (10x Genomics). 548 

Library preparation, sequencing, and alignment  549 
ScRNA-seq libraries were generated with the Chromium Single Cell 3′ v.2 assay (10× Genomics). 550 
Libraries were sequenced using the NovaSeq 6000 platform (Illumina) to a depth of approximately 300 551 
million reads per library with read lengths of 26 (read 1) + 8 (i7 index) + 0 (i5 index) + 91 (read 2). Raw 552 
reads were aligned to the mouse genome (mm10) using Cell Ranger (count pipeline) (v.3.0.2). 553 
 554 
scRNA-seq data integration and label transfer in the atherosclerotic mouse model 555 
Expression data was loaded in the Seurat R package v.4.0.0 for integration prior to cell type prediction. 556 
Data was normalized using SCTransform to account for differences in sequencing depth. The reference 557 
dataset used in integration was formed by the unbiased integration of the control (C57BL/6J on chow 558 
diet) and late disease conditions for each tissue. The rest of the conditions were then integrated using 559 
the canonical correlation (CCA) algorithm (k.anchor=20, dims = 1:50). Cell type predictions at broad 560 
lineage level were obtained by performing tissue-wide label transfer. WAT labels were transferred from 561 
the TMS fat dataset. Blood tissue labels were transferred from the 10x Genomics Peripheral blood 562 
mononuclear cell (PBMC) human reference dataset 79. Gene symbols were translated to mouse with 563 
the biomaRt R package v.2.54.1 83,84.  564 
 565 
Data de-multiplexing by hashtag signals 566 
The atherosclerotic mouse model samples were hashtag-barcoded with individual barcodes added to 567 
distinguish between mice. Tissues including WAT and aorta yielded initially very low signal in cells 568 
detected by Cell Ranger, resulting in ~80% negative cells with default demultiplexing settings (mostly 569 
in cells that were annotated as stromal cells). To overcome this limitation, we used the DSB R library 570 
v.1.0.3 85 that was built to estimate the difference between the actual antibody signal in cell-containing 571 
droplets and the background signal in empty droplets in cellular indexing of transcriptomes and epitopes 572 
(CITE)-seq single-cell libraries. The DSB workflow uses the raw matrices containing all the droplets 573 
available and produces a matrix of scaled protein signals vs the background signal. We used the 574 
hashtag scaled matrix as input to perform the hashtag based demultiplexing. We also noticed that the 575 
differences in the distribution of hashtag signal intensity between cells of distinct lineage (e.g. myeloid 576 
vs. lymphoid) were causing errors in the annotation of doublets across the tissue (proportions of 577 
negative cells or doublets would not typically be expected to vary by cell type). To overcome this, we 578 
performed the hashtag demultiplexing separately by the broad cell lineage annotation obtained using 579 
label transfer. We continued the analysis with cells that were annotated as individual cells (singlets) and 580 
repeated the sample integration.  581 
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 582 
scRNA-seq quality filtering and normalization  583 
To check the quality of the libraries generated, we followed a basic QC and filtering workflow using the 584 
SCANPY v.1.8.2 package for each tissue. Transcripts were filtered to include those that were present 585 
in more than 3 cells. To assess the viability of the cells, we quantified mitochondrial and ribosomal 586 
genes. Cells were filtered out according to a maximum mitochondrial gene expression percentage, a 587 
maximum number of counts and a minimum number of expressed genes. Due to heterogeneity in the 588 
raw data, these parameters were set for each tissue and condition (refer to TableS3). 589 
 590 
Expression data was normalized with size factor values derived from data normalization using the scran 591 
R package v.1.26.2, and then log-transformed using the function scanpy.pp.log1p. Highly variable 592 
genes were calculated with scanpy.pp.highly_variable_genes, selecting the top 4000 genes for principal 593 
component analysis and dimensional reduction. Louvain and Leiden clustering at different resultions 594 
were performed to define similar transcriptome states that can be used for assigning lineage and cell 595 
type annotations.  596 
 597 
Differential expression analysis using scDD 598 
The log2 counts based on vst transformation available in Seurat R package v.4.0.1 were used to 599 
compare differences in gene expression distributions in a given cell type between different sample 600 
groups (e.g. young and old, or late vs. early disease) using the scDD v.1.14 86 package following the 601 
approach described in 87. This statistical analysis allows the detection of expression changes based on 602 
the fraction of cells expressing a certain transcript (DZ category) and among expressing cells by 603 
comparing the expression level (DE, DP and DM categories) 86. Transcripts with adj. p-value < 0.05 604 
(Benjamini-Hochberg FDR method) were considered as significant. 605 
 606 
Combined p-values were calculated based on the Fisher’s exact test (sumlog function from metap R 607 
package v.1.8) across all cell types to identify miRNAs that were concordantly regulated during aging. 608 
From those, miRNAs with associated p-values < 0.05 that passed a log fold change cut-off in at least 609 
two cell types were considered as top-ranking candidates presented in figures.   610 
 611 
MetaCell analysis of tissue myeloid cell sub-populations 612 
Myeloid cells extracted from white adipose tissue samples were used to compute a cell similarity graph 613 
to obtain homogenous group of cells denoted as ‘metacells’ with the MetaCell R package v.0.3.7 30. 614 
Gene-level statistics were computed with ‘mcell_add_gene_stat’ and featured genes were selected 615 
based on their variance (>0.8, ‘mcell_gsetfilter_varmean’) and number of UMIs (>100 UMIs in the entire 616 
dataset and selected genes are required to be detected in at least 3 cells with > 2 UMIs, 617 
‘mcell_gset_filter_cov’). A balanced cell graph or ‘balanced K-nn graph’ was computed as previously 618 
described (K=100, ‘mcell_add_cgraph_from_mat_bknn)’. Next, we performed resampling (n=500) and 619 
generated the co-clustering graph (‘mcell_coclust_from_graph_resamp’, min. node size=20, cell 620 
partitions= 5.000 covering 75% of the cells). Metanodes assignment-derived statistics from the co-621 
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clustering step are evaluated with ‘mcell_mc_from_coclust_balanced’ command with default settings. 622 
To check that the metacell nodes are homogeneous, cells that highly deviate from their metacell’s 623 
expression profile were plotted as outlier cells (‘mcell_plot_outlier_heatmap’, data not shown) and 624 
filtered afterwards ‘mcell_mc_split_filt’. Gene markers per node were extracted for further analysis –625 
‘mcell_gset_from_mc_markers’. Metacells were projected into a 2D graph for visualization 626 
(‘mcell_mc2d_force_knn’,’ mcell_mc2d_plot’).    627 
 628 
Differential expression analysis of bulk GRO-seq profiles from macrophage ex vivo cultures 629 
Samples listed in Table S1A were used for differential expression testing as previously described in 9. 630 
Low expressed transcripts were filtered and differences in transcription level between sample groups 631 
analyzed with limma and edgeR packages. Genes were assigned significant based on adjusted p-value 632 
< 0.05 (Benjamini-Hochberg method).  633 
 634 
AVAILABILITY 635 

Data analysis code and links to .h5ad files comprising quantified scRNA-seq data objects with miRNA 636 
genes are available under GitHub repository (https://github.com/anahSG/scMIR/ ).  637 
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NGS data has been submitted to NCBI GEO data repository with the accession codes GSE241552: 639 
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FIGURE LEGENDS  673 

Figure 1. MiRNA gene annotation and quantification in scRNA-seq datasets. (A) Overview of the 674 
miRNA gene quantification for scRNA-seq data. Gene and miRNA gene counts were extracted with the 675 
Cell Ranger or FeatureCounts pipelines, followed by downstream analysis performed by combining 676 
Seurat 88 and SCANPY 89 packages to obtain and study cell-type-specific miRNA gene expression at 677 
single-cell resolution. (B) MiRNA gene markers (n=6 per cell type, defined from mouse droplet-based 678 
10x Genomics data in grey shade) were compared to their corresponding human genes and mature 679 
forms in splenic cells including B-cell, NK-cell, and T-cell subpopulations. On the left, dot plot heatmaps 680 
shows miRNA gene expression (from high expression in yellow to low expression in blue) and 681 
percentage of expression (circle size) based on 10x Genomics and FACS-coupled Smart-seq2 682 
technology in mouse. On the right, the heatmap depicts mature miRNA expression levels from FACS-683 
sorted splenic cells measured with PCR (GSE144081 from 16). * mouse miRNA genes that were not 684 
annotated in the human genome.  (C) Comparison of scRNA-seq-based quantification (log2 miRNA 685 
gene expression) to GRO-seq-based primary transcript expression in the mouse stromal cell line ST2. 686 
Genes were binned from low to high expression levels based on GRO-seq data (lower panel) or scRNA-687 
seq data (upper panel).  688 
 689 
Figure 2. Differential expression analysis of miRNA genes in spleen tissue during aging. (A) 690 
Uniform manifold approximation and projection (UMAP) plot of the integrated spleen (all age groups) 691 
dataset (n=27260 cells). Colors indicating different cell types (annotations from TMS) from 8 major 692 
clusters (n>150 cells) include B cells (n=18398) in dark blue, T cells (n=4029) in forest green, mature 693 
NK T cells (n=2131) in light blue, macrophages (n=652) in olive green, NK cells (n=385) in orange, 694 
proerythroblast (n=464) in coral red, plasma cells (n=559) in light green and dendritic cells (n=249) in 695 
red). (B) Cell type percentages from male mice present in each age group of the dataset are shown as 696 
a line plot. (C) The number of DZ and DE miRNAs detected in each cell type separated by up and 697 
downregulated genes are shown (dark green and light green respectively). (D) Heatmap showing top 698 
ranked miRNA genes that were differentially detected (DZ) across main cell types in the spleen (Fisher’s 699 
exact test associated p value < 0.05, absolute log2 FC>0.5). Fold changes between old and young cells 700 
are shown in each cell type. (E) Dot plot heatmaps of myeloid-specific changes in miRNA gene levels 701 
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(adjust p value <0.05). (F) UMAP plots of macrophage and dendritic cell gene markers (on the left) and 702 
cell type-specific miRNAs (on the right). 703 

Figure 3. Characterization of myeloid cell subpopulations and their miRNA gene profiles during 704 
atherosclerosis disease progression. (A) Scheme of the study of atherosclerotic plaque formation in 705 
mice. Mice were fed either a chow diet (in green) or fat diet (in gold). Samples were denoted as early-706 
disease (ED), inflammatory challenge (IC) and late-disease (LD) for LDL deficient mice. (B) Proportion 707 
of cell types across the sample types. (C) Cells grouped in meta nodes based on their reproducible 708 
phenotypes. (D) Heatmap showing expression of selected node marker genes (above) and marker 709 
miRNA genes (below). Expression is row-scaled. (E) Changes in cell proportions between ED and LD 710 
conditions (above) and between ED and IC conditions (below). 711 

Figure 4. Disease progression alters miRNA gene expression in macrophage subpopulations. 712 
miRNA genes with altered expression during disease progression are shown as dot plot heatmap and 713 
stratified by metanode. Brighter color tone and larger dot size denote higher expression.  714 

Figure 5. Gene expression changes in monocytes infiltrating adipose tissue relative to naïve 715 
blood precursors.  (A) UMAP of blood and tissue (WAT) myeloid cell populations. (B) Volcano plots 716 
representing significant miRNA gene loci from tissue vs blood comparison of monocyte subtypes. Top 717 
miRNA loci are indicated on the plot. FC correspond to differences in detection rate. (C) Dot plot 718 
heatmap comparing known LPS-responsive genes to the profile of top miRNA loci in tissue and blood. 719 
(D) GRO seq signal tracks at mmu-mir-22, mmu-mir-155 and mmu-mir-221~222 loci. The + strand 720 
signal is shown above the vertical axis (dark red tone) and -strand signal below (light red tone). NcMo: 721 
non-classical monocyte, cMo: classical monocyte, DC: dendritic cell, ED: early disease, IC: 722 
inflammatory challenge, BMDM: bone-marrow derived macrophage, PM: peripheral macrophage, LPS: 723 
lipopolysaccharide, KLA: Kdo2-lipid A). 724 
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 2 

Table S1. miRNA gene coordinates and related NGS dataset accession codes 

(A) The datasets used for defining genomic intervals for miRNA gene custom 
quantification and (B-C) ‘miRNA gene coordinates’ in mm10 and hg19 genomes. 
Related to Fig. 1. (D-E) ‘Dataset accession codes’ for 10x and SMART-seq2 ’scRNA 
data used in this study. NCBI GEO accession codes are listed. 

Table S2. Spleen scRNAseq summary of differential gene expression across 
immune cell types analyzed 

Differential distribution analysis summary from comparison of old vs young male mice. 
The statistics for differential detection rate (DZ) (A) and expression level (DE) (C) of 
miRNA genes are provided separately for each cell type. Includes also ranking of 
miRNA based on Fisher test combined p-values across cell types (B and D for DZ and 
DE categories). Related to Fig. 2. 

 

Table S3. Atherosclerosis mouse model scRNA-seq data pre-processing 
settings and marker genes of WAT myeloid sub-populations 

(A) Marker protein-coding and miRNA genes for metanodes defined from myeloid sub-
populations in WAT are listed. Related to Fig. 3. (B) Cut-off parameters used in quality 
filtering of scRNA-seq data collected from LDLR-/-ApoB100/100 mice. 

 

Table S4. WAT scRNAseq summary of differential gene expression in myeloid 
cells at late disease 

Differential distribution analysis summary from comparison of late disease vs early 
disease in LDLR-/-ApoB100/100 mice. The statistics for differential detection rate (DZ) 
(A) and expression level (DE) (B) are provided for myeloid cell comparison of miRNA 
genes. Related to Fig. 4. 

 

Table S5. WAT and blood myeloid cell scRNAseq and GRO-seq summary of 
differential gene expression  

Differential distribution analysis summary from comparison of tissue vs blood 
monocyte and monocyte-derived cell populations in LDLR-/-ApoB100/100 mice. The 
statistics for differential detection rate (DZ)(A) and expression level (DE)(B) are 
provided for miRNA genes. GRO-seq: DE analysis of ex vivo cultured bone marrow- 
derived CD14+ or peritoneal macrophage stimulated with pro-inflammatory LPS or 
KLA treatments. Related to Fig. 5. 
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 3 

 
Figure S1. Comparison of miRNA gene expression measured from 10x Genomics and Smart-
seq2 scRNA-seq technologies. MiRNA gene detection was evaluated in each splenic cell type by 
measuring the number of miRNA genes detected and their expression levels in 10x Genomics (upper 
panel) and Smart-seq2 technologies (lower panel).  
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 4 

 

Figure S2. Female analysis of splenic cell types in TMS data. (A) UMAP of spleen tissue colored 
by age. (B) Cell type percentages from female mice present in each age group of the dataset are shown 
as a line plot.  (C and D) Heatmap of miRNAs found concordantly regulated in splenic male samples 
during aging and plotted from female samples comprising young (3 months) and adult (18 and 21 
months) mice. 
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 5 

Figure S3.  (A) Heatmap showing expression of literature-based gene markers in nodes. Expression is 
row-scaled. (B) Proportions of cells representing different conditions in each node.  
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 6 

 

Figure S4. Changes in miRNA gene expression during disease progression in dendritic cells 
and monocytes. MiRNA genes with altered expression during disease progression are shown as in 
Fig. 4. 
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 7 

Figure S5. Marker genes for myeloid cell subpopulations. (A) Marker gene expression is shown on 
UMAP representing the tissue and blood myeloid cells (high expression in yellow tone). (B) Volcano 
plots representing significant miRNA gene loci from tissue vs blood comparison of monocyte subtypes. 
Top miRNA loci are indicated on the plot. FC correspond to differences in detection rate. 
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