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ABSTRACT

Knowledge of global animal movement offers insight into our changing

planet, and direct observation of patterns from space is an ideal vantage

point. Due to hardware miniaturization of animal trackers and satellites

(CubeSats), increasing numbers of geolocation records are becoming

available. Ecologists, biologists, and conservationists apply this data in

their research and initiatives, but robust methods for automated

classification of the data are lacking. In order to quantify behavioral

changes at scale for the study and stewardship of nature, a system is

needed that can automatically segment and label movement states. Such

a system can benefit science by reducing the setup time for research,

thereby improving resource allocation of people, time, and funding. This

manuscript explores the viability of machine learning models to address

the challenge of segmenting active migration from summer or winter

range residency. Recurrent neural network (RNN) and long short-term

memory (LSTM) architectures are both evaluated and compared. Results

show encouraging accuracy with F1-scores exceeding 80%, and work is

scoped for future optimizations and feature inclusion.

1 INTRODUCTION AND LITERATURE REVIEW

Wildlife monitoring from space is a key component of Earth Observation. NASA's

“Internet of Animals” group (IoA) is one of various subcommunities advancing the field.

The IoA effort is a collaboration between the Jet Propulsion Laboratory (JPL), Yale

University, NASA Ames Research Center, and the USGS Western Ecological Research

Center [1]. The group is assessing the need for investment in space-based animal

tracking, considering the mandates of various agencies. It plans to propose a role for

NASA to assist in meeting these requirements.

The initiative began when the multi-agency Satellite Needs Working Group

(SNWG) identified the potential value offered by “increased availability of animal

movement data, the dynamic integration with remotely sensed data, and the novel

computational tools to support data-informed decision-making” [2]. Along with

planet-scale biosphere science, one key goal is ensuring that animal tracking is

considered and funded in upcoming NASA decadal surveys.

To this end, the research reported below addresses the need for a specific

computational tool defined by IoA members. The sections cover: 1) the problem my

method aims to solve and my research questions with background context; 2) the data

used during implementation and validation; 3) details on techniques employed to
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implement my method; 4) results of my method and their possible implications; and 5) a

brief conclusion that directly answers my research questions.

1.1 Tracking Animals from Space

The volume of observations collected by spaced-based systems has greatly

increased the total amount of global animal tracking data [3]. Records on birds,

mammals, amphibians, and reptiles have all seen significant growth, with avian species

collectively representing the largest category (see Appendix 2 for details). Adding to the

data available today are observations from novel sensors which enable animals to

passively sample environmental information [4].

Spaced-based biotelemetry methods with Earth-orbiting satellites have been

practiced for several decades and discussed for more than half a century [5]. As with

other forms of Earth Observation, satellites enable a global view into some of the

planet’s most remote regions. Since the 1980s, mammals such as caribou (Rangifer

tarandus) and polar bears (Ursus maritimus) have been studied in isolated northern

environments with the Argos Data Collection and Location System (see Appendix 3 for

the Argos system architecture) [6]. Investigations of these and other species are crucial

for understanding the effects of climate change and human activity on vulnerable

ecosystems.

Today, one of the primary resources for accessing animal movement data is

Movebank [7]; a free, online database hosted by the Max Planck Institute of Animal

Behavior. Movebank’s community of 3,781 unique data owners has contributed to a

total of 4.8 billion records from 1,288 distinct taxa, using various tracking systems

including Argos and GPS [ibid]. NASA’s 3D visualization of the Arctic Animal Movement

Archive – tens of millions of location records hosted through Movebank – helps to show

the scale of this rapidly growing dataset [8]. Contributors to open-source software

projects have also written specialized tools that accelerate Movebank data retrieval and

analysis in locally cloned databases [9].

In 2002, a project began called the International Cooperation for Animal

Research Using Space (ICARUS). Responsible wildlife tracking protocol forbids using

trackers that exceed 5% of an animal’s total body mass, so many species are still

untracked [10]. Therefore, one of the aims of ICARUS is to develop miniaturized tracker

technology [11]. The smaller that tracking devices become, the more global species can

be ethically tracked.

Prototype tracker devices were developed for ICARUS with multi-sensor data

loggers [12]. In addition to reporting GPS location, measurements were made from

accelerometers, magnetometers, and temperature gauges. Wind speed and direction

could be monitored too, allowing for more environmental context [11] (see Appendix 4

for additional tracker information).
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The ICARUS space segment payload was co-developed by DLR (the German

Aerospace Center) and Roscosmos (the Russian Space Agency). It was hosted on the

Russian Segment of the International Space Station (ISS) in December 2019, and

operations began in later months after testing and validation (see Appendix 3 for the

ICARUS system architecture) [12].

Following the Russian invasion of Ukraine in early 2022, ICARUS data

transmissions from the ISS were stopped in March [13]. Despite those events, early

ICARUS data continued to be utilized [14]. A “Digital Museum of Animal Lives”, hosted at

AnimalLives.org, showcases some of the data collected and highlights the lasting

promise of ICARUS [15].

In June of 2023, an experimental ICARUS CubeSat was launched to validate

capabilities for the system launching in 2024 [16]. Since the ISS orbital inclination

restricts it to latitudes between +51.6° N and -51.6° S [17], the coverage offered by

Sun-synchronous CubeSat orbits (SSO) is a significant architectural improvement. Global

coverage enables monitoring Earth’s polar regions which are at a higher risk from the

effects of climate change [16].

Additional space-based wildlife tracking missions are also under development.

The University of Warwick supports the multi-year “WUSAT Programme” which manages

CubeSats designed by students to complement ICARUS efforts [18]. A further iteration

of NASA’s GRACE and GRACE-FO missions has also been proposed. GRACE-i (short for

GRACE-ICARUS) aims to support the parallel tasks of monitoring global water resources

as well as biodiversity [19].

1.2 The Value of Animal Movement Ecology

From protecting songbird migration flyways [20], marine ecosystems [21], and

poaching targets [22]; to monitoring the spread of zoonotic diseases [23] and predicting

earthquakes through behavioral cues [24]; global animal tracking data supports many

use cases.

Studies have shown that mammal movements in regions with a greater human

footprint were one-half to one-third the extent of their movements in areas with less

human activity, on average [25]. Since animal mobility is fundamental for species

survival and ecosystem health [26], understanding variations in movement – along with

habitually taken routes – is a key part of comprehensive conservation management.

Once habitual routes are confirmed, protected movement corridors can be

established. These can help protect animal activity from human-induced disruptions that

are more frequent in urban landscapes [27]. Cities around the world – from Los Angeles

[28] to Kenya [29] – have shown that corridors are beneficial not only for safer animal

transit but also as natural habitat extensions. Traditional ecological knowledge from
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Indigenous communities can also complement tracking data to ensure the best outcome

for ecosystems [30] [31].

Disruptions in usual movement behavior can warn of wider environmental

changes. One example is the feedback loop caused by displaced North American beavers

(Castor canadensis), a well-known ecosystem engineer that also serves as a keystone

species. When rising temperatures force the beavers to seek a more comfortable

northern climate, ponds they create while constructing their dams then melt the

surrounding permafrost [32]. As permafrost melts, it releases methane, and contributes

to greenhouse gas emissions. This example serves to illustrate one of many biosphere

interconnections relevant to changing biodiversity as well as climate conditions.

1.3 The Problem of Animal Movement Segmentation

Ecological science advancement depends on tools that work at scale. This is due

to increasing Earth Observation data volumes and represents a growing opportunity

from recent decades (Appendix 2). Specific to the case of animal movement, efficient

and flexible methods are needed to classify billions of satellite geolocation records with

global distribution.

One type of classification is movement path segmentation. Path segmentation

refers to classifying sequential path waypoints and discretizing continuous trajectories

into separate segments. In the context of annual avian migration – the specific focus of

my research – I selected four high-level segment classes: summer home range, active

migration, winter home range, and the migration back.

Once this segmentation can be performed at scale without relying on manual

human classification, ecologists can devote larger portions of their time to answering

specific scientific questions. Examples of such questions include but are not limited to:

How much of a species’ home range lies within a protected zone? Could some

proposed construction project negatively impact breeding grounds? What is the

vegetation index value of winter versus summer home range? How are animal migration

patterns shifting due to climate change?

If the tedious segmentation task is automated across a variety of species,

resources like time, personnel, and funding can be allocated more towards addressing

these questions.

1.3.1 Current Methods for Addressing Segmentation

Current approaches to animal movement segmentation and classification work in

some cases but typically lack in either flexibility, precision, or efficiency at scale. Several

methods exist that require human supervision or are relatively sensitive to user input

settings, so in practice are not always more useful than manual validation (see Table 1).
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Other methods are sometimes very computationally expensive, or otherwise not

well-suited to the challenges posed by big data. Table 1 below outlines existing popular

methods and describes some of their operational advantages and disadvantages.

Method Description Advantages Disadvantages

Hidden
Markov
Model
(HMM)

[33] [34]

Probabilistic approach
which estimates hidden
behavioral states and
transitions throughout a
movement path; assumes
future state depends on
current state, not previous
states (Markov property)

Capturing dependencies
between two
consecutive states; able
to handle uncertainty in
noisy or missing data;
flexible enough to also
incorporate
environmental features

Limited precision due

to Markov property

assumption; sensitive

to input settings;

computationally

expensive; complex

implementation

Segclust2d

[35]

Spatial clustering
approach originally
designed for segmenting
2D animal movement data
into homerange and
behavioral states

Simple and effective for
straightforward 2D
segmentation;
computationally
efficient; useful for less
complex movement;
includes a minimum
segment length setting

Less effective for
complex patterns of
behavioral transitions;
lacks probabilistic
detail for
uncertainties; can be
sensitive to input
settings

Piecewise
Regression

[36]

Linear regression
approach that segments
movement data into
distinct “pieces” by
identifying breakpoints
where different linear
trends are present

Easy to interpret and
visualize; finds exact
breakpoints where
behavioral shifts occur;
good for abrupt
changes; limits state
pattern assumptions

Assumes linear paths
within segments;
limited insights on
complex movement;
can miss more gradual
behavioral shifts

Behavioral

Change

Point

Analysis

(BCPA)

[37]

Likelihood-based
statistical approach that
identifies primarily abrupt
shifts, or “change points”,
in irregularly-sampled
time-series data

Can detect non-linear
movement shifts;
suitable for a variety of
state transitions;
statistical approach
helps separate random
fluctuations vs
significant changes

Limited to abrupt
changes; stepwise
approach may not
capture gradual
transitions or subtle
variations; can be
computationally
expensive

Table 1: Strengths and limitations of existing methods for animal movement path segmentation

The convergence of increasing satellite data with recent advances in machine

learning (ML) offers a promising avenue for addressing the segmentation challenge.

Machine learning methods are especially effective with large datasets. They are already

used in various ecology applications [38] including imagery classification for aerial

observations and camera traps [39]. This indicates that a portion of researchers are
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familiar with ML tools and possess the technical capacity to adopt ML methods for path

segmentation.

One directly relevant ML approach for segmentation was documented in

Overton, et al [40]. In this project, the researchers used hourly GPS location data

obtained from five species of common North American dabbling ducks (Anatidae). They

aimed to classify daily activity patterns with eight label categories specific to their

selected species: brooding, dead, local, migration, molt-like, molting, nesting, and

regional relocation. To do this, the team developed multiple input features composing

three main groups: GPS locations, movement history, and remotely sensed habitat

characteristics.

The team used Amazon Web Services' SageMaker Studio with Autopilot to

automate steps within the machine learning workflow. They selected variations of three

model frameworks: Extreme Gradient Descent (“XGBoost”); Stochastic Gradient Descent

(“LinearLearner”); and Multi-Layered Perceptron (MLP). Employing automated pipelines

allowed them to reduce the number of non-ecological decisions. They compared

different model performance metrics using weighted F1-scores to balance precision and

recall (terms defined in Section 3.2.4: “Evaluating Model Performance”). They reported a

maximum F1-score of 95% and deemed their method appropriate for their specific

research context.

1.3.2 Proposed Segmentation Solution and Research Questions

Models specifically intended for use with time-series data – namely, recurrent

neural networks (RNNs) [41] – have frequently been employed in applications for animal

movement predictions [42][43][44]. Recent studies have suggested their potential for

comparative trajectory segment analysis [45], inviting a deeper investigation into their

efficacy.

My research described below aimed to evaluate RNNs as a candidate for

movement path segmentation tasks. My approach emphasized visibility into model

configurations and optimizations by using the PyTorch framework. I also included a

curated set of ablation studies in my results, along with the top-performing model’s

details.

My approach aimed to use classes and features that generalize across a variety of

species. It limited label categories to the four classes outlined above: summer home

range, active migration, winter home range, and the migration back. These classes can

be applied to a wide array of migratory animals. Similarly, input features to the model

were initially limited to movement and time. Environmental and habitat features were

left for future iterations so the RNN approach could be reviewed with minimal variables.

In later sections, I describe my research in detail. The conclusion of this

manuscript responds to both of my research questions:
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● Question 1: What accuracy is achievable when segmenting satellite-collected

animal movement data with recurrent neural networks?

● Question 2: What accuracy is achievable using this method with minimal time

and movement features (i.e. excluding environmental data)?

2 DATASET DESCRIPTION

The data used to train the model implemented during the course of this research

was provided by members of the Yale University Center for Biodiversity and Global

Change (BGC). Data for five species of migratory cranes were shared containing two

types of information. One file stored all of the geolocation events data, collected via

satellites for various cranes outfitted with tracking devices. Other files were provided for

each individual animal, with human-labeled segmentations describing the relative

migratory states.

As part of the first exploration actions taken before receiving the data, an

interactive web-based tool was built for data investigation. The tool features

three-dimensional geospatial visualization with satellite imagery and time controls for

navigating animal movement data. It can be used to manually validate movement

continuity or gain environmental context on local topography (e.g. mountains and

valleys). Source code for this supplementary work is included in Appendix 1, along with

links to a video showcase and live hosted webpage.

2.1 Details on the Data used for Model Training

The primary unlabeled data file – hereafter referred to as the “events data” –

contained 1.21 Gigabytes of satellite-collected animal tracking data. As stated above, the

data represented five species of cranes (see Table 2).

The events data included ~1.7 million geolocation records, each one a trajectory

waypoint with additional metadata. Of the 143 columns, only five were directly used:

1. individual_id : the unique identifier for the individual animal

2. species : the species of the individual animal

3. timestamp : the time of the geolocation record (provided in UTC)

4. lat : the latitude of the geolocation record

5. lon : the longitude of the geolocation record

Complementary labels for migration segments were provided as 182 separate

files. These smaller files used the following four columns to define temporal windows

and associated Status labels:
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1. Individual : the unique identifier for the individual animal

2. Species : the species of the individual animal

3. Date : the transition date linking two separate migratory states

4. Status : the string label defining the current/new migratory state

In the 182 label files, the Date column indicates the beginning or end of a

temporal range defining a specific behavioral state, or Status. In other words, the

Date is the transition from one Status to another. This enables the events and label

data to be merged together. The twelve possible string values for Status were: [ "Start

Fall", "End Fall", "Start Spring", "End Spring", "Presumed Start Fall", "Presumed End Fall",

"Presumed Start Spring", "Presumed End Spring", "Start Stopover", "End Stopover", "No

migration", "Not enough data" ].

Records with a value of “Not enough data” were immediately purged after

loading each file. For both the label and event datasets, a unique list of individual animal

identifiers was produced and checked against the other dataset. If there were events for

individuals without any labels, or labels for individuals without any events, these records

were discarded. Following this initial cleanup, “No migration” was not represented.

Table 2 below shows the total count of event records broken down by species

after preliminary data filtering. The number of individual animals represented from each

species is included to show the general taxa diversity within the data. A geospatial

visualization was also created with kepler.gl to understand the spatial distribution

of each species (Fig. 1) [46]. Temporal distribution is shown in a data density timeline.

The complete time range is 16 February 2011 to 24 March 2021, with most event

records occurring between late 2013 and early 2021.

Animal Species Binomial Name
(genus + species)

# of Event Records
(waypoints)

# of Individual
Animals

Common Crane Grus grus 780,837 17

Demoiselle Crane Anthropoides virgo 173,646 45

White-naped Crane Grus vipio 156,154 8

Black-necked Crane Grus nigricollis 46,932 5

Paradise Crane
(or “Blue Crane”)

Anthropoides
paradiseus

506 2

Table 2: Species-level data details after preliminary data cleanup
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Fig. 1: Visualization of time-series crane locations, colored by species, with data density timeline

Labels with “Presumed” values were counted directly as the corresponding class.

In theory, a binary confidence column could have been used as an input feature,

but it was excluded to keep the fields consistent with unlabeled real-world data. An

assumption was made that any human-provided labels – regardless of being “presumed”

or not – were accurate enough to be included as the ground truth. Stopover labels were

also excluded to focus on the primary task, since classifying these secondary states was

not part of the research goal.

Following this, the original twelve Status values were filtered to: ["Start Fall",

"End Fall", "Start Spring", "End Spring"]. When officially merging the events and labels

datasets, the implicit labels of “Winter” and “Summer” were explicitly added based on

transition dates. I have included step-by-step implementation details on the merging

process in Supplement 1.

Table 3 below provides a mapping of the final class labels to associated

behavioral states for the species of cranes represented in the data. Although the class

label strings are the same as traditional season names, this is just semantic ecological

shorthand. The important information that these strings encode is the generalized crane

behavior expectation within each of the four segmentation classes.
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Final Class Label Associated Behavioral State for Cranes

Summer Breeding

Autumn Migration (post-breeding)

Winter Non-breeding

Spring Migration (pre-breeding)

Table 3: Mapping of segmentation class labels to associated behavioral states for cranes

3 MODEL IMPLEMENTATION

The following sections give an in-depth look at my RNN implementation process,

from data preprocessing to final model evaluation. All referenced code was written in

Python, aside from bash scripts for the HPC workflow. The machine learning framework

employed was PyTorch, with common supporting utility modules: numpy, pandas,

and matplotlib. Model performance evaluation was done with scikit_learn.

The complete source code for my research is available at the URLs in Appendix 1.
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3.1 Data Preprocessing and Feature Engineering

Once all geolocation events were labeled with a class from Table 3, I derived

additional time and movement features from the existing columns. I then normalized

the feature data and split it into three subsets, a workflow outlined in Fig. 2 below.

Fig. 2: Block diagram overview of the data preprocessing workflow
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3.1.1 Deriving Features and Daily Downsampling

The final set of input features can be broadly grouped into: geolocation

(latitude/longitude), intra-day movements (daily means), inter-day movements

(day-to-day steps), and several time-related features. This subsection details how those

features were derived. The full set of column names within the transformed dataset are

described in Table 4 below. Indices A-E were the metadata columns and indices 1-14

were the final model’s input features.

Time Features

For each record, I parsed the year, month, and day values out of the timestamp.

Next, I passed the timestamp to a function for deriving “cyclical time”, represented as

two new fields: sin_time and cos_time.

Including these sine and cosine time features allowed me to encode the cyclical

nature of seasonality into numerical representations. In contrast to a linear

representation of years with integer values (e.g. 2018, 2019, etc.), this ensured that

December 31 and January 1 were cyclically adjacent, rather than representing them at

opposite sides of a linear spectrum. Learning seasonal relationships between the input

data can improve the model’s ability to find patterns in animal movement [47].

To represent a calendar year in terms of cyclical time, I calculated the “seconds

since the start of the year”. I then computed the sine and cosine values of the angle ( )θ
between the timestamp (i.e. seconds since the start of the year) and the “full cycle”

(i.e. total seconds in the year). This full cycle was represented as 31,536,000 seconds. In

mathematical terms, the calculation was:

θ =  2π •  𝑠𝑒𝑐𝑜𝑛𝑑𝑠_𝑠𝑖𝑛𝑐𝑒_𝑦𝑒𝑎𝑟_𝑠𝑡𝑎𝑟𝑡
31,536,000

Intra-day Movement Features

After defining the time inputs, I then generated the movement features. Due to

the fact that inter-day features required daily downsampling, I handled the intra-day

features first in order to capture all of the events.

Following all of the calculations described in this subsection, four new

movement features were added to the input records: the distance from the previous

location, the velocity between two consecutive locations, the bearing between two

consecutive locations, and the turn angle between two consecutive locations. These are

all common metrics employed in animal movement analysis [48].
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First, I calculated latitude and longitude differences between consecutive rows

for each individual’s chronological waypoints. Using these lat_diff (Δφ) and

lon_diff (Δλ) values, I then applied the Haversine formula to calculate the spatial

differences [49]. In mathematical terms, the calculation was as follows, with 𝑅
𝐸𝑎𝑟𝑡ℎ

representing the Earth’s mean radius in meters (6,371,000 meters) :

(1)𝑎 =  𝑠𝑖𝑛²(Δφ/2) +  𝑐𝑜𝑠 φ
1

•  𝑐𝑜𝑠 φ
2

•  𝑠𝑖𝑛²(Δλ/2)

(2)𝑐 =  2 •  𝑎𝑡𝑎𝑛2( 𝑎 ,  (1 − 𝑎) )

(3)𝑑 =  𝑅
𝐸𝑎𝑟𝑡ℎ

•  𝑐

Once I obtained the spatial distance between all consecutive waypoints, I also

calculated the time differences for consecutive timestamp columns. With distances

in meters and time deltas in seconds, I computed a velocity column using . 𝑣 = 𝑑/𝑡
Then, with just the latitude and longitude values, I calculated a bearing ( )θ

column in the range of -180 to 180 degrees:

(1)𝑥 =  𝑐𝑜𝑠(φ
2
 ) •  𝑠𝑖𝑛(Δλ)

(2)𝑦 =  𝑐𝑜𝑠(φ
1
) •  𝑠𝑖𝑛(φ

2
) −  𝑠𝑖𝑛(φ

1
) • 𝑐𝑜𝑠(φ

2
) •  𝑐𝑜𝑠(Δλ)

(3)θ =  𝑑𝑒𝑔𝑟𝑒𝑒𝑠(𝑎𝑡𝑎𝑛2(𝑥 ,  𝑦))  %  360

(4)θ =  θ − 360   𝑖𝑓  θ >  180

The bearing ( ) value was then used to calculate the turn angle ( ) at eachθ ψ
waypoint:

(1)𝑟 =  𝑟𝑎𝑑𝑖𝑎𝑛𝑠(θ − 𝑟𝑜𝑙𝑙(θ ,  1))

(2)ψ = 𝑎𝑡𝑎𝑛2(𝑠𝑖𝑛(𝑟) ,  𝑐𝑜𝑠(𝑟))

(3)ψ = 𝑑𝑒𝑔𝑟𝑒𝑒𝑠(ψ)
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The year, month, and day columns were used to group the data records, and

the daily mean was calculated for each of the four new movement features: distance,

velocity, bearing, and turn angle. Finally, I merged the calculated intra-day means with

the relevant waypoint records.

Inter-day Movement Features

With all of the geolocation records accounted for via the daily means, thereby

capturing intra-day activities in new movement summary features, the calculation for

inter-day activities began by daily downsampling. Specifically, I filtered the waypoints to

only the latest geolocation record of each individual’s daily movements.

Alternative methods – such as averaging or calculating the centroid – could also

be investigated in future experiments. For my research, the decision was made to

maintain the integrity of the underlying geolocation data for each individual. Creating a

centroid can misrepresent an individual’s actual path by placing them at a coordinate

that they never passed through. This concern was the rationale for choosing the daily

“last known position”, preserving the latitude and longitude values included within the

original data.

After reducing the total number of records by daily downsampling, I once again

calculated the four movement features between each individual’s chronological

waypoints. This resulted in eight total movement feature columns: the four mean daily

values outlined above, and the four new inter-day values just described. In this way, I

represented animal movement activities as numerical input features both within and

between days of each sequence.



Wobler 2023 Page 17 of 59

Index Final Data Column Name Data Type Data Description

A individual_id string unique ID for the individual animal

B species string species of the individual animal

C status string class label proxy for behavioral state
(Autumn, Winter, Summer, or Spring)

D timestamp datetime time of the geolocation record (UTC)

E year integer year parsed from the timestamp

1 month integer month parsed from the timestamp

2 day integer day parsed from the timestamp

3 sin_time float sine of the angle between the
timestamp and the cycle (year)

4 cos_time float cosine of the angle between the
timestamp and the cycle (year)

5 lat float latitude of the geolocation record

6 lon float longitude of the geolocation record

7 dist_from_prev_loc float inter-day distance traveled between
consecutive geolocation records

8 velocity float inter-day velocity between
consecutive geolocation records

9 bearing float inter-day bearing between
consecutive geolocation records

10 turn_angle float inter-day turn angle between
consecutive geolocation records

11 daily_mean_distance float intra-day mean of distance values

12 daily_mean_velocity float intra-day mean of velocity values

13 daily_mean_bearing float intra-day mean of bearing values

14 daily_mean_turn_angle float intra-day mean of turn angle values

Table 4: Mapping of metadata (A-E) and final model input features (1-14) to data types and descriptions
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3.1.2 Visual Validation of Input Features per Class

After I derived all of the input features, I manually checked their values to

validate that the output ranges looked correct. To assist in this process, I generated a set

of histogram visualizations. For each input feature, I created four separate histogram

plots; one for each of the four label classes. This resulted in 56 histogram images:

.4
𝑐𝑙𝑎𝑠𝑠𝑒𝑠

× 14
𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

= 56
ℎ𝑖𝑠𝑡𝑜𝑔𝑟𝑎𝑚𝑠

Along with the standard histogram visualization, I included the kernel density

estimate (KDE) line which helps to make the general trends more interpretable [50]. Due

to the data spread, I chose a logarithmic Y-axis scale. This enabled seeing more detail in

the less frequent ranges.

Four samples of these histogram visualizations are included below for reference.

The turn angle values for both “Summer” and “Winter” labels are within the expected

range of -180 to +180. The daily mean velocities for two different classes are also within

the possible range of speeds for the avian species considered.

Fig. 3: Example histogram visualizations with KDE lines showing input feature values per label class
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3.1.3 Normalizing the Input Features

In ML methods using gradient descent (defined in Section 3.2.2), normalization

of input features is a common practice. This is done to ensure that features with varying

numerical ranges are scaled consistently, preventing arbitrary bias of the model towards

a specific feature. Different normalization techniques are employed for different use

cases, including: Z-score scaling, robust scaling, and min-max scaling.

For my research I used min-max scaling across all input features. The minimum

and maximum theoretical values were used where possible. The minimum and

maximum month values were set to 1 and 12, respectively. The range of the day

feature values was set from 1 to 31. The latitude range was set from -90 to +90 and the

longitude range was set from -180 to +180. For other features – such as the distance

traveled and mean daily velocity – value ranges were calculated directly from the data.

Once the minimum and maximum values were determined for all of the input

features, each of those fields was normalized – resulting in new, scaled data values

between 0 and 1.

Manual validation was performed on each of the computed value ranges,

ensuring the values were biologically feasible for the five species in question.

Specifically, distances and velocities were checked to ensure that values didn’t exceed

the theoretical range. Future iterations of this research combining different species

should take their relative movement speeds into consideration. Trying alternate

normalization methods – such as Z-score scaling – might also yield improved results. This

is because Z-score scaling is better at handling outliers than the linear transforms

inherent to the min-max method [51].

3.1.4 Splitting the Data into Train, Test, and Validation Sets

Splitting input data into separate training, validation, and final testing subsets is

also a common practice when developing ML models. The reasons for this are described

in detail below in Section 3.2.3. As shown in Fig. 2, this split is done after input features

have been derived and normalized.

In straightforward applications where every data row is a distinct entity, these

subsets are typically split by defining a target percentage breakdown. For example: 80%

of the event rows could be used for model training; 10% could be used for validation

during that process; and finally, the remaining 10% of the data could be reserved for

testing the performance of the fully trained model.

In my research, a simple percentage split would not suffice. This is because each

data row is not a distinct entity, but rather a single waypoint in a sequential movement

path that a specific individual performed chronologically. Therefore, in addition to target

percentage breakdown values, other factors needed to be considered while splitting the

data. These additional criteria are discussed below and also summarized in Table 5.
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First, rather than only splitting based on the number of waypoints, trajectories

were grouped by the individual animal identifier as well as the year component of the

row’s timestamp. This ensured that trajectories were not split up arbitrarily, which could

diminish the credibility of statistical evaluation. In my case, an individual’s movement

path within a calendar year was the actual “distinct entity”. Cutting up these entities or

shuffling them together would be counterproductive to the goal of path segmentation.

Grouping in this way also ensured that daily-downsampled trajectory sequences

did not exceed 365 waypoints. Significantly imbalanced sequence lengths could also

detract from model performance by introducing bias based on sequence length. Longer

sequences are also more susceptible to the “vanishing gradient problem” [52], a

challenge that is discussed in detail in Section 3.2.2. With a trajectory defined as an

animal’s path within one year (i.e. a sequence with a length less than or equal to 365),

the final breakdown of trajectories per species is shown in Fig. 4.

After grouping trajectories by individual and year, the species distribution was

taken into account. Due to the varying number of individuals in each species group, it

was not directly possible to distribute them evenly. However, I at least ensured that each

of the three output CSVs had multi-species representation (i.e. four or more species).

The specific contents of species, waypoints, and trajectories per data subset are shown

in Table 5 below. Looking at only the number of component trajectories, the training set

has 78.7%, the validation set has 8.4%, and the testing set has 12.9% of the total paths.

A close inspection will reveal that Anthropoides paradiseus was only included in

the training dataset. This was a deliberate decision since only two individuals were

present in the data (see Table 2 above), their combined number of total waypoints only

equaled 103, and their spatial distribution was an obvious outlier. Looking at the map in

Fig. 1 above, it is clear that data for Anthropoides paradiseus only exists in South Africa

rather than crossing larger regions of Eurasia. Future experiments might yield better

results if Anthropoides paradiseus was excluded entirely, or if more records from that

species were collected and divided amongst the data subsets. My research included

them only in the training subset to test the robustness of training even in the presence

of technically valid data outliers.
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Fig. 4: Trajectory paths per species, where a path <= one year of one individual’s activity

Data
Subset

Total Counts:
Trajectories
(Waypoints)

Species:
A.

virgo

Species:
G.

grus

Species:
G.

vipio

Species:
G.

nigricollis

Species:
A.

paradiseus

Training 196
(22,381)

125
(8,192)

37
(8,038)

19
(4,231)

9
(1,817)

6
(103)

Validation 21
(2,145)

3
(618)

12
(784)

4
(371)

2
(372)

0
(0)

Testing 32
(3,641)

9
(1,345)

11
(1,070)

7
(667)

559
(5)

0
(0)

Table 5: Number of trajectories and waypoints per species, after data was split into three subsets

3.2 Machine Learning Model Workflow

3.2.1 Configuration and Hyperparameters

The starting point for the machine learning workflow implemented during this

research was a configuration file where settings were defined before each training run. I

used this as the basis for manual hyperparameter tuning, which is a critical part of

improving a model’s skill during training iterations [53].
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The general groups of configuration options were: base model architecture, base

optimizer, hyperparameters, number of training epochs, and various output settings.

The complete list of configuration variables are described in Appendix 5. The

implementation process is discussed in Supplement 2.

3.2.2 Model, Optimizer, and Scheduler Selection

The two base model architectures I used were a standard recurrent neural

network (RNN) and a long short-term memory (LSTM) network [41] [54]. Both of these

models are commonly used with time-series data since they are specialized for

sequential input and effectively capture temporal patterns [41]. LSTMs were introduced

to enhance the handling of extended sequences, offering this advantage over standard

RNNs [54].

Long input sequences are prone to the “vanishing gradient problem”, a challenge

that also manifests with “deep” (i.e. multi-layer) neural networks [52]. When training

and validating a model on input data, researchers use a “loss function” to quantify the

error (or “loss”) between the model’s classifications and ground-truth labels. They then

use “gradient descent” to minimize the loss, attempting to find the steepest slope

towards optimal classification. These error gradients are propagated backwards from the

output layer to the input layer, passing through “activation functions” in a step called

“backpropagation” [55]. Activation functions that clamp input values to a restricted

range (e.g. between 0 and 1) can cause the gradients to progressively diminish as they

propagate backwards through the network [52]. If left unchecked, this culminates in the

gradual disappearance or “vanishing” of the gradient information [ibid]. This can slow or

stall “model convergence” during training, impeding the attainment of optimal model

parameters (i.e. the minimum loss) [ibid].

Instead of using an activation function that clamps between 0 and 1 (e.g.

sigmoid), the default PyTorch RNN implementation uses the hyperbolic tangent

(tanh) function [56]. Outputs of the tanh function span between -1 and 1, a wider range

that enables more gradient information to be retained [57]. While this can partially

mitigate the vanishing gradient problem, in practice the issue still persists in RNNs that

use tanh – specifically with deeper neural networks or longer input sequences [ibid].

LSTMs were devised to address this RNN shortfall, introducing a “memory”

component to enable learning from long-range inputs [54] (see Appendix 6 for an

architectural diagram, and Section 3.2.3 for more details). Studies have shown that

LSTMs often perform with higher accuracy than standard RNNs when receiving long

sequential data [59][60]. As mentioned in Section 3.1, I limited sequence lengths by

downsampling annual geolocation records to daily waypoints. With a maximum path

length of 365, it was still worth evaluating whether the specialization of LSTMs would

make a difference in the model performance. Therefore, my approach employed both

standard RNNs as well as LSTMs to see which model was most effective.
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After the model was initialized, I used it to create the “optimizer”. The optimizer

is the training component that utilizes the gradients computed during backpropagation

to adjust model parameters. Specifically, it changes the model’s weights and biases [61].

One popular optimization algorithm that I used was stochastic gradient descent

(SGD). This technique randomly selects a portion of the training data on each iteration to

update the model’s parameters [62]. In doing so, it introduces variability which prevents

the model from converging to “local minima” [ibid]. Local minima are defined as points

where the gradient slope becomes zero – representing a possible optimal solution – but

when viewed in the context of the full parameter landscape (or “hyperspace”) are not at

the global minimum [ibid]. Local minima can also be reached when the “learning rate” is

too high, a hyperparameter defining the step size during gradient descent [63].

The other stochastic optimization algorithm used in my models was adaptive

moment estimation (ADAM). The ADAM technique dynamically adapts the learning rate

for each individual parameter, adjusting the step size based on historical gradient

characteristics – namely, the first two moments [64]. The first moment is the moving

mean of the gradient over past iterations, and the second moment is a measure of how

much the gradient values varied [ibid]. By using this information, the ADAM optimizer

can adapt to the parameter landscape on each iteration and efficiently navigate to

converge on minima [ibid].

Another concept related to optimizers is the inclusion of “learning rate

schedulers”. Schedulers can often improve the model’s accuracy by varying learning

rates across different training epochs. Unlike ADAM’s adaptive learning rate which

operates at the parameter level, a learning rate scheduler adjusts the learning rate

globally based on observed model performance progress [63]. The scheduler that I used

in my research tracked the loss value for each epoch. It globally reduced the learning

rate by a specific factor when no improvement was seen for a certain number of epochs

(i.e. when the model performance reached a “plateau”). This was useful for fine-tuning

model performance gains towards the end of the training loop iterations [65].

3.2.3 Training and Validating the Model

The model training process consisted of: showing it examples of properly labeled

movement path segments; letting it try to classify unlabeled path segments;

determining when the model labels were wrong; and adjusting the model’s weights and

biases so it could improve on the next iteration [61]. Validation scores for a separate

input data subset were used to inform the hyperparameter tuning. The implementation

of this process is described in detail in Supplement 3 and outlined as a block diagram in

Fig. 5. Critical aspects are also described within this section, using the blocks from Fig. 5

as subsection headers.
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Fig. 5: Block diagram overview of the model training and validation workflow

Iterate Through Data

The training and validation processes both loaded data subsets, separated by the

process described in Section 3.1.4. This ensured that the model learned characteristics

from one dataset and successfully applied those insights on an entirely different set of

data. “Overfitting” refers to when the model performs well on the training data, but

poorly on other unseen sets of validation data. Separating subsets can help diagnose

and identify overfitting, which in turn improves the model’s ability to generalize. This is

crucial for the model’s performance when deployed in a real-world application, where

its purpose is to classify sets of unlabeled data.

One strategy I employed for improving model generalization was shuffling

training inputs during each new epoch. This reduced the chances of the model

overfitting to a particular portion of the training set by preventing it from memorizing

the order in which it received the input batches [66]. Another strategy is shuffling

sequences inside of the batches themselves, but to limit the number of hyperparameter
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variables, I set a fixed batch size of 1. This meant that each batch contained a single

sequence (i.e. path) with no more than 365 waypoints. In future evolutions of my

research methodology, batches could include multiple path sequences. Shuffling those

might also help the model to generalize further.

Forward Pass

The forward pass is when the model attempts to classify the inputs, passing

them through the network of “hidden layers” to the output layer [55]. In an RNN, this

involves stepping through the temporal sequences, with the first step initializing the

hidden state [41]. In each following time step, the hidden state is updated with

information from the current input and the previous hidden state [ibid]. In this way,

historical information is preserved which allows the RNN to learn temporal patterns.

The same general process applies in an LSTM, with additional complexity in the

form of three gates [54]. The “forget gate” determines information to discard or “forget”

from the state of the previous step. The “input gate” determines which information

should be added or updated in the current state. The “output gate” determines which of

that information should be revealed to subsequent layers. By selectively controlling the

flow of information through the model, these gates can help to address the vanishing

gradient problem described in Section 3.2.2 [ibid]. A figure is provided in Appendix 6

with a visualization of these three gates.

Before passing input sequences through the model, I padded them to guarantee

uniform length. This was required because not all trajectories contained the same total

number of waypoints. Although the downsampling process ensured that paths had less

than 365 waypoints, gaps in the original time-series data existed so not every day was

captured. Once the padded sequences were packed and passed through the neural

network, the next step was applying the loss function on the model outputs.

Compute Loss

When the goal of a model is classification – such as labeling paths with one of

four classes – the loss function should produce probabilities that inputs belong to a

certain class [67]. The cross-entropy loss function accomplishes this by combining the

log-softmax function and the negative log-likelihood (NLL) loss [68]. Employing the

cross-entropy loss function allowed my model to output the likelihood that input

waypoints belonged to a specific segmentation class.

Backpropagation and Optimizer Step

Backpropagation and the optimizer step are highlighted with yellow in Fig. 5 and

only take place during training (i.e. not during validation). These are the parts of the
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process described in Section 3.2.2, when gradients are computed to determine how

model weights and biases should be adjusted.

In essence, this is the “learning” stage where model parameters are updated to

minimize the loss between model-produced and ground-truth classifications.

Backpropagation computes the gradients to find how each parameter affects the loss,

and the optimizer uses these gradients to actually adjust the parameters. Together,

these two steps enhance the model’s skill at classifying movement path segments on

each iteration.

Calculate Accuracy and Store Metrics

Calculating the accuracy and loss of each epoch enables analysis of the training

workflow. Once the loop in Fig. 5 was complete, two separate plots were generated: one

with the training and validation accuracies, and one with the training and validation

losses (Fig. 6). Inspecting these plots allowed me to confirm that the model improved

across consecutive epochs – with accuracy moving towards higher values and loss

moving towards lower values. In cases where the model performance plateaued, these

plots also allowed me to see the effect of the learning rate scheduler described in

Section 3.2.2. The model and optimizer states were saved after finishing the final epoch

iteration.
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3.2.4 Evaluating Model Performance

Fig. 6: Block diagram overview of the final model testing and performance evaluation

Performance Evaluation with “Unseen” Final Test Dataset

After loading the saved model and optimizer states, the final test subset was

evaluated (see Fig. 6). Since the validation subset was used to inform hyperparameter

tuning, the final test subset allowed for a truly independent assessment of performance.

The model-produced labels were compared against the ground-truth labels and three

main outputs were produced for reporting:

1. Accuracy: This single percentage value indicates the model’s skill at succeeding in

its task of classifying path segments. In order for a model-produced class to be

“accurate”, it must match the waypoint’s ground-truth label [69].

2. Classification Report: This report (see Table 8) provides a more robust view of

performance than a single accuracy score, which fails to capture possibilities such
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as always predicting the same value or imbalanced distributions of classes [70].

Metrics included for each of the classes are outlined below. tp stands for “true

positives”, fp stands for “false positives”, and fn stands for “false negatives”.

○ Precision:
𝑡𝑝

( 𝑡𝑝 + 𝑓𝑝 )
This ratio measures the model’s ability to not label a negative sample as

positive [ibid].

○ Recall:
𝑡𝑝

( 𝑡𝑝 + 𝑓𝑛 )
This ratio measures the model’s ability to find all of the positive samples

[ibid].

○ F1-score:
𝑡𝑝

𝑡𝑝 + 1
2 ( 𝑓𝑝 + 𝑓𝑛 )

A weighted harmonic mean of the precision and recall, where the best

case is a value of one and the worst case is a value of zero [ibid].

○ Support: The number of occurrences of each ground-truth label in the

input test data [ibid]. Therefore, the sum of all “support” values equals

the total number of inputs.

○ Macro Average: The unweighted mean for each metric, which does not

account for class imbalance (i.e. varying “support” values) [ibid].

○ Weighted Average: The weighted mean for each metric, which does

account for class imbalance [ibid].

3. Confusion Matrix: This 4x4 matrix (see Fig. 8) shows the count of model

predictions per class (X-axis) against the correct ground-truth labels (Y-axis). A

perfect model would only show values in the diagonal line from top-left to

bottom-right of the matrix. Values in any cell outside of this diagonal are

indicative of the model making an incorrect classification. Since each row

corresponds to a specific ground-truth label on the Y-axis, the sum of all

horizontal cells in a row equals the relative “support” value for that label [71].

These evaluation metrics are all included in Section 4. Together, they offer a

comprehensive view on the skill of the model against previously unseen data. They show

the model’s ability to classify movement paths, and also confirm that the model didn’t

overfit to the training set.

To produce my final results, I used a high-performance computer (HPC) system.

The process for training and evaluating on an HPC is described in detail in Supplement 4.
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4 MODEL RESULTS

4.1 Results and Discussion

Top Results Before Adding Intra-day Features

Model Optimizer Num Layers Hidden Size Dropout Accuracy:
% correct labels

RNN ADAM 2 32 0.2 81.49%

RNN ADAM 2 64 0.3 81.05%

RNN ADAM 2 32 0.3 80.91%

RNN ADAM 2 32 0.1 80.83%

RNN ADAM 3 128 0.5 80.78%

RNN SGD 2 64 0.4 80.34%

LSTM ADAM 2 32 0.1 80.01%

LSTM ADAM 4 128 0.2 79.87%

Table 6: Best model performance evaluations without including intra-day features

Top Results After Adding Intra-day Features

Model Optimizer Num Layers Hidden Size Dropout Accuracy:
% correct labels

RNN ADAM 3 128 0.3 83.27%

RNN ADAM 2 128 0.2 82.20%

RNN ADAM 2 64 0.2 82.09%

RNN ADAM 2 32 0.2 82.01%

LSTM ADAM 3 128 0.3 80.58%

RNN ADAM 4 128 0.3 80.36%

RNN ADAM 4 128 0.2 80.25%

RNN ADAM 4 128 0.2 80.12%

Table 7: Best model performance evaluations, with top result in green. Including all intra-day features:

(mean daily distance, mean daily velocity, meany daily bearing, mean daily turn angle)
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Fig. 7: Final accuracy and loss plots for all training epochs (corresponds to best-performing model run)

Fig. 8: Final confusion matrix display (corresponds to best-performing model run)

precision recall f1-score support

Autumn: 0.77 0.82 0.79 604

Spring: 0.80 0.45 0.57 437

Winter: 0.88 0.87 0.88 1200

Summer: 0.83 0.93 0.87 1400

accuracy: 0.83 3641

macro avg: 0.82 0.77 0.78 3641

weighted avg: 0.83 0.83 0.83 3641

Table 8: Final classification report (corresponds to best-performing model run)
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Fig. 9: Model classifications for daily-downsampled waypoints from one distinct path (filtered by year)

for one Anthropoides virgo individual; with spatial clustering to set circle size based on waypoint density

Fig. 10: Correct (true) and incorrect (false) model classifications for daily-downsampled waypoints

from one distinct path (filtered by year) for one Anthropoides virgo individual



Wobler 2023 Page 32 of 59

Fig. 11: Model classifications for daily-downsampled waypoints from one distinct path (filtered by year)

for one Grus grus individual; with spatial clustering to set circle size based on waypoint density

Fig. 12: Correct (true) and incorrect (false) model classifications for daily-downsampled waypoints

from one distinct path (filtered by year) for one Grus grus individual
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Fig. 13: Correct (true) and incorrect (false) model classifications for daily-downsampled waypoints

from three distinct paths (filtered by year) for the same Grus vipio individual

Fig. 14: Correct (true) and incorrect (false) model classifications for daily-downsampled waypoints

from all paths for all five species in the final test data subset
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Table 6 shows the accuracies and relevant hyperparameters for eight different

model configurations, before including any daily mean movement values. Even without

intra-day features, these models achieved accuracies between 79.87% and 81.49%.

Table 7 shows the results for the top eight model configurations after daily mean

features were included as inputs. After adding intra-day features, these models achieved

accuracies between 80.12% and 83.27%. Fig. 7 shows the accuracy and loss plots

produced by the most successful model’s training process (i.e. the model with 83.27%

accuracy). Fig. 8 and Table 8 display the confusion matrix and classification report for

that same model (with terms defined in Section 3.2.4). Figures 9 through 14 all contain

results from the best-performing model, and were all created with kepler.gl [46].

Fig. 9 visualizes a single trajectory from one Anthropoides virgo individual – the

species with the highest percentage of paths in the daily-downsampled dataset (see Fig.

4). The map visualization uses spatial clustering to increase the size of the circle icons in

areas where the density of waypoints is higher [72]. The colors of the clusters are based

on the mode of the model’s classifications for the waypoints in each cluster. With 363

waypoints represented, the figure depicts one calendar year. Winter and summer range

residencies, along with vernal and autumnal migrations, are clearly demarcated by the

model’s segmentations. Fig. 10 removes the spatial clustering, but visualizes the same

trajectory. It styles the waypoints based on whether the model classification was correct.

351 out of the 363 waypoints were classified correctly, resulting in a single trajectory

accuracy of 97%.

Fig. 11 employs the same visualization process as Fig. 9, but shows a single

trajectory from one Grus grus individual. The Grus grus species had the second highest

percentage of paths in the daily-downsampled dataset (see Fig. 4). Fig. 11 also depicts

the majority of one year, with 320 waypoints. Although the four classes are also

demarcated by the model’s segmentations, there are some “Autumn” and “Spring”

waypoints that appear in the mostly “Summer” region. Fig. 12 – using the same

visualization process as Fig. 10 – shows that the model did produce incorrect

classifications in that specific region. However, 304 out of 320 waypoints were still

classified correctly, resulting in a single trajectory accuracy of 95%.

Fig. 13 uses the same visualization process as Fig. 10 and 12, and shows three

consecutive annual paths for one Grus vipio individual. The Grus vipio species had the

third highest percentage of paths in the daily-downsampled dataset (see Fig. 4). With 30

trajectories, Grus vipio represented half of the amount of Grus grus paths and only

18.4% of the paths available for Anthropoides virgo. Looking at the three yearly paths for

one Grus vipio individual in Fig. 13, it is clear that the model performed slightly worse.

However, for the 2018 trajectory, the model still correctly classified 51 of 58 waypoints.

This resulted in a single trajectory accuracy of 88%. For the 2019 path, the model

correctly classified 125 of 162 waypoints with an accuracy of 77%. For the 2020 path,

the model correctly classified 57 of 77 waypoints with an accuracy of 74%. It is notable

that none of these yearly trajectories exceeded 162 waypoints, so even the path with
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the most waypoints still represented less than half of 365. Lacking so much of the yearly

time-series might help to explain the reduced performance.

Fig. 14 visualizes all trajectories in the final test subset. 3032 out of 3641

waypoints were correctly classified by the model, resulting in an overall performance

accuracy of 83%. Certain areas appear to have higher occurrences of incorrect

classifications, such as the general region of Inner Mongolia (next to the legend in Fig.

14). Many of those incorrect waypoints belong to a single Grus vipio trajectory (a

different individual than the one from Fig. 13), with 168 of 247 waypoints correctly

classified and a single trajectory accuracy of 68%.

The plots generated during the training process show the history of how the

model learned. Plots of accuracy and loss values for sequential training and validation

steps illustrate that the model improved while iterating through the epoch range (Fig. 7).

This is shown by the fact that accuracies increased and losses decreased.

The confusion matrix visualization produced for the best-performing model

shows the spread of the model’s final test set classifications (Fig. 8). It demonstrates that

the model did not simply choose the most common class, but rather uncovered data

patterns that it used to achieve its learning goal. Although the confusion matrix is not a

perfect diagonal from top-left to bottom-right, the higher quantity of records in those

diagonal cells confirm that model classifications generally matched the ground-truth

labels.

One interesting observation is that the "memory" component of the LSTM –

which allows the model to maintain more information regarding previous inputs – did

not significantly change the results when compared to the basic RNN. Just two of the 16

configurations from Tables 6 and 7 used an LSTM base model that exceeded 80% (one in

each table), and the only model from this group with an accuracy below 80% was also an

LSTM.

This could possibly indicate that determining animal movement transitions (i.e.

from one behavioral state to another) is not very dependent on the long-term

movement history. Including intra-day features boosted results by a couple of

percentage points, but results still exceeded 80% without them. This observation aligns

with reported results from methods in Table 1 – from the stepwise approach of BCPA to

the limited memory of HMMs – but additional dedicated research is needed to validate

the claim. Although my models were trained and tested on five separate avian species,

this intuition regarding the amount of required movement history may not apply beyond

that scope.

Model accuracies and F1-scores over 80% were achieved in 15 out of the 16

configurations shown in Tables 6 and 7. When analyzing the classification report of the

best-performing model run (Table 8), I did observe that the recall score of the “Spring”

class was less than the others – showing that the model was not as skillful at identifying

positive “Spring” values. Since the “Spring” and “Autumn” classes represented less
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records than the other two classes of “Winter” and “Summer”, increasing the total

dataset size might improve this metric in future experiments.

Extensive ablation studies were performed to empirically assess different

hyperparameters. Tables 6 and 7 only include the most relevant hyperparameter

variations, but the other investigated values are all described in Appendix 5.

One important hyperparameter was neural network depth, meaning the number

of hidden layers specified for the model. Another was the individual layer dimensionality

– or “size”– defined for each hidden layer [55]. In my research, increasing the number of

layers and hidden size beyond the values in Tables 6 and 7 did not yield better results.

A third hyperparameter included in those tables was the “dropout” percentage,

which did affect performance. Dropout is a regularization technique that randomly

deactivates some of the model’s neurons during each training iteration [73]. This

introduction of randomness can help to mitigate overfitting because it prevents the

model from building strong dependencies on specific neurons [ibid].

Hyperparameters such as weight decay and SGD momentum had minimal effect

on model performance. However, the type of optimizer was evidently important, with

ADAM largely outperforming SGD variations.

The initial learning rate was investigated too, but was set to 0.001 for all of the

top results. I also varied and analyzed the number of training epochs, with a maximum

of 80 for the best-performing runs. After 80 epochs, the performances tended to stop

improving. The scheduler employed to reduce the learning rate when model skill

plateaued did result in slight performance gains for later epochs.

5 FUTURE WORK

My research questions specifically focused on assessing the accuracy of recurrent

neural networks without the inclusion of environmental features. Therefore, throughout

the course of my research, I excluded any such model inputs. However, I did define a

process to retrieve this data. I also began reviewing studies to guide additional feature

selection. Now that I have set an accuracy benchmark with time and movement

features, future efforts can focus on testing the model with environmental data.

5.1 Integrating Environmental Features

After concluding my research as described above, I implemented a process to

download environmental data. This process makes requests using latitude, longitude,

and timestamp values from animal geolocation records. The CDS API is provided through

the European Union's “Copernicus” program, in partnership with the European Centre
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for Medium-Range Weather Forecasts (ECMWF) [74]. Available data includes both Earth

Observation and climatological records, with variables such as: temperature, relative

humidity, precipitation, wind speed and direction, solar radiation, soil moisture content,

soil type, high and low vegetation cover, type of vegetation, and many other

atmospheric and Earth-surface metrics [ibid].

Using this data within my model requires merging the downloaded fields into the

main dataset by joining them on geocoordinate and timestamp values. Then they can be

normalized, split into subsets, and added to the model as auxiliary features. However,

special attention must be given to data resolution. Many of the variables have known

effects on fauna – such as wind-mediated movements during transoceanic flights – but

the coarse resolution of the data in space and time can possibly diminish insights [75].

Beyond CDS, there are other datasets that could also be included. Land surface

phenology can help to identify biodiversity changes induced by large spatial scale

perturbations [76]. The Normalized Difference Vegetation Index (NDVI) is useful in

predicting fauna distribution, population, and life history states [77]. Again, procedures

to increase the resolution of data are often required. Since Earth Observation satellite

missions trade between spatial and temporal resolution [78], choosing appropriate

datasets should be done on a case-by-case basis.

Along with data on the natural world, human activity could be considered.

Nocturnally migrating birds are susceptible to deviations caused by artificial light in

urban areas [79][80]. Nighttime radiation is provided by NOAA/EOG VIIRS data [81],

which is further corrected in NASA's Black Marble project [82]. Other areas of active

research investigate noise pollution and how it affects both fauna population density

and movement patterns [83][84]. The Global Roads Open Access Data Set is one proxy

for human-created noise offered in NASA’s Earthdata catalog [85].

Finally, some caveats should be considered when possibly including additional

features. Expanding the number of inputs will increase the model’s complexity. Too

many specialized features can reduce the model’s ability to generalize [86]. In the worst

case scenario, irrelevant information can lead to decreased performance [87]. A useful

guideline is to independently verify any expected signal. Otherwise, the model might

identify a pattern which doesn't contribute to the learning objective.

6 CONCLUSION

This manuscript explored the application of RNN models to the task of classifying

satellite-collected animal movement data. Regarding my first research question, a

maximum F1-score of 83.27% was achieved. Regarding my second research question, 15

out of the 16 top-performing models achieved accuracies over 80% – none of which

required any environmental features. When including intra-day features of daily mean
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movement values, the top eight accuracies were all between 80.12% and 83.27%. When

excluding intra-day values – minimizing the feature set even more – the top eight

accuracies were still between 79.87% and 81.49%.

The F1-scores show that both RNNs and LSTMs were applicable, though they do

leave room for future improvements – many of which have been discussed. Now that an

accuracy benchmark is set without including habitat features, these can be incorporated

to boost performance metrics. I cited several sources for auxiliary environmental inputs,

some that are already widely used and others that require additional study.

Benefits of my approach are its suitability for larger datasets and the degree of

control offered by the PyTorch framework. Another optimization that this method

supports is algorithmic hyperparameter tuning. One technique is stepping through a grid

of hyperparameter combinations to determine which yields the best performance. A

grid search methodology still enables fine control of the system without relying on more

opaque and off-the-shelf enhancements.

In this manuscript, I have outlined my method and steps for its further

improvement. Researchers now have this tool as a resource to fine-tune for their specific

needs. Future movement ecology studies will require such tools to analyze the rapidly

growing volumes of data from space-based tracking systems. Combined with efforts

from IoA and other animal tracking groups, these methods can accelerate global

biosphere research.
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APPENDICES

Appendix 1: Github Links to Project Code

● [Primary Project] Machine learning model for classification of animal migrations:

○ Github: https://github.com/eio/animal-path-segmentation

● [Supplement] Web-based 3D visualizer for global animal movement data:

○ Github: https://github.com/eio/animal-movement

○ Video demo: https://www.youtube.com/watch?v=tWhQ8L0fWAk

○ Live web demo: (requires Mapbox token)

https://eio.github.io/animal-movement

Appendix 2: Increasing Volume of Animal Movement Data

Appendix 2 Fig. A: Annual global species records from 1950 - 2019 [3]

https://github.com/eio/animal-path-segmentation
https://github.com/eio/animal-movement
https://www.youtube.com/watch?v=tWhQ8L0fWAk
https://eio.github.io/animal-movement
https://eio.github.io/animal-movement
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Appendix 3: Space-Based Animal Tracking Architectures

Appendix 3 Fig. A: Overview of the Argos Data Collection and Location System (DCLS) [6].

Included for historical context of an older satellite tracking system.

Appendix 3 Fig. B: Modern ICARUS system architecture, space and ground segments [12].

The ISS segment was replaced with a CubeSat in July of 2023 [16].
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Appendix 4: ICARUS Tag and Communication Details

Appendix 4a: Early ICARUS Tag Design

Appendix 4 Fig. A: Representative sized model of the future < 5 gram ICARUS tag [12].

Devices were built with a 9-month lifespan and dimensions of: 25 x 15 x 6 millimeters
Note: ethical tracking devices should auto-detach when the mission is done.

Ideally, they should also be collected afterwards to minimize pollution.

Appendix 4b: ICARUS Tag Key Requirements

Appendix 4 Fig. B: ICARUS tag key requirements as of June 2023 [12].
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Appendix 4c: ICARUS Uplink and Downlink Specification

Appendix 4 Fig. C: ICARUS uplink and downlink specification as of June 2023 [12].
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Appendix 5: Code Configuration and Hyperparameter Options

Configuration Option Name Description

model Base model architecture (RNN or LSTM)

optimizer Base optimizer (SGD or ADAM)

n_epochs Number of epochs to train for

batch_size Input sequence batch size (hardcoded to 1)

input_size Number of model input features (covariates)

hidden_size Number of neurons in each layer (i.e. width)

num_layers Number of stacked RNN or LSTM layers (i.e. depth)

output_size Number of possible output categories (4 seasons)

dropout Dropout rate to randomly deactivate neurons during training,
which helps to prevent model overfitting

weight_decay Optimizer weight decay for regularization,

another method for preventing model overfitting

SGD_momentum Optimizer momentum for reaching convergence

init_learning_rate Initial learning rate (LR) used by the optimizer

lr_factor Amount of reduction applied by the LR scheduler

lr_patience Number of epochs to wait with no model improvement

before reducing via the lr_factor

lr_min Minimum LR allowed when using the scheduler

log_interval Number of epochs to wait before printing logs

plot_every Number of epochs to wait before generating loss and

accuracy plots during the training process

save_every Number of epochs to wait before saving an output CSV with

the model classifications

Appendix 5 Table: Complete set of configuration options and descriptions.

Some options map directly to hyperparameters for PyTorch optimizers and schedulers:
● https://pytorch.org/docs/stable/generated/torch.optim.SGD.html

● https://pytorch.org/docs/stable/generated/torch.optim.Adam.html

● https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html

https://pytorch.org/docs/stable/generated/torch.optim.SGD.html
https://pytorch.org/docs/stable/generated/torch.optim.Adam.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
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Appendix 6: LSTM and RNN Architectural Differences

Appendix 6 Table A: Examples of a basic LSTM cell (left) and a basic RNN cell (right) [58]
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SUPPLEMENTS

Supplement 1: Merging Events and Label Data

After the initial data exploration and cleanup described in Section 2, the next

significant processing task was merging the events and label data. To begin, I loaded the

large events CSV and multiple smaller label CSVs into two distinct pandas DataFrames.

This required merging all of the separate label CSVs into a single DataFrame containing

labels for every crane.

Then, I explicitly added the implicit states of “Summer” and “Winter” into the

unified labels DataFrame. This was done by inserting new rows into the data structure,

after grouping the DataFrame by Individual animal. For each record in the labels

DataFrame – grouped by individual cranes – I checked the current Status string for

“Start” or “End” values. A time delta of one day was added or subtracted from existing

Date values to determine the new timestamps.

For example, if a row’s Status value was "End Spring", then I added a new row

with a Status of "Start Summer". I calculated the new Date value by adding a time

delta of one day to the old Date value. Similarly, if the row’s Status value was "Start

Spring", then I added a new row with a Status of "End Winter". In this case, the new

Date value was calculated by subtracting one day from the old Date value. I applied

the same process for "End Fall" and "Start Fall" values, resulting in a complete set of

eight explicit status strings:

1. "Start Summer"

2. "End Summer"

3. "Start Fall"

4. "End Fall"

5. "Start Winter"

6. "End Winter"

7. "Start Spring"

8. "End Spring"

The next step was grouping event rows by individual crane identifiers, using the

individual_id column of the events DataFrame. Then, I applied a function across

each event record to enact the merge.

For each event timestamp, I searched through all of the associated animal’s

label rows, seeking out the closest Date values to that time. I found the encompassing

“Start” and “End” label rows, thereby determining the corresponding event label. I
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applied this logic to every event of each individual crane, resulting in a brand new event

status column. This new status column omitted the “Start” and “End” substrings,

so each event was labeled with only one of four segmentation classes:

1. “Summer”

2. “Autumn”

3. “Winter”

4. “Spring”

These four status classes match what is shown in Table 3. They are the basis of

the classification performed by the final machine learning model. The output of this step

in the process was a single unified CSV that contained all of the geolocation events and

labels combined together.

Supplement 2: Model Configuration File and Output Structure

To expedite manual hyperparameter tuning during the training process, I defined

every configuration variable in a single file. A few of the settings were hardcoded or

pre-determined by other factors, such as the number of input features or class label

options. For the settings that were variable and user-defined, an encoded string was

generated in the following format, with individual hyperparameters separated by

underscores:

RNN_SGD_e80_hs128_nl2_d0.2_lr0.001_wd0.001_m0.5

The first two items are the base model architecture and optimizer, respectively.

The third is the number of training epochs (e). Next are the hidden size (hs), number of

layers (nl), and dropout rate (d), all of which are hyperparameters for the ML model. The

seventh item is the initial learning rate of the optimizer (lr). The eighth is the optimizer’s

weight decay parameter (wd). The ninth only applies in the case of an SGD optimizer,

and represents the value of the momentum hyperparameter (m).

This encoded string was used as the unique directory name where every

generated file was output for each model variation. Within that top-level output

directory, subdirectories were created to store: the saved model state after training was

finished; the performance evaluation metrics; the final classifications produced by the

model in CSV format; and a config.json file recording the complete configuration

settings.
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Supplement 3: Implementing Training and Validation Processes

Loading the Data

The first step in training the model was loading the training and validation

datasets. This was achieved with the PyTorch data primitives:

torch.utils.data.DataLoader and torch.utils.data.Dataset. The

batch_size setting of the DataLoader, while technically a tuneable

hyperparameter, was always set to 1 for the purposes of this research. The shuffle

setting was set to True for the training dataset, and False for validation (as well as testing

later on). A custom extension of torch.utils.data.Dataset was implemented

to handle data loading logic.

During initialization the dataset class loaded, cleaned, and transformed the

associated CSV data file; either train.csv, validation.csv, or test.csv,

depending on the stage of the workflow. The timestamp column was converted from

a string to a Python datetime object, and the DataFrame was ordered chronologically

per unique trajectory.

Unique trajectories were defined by concatenating individual_id and

year values. Since the data was downsampled previously to single daily geolocations,

this ensured that no input sequence was longer than 365 waypoints.

After loading and grouping the data, sequences were converted to Tensors: one

distinct Tensor of feature values, and one distinct Tensor of label values.

The input features chosen are described in depth in previous sections, and the

final 14 field names were: month, day, sin_time, cos_time, lat, lon,

dist_from_prev_loc, velocity, bearing, turn_angle,
daily_mean_distance, daily_mean_velocity,

daily_mean_bearing, and daily_mean_turn_angle.

The label values, originally strings, were one-hot encoded to numerical vectors.

This enabled converting the data structures into Tensors. The mapping of the label string

values to encoded vectors was:
{

"Winter": [1, 0, 0, 0],
"Spring": [0, 1, 0, 0],
"Summer": [0, 0, 1, 0],
"Autumn": [0, 0, 0, 1],

}

Since the entire dataset could be loaded into memory, the Tensorization

happened on load. This meant that it was done during DataLoader creation, rather

than inside of the train and test loops. Therefore, no additional processing was required

inside of __getitem__, the special Dataset method called when enumerated
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batches are accessed [86]. This was important for training efficiency, minimizing the

time spent during each epoch.

In the __getitem__ method, the index argument was used to retrieve the

unique identifier (i.e. the concatenated individual_id and year values

mentioned above). The unique identifier was then used to retrieve and return the

sequence’s feature and label Tensors during the training and testing loops.

Training the Model

Once the DataLoaders were ready, the script began the training loop. The

number of iterations was defined by cfg.N_EPOCHS, starting with epoch 1 and

continuing through the whole range to N.

The first step in the training loop was calling the train_process function,

which enumerated the DataLoader contents for the training set and iterated

through the various batches. As mentioned above, the training DataLoader was set

to shuffle the order of batches and the hard-coded batch_size=1 ensured each

batch was a single sequence (i.e. trajectory).

For each sequence, the “features” and “labels” Tensors were

accessed with the Dataset.__getitem__ method. If the hardware device was

CUDA-compatible, the Tensors were sent to the GPU (see Supplement 4 for more details

on CUDA). Then, the data was passed to another function called train where the

model made guesses, the loss was computed, and the model was updated via the

optimizer.

When using the built-in RNN or LSTM modules from PyTorch, the hidden

state is automatically initialized. Therefore, it was not required to call initHidden()

explicitly. However, the script did call optimizer.zero_grad() which cleared the

gradients of optimized Tensors to prepare for a new backpropagation pass.

Since the length of the sequence input was variable (i.e. the number of

waypoints per trajectory), the sequence length was determined before initiating the

forward pass. The sequence length is a necessary input into the

nn.utils.rnn.pack_padded_sequence utility described above.

The output_tensor returned by model(inputs_tensor,

seq_length) was then used to compute the loss with nn.CrossEntropyLoss.

The backward pass and optimize steps were performed with loss.backward()

and optimizer.step() and finally the train function returned the prediction

and loss.

Next, the output_tensor was converted from probability values into a list

of the category strings: “Summer”, “Autumn”, “Winter”, or “Spring”. The same was done

for the ground-truth labels Tensor, resulting in two ordered lists of such values. The lists

of category strings were then compared to determine which model guesses matched the
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ground-truth labels. The total number of correct predictions per waypoint was counted

towards a running tally that stored the overall score across every sequence iteration.

When the loop terminated and all batches from the training set were accounted

for, the epoch’s accuracy was calculated by dividing the number of correct predictions

from train_loader.dataset.total_records(). This yielded a decimal value

that was multiplied by 100 to obtain the epoch’s final accuracy percentage.

Before exiting the train_process function and returning the epoch’s

accuracy and loss, the script saved the current trained state to a local directory. This was

done for the model as well as the optimizer and epoch number. In case the top-level

training loop was disrupted for any reason, saving the state after every epoch also

served as a training checkpoint.

Validating the Model

Back in the top-level loop through every epoch, the next function call was to

test_process. Much of the logic matched the train_process function but

some notable differences are worth pointing out. To start, the test loop was inside of

with no_grad(): which informed PyTorch that gradients did not need to be

calculated for the outputs.

The test loop iterated through the validation set’s enumerated DataLoader

contents without shuffling the order of the sequences, and passed each batch to a

test function which also did a forward pass through the model to make a prediction

and compute the loss. The loss value per batch was again stored in an array that was

averaged for each epoch. The output_tensor produced by the model was

converted from probability values to strings, which were compared against the

ground-truth string labels. The correct predictions per batch were accumulated to

produce the final accuracy metric.

One other important difference within the test_process function was the

functionality to generate an output CSV of model predictions alongside the ground-truth

labels and input features. This was only done for select epochs, determined by the

configuration value stored in cfg.SAVE_PREDICTIONS_EVERY. To ensure the

features were human-readable and not normalized in the CSV output, they first passed

through an inverse normalization function. Waypoint rows were stored for each batch

(i.e. trajectory) and later combined to create a unified CSV output with all trajectories

from the validation set.

Lastly, since the test_process function was also used to determine the

accuracy of a pre-trained model on the final test dataset, it contained a conditional

check to differentiate between a validation run and a test run. If test_process

was running on the final test dataset, it would also output a predictions CSV and

generate additional model performance outputs described in the following section.
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Plotting Accuracy and Loss Across Epochs

Following the completion of the training and testing loop iterations for every

epoch, where the accuracies and mean losses for each epoch were calculated, four

arrays of these performance metrics were ready to be visualized and output:

● train_accuracies: List of final accuracies for each training epoch

● test_accuracies: List of final accuracies for each validation epoch

● avg_train_losses: List of mean loss values for each training epoch

● avg_test_losses: List of mean loss values for each validation epoch

These four arrays were visualized in two plots, one for train and test losses and

one for train and test accuracies. Both plots were generated using matplotlib and

both had the number of epochs as the X-axis. The loss plot’s Y-axis was the mean

cross-entropy loss, and the accuracy plot’s Y-axis was the final accuracy percentage.

Examples of these loss and accuracy plots are included in the Section 4.

Supplement 4: Final Training and Testing on the HPC System

In order to expedite the model training time and experiments with various

configurations, I ran my code on the University of Luxembourg’s HPC system (the “Iris

Cluster”) [87]. I did this to benefit from GPU acceleration via Nvidia Corporation’s

Compute Unified Device Architecture (CUDA), a parallel computing platform. Using

CUDA significantly reduced the time to train the ML model, resulting in a workflow that

enabled more efficient hyperparameter tuning.

The first requirement was setting up SSH from a personal laptop to the HPC with

public key authentication. I added the Iris Cluster configuration details to my local

computer’s /.ssh/config file and uploaded my public key to the HPC website. Then

I confirmed an active SSH tunnel between the laptop and the HPC, allowing a

command-line session on the laptop to access the HPC filesystem.

Running code on the HPC involved using the Slurm Workload Manager to

schedule tasks and allocate resources for specific jobs. This was also required when

performing initial installations, in order to access the GPU hardware to properly install

PyTorch with CUDA. After I checked the latest CUDA version compatible with the GPU

hardware, I created a new Conda package management environment and installed all

the project dependencies.

I then implemented another simple Slurm script to verify GPU access in the code,

using the function torch.cuda.is_available(). The bash files written for Slurm
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specified certain configuration options, such as: the name of the job, the output file, the

maximum time-limit of the process, the partition or “queue” to execute the job (e.g. one

with GPU support), the number of GPU resources required for the job, the number of

nodes requested from the HPC cluster, and whether any emails should be sent for

different job events (e.g. job start, job end, or job failure). Actively running jobs were

checked using squeue -u $USERNAME, which indicated whether the job was

pending (“PD”) or if it actually started.

The final components of the Slurm bash scripts were the actual command-line

arguments to execute. In my case, it was a three-step process of 1) changing directories

to the project code, 2) activating the Conda environment where relevant dependencies

were previously installed, and 3) running the Python script to initiate the model training.

I ran the Python script with the “-u” option to enable unbuffered output – without

which there would be no way to check print statements until the Slurm job was finished.

By specifying the unbuffered option, I could monitor the script’s progress in real-time

with: tail -f $SLURM_OUTPUT_FILE .

For each new model training session, I ran two Slurm jobs in sequence. First, I

called python -u run_model.py to train the model from scratch using the

train.csv and validation.csv files described above. Once that process was

fully complete and a new trained model was saved to file, I called the script again with

an argument to load the trained model and test on test.csv. I implemented this

functionality with Python’s argparse module, adding the “-l” option to specify that

a trained model should be loaded: python -u run_model.py -l.

After the model training and testing processes both completed, I inspected all of

the relevant performance evaluation files. I also analyzed the model-produced

segmentation labels. To do this, I used Secure Copy Protocol (SCP) to transfer files from

the HPC filesystem back to my local computer. There, I reviewed the output

visualizations and model classifications.


