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Résumé

Ce travail considère l’étude des contraintes résiduelles dans une pièce composite à matrice
polymère qui est obtenue en utilisant la procédure de manufacture dénommée high-temperature
fused deposition modeling (HT-FDM). Ce type d’impression 3D utilise des polymères à haute
performance comme matière primaire. Durant la procédure d’impression, on observe l’apparition
de plusieurs types des défauts en raison du fort gradient thermique qui subit la pièce en construc-
tion, en général, ils représentent le manque de précision dimensionnelle par rapport au modèle
3D utilisé pour coder les trajectoires d’impression. Cette distorsion est en fait une déforma-
tion résiduelle associée aux contraintes résiduelles dans la pièce en réponse à la distribution de
température au cours de l’impression jusqu’à que chaque point matériel atteint la température
ambiante. L’estimation des contraintes résiduelles dans un polymère composite imprimé n’est
pas triviale puisque le matériau comporte plusieurs échelles d’hétérogénéité. Si l’on souhaite
traiter le problème multiéchelle d’une façon déterministe en utilisant une méthode de calcul
générique telle que les éléments finis (FEM) on observe que le phénomène de séparation d’échelle
impose des tailles caractéristiques de maille qui sortent d’une démarche de calcul raisonnable en
termes du temps vis-à-vis des ressources computationnelles actuels, et dans une telle démarche,
il faut prendre en compte que le cout des simulations augmente de façon exponentielle en rai-
son du volume total de la pièce étudiée. C’est pourquoi on propose une méthodologie basée
sur l’homogénéisation en mécanique des matériaux [1, 2, 3] pour remonter au comportement
macroscopique qui permet de considérer la pièce imprimée comme étant représentée par un mod-
èle continu qui, à l’échelle de l’observateur, se comporte de façon équivalente à sa contrepartie
hétérogène, ce que l’on traite par une méthodologie d’homogénéisation à deux étapes.

La première échelle, la micro-échelle, est traitée en utilisant une méthode d’homogénéisation
en champ moyen décrite dans une publication précédente des auteurs [4], dans laquelle l’estimation
est obtenue par extension des méthodes d’homogénéisation de champ moyen conventionnelles
(dérivées du problème d’Eshelby dans le contexte the la thermoélasticité) en utilisant l’extension
du principe de correspondance [5] dans des variations continues de la température pour un
matériau thermo-viscoélastique dit thermorhéologiquement simple, et en utilisant une descrip-
tion probabiliste des paramètres microstructuraux associés aux fibres. Il faut aussi mentionner
que l’on a dédié un chapitre pour l’estimation du comportement effective dans le cas des matéri-
aux thermorhéologiquement complexes par une technique de réduction de modèle du problème
d’homogénéisation en champ moyen étant déjà publiées dans [6]. La mésoéchelle est traitée
par une méthode numérique d’homogénéisation de champ complet basé sur les éléments finis
conventionnels, le calcul des propriétés thermo-viscoélastiques effectives est réalisé à travers de
simulations dynamiques à régime établi sur un espace de fréquence pertinent aux conditions de
service de la pièce pour après subir une procédure d’identification selon [7] ce qui conserve une
représentation conventionnelle des fonctions qui caractérisent la réponse du matériau dans un
contexte expérimentale d’identification.

Après d’avoir vérifié la qualité des approximations obtenues avec des comparaisons purement
numériques on compare ce que l’on obtient avec la réalité physique. L’expérience de référence
est celle du refroidissement d’une plaque mince obtenue par superposition des couches unidirec-
tionnelles d’impression, l’orientation des couches est [0,0,90,90]. La pièce est refroidie dans la
chambre d’impression et l’on mesure la déflexion de la plaque, étant conséquence de l’évolution de
la température et la distribution asymétrique des porosités alignées dans les couches imprimées.
L’objective est donc de prédire la déflexion de la plaque avec un modèle numérique avec des pro-
priétés étant obtenues suivant la méthodologie que l’on propose dans ce travail de thèse. Sachant
que l’on est confronté à la réalité, plusieurs mesures expérimentales qui servent à l’identification
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des paramètres nécessaires ont été effectués, ainsi que des analyses de microtomographie des
deux échelles caractéristiques.

Abstract
This thesis deals with the study of residual stresses in a polymer matrix composite part

obtained using the High Temperature Fused Deposition Modeling (HT-FDM) manufacturing
process. This type of 3D printing uses high performance polymers as the primary material. Dur-
ing the printing process, several types of defects are observed due to the strong thermal gradient
that the part under construction undergoes, generally representing the lack of dimensional accu-
racy with respect to the 3D model used to encode the printing paths. This distortion is in fact a
residual deformation associated with residual stresses in the part in response to the temperature
distribution during printing until each point of the material reaches room temperature.

Estimating residual stresses in a printed polymer composite is not trivial because the ma-
terial contains multiple scales of heterogeneity. If we want to treat the multiscale problem in a
deterministic way using a generic computational method such as Finite Element Analysis (FEA),
we observe that the phenomenon of scale separation imposes characteristic mesh sizes that are
beyond the scope of a reasonable computational approach in terms of time versus current com-
putational resources, and in such an approach we have to take into account that the cost of
simulations increases exponentially due to the total volume of the part studied. For this reason,
we propose a methodology based on homogenization in the mechanics of materials [1, 2, 3] to
trace back to the macroscopic behavior, which allows to consider the printed part as represented
by a continuous model that, at the scale of the observer, behaves equivalently to its heterogeneous
counterpart, which we treat through a two-stage homogenization methodology.

The first scale, the microscale, is treated using a mean-field homogenization method described
in a previous publication by the authors [4], where the estimation is obtained by extending con-
ventional mean-field homogenization methods (derived from the Eshelby problem in the context
of thermoelasticity) using the extension of the correspondence principle [5] in continuous tem-
perature variations for a thermo-viscoelastic material known as thermorheologically simple, and
using a probabilistic description of the microstructural parameters associated with the fibers. It
should also be mentioned that we have dedicated a chapter to the estimation of the effective be-
havior in the case of thermorheologically complex materials by a model reduction technique of the
mean-field homogenization problem being already published in [6]. The mesoscale is treated by a
full-field numerical homogenization method based on conventional finite elements, the calculation
of the effective thermo-viscoelastic properties is carried out by steady-state dynamic simulations
over a frequency space relevant to the part’s operating conditions of the part, and then undergoes
an identification procedure according to [7], which maintains a conventional representation of the
functions characterizing the material’s response in an experimental identification context.

After checking the quality of the approximations obtained with purely numerical comparisons,
we compare what we have obtained with physical reality. The reference experiment is that of
cooling a thin plate obtained by superimposing unidirectional printing layers, the orientation
of the layers being [0,0,90,90]. The part is cooled in the printing chamber and the deflection
of the plate is measured, as a consequence of the temperature evolution and the asymmetric
distribution of the porosities aligned in the printed layers. The objective is therefore to predict
the plate deflection using a numerical model with properties obtained using the methodology
proposed in this thesis. Since we are confronted with reality, several experimental measurements
have been carried out to identify the necessary parameters, as well as microtomographic analyses
of the two characteristic scales.
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Introduction

The present work is the result of a doctoral fellowship funded by the French Ministry of Higher

Education and Research through the Doctoral School of Engineering of the University of Aix-

Marseille 1 (ED353) with hosting laboratory, the Laboratoire de Mechanique et d’Acoustique de

Marseille (LMA). The research subject was conceived in the framework of the scientific support

of the SPRING project financed by DGA-RAPID (DGA-2103404513) of the French Ministry of

Defense. The main objective of this major project was to evaluate the applicability of the FDM

3D printing technology to the industry as functional parts integrating mechanical systems. A

cotutelle with the University of Luxembourg is systematically established at the beginning of

this project with the Doctoral School of Science and Engineering 2 (DSSE) with host laboratory

the Legato team who financed the last part of the time dedicated to the research. The first

published manifestation of the present work was given by the Mini-Symposium of Mathematics

for Industry and Manufacturing held during the International Conference of Numerical Analysis

and Applied Mathematics ICNAAM 2020 [8]. To date, two articles have been published in high

impact journals [4, 6] and three others are in preparation for submission to high impact journals

as well

Additive manufacturing, commonly referred to as 3D printing, is an emerging technology that

spans a broad spectrum of applications [9, 10]. One specific variant of this technology is Fused

Deposition Modeling (FDM), which predominantly utilizes thermoplastic polymer filaments as

the primary raw material for part construction [11]. The focus of this thesis is on FDM. Its

objective is to advance the development of engineering simulation tools that assist in mechanical

design. This encompasses material selection, the determination of printing trajectories, and the

application of heat treatments both during and post-printing. The central goal is to maintain
1https://ecole-doctorale-353.univ-amu.fr
2https://wwwen.uni.lu/fstm

https://www.defense.gouv.fr/aid/deposez-votre-projet/rapid-regime-dappui-linnovation-duale
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dimensional accuracy and minimize residual stresses.

To understand the significance and intrigue surrounding additive manufacturing and to es-

tablish the relevance of this project, it’s beneficial to delve briefly into its history. The roots of

additive manufacturing trace back to the 1980s, when Hideo Kodama presented a seminal paper

on a photopolymer rapid prototyping system [12]. This paper set the stage for the development

of stereolithography (SLA), a pioneering form of additive manufacturing. This technology was

further solidified in 1984 by Charles Hull [13]. Hull co-founded 3D Systems3 and introduced the

market to the first commercial 3D printer. In retrospect, while this technology’s origins may

seem dated, its true potential and widespread adoption have only recently been realized. This

trajectory is unsurprising, considering the technology’s inherent promise: the capacity to use

nearly any material to craft almost any form.

In 1989, Scott and Lisa Crump, co-founders of Stratasys4, pioneered what is now known as

Fused Deposition Modeling (FDM). The first commercial iteration of an FDM-based 3D printer

made its debut in 1992. This technique functions by extruding thermoplastic materials through

a heated nozzle, subsequently depositing them layer by layer to form a three-dimensional object.

This innovation was groundbreaking, especially considering its ease of implementation, which

was rooted in knowledge derived from its precursor, injection molding. Notably, FDM can

utilize materials that are transformable at temperatures beyond conventional industrial ranges.

The burgeoning community interest in this domain is evident, a sentiment accentuated by

the meteoric rise of the open-source movement over the past two decades. A testament to this

is Adrian Bowyer’s spearheading of the RepRap5 project. Bowyer’s visionary concept revolved

around low-cost 3D printers with the unique ability to replicate themselves, essentially "printers

printing other printers" [14].

As we transition further into our discussion, it’s crucial to delve into a more nuanced category.

While we’ve established the relative simplicity of constructing a 3D printer and producing 3D

parts, significant questions emerge concerning the properties of these parts. Specifically, in

which contexts can their application be deemed “safe”? Within the scope of this thesis, our

central inquiry becomes:

3https://www.3dsystems.com
4https://www.stratasys.com
5https://reprap.org
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How might one harness the potential of this adaptable manufacturing method, in

synergy with materials science, continuum mechanics, and computational mechan-

ics, to engineer 3D printed components suitable for integration into industrial and

commercial mechanical systems, beyond just prototyping?

In addressing the aforementioned question, one could adopt the classic trial-and-error method-

ology, iterating through various printers, printing techniques, and materials, complemented by

mechanical testing, until the desired outcomes are achieved. Naturally, the exploration of poten-

tial combinations is constrained by our existing knowledge in engineering sciences, particularly

when identifying a class of materials apt for a specific application.

For the purpose of this study, our primary focus will be on the thermomechanical properties of

3D printed components. However, it’s essential to acknowledge that numerous materials already

exhibit other valuable properties, such as biocompatibility and corrosion resistance [15]. Indeed,

the drive to enhance the thermomechanical attributes of thermoplastic polymers stems from the

aspiration to incorporate these qualities into functional mechanical systems, potentially replacing

metallic components while preserving their operational integrity.

When seeking to enhance the mechanical performance of high-grade thermoplastic polymers,

our attention naturally shifts to a precursor in the field: composite materials. Specifically, we

focus on fiber-reinforced thermosets. These materials, celebrated for their exceptional strength-

to-weight ratio, have been instrumental in driving advancements in aerospace since the 1930s.

Following World War II, from the 1950s to ’60s, their application proliferated across various

sectors of mechanical engineering, including automotive, marine, and construction.

Drawing inspiration from these composites in thermoplastics is intuitive. The concept of fiber-

reinforced thermoplastic polymers, or filled filaments, emerged around 2010 under the umbrella

of FRAM (Fiber Reinforced Additive Manufacturing). Early studies by Lopes et al. [16] explored

the feasibility of integrating filled filaments into FDM 3D printing procedures. Their research

set the stage for subsequent inquiries into short fiber-reinforced polymers.

We now approach the crux of this research project. Over the past decade, efforts to advance

FRAM technologies—aimed at converting 3D printed components into functional parts—have

culminated in the emergence of HT-FRAM, or High Temperature Fiber Reinforced Additive

Manufacturing. This “high temperature” descriptor arises from the materials chosen for crafting

the composite filament. The goal: to elevate the thermomechanical performance and broaden
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the operational temperature range of a component.

A key metric guiding the selection of materials is the glass transition temperature. This

parameter denotes the temperature at which a material undergoes a pronounced shift in its me-

chanical properties [17, 18, 19, 20], transitioning from a quasi-conservative to a quasi-dissipative

state (a state unfavorable for structural elements) and vice versa.

Examples of polymers boasting high glass transition temperatures (signifying robust thermal

stability) include the poly-ether-imide PEI, commercially branded as Ultem®, and the poly-

ether-ketone-ketone PEKK, recognized as Kepstan. Both are prevalently employed in HT-FRAM

applications.

However, this narrowed focus on thermally stable materials introduced a manufacturing chal-

lenge: ensuring the extrusion of materials at elevated temperatures without compromising the

integrity of the 3D printer components or the quality of the printed part [21]. While this issue

is not entirely resolved, several companies, including Stratasys, have presented and continue to

unveil solutions tailored to this context.

At this juncture, we find a selection of materials each paired with its FDM solution, all

nested under the HT-FRAM category. The subsequent steps in evaluating the applicability of a

3D printed component within a functional context involve:

i) Choosing materials from this group along with their specific reinforcements for the filament,

ii) designing the printing program—which is characterized by a combination of plane trajectories

and printing velocities that depend on the filament’s viscosity at its extrusion temperature—and

iii) selecting the thermal treatment, which is delineated by temperature profiles over time, span-

ning the commencement of extrusion to the moment the completed part acclimates to room

temperature post-printing.

The prospect of making these decisions arbitrarily is both daunting and potentially wasteful.

To devise a pragmatic strategy, we harness the scientific understanding of the relevant physical

phenomena for this class of materials. This is coupled with numerical estimations to formulate a

methodology for modeling the thermomechanical response of a 3D printed component. It is here

that we’ve carved our niche: simplifying the simulation task by approximating its macroscopic

mechanical behavior. This approximation leans heavily on pre-existing knowledge of the mate-

rial’s characteristic scales, with “scales” referring to specific lengths where noticeable property

fluctuations occur—fluctuations that inevitably influence the desired behavior of a part when

https://en.wikipedia.org/wiki/Polyetherimide
https://en.wikipedia.org/wiki/Polyetherketoneketone
https://visionminer.com/collections/3d-printers
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viewed at an observational scale.

In summary, given the intricacies outlined previously, this technology poses substantial en-

gineering challenges. The task is twofold: developing both hardware and software capable of

maintaining an optimal thermal environment for layer consolidation and the extrusion process.

Such endeavors necessitate high-performance thermostable materials alongside precise electron-

ics. Addressing these challenges is a pressing concern in modern technology. Consequently,

current manufacturing systems on the market cannot consistently ensure peak performance.

Many produced parts often suffer from defects, including geometrical distortions, delamination,

warping [22], and surface inconsistencies. The root cause of most of these defects lies in internal

stresses [23], which emerge due to temperature fluctuations within the printing chamber. There-

fore, it becomes imperative for engineers to predict internal stress distributions in 3D printed

components, considering both the temperature field history and the printing program (print tra-

jectories). The ultimate goal is enhancing specific properties by finely tuning the print settings

of available hardware.

The diagram provided below offers a visual breakdown. This figure elucidates the critical

temperatures associated with FDM 3D printing, pivotal in understanding the defects previously

discussed. First and foremost, we have the printing temperature Tp, which, for HT-FRAM, is

approximately 400◦C, closely aligning with the material’s melting point. Following this is the

printing bed temperature Tb, the surface that supports the incrementally building part. Ideally,

Tb should exceed the glass transition temperature to mitigate the impact of the initial drastic

temperature shift. Given that modern hardware can handle up to 250◦C, this temperature shift

averages about 100◦C 6. Lastly, we have the chamber temperature Tc, reaching highs of 270◦C

in current 3D printers. Ideally, Tc should maintain uniformity throughout its volume during

the printing process, hovering around the glass transition temperature. This would prevent

significant temperature variations and the premature onset of internal stresses, stemming from

the polymer’s inconsistent thermodynamic state within the growing part. Unfortunately, with

the limitations of contemporary technologies, there’s an inability to ensure this ideal thermal

environment consistently during printing. As a result, the produced geometries often differ from

their original blueprints, introducing internal stresses that modify their mechanical behaviors

when subjected to the operational loads in the mechanical systems they’re integrated into.
6https://qualup.com
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Figure 1: Graphical representation of the technological problem.

One can quickly recognize the intricacy involved in fabricating a functional part via FDM

3D printing; indeed, it emerges as a multiscale challenge. Initially, there’s the composite fila-

ment, reinforced with short fibers (usually glass or carbon fibers, borrowed from the domain of

composite thermosets). This fiber reinforcement augments the filament’s rigidity, thus boost-

ing its mechanical prowess, marking our introduction to the first level of heterogeneity, termed

the microscale here. In our study, the matrix material under consideration is the glassy amor-

phous polymer (PEI in the application sections), which essentially mirrors a continuous matrix

compared to its sibling, the semi-crystalline polymers. As the printing process progresses, the

filament, heated to its melting temperature, is methodically laid upon the printing bed, layer

by layer. The resultant near-cylindrical shape of the adjoining filaments forms a porous lattice,

representing our second level of heterogeneity, which we label as the mesoscale. Referencing Fig.

2, we see an illustrative depiction of our target material. Moving from right to left, we encounter

the microscale, showcasing short fibers nestled within a polymer matrix. Then, the mesoscale
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manifests as a porous region, birthed from the layer-over-layer construction process. Lastly, we

have the macroscale—the scale perceptible to the human observer, typically continuous given

our visual limits and predicated on the assumption that the printer retains a precision within a

20-50 µm range in tolerances.

Presently, the estimation of these internal stresses primarily involves the application of finite

element methods in commercial software [24, 25]. These software solutions address the thermo-

mechanical structural problem by integrating thermo-viscoelastic behavior laws tailored for the

polymer material [26, 27]. Given the material’s multiscale nature, virtual prototyping and simu-

lations emerge as a notably time-intensive endeavor. In a broad simulation context, the necessary

discretization strategies mandate selection criteria that can precisely capture the heterogeneity

shapes at the most refined scale. Such a requirement often leads to extensive simulations, which

are nearly unfeasible without resorting to high-performance computing resources. Notably, the

literature provides various simulation methodologies aiming to circumvent the need for such in-

tricate meshing [28, 29]. Nevertheless, regardless of the chosen approach, it’s a computationally

expensive procedure. Homogenization techniques aspire to substitute complex heterogeneous

bodies with a homogeneous counterpart that mirrors the same macroscopic characteristics. The

majority of these techniques find their roots in linear thermoelastic behavior models [1, 2]. Re-

garding application expense, homogenization can be executed both analytically (like mean-field

methods) and computationally (such as full-field methods) [4, 6]. The time commitment for

analytical methods is a fraction of that required by computational ones. However, the efficacy of

these analytical methods hinges on the availability of suitable analytical delineations of hetero-

geneity in both geometry and distribution, and the adaptability of the underlying mathematical

frameworks of the considered material laws to align with the homogenization paradigm.

This study introduces a two-step homogenization methodology to predict residual stresses in

3D printed parts, as visually depicted in Fig.2. The material of the cat illustrated on the left is

characterized by two distinct scales. Our goal is to apply homogenization techniques to derive

a continuous equivalent for the cat’s material. Initially, the composite filament shown on the

right of Fig.2, consisting of a polymer matrix reinforced with short glass fibers, undergoes an

analytical homogenization. This step results in a continuum representation, which becomes the

input for the material properties at the mesoscale. Subsequently, the layered porous structure

illustrated in the center of Fig.2 is addressed using a homogenization process tailored for periodic
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microstructures, implemented via classical finite element simulations. This output sets the stage

for the material properties at the cat’s macroscopic scale. It’s worth noting that one trade-off of

these averaged models is their inability to capture highly localized phenomena. The repercussions

of this approximation within the realm of 3D printing will be thoroughly explored and evaluated.

Upcoming sections will delve into the specific methodologies employed as we examine each scale.

Ultimately, the derived macroscopic behavior is utilized to gauge the deflection in an actual 3D

printed part, serving as a primary validation criterion.

Figure 2: Schematic representation of the multiscale problem, the superscript (.)µ stands for
microscale quantities, (.)m for those of the mesoscale and (.)M for the macroscale.

Up to this point, readers have been acquainted with the research’s scope without diving

deep into its theoretical and experimental nuances. These details will be incrementally intro-

duced, maintaining an inductive approach to the overarching topic. In subsequent sections,

our initial focus lies in identifying and detailing a suitable polymer matrix, specifically the PEI

or more precisely, the commercially known Sabic Ultem® 1010 resin. This material serves as

the benchmark for the mathematical modeling of our target behavior, emphasizing the char-

acterization of residual stresses and deformations, two classical mechanical variables, and their

time-temperature dependency. The ensuing section pivots to estimating the effective properties
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of a composite filament reinforced with short glass fibers. Given that this material is categorized

as a thermorheologically simple material [30], an additional chapter will broach the microscale

homogenization problem when selecting thermorheologically complex [31] matrix materials for

the filament. This sets the stage for an exploration of the effective behavior of the porous net-

work using rudimentary computational mesostructures. Concluding this chapter, we will present

an experimental validation study, aiming to assess the precision of the suggested methodology

within a controlled, real-world setting.

An additional chapter is provided, focusing on a numerical study that extrapolates the macro-

scopic behavior of 3D printed parts. This study utilizes data-driven models founded on CNN

networks and Bayesian methods, using data generated by our proposed methodology which fac-

tors in a microstructural parameter map. This is presented as a pioneering exploration into the

latest predictive algorithm developments. Furthermore, to expedite data generation and reduce

costs, we will employ alternative strategies to conventional finite element approximations, no-

tably the Extended Finite Element Methods (XFEM) and CutFEM. The closing sections will

offer conclusions, remarks, and insights into the strengths and constraints of our proposed ap-

proach, coupled with discussions on application contexts and potential adaptations for more

intricate scenarios. Each chapter will culminate with its own set of conclusions. Lastly, the

sequence in which information is relayed does not reflect the chronological development of the

work, as the theoretical and experimental components often ran concurrently.



10

Chapter 1

Thermo-viscoelasticity : Theoretical

background and modeling

In this opening chapter, we will revisit the foundational theories that underpin our

approach for calculating the thermomechanical response of thermo-viscoelastic poly-

mers. In essence, we’ll cover: i) The thermodynamic formulation of the polymer,

both in its integral and differential forms. ii) The time-temperature superposition

principle for thermorheologically simple polymers and its extension for continuous

temperature variations. And iii) the mathematical depiction of mechanical and ther-

mal expansion behaviors, represented through Prony series.

This section marks the commencement of our in-depth exploration of the multiscale problem.

Beginning with the microscale, we identify two distinct phases: the elastic fibrous inclusion do-

main and the matrix, the predominant phase that houses the stiff fibers. This matrix is an

amorphous (or glassy) polymer. A popular matrix material for such considerations is polyether-

imide (PEI), our reference material for this study. Commercially recognized as Ultem®, PEI

boasts a commendable balance of thermal and mechanical properties. Its high glass transition

temperature (Tg > 210, ◦C) stands as a testament to its robust thermal stability. However, this

trait also demands higher printing temperatures (Tp > 350, ◦C), introducing challenges in the

printing process.

From a modeling perspective, representing the thermomechanical behavior of the elastic

fibers is straightforward as it falls within the conventional realm of thermoelastic materials. This
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simplicity is advantageous since many of their properties remain constant throughout the tem-

perature spectrum of the printing process. In contrast, the matrix’s thermomechanical behavior

exhibits thermo-viscoelastic characteristics. This implies that the mathematical depiction of its

property evolution is dependent on both time and temperature. A polymer’s solid state can be

perceived as a phase where the Brownian motion rate of its structural chains is diminished, but

it never truly ceases. Essentially, a polymer can be viewed as a conglomerate of perpetually

mobile molecular chains. Temperature variations influence the pace of these polymer chains,

with heightened temperatures correlating to rapid molecular movements. As such, the matrix

material necessitates a somewhat non-traditional mathematical model within the domain of ho-

mogenization theory. Indeed, the intricate study of such materials is enshrined in a dedicated

scientific discipline known as rheology.

Numerous studies have delved into the challenges presented by viscoelastic materials, a unique

class that simultaneously exhibits viscous and elastic behaviors. The historical origin of such

material studies can be traced back to James Clerk Maxwell in 1867 [32]. His rheological model

used a spring (an elastic component) and a dashpot (a viscous component) connected in series,

modeling the relaxation response of polymers. Later, in 1890, both Voigt and Lord Kelvin

independently proposed an alternate model wherein a spring and dashpot were connected in

parallel [33]. This Kelvin-Voigt model was adept at predicting creep behavior. Recognizing the

limitations of the existing models, the standard solid model was introduced, adeptly capturing

a polymer’s asymptotic stress and deformation responses. Zener was credited with this model

[34], and it was seen as a complement to earlier models. Specifically, it incorporated an elastic

spring either in parallel with a Maxwell model’s viscoelastic model or in series with a Kelvin-Voigt

model, enabling it to predict both creep and relaxation behaviors. These initial models, with their

single viscoelastic units, however, had limitations regarding the range of viscoelastic materials

they could represent. To address this, the 1950s saw the emergence of generalized versions for

both Maxwell and Kelvin-Voigt models [35]. The 1970s ushered in more intricate models based

on fractional operators dealing with non-integer order derivatives, leading to fractional versions

of the generalized models, which allowed for even more precise and adaptable representations

[36]. For the purposes of this work, our focus will be on the traditional generalized Zener models,

deemed sufficiently accurate for the materials in question.
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In the realm of temperature-dependent viscoelasticity—or “thermo-viscoelasticity”, as we

term it—the foundational study by Williams, Landel, and Ferry in 1955 stands as a pioneer-

ing effort to phenomenologically depict the nuanced interplay between relaxation mechanisms in

amorphous polymers and temperature [37]. This groundbreaking model, frequently referenced

as the WLF (Williams-Landel-Ferry) model, was instrumental in delineating the relationship

between a polymer’s viscoelastic properties and temperature, thereby paving the way for sub-

sequent thermo-viscoelastic models. The journey to formulating a cohesive theory of thermo-

viscoelasticity saw its inception in the late 1950s, with significant contributions from researchers

such as Biot in 1958, who delved into the linear thermodynamics of viscoelastic solids [38, 26],

followed by Hunter in 1961 [39], Schapery in 1964 [40], Christensen and Naghdi in 1967 [41],

Crochet and Naghdi in 1969 [30] and Bouc in 1977 [42]. Each of these works embarked on the

mission of crafting a thermodynamically consistent formulation. A more consolidated discussion

of these studies can be found in R. M. Christensen’s 1982 publication, “Theory of Viscoelastic-

ity” [43]. This text offers a thorough breakdown of thermo-viscoelasticity in linear viscoelastic

materials and serves as our primary touchstone for understanding the theoretical nuances of

thermo-viscoelastic behavior.

1.1 Integral form of the state equations in linear

thermo-viscoelasticity

We now shift our focus to the mathematical framework that underpins the initial homogenization

step. The most fitting approach to express the evolution of the polymer’s state as a function

of time and temperature is undoubtedly a thermodynamic formulation. Such a formulation

seamlessly integrates mechanical occurrences with thermal interactions, providing a spatial rep-

resentation of the temperature field. This is crucial, as the polymer’s structural state at a specific

moment is intrinsically tied to its preceding temperature history. While our primary reference

for these formulations remains [43], it’s essential to acknowledge other seminal contributions

that have furthered our understanding of the theory, including works like [5, 44, 45, 35]. Let’s

delve deeper into the constitutive equations that capture the thermo-mechanical essence of the

material:
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σ = σ0 + [L(T, ·)⊛ ε− L(T, ·)⊛α(T, ·)⊛ θ] (t) (1.1)

s = s0 + [L⊛α(T, ·)⊛ ε+m(T, ·)⊛ θ] (t). (1.2)

The equations under consideration pertain to the second order symmetric stress tensor, de-

noted by σ, and the specific entropy, represented by s. Both of these are functions of their initial

states: σ0 and s0. They also depend on state variables, which include the second order strain

tensor ε and the temperature variation, θ, relative to an initial temperature of the reference

state, T0. Additionally, these equations factor in material properties: the fourth order stiffness

tensor, L; the second order thermal dilatation tensor, α; and the heat capacity at constant strain,

denoted as m. Notably, each of these properties is a function of both time and temperature. The

upcoming thermodynamic formulation aligns with the constitutive equations above as detailed

in Appendix B.1 of [43].

The thermodynamic representation of the thermomechanical state of the polymer is given by

two energetic potentials, the Helmholtz free energy and the dissipation potential, and a coupling

equation representing the interactions between the temperature fields and the dissipation of

energy. The time dependent nature of viscoelastic materials is represented mathematically by

the Boltzmann superposition principle, which translates the fact that the state of a polymer at a

given time depends on each previous state of the polymer, this imposes the presence of Stieltjes

convolution operators (⊛) relating the quantities of each monomial in the energy formulation

(see: A.1). Let’s take a first look at the equations describing the thermomechanical state of the

polymer: first, the Helmholtz specific free energy,

w = w0+σ0·ε−s0θ+

[
1

2
L(T, ·)⊛ ε⊛ ε− L(T, ·)⊛α⊛ (T, ·)ε⊛ θ − 1

2
m(T, ·)⊛ θ ⊛ θ

]
(t), (1.3)

the associated dissipation potential,

φ = −
[
1

2

∂

∂t
L(T, ·)⊛ ε⊛ ε+

∂

∂t
(L(T, ·)⊛α(T, ·))⊛ ε⊛ θ +

1

2

∂

∂t
m(T, ·)⊛ θ ⊛ θ

]
(t), (1.4)
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and the thermal coupling inequality,

φ− [λ(T, ·)⊛∇θ] (t) ≥ 0, (1.5)

and finally a suitable form of the conservation of energy equation in a first order theory of

thermo-viscoelasticity,

r − T0
∂

∂t
[L(T, ·)⊛α(T, ·)⊛ ε+m(T, ·)⊛ θ] (t) +∇ [λ(T, ·)⊛∇θ] (t) = 0. (1.6)

This theoretical formulation is obtained using the first and second thermodynamic principles,

where w0 is the initial free energy, λ is the second order thermal conductivity tensor and r

is an external heat source; further information on the derivation of the integral form of state

equations can be found in B.1. As it was mentioned earlier, the ⊛ operator represents the

Stieltjes convolution product, for more information and properties, see A.2. These equations

allow to describe the evolution of the thermomechanical state of the polymer as a function of

the reference state, the strain energy, the dilatation energy, the heat capacity, and a description

of the effect of the heat flux in the energy balance equation. We will use these equations to

derive the methodology for the effective behavior of the 3D printed polymer parts, as such

equations must be solved during the simulation of a printing process. We end here by rewriting

the constitutive equations in Eq. 1.2 for a body assumed to be in an initial reference state, free

of stress and in thermodynamic equilibrium at the reference temperature T0, noting that we will

give a particular interest to the first one of the stress tensor, since it is the target variable to be

evaluated microscopically in the 3D printed composite part.

σ = [L(T, ·)⊛ ε− L(T, ·)⊛α(T, ·)⊛ θ] (t) (1.7)

s = [L⊛α(T, ·)⊛ ε+m(T, ·)⊛ θ] (t). (1.8)

1.2 Thermomechanical modeling of isotropic thermorheologically

simple polymers

Now, we will start to specialize the formulation for the particular case of the reference material

subject of the validation experiments. The PEI is considered as an isotropic material, which
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means that the fourth order relaxation tensor is entirely defined by two viscoelastic coefficients

by means of the fourth order orthogonal projectors J and K [46], then, for the case of an isotropic

polymer L can be written as (A.4):

L(t, T (t)) = 3κ(t, T (t))J+ 2µ(t, T (t))K, (1.9)

with κ(t, T (t)) and µ(t, T (t)) being the compressibility and shear relaxation moduli respectively.

In the same fashion as consequence of the isotropic character, the representation of α(t, T (t))

and λ(t, T (t)) reads :

α(t, T (t)) = α(t, T (t))I, and λ(t, T (t)) = λ(t, T (t))I, (1.10)

With I being the second order identity tensor.

Our primary focus in this work is to accurately depict the volumetric changes of the polymer

in response to temperature and time variations. To this end, we find it apt to introduce a

representation of α(t, T (t)) that can capture the prolonged effects of temperature shifts on the

final volume of the part. Delving a little into history—albeit briefly—it is crucial for our study’s

objective. This historical journey starts with the pioneering work of A. J. Kovacs in 1964 [47]. He

delivered a sequence of papers focusing on experimental and phenomenological investigations into

glassy polymers, ultimately formulating a theory surrounding the isobaric volume and enthalpy

recovery of glasses [48]. He extensively developed this theory, with its applications rooted in what

he termed “isothermal recovery”. These experiments, based on rapid temperature variations on

PVAc or polyvinyl acetate samples, effectively captured the thermal expansion’s long-term (or

viscoelastic) behavior.

A subsequent development in this area was made by Knauss and Emri in 1981 [49, 50]. They

highlighted the striking resemblance between the creep function and the time-responsive thermal

dilation function. Knauss took Kovacs’ differential formulation of the free volume fraction,

transforming it into its integral form, and aptly tagged α(t, T (t)) as a thermal creep function.

Although this model isn’t extensively utilized, it finds its niche application in fields like shape

memory alloys [51, 52, 53]. In these contexts, similar models are employed to provide a rheological

description of thermal expansion.
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In this study, we’re guided by Kovacs’ foundational theories to elucidate and quantify the

isotropic thermal creep function. It’s worth noting that such a portrayal of thermal expansion

is already hinted at by [43] and can be discerned in the fifth term of Eq. (1.3). We introduce

β(t, T (t)) as the second-order thermal strain tensor, the equation of which is

β(t, T (t)) = [α(T, ·)⊛ θ] (t), (1.11)

and for the case of the isotropic PEI matrix,

β(t, T (t)) = β(t, T (t))I = [α(T, ·)⊛ θ] (t)I. (1.12)

1.2.1 Time-temperature superposition principle

Earlier in this section, we delved into the initial historical explorations surrounding thermo-

viscoelasticity. Significantly, these pioneering studies were predominantly focused on a unique

category of polymers termed as thermorheologically simple materials. This nomenclature was

introduced in the influential work by Williams, Landel, and Ferry in 1955 [37]. The delineation

of such materials offered two-fold advantages. For engineers, it facilitated the construction of

a master curve, enabling them to extrapolate long-term behavioral predictions from short-term

experimental data. Concurrently, for materials scientists, it streamlined the experimental process

by reducing the requisite number of tests to adequately characterize a given material sample.

The implications of these observations were indeed more general, and thermodynamic studies

of this time-temperature superposition showed that in this class, temperature variations cause

structural uniform changes in the polymer. As a consequence, the time spectrum of the properties

is contracted or expanded by a unique shift factor, here noted as aT . In terms of experimental

observations, what they noticed was that when plotted on a logarithmic scale, the results of

relaxation experiments at different temperatures appeared to be the same, but shifted in time,

and their shift magnitude with respect to an arbitrary reference temperature Tr was a function

of the given temperature, this is the shift factor [37, 54, 55, 56, 57].

To illustrate this phenomenon, consider the internal dynamics of a “solid” polymer. Although

we perceive a polymer as a solid, it’s essentially a solution wherein polymer chains are in perpetual
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motion. Its solid-like appearance stems from the sluggish rate of polymer chain movement. This

apparent stasis results from the exceedingly high viscosity exhibited by the polymer solution.

Consequently, when subjected to a constant load, the polymer takes a significant amount of

time to manifest discernible shape alterations, thus earning its “solid” moniker. Now, imagine

elevating the temperature of the polymer sample uniformly. At this higher temperature, the

polymer’s response time quickens. Deformations that would have previously occurred at a time

t1 now transpire at a quicker moment t2 (where t2<t1). Thus, events seem to be “shifted” in

time.

When examining this phenomenon from the localized perspective of a polymer chain, the role

of temperature becomes more evident. As the temperature rises, Brownian motion intensifies,

accelerating the movement of the polymer chains. Beyond a certain temperature threshold, these

movements become so rapid that an external observer would struggle to track the events occurring

within the polymer chain in real-time. From the vantage point of the polymer chain, external

events appear to transpire sluggishly. Now, to understand the implications of this principle for

our model, let’s examine the effects on L(t, T (t)) and α(t, T (t)). Owing to the unique shift

factor, when T (t) = T ̸= Tr, the following relationship can be derived:

L(t,T) = Lr

(
t

aT (T,Tr)

)
= 3κr

(
t

aT (T,Tr)

)
J+ 2µr

(
t

aT (T,Tr)

)
K, (1.13)

α(t,T) = αr

(
t

aT (T,Tr)

)
= αr

(
t

aT (T,Tr)

)
I, (1.14)

where the subscript (.)r indicates that the function is constructed as a “master property” or

reference property by shifting it horizontally while constructing the function of the shift factor

aT being, which by construction is equal to 1 at the reference temperature Tr. Note that in

the rest of the text, since multiple indices are used in the formulations, this distinction of the

reference master curve of the property is not shown.
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1.2.2 Time temperature superposition principle in continuous variations of

temperature : The “internal time”

The problem for us now is that the time-temperature superposition principle was derived for

constant temperature states, which is obviously not the case for a 3D printed part. In order to

deal with continuous temperature variations, the notion of “internal time” (ξ) is introduced as

the “time variable” replacing the observer time (t) in the argument of the material functions;

this notion is widely used and is considered as a common practice in modeling and simulation of

polymers [45, 43, 58]. As mentioned above, the TTS is defined for constant temperature states.

To be able to define the form of the “internal time” explicitly, an extension of this principle is

needed. From there, one can consider the case of a material under test at a fixed initial reference

temperature T1 for a period of ∆t1 units of observer time (for instance, seconds). Then an

infinitesimal temperature step is introduced (T2 = T1 +∆T) and it is hold for a period of ∆t2.

Let’s check the differences between the total elapsed time of the observer, and the “internal time”

of the polymer.

t = ∆t1 +∆t2,

ξ = ∆ξ1 +∆ξ2 =
∆t1

aT (T1,Tr)
+

∆t1
aT (T2,Tr)

.
(1.15)

The notion of time inside the polymer can be considered as a relative variable with respect

to temperature. The generalization to a continuous form of the “internal time” is obtained by

applying N succesive infinitesimal temperature steps (∆Ti → 0):

ξ(t) = lim
N→∞

N∑ ∆ti
aT (Ti,Tr)

= lim
N→∞

N∑ ∆ti
aT (T (ti),Tr)

=

∫ t

0

du

aT (T (u),Tr)
(1.16)

1.2.3 thermo-viscoelasticity in the “internal time” domain

As we have shown in the previous sections, the mechanical response of a polymer is a function of

time and temperature and this dependence is represented by the time temperature superposition

principle, which in the case of continuous variations of temperature can be unified using the

notion of “internal time” (Section 1.2.2). Based on the previous works [59, 60], which proposes

the application of the correspondence principle [5] for viscoelastic composite mean-field estimates,

which takes the advantage of the analogy of the linear elastic problem as Stieltjes convolution
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products are transformed into conventional products in the Laplace-Carson domain, we aim here

to apply a similar methodology in Section 4.2, but by extending it to the case of a thermo-

viscoelastic composite.

To start the discussion, we will use the stress constitutive relation in Eq. (1.8), the time

temperature superposition representation by means of the shift factor function aT as it is pre-

sented in Eq. (1.13) and Eq. (1.14) with the corresponding extension to continuous variations

of temperature by means of the “internal time” ξ in Eq. (1.16). Then, by writing the explicit

form of the modified Stieltjes integral (see: A.2) for the constitutive relation, we can see the

real problem regarding the application of the correspondence principle to continuous variations

of temperature:

σ(t) =

∫ t

−∞
L(ξ(t)− ξ(v)) · ε̇(v)dv−

∫ t

−∞

∫ v

−∞
L(ξ(t)− ξ(v)) · α̇(ξ(v)− ξ(s))θ̇(s)dsdv. (1.17)

As can be seen in the previous expression the arguments of the integrals are different, this is:

material functions (L and α) are function of the internal time ξ while the observable and state

variables (ε, θ and σ) are function of the observer’s times t; which does not allow the application

of the correspondence principle since these integrals are no longer of the Stieltjes type. In order to

ensure a representation that is equivalent to the aforementioned principle we perform a change of

variables in the state (ε, θ) and observable (σ) variables to match the time space of the material

properties which is the internal time ξ, noting that the new set of functions mapped from the

internal time take the same exact values at different instants with correspondence known from the

bijection defined in Eq. (1.16), which allows to easily define the inverse map h ≡ f−1. Taking this

into account this, the notation used for the new set of observed state variables will be the same,

and their correspondence will be carried implicitly. This abuse of notation seek to alleviate the

writing of the analytical forms developed in the following chapters, and to make the expressions

more readable. Nevertheless, for the sake of clarity, we will use a special notation just once in

the following definition, where the superscript (.)ξ denotes the state and observable variables,

which are now mapped to internal time instants within an observation interval t ∈ [0, tf ].
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t ∈ [0, tf ] (ε ◦ h)(ξ) ≡ εξ : [0, ξf ] → ℜ6

ε : [0, tf ] → ℜ6 (θ ◦ h)(ξ) ≡ θξ : [0, ξf ] → ℜ

θ : [0, tf ] → ℜ σξ : [0, ξf ] → ℜ6

ξ ≡ f : [0, tf ] → [0, ξf ] βξ : [0, ξf ] → ℜ6

f−1 ≡ h : [0, ξf ] → [0, tf ] σ(t) =
(
σξ ◦ f

)
(t)

β(t) =
(
βξ ◦ f

)
(t)

This change of variables allows homogenizing the arguments, ensuring the Stieltjes representation

of the integrals in the second line of Eq. (1.17), and thus the applicability of the correspondence

principle. Considering now, the distributivity property of the Stieltjes convolution (see: A.2)

and recalling that for the rest of this chapter the internal time forms (i.e., the starred forms) of

the state and observable variables will be the same as those of their observer’s time counterparts

which only distinction will be identified on the argument of the functions (e.g., θξ(ξ) ≡ θ(ξ)) we

can rewrite Eq. (1.17) as follows:

σ(ξ) =

∫ ξ

−∞
L(ξ − v)

(
ε̇(v)− β̇(v)

)
dv = [L⊛ (ε− β)] (ξ), (1.18)

with β :

β(ξ) = I

∫ ξ

−∞
α(ξ − v)dθ(v) = I [α⊛ θ] (ξ), (1.19)

recalling, σ(ξ) is the second order stress tensor, L(ξ) is the fourth order relaxation tensor, ε(ξ)

is the second order strain tensor, β(ξ) is the second order thermal strain tensor, α(ξ) is the

isotropic thermal creep function, and θ(ξ) = T (ξ) − T0, the change of temperature from the

initial temperature T0, all of them now defined in the internal time domain ξ. This way of

representing the stress response is a suitable form, as can be easily compared to the conventional

forms of linear thermoelasticity, the reference theory for the estimation of the effective behavior

computation in Section 4.2.

1.3 Prony series representation for viscoelastic spectra

As mentioned before, we use a Generalized Zener model of the Maxwell kind [35, 45, 44, 61] to

approximate the continuous spectra for viscoelastic properties of the polymer for us, κ(t) and
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Figure 1.1: Generalized Maxwell standard solid rheological model for isotropic materials.

µ(t), this can be observed in the graphical representation of Fig. 1.1. The viscoelastic spectra

are then approximated by a linear combination of weighted exponential functions called Prony

series expansion, which in the case of the master properties at reference temperature (Tr) takes

the following form:

κ(t) = κ∞ +
U∑

u=1

κ(u) exp

(
−t

τ
(u)
κ

)
= κg −

U∑

u=1

κ(u)

(
1− exp

(
−t

τ
(u)
κ

))
,

µ(t) = µ∞ +

V∑

v=1

µ(v) exp

(
−t

τ
(v)
µ

)
= µg −

V∑

v=1

µ(v)

(
1− exp

(
−t

τ
(v)
µ

))
,

(1.20)

with κg = κ∞ +
∑U

u=1 κ
(u) and µg = µ∞ +

∑V
v=1 µ

(v), being the glassy or instantaneous moduli

obtained by adding the weights κ(u) and µ(v) with their respective long-term or rubbery moduli

κ∞ and µ∞. By construction, the set of characteristic times τ (u)κ and τ
(v)
µ is obtained by relating

a set of discrete constant stiffness coefficients and their corresponding temperature dependent

viscosity (rheological interpretation from the free volume theory [62]), for instance, τ (u)κ (T ) =
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η
(u)
κ (T )/κ(u), with η

(u)
κ being the compressibility viscosity of a given branch in the rheological

model. In Eq. (1.13) due to the modeling choice, the shift factor aT , appears to be related to the

set of discrete characteristic times, this association is interpreted from the notion of activation

of relaxation mechanisms and observed as a decrease on the viscosity as a consequence of the

increase in temperature, which is reflected in an earlier activation of the relaxation mechanism

due to the augmentation of Brownian motion in the polymer chains and promoting the viscous

flow locally. Taking into account this representation and considering Eq. (1.13) and Eq. (1.20)

for temperatures different from Tr, the interpretation of the shift factor for thermo-rheologically

simple materials is related to the discrete viscosity spectra as follows:

aT (T,Tr) =
τ
(u)
κ (T )

τ
(u)
κ (Tr)

=
η
(u)
κ (T )

η
(u)
κ (Tr)

=
τ
(v)
µ (T )

τ
(v)
µ (Tr)

=
η
(v)
µ (T )

η
(v)
µ (Tr)

. (1.21)

From the foregoing equation, one can note that, as a consequence of the thermorheologically

simple material assumption, the time temperature superposition principle ensures the uniqueness

of the shift factor not only when considering any of the elements in the discrete time sets, but also

between the moduli characterizing the mechanical response of the polymer. One of the objectives

of the present work is to experimentally validate this assumption for the chosen material, PEI -

Ultem® 1010. Despite the theory chosen to derive the existence of an internal time ξ, which are

indeed complementary, keeping a material support from the phenomenological consideration of

the rheological model, the internal time forms of the isotropic relaxation moduli reads:

κ(ξ) = κ∞ +
U∑

u=1

κ(u) exp

(
−ξ

τ
(u)
κ

)
= κg −

U∑

u=1

κ(u)

(
1− exp

(
−ξ

τ
(u)
κ

))
,

µ(ξ) = µ∞ +
V∑

v=1

µ(v) exp

(
−ξ

τ
(v)
µ

)
= µg −

V∑

v=1

µ(v)

(
1− exp

(
−ξ

τ
(v)
µ

))
,

(1.22)

therefore,

L(t, T (t)) = L(ξ) = 3κ(ξ)J+ 2µ(ξ)K,

σ(t, T (t)) = σ(ξ) = [L⊛ (ε− β)] (ξ) = [3κ⊛ J · (ε− β) + 2µ⊛K · (ε− β)] (ξ).

(1.23)
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1.4 The spectral form of the thermal deformations

To derive the time dependent form of the isotropic thermal expansion coefficient, we will follow

[47, 48, 63]. The thermodynamic formulation of the volume variations will consider just isobaric

transformations. The exact differential of the volume v is defined as :

dv =

(
∂v

∂T

)

q(n)...q(N)

dT +
N∑(

∂v

∂q(n)

)

T,q(j) ̸=q(n)

dq(n), (1.24)

With qi a set of ordering parameters that complete the description of the thermodynamic state.

The instantaneous and established response of the volume variation as a consequence of an

instantaneous variation in temperature are characterized by the glassy expansion modulus αg

and rubbery modulus αl, these two quantities being definition :

αg =
1

v

(
∂v

∂T

)

q(n)...q(N)

, (1.25)

αl =
1

v∞

(
∂v∞
∂T

)
, (1.26)

where v∞ is the equilibrium volume at a given temperature. Now, considering that the equi-

librium of a thermodynamic system is defined as the state that is uniquely determined by the

temperature T and the pressure P of the system (note that here we are considering just iso-

baric transformations), we can rewrite Eq. (1.24) for both the volume differential dv and the

differential of the equilibrium volume dv∞:

dv = vαgdT +
N∑(

∂v

∂q(n)

)

T,q(j) ̸=q(n)

dq(n) (1.27)

dv∞ = v∞αldT (1.28)

From the fact that dv = dv∞ when the equilibrium is achieved by comparison of the above two

expression, we can write :

(
dv∞
dT

)
= v∞(αg +

N∑
α(n)) = v∞αl (1.29)

This gives a physical sense to the set of internal set of parameters as a set of creep weighted func-

tions controlling the evolution of the expansion coefficient from its glassy state to its equilibrium
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value or rubbery plateau. Let’s introduce the free volume fraction variable, δ = v−1
∞ (v − v∞) as

the fraction of the volume that is not in equilibrium at a given instantaneous temperature, and

related to the thermal deformation by means of the following expression:

δ =
βkk
3

− αlθ, (1.30)

with βkk being the trace of the thermal strain tensor, we now aim to obtain an explicit form of

the differential of δ:

dδ =
v∞dv − vdv∞

v2∞
= −(δ + 1)

N∑
α(n)dT +

N∑(
∂δ

∂q(n)

)

T,q(j ̸=n)

dq(n) (1.31)

Considering that for the range of polymers that we work the values of δ < 0.0025 [47] are

negligible compared to the unity, we have neglected it here in the latter expression. Now we

take the derivative with respect to time of the free volume fraction to try to give a form to its

evolution after an instantaneous infinitesimal step of temperature :

dδ

dt
= −

N∑
α(n)dT

dt
+

N∑(
∂δ

∂q(n)

)

T,q(j ̸=n)

dq(n)

dt
, (1.32)

now, considering that this must be true for all values of Ṫ , if we take the isothermal recovery

experience in which the temperature is constant: T (t) = T ∀t > 0+. The first term in the

above equation vanishes, and assuming proportional causality and individual contributions of

the ordering parameters q(n) we can write:

dδ

dt
=

N∑ dδ(n)

dt
, (1.33)

dδ(n)

dt
=

(
∂δ

∂q(n)

)

T,q(j ̸=n)

dq(n)

dt
= − δ(n)

aT (T,Tr)τ
(n)
α

, (1.34)

by using this definition in its precedent we obtain a set of ODEs characterizing the evolution of

the free volume fraction δ, recalling that Ṫ = θ̇:

dδ(n)

dt
+

δ(n)

aT (T,Tr)τ
(n)
α

= −α(n)dθ

dt
. (1.35)
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With this set of evolution laws we can rewrite the expression of βkk
3 = β:

β(t) = αlθ(t) +
N∑

δ(n)(t). (1.36)

This last statement is sufficient proof of the suitable mathematical representation of the time

dependent expansion coefficient, since, despite the physical context of the parameters, it is an

exact analogy of the evolution law of Prony systems when simulating creep behavior in poly-

mers[45]. If one wants to see this by an explicit equation, the form of the thermal creep function

can be obtained by means of the Laplace-Carson transform of Eq. (1.35) and to insert it into the

corresponding transform of Eq. (1.36). The spectral form of the thermal expansion coefficient is

then:

α(t,T) = αl−
N∑

α(n) exp

(
−t

aT (T,Tr)τ
(n)
α

)

)
= αg +

N∑
α(n)

(
1− exp

(
−t

aT (T,Tr)τ
(n)
α

))
.

(1.37)

Finally, considering the time temperature superposition principle in continuous variations of

temperature for thermorheologically simple materials presented earlier (see: 1.2.2), we can then

write the internal time form of Eq. (1.37) considering the definition in Eq. (1.16) as:

α(t, T (t)) = α(ξ) = αl −
N∑

α(n) exp

(
−ξ

τ
(n)
α

)

)
= αg +

N∑
α(n)

(
1− exp

(
−ξ

τ
(n)
α

))
, (1.38)

and the correspondent internal time form of the thermal strains isotropic invariant β:

β(t, T (t)) = β(ξ) = αlθ(ξ)−
N∑

δ(n)(ξ). (1.39)

with the explicit form of the evolution of the fractional contributions δ(n) in the internal time

domain as:

dδ(n)

dξ
+

δ(n)

τ
(n)
α

= α(n)dθ

dξ
. (1.40)

This closes the particular remarks about the material modeling for the properties of the PEI,

the rest of the thermal properties will be explored as the experimental section is presented.
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1.5 Differential form of the state equations in linear

thermo-viscoelasticity for the generalized Zener model of the

Maxwell kind

Now, taking into account the previous considerations regarding the modeling of the relaxation

spectra, it seems appropriate to introduce a different but equivalent form of the state equations.

This representation of the state and stress equations will be used in the Chapter 5. Before

entering into details, we will use for the following steps a simplified version of the rheological

model presented in Fig. 1.1. The simplification is achieved by imposing equal characteristic times

sets for both the compressibility and shear spectra. This is a common practice when modeling

viscoelastic behavior, as it reduces the number of internal variables associated with viscous

strains; and is for example the only way of defining time dependent viscoelastic behavior using

Prony series in Abaqus CAE, which is only possible for isotropic materials with a maximum length

of 13 elements (these limitations are avoided using UMAT subroutines). This simplification is

in fact made for the validation examples in Chapters 4 and 5, and the first round of numerical

validation experiments in Chapter 6. And it made us recall that as it was already mentioned at

the end of the introduction the experimental work was being done in parallel with the modeling, in

consequence the material laws were not completed at most of the stages of the research pushing us

to use a support for simulation, viscoelastic spectra that were indeed artificial, with some of them

holding direct physical meaning (the shift factor and the shear spectrum) and others furbished

using material data from the producers and partial experiments at hand. Despite this fact, we

must insist that this does not affect the implications of the conclusions of the formulations, since

the mathematical structures of the material laws are preserved. We then adopted this simplified

form for the artificial matrix material laws used in the validation examples of the following two

chapters. With this in mind, we should start rewriting the fourth order relaxation tensor L(ξ)

from Eq. (1.22):

L(ξ) = (3κ∞J+ 2µ∞K) +

U∑

u=1

(3κ(u)J+ 2µ(u)K) exp

(
−ξ

τ
(u)
L

)

= L∞ +

U∑

u=1

L(u) exp

(
−ξ

τ
(u)
L

)
=

U∑

u=0

L(u) exp

(
−ξ

τ
(u)
L

)
,

(1.41)

http://130.149.89.49:2080/v6.14/books/usb/default.htm?startat=pt05ch22s07abm13.html
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with L(0) = L∞ and τ
(0)
L = ∞. The correspondent rheological representation of this simplified

version of Fig. 1.1 is shown below.

Figure 1.2: Simplified generalized Maxwell standard solid rheological model for isotropic mate-
rials.

Let’s now recall the form of the stress constitutive relation from Eq. (1.18):

σ = [L⊛ (ε− β)] (ξ), (1.42)

this way of representing the stress by means of the associative property of the Stieltjes product

(see A.2) can be seen as equivalent to instead of choosing as state variable the observable defor-

mation ε, we choose the mechanical deformation εm = ε−β as state variable. Now we perform

the Laplace-Carson transform (see: A.3) on the later expression in the previous equation noting

the transformed quantities by using the starred notation, (.)∗, and taking into account the Prony

series representation of L to obtain the internal variables representation of the Stieltjes integral

of the stress:

σ∗ =

U∑

u=1

L(u) p

p+ 1/τ
(u)
L

· (ε∗ − β∗) =

U∑

u=1

L(u) · (ε∗ − β∗ − q(u),∗) (1.43)
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with,

q(u)∗ =
1

p+ 1/τ
(u)
L

(ε∗ − β∗)

τ
(u)
L

, (1.44)

the internal variable accounting for the “viscous strains” or the dissipative part of the strain. By

performing the correspondent inverse Laplace-Carson transform of the two precedent equation

we obtain an internal time formulation of the thermo-viscoelastic constitutive law lying in the

internal variables formulation:

σ(ξ) =
U∑

u=1

L(u) · (ε(ξ)− β(ξ)− q(u)(ξ)) (1.45)

with,

d

dξ
q(u) +

1

τ
(u)
L

q(u) =
(ε(ξ)− β(ξ))

τ
(u)
L

, (1.46)

Therefore, we can write the expression of the potential w considering that the latter expression

of σ is derived from it, which lies in the standard solids framework [26, 6, 64, 65]:

w =
U∑

u=1

1

2
L(u) · (ε− β − q(u)) · (ε− β − q(u))− f(θ), (1.47)

with f accounting for the pure thermal contributions to the free energy. To derive the expression

of the dissipation potential, we start by considering the correspondent form of the dissipation

potential of Eq. (1.4):

φ = −1

2

∂L
∂ξ

⊛ (ε− β)⊛ (ε− β) + g(θ), (1.48)

with g the pure thermal contributions to the dissipation. Now, by taking the explicit form of

the partial time derivative of L :

∂L
∂ξ

= −
U∑

u=1

1

τ
(u)
L

L(u) exp

(
− ξ

τ
(u)
L

)
, (1.49)

and considering the equivalency regarding the integrals in w we can write φ in function of the
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internal variables q(u):

φ =
1

2

U∑

u=1

L(u) · (ε− β − q(u))

τ
(u)
L

· (ε− β − q(u)) + g(θ). (1.50)

Finally, by considering the expression of q(u) above, we can rewrite the dissipation as a function

of the time derivative of the internal variables ˙q(u):

φ =
1

2

U∑

u=1

L(u)τ
(u)
L · q̇(u) · q̇(u) + g(θ) =

1

2

U∑

u=1

M(u) · q̇(u) · q̇(u) + g(θ). (1.51)

At this point, it should be noted that the matrix formulation matches perfectly into the

standard solids framework (see Equations (5.4)-(5.6)), verifying by construction the constitutive

laws introduced at the beginning of Section 5.1 and their correspondence with the integral form

presented at the beginning of this chapter. The reader can argue that this differential form does

not consider the terms associated with the heat capacity m within the formulation, this has two

direct reasons: i) all the application examples are based on the assumption of prior knowledge

of the temperature history, and ii) the linear thermo-viscoelastic theory assumes that the fields

ε and θ
T0

are infinitesimal, this is quietly ensured for the strain field ε, but as it can be inferred

values of θ
T0

are of the order of 1 suggesting that this linear approximation with respect to the

second order term in θ may be insufficient to map the nonlinearity induced by these temperature

variations. We have just proofed the equivalency of the integral (Eqs. 1.3 and 1.4) and differential

formulation which modeling choices lie in the internal variables framework and interpreted as

viscous strains in the decomposing the macroscopic strain in the case of the mechanical internal

variables, and pseudo temperatures or fictive temperatures in the case of the decomposition of

the thermal strain. We can now pass to study the experimental observations serving to feed the

models presented above.
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Chapter 2

Matrix Reference material (PEI):

Experimental identification

This chapter focuses on the experimental identification of the thermo-viscoelastic

behavior following Chapter 1 for the reference material used in this work, the com-

ercial PEI-Ultem 1010. This work is the result of a collaboration with the Centre

de mise en forme des matériaux (CEMEF-Mines Paristech Sophia Antipolis). The

experimental protocol within the identification of thermomechanical parameters is

presented. This work is on preparation for publication with target journal: Journal

of Polymer Science and Engineering. In summary, we present: Dynamical mechanical

tests and creep experiments for the determination of the master curves representing

the mechanical properties of the isotropic polymer matrix using injection molded

samples. Differential scanning calorimetry to measure the isobare heat capacity and

the glass transition temperature. Further comments are made when considering the

determination of the thermal expansion coefficients, since it was an unproductive ex-

perimental campaign and others related to the determination of the compressibility

modulus and its lack of consistency.
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In the following sections, the experimental methodology, results, and model identification will

be presented. The present section aims to describe the experimental campaign followed for the

identification of the material parameters needed to describe the thermo-viscoelastic response of

PEI - Ultem® 1010 already described in the latter section, in addition, this study is extended

to experimentally characterize thermal parameters needed for the case of coupled simulations in

which the heat and entropy equation are involved (e.g. simulation of the printing process itself).

2.1 Materials

As mentioned above, For this study, poly-ether-imide (Ultem® 1010 grade) supplied by Sabic

was used for this study. Recalling that the key parameter regarding the thermal stability of such

polymers is the glass transition temperature. In the literature, the glass transition of the PEI

1000 has been reported at a temperature of 220◦C [66], in the case of our reference material, in

[67] a temperature of 215◦C is reported, but its source comes from the information given by the

commercial supplier Stratasys as we can observe when considering the Table. 2.1, in [68, 69] a

temperature of 217◦C is reported, but again this corresponds to commercial suppliers (the first

in the table below) and the measure was not performed. From the outputs of our research, there

are no journal publications reporting this value as a result of an experimental campaign and

then, we will answer to this during the thermal measures. The samples used for the experiments

were injection molded at high temperature in order to obtain plates of 10 cm in side and 1mm

in thickness.

Table 2.1: Material data from commercial suppliers and material web’s datasheet.

E(GPa) Tg(°C) C.T.E. (m/m°C) Conductivity ( W/m°C) diffusivity(mm2/s)

3DXTECH (Filament) 2.500 217 - - -

STRATASYS (Resin) 3.040 209.37 0.00003608 0.24 0.14

AMCO (Resin) 3.199 215 0.00005220 0.22 -

SABIC (Resin) 3.200 215 0.00005200 0.22 -

XYOMETRY(Resin) 2.770 216 - - -

MAT DATA CENTER (Resin) 3.200 215 - 0.22 -

MATWEB (Resin) 3.200 215 0.00005000 0.21 -

https://www.3dxtech.com/wp-content/uploads/2021/03/PEI_1010-TDS-v04.pdf
https://www.stratasys.com/siteassets/materials/materials-catalog/fdm-materials/ultem1010/mds_fdm_ultem-1010-resin_0921a.pdf?v=48e257
https://www.amcopolymers.com/actions/union/api/datasheet?entryIds=351635
https://www.sabic.com/en/products/specialties/ultem-resin-family-of-high-heat-solutions/ultem-resin
https://xometry.eu/wp-content/uploads/2021/03/ULTEM-1010.pdf
https://www.materialdatacenter.com/ms/en/tradenames/Ultem/
https://www.matweb.com/search/datasheet.aspx?matguid=aa6b0cf36bd746d8a96ec7340c8c0560
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2.2 Methods

2.2.1 Static tensile tests at different constant temperatures

This study was performed as a preliminary step of the tensile creep experiments. As creep

tests are observations of the evolution of the deformation of the specimen as a function of

time in response to an “instantaneous” load at a given temperature, the mechanical properties

are subjected to variations due to the variations of temperature (time-temperature superposi-

tion principle). It is then necessary to perform a primal study to estimate admissible levels

of stress, relying on the infinitesimal deformations theory in the linear viscoelastic framework.

Then, tensile static tests were performed for each chosen isotherm of the creep experiments (i.e.

{150, 170, 190, 210, 230}◦C). The experimental program was performed at controlled displace-

ment conditions with an axial displacement rate of 0.1 mm s−1, until the samples reach the

nominal elongation of about 30 mm. Results of these experiments are reported in Fig. 2.1.

As expected, below the glass transition temperature (Tg) the magnitude of the admissible

loads are on the range of conventional measurement systems. In contrast, when regarding the

last two isotherms, the decrease in the magnitude of the stiffness is significant, characterizing the

drastic transition around Tg. As it can be observed, the curve of the static response at 230◦C

shows a very low values of stress compared to the others, considering that the given temperature is

around a dozen degrees above the transition. Regarding the coherence of the computed modulus

as function of temperature, we see a monotonous decreasing of the Young modulus as a function

of temperature, which is expected. The values below the glass transition happened to be greater

than the ones reported from Sabic® with a value of 3.2 GPa against values around 2.38 GPa

noting that reported external values of Table. 2.1 are given for room temperature, and the

greatest value is computed for a temperature of 150◦C, this suggests an overestimation of the

Young modulus considering the corresponding value in Section 2.2.3 that is close. In the same

way, these results sustain the affirmation about the machine dependent variation reported in the

Young modulus when performing DMA experiments (Section 2.2.3) with a value of 2.46 GPa,

and showing consistency between the measures and the reported values from external sources.
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(a) Axial rational stress vs. Hencky axial deforma-
tion

(b) Instantaneous Young modulus (E) vs. Temper-
ature

Figure 2.1: Static tensile tests : On the load magnitude to determine the admissible stress for
linear experiments.

2.2.2 Creep tests

In this section, two kinds of creep experiments are performed. The first part of this campaign

was performed in order to obtain a verification concerning the magnitude of the Young modulus

after the inconsistencies reported in the dynamical experiments in Section 2.2.3. The second

experiments aim to the determination of the thermo-viscoelastic bulk modulus through what’s

called confined compression tests. The latter was proposed to get an additional confirmation

between the measured modulus as for the case of an isotropic material, two coefficients are

enough to characterize the full fourth order relaxation tensor as can be noted from Eq. (1.9),

then it must exist an equivalence between them to ensure the validity of the acquired data.

These kinds of experiments are suitable when studying the differed response of a polymer to an

“instantaneous” load in function of temperature. Indeed, the relaxation experiments are slightly

more complicated as are performed in imposed displacement, something that becomes a challenge

considering that the sample is actively being deformed by the temperature variation.
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Tensile experiments

In this study, creep tests were performed to establish a master curve of PEI in the time domain. It

consists of applying a stress step σ0 to the sample, that is adjusted for each value of temperature,

taking into account the static tests of the previous section, ensuring that measurements are

performed within the linear viscoelastic domain, and measuring its strain response ε(t) as a

function of time while maintaining the stress. When the applied stress is in the linear range, the

sample tensile modulus E(t) can be calculated as:

E(t) =
σ0
ε(t)

(2.1)

Experimentally, in order to build creep master curves, successive creep tests are carried out

on the same sample at different temperatures. For a given isotherm, the experimental protocol

consists of 4 successive steps (see Fig. 2.2):

i. Loading the sample to the stress σ0 at a traverse speed of 0.1 mm.s−1.

ii. Maintaining the stress σ0 and measuring the sample strain for a time tcreep = 1h, the end

of one creep measurement.

iii. Unloading the sample with a traverse speed of 0.1mm.s−1. The previous step to the

transition between an isotherm Ti and its following value Ti+1.

iv. Measurement of the sample strain during a time trelax. = 1 h. This “waiting time” between

each creep measurement is intended to avoid the superposition of the pure mechanical

response and the dilatation due to the increase of temperature in the sample.

Thereafter, the sample is heated to the next isotherm at a temperature ramp of 1 °C.min−1 and

the creep protocol is repeated.

Creep tests were performed on dumbbell shaped samples using an Instron 30 kN tensile fa-

cility. During the tests, the strain field is determined locally by stereo image correlation using

VIC–3D software. Isotherms were selected around the glass transition temperature of PEI. Due

to the time required to perform each creep test (≈ 2 h), only five isotherms were investigated:

150 °C, 170 °C, 190 °C, 210 °C and 230 °C. Moreover, in order to stay in the linear domain for
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Figure 2.2: Graphical representation of the creep experiments protocol

each isotherm, while preserving a good signal-to-noise ratio, the applied stress σ0 is 2.5 MPa in

glassy state (i.e., first four isotherms) and 0.25 MPa in rubbery state (i.e., last isotherm).

Fig. 2.3a presents the PEI creep curves obtained for each isotherm. For the 150 °C isotherm,

data show a quasi-constant modulus as a function of time. The tensile modulus at this tem-

perature is around 2.3GPa, this value is consistent with the one measured by DMA (see Sec-

tion 2.2.3) at the same temperature in tensile tests (E′(150 °C) = 2.46GPa), rectangular torsion

(E′
shear(150 °C) = 2.91GPa) and the values reported in the preliminary static tests (E(150 °C) =

2.38GPa). As the temperature increases, a change in PEI creep behavior as a function of time is

observed. This change is due to glass transition of PEI which goes from glassy to rubbery state.

This is particularly reflected in a significant tensile modulus decrease of about three decades.

Fig. 2.3b shows the master curve built from isothermal creep curves. The reference temper-

ature Tref used to build this curve is 210 °C. As expected, the data suggest different behavior as

a function of time. At short time, PEI exhibits a quasi-constant tensile modulus associated with

the glassy plateau. Thereafter, a drastic decrease in modulus is observed, which is associated
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(a) (b)

Figure 2.3: PEI creep master curve (a) and PEI creep curves as a function of isothermal tem-
peratures (b) .

with the mechanical manifestation of the glass transition. At long time, PEI shows a rubbery

plateau over a reduced time range: a rubbery modulus of about 3 MPa can be determined from

this master curve. At the end of the curve (above 106 s), the beginning of the viscous flow of the

polymer can be guessed. In resume, the observed behavior as a function of time is classical for

an amorphous thermoplastic polymer, and confirms the relevancy of the executed experimental

creep protocol. Nevertheless, due to the reduced number of isotherm, just a few number of shift

factors can be determined and therefore, it is difficult to analyze their temperature dependency.

The values of the shift factor aT computed from these experiments are presented in Fig. 2.7. As

can be observed, the values computed are close to those of the tensile DMA with non-negligible

gaps for low temperatures, suggesting an influence of the experimental facilities and a lack of

consistency between samples used to perform experiments.

2.2.3 Dynamical mechanical tests

Dynamic Mechanical Analysis (DMA) was used to analyze the thermo-viscoelastic behavior of

PEI. DMA experiments were performed in two geometries : tensile and rectangular torsion,

allowing to determine experimentally either tensile E* and shear G* complex moduli as function

of frequency and temperature.
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DMA tests in tensile geometry were performed on a DMA1 manufactured by Perkin Elmer and

sample dimensions are 20mm×4 mm×2 mm. For rectangular torsion, tests were performed on a

ARES G1 manufactured by TA Instruments and sample dimensions are 35mm×10 mm×2 mm.

For both geometries, measurements were performed in the linear domain with a strain of 0.04 %.

For each geometry, two types of tests were performed : during a temperature ramp at a constant

frequency (i.e., thermogram) and as a function of frequency during isotherms (i.e., DMA master

curves and shift factor). The experimental parameters used for both geometries and each type

of test are summarized in Table 2.2.

Table 2.2: Experimental parameters used for both geometries and each type of DMA tests.

Dynamic tensile tests Rectangular torsion tests

Thermogram Master Curves Thermogram Master Curves

Temperature range [30 ; 300] °C [150 ; 300] °C [30 ; 240] °C [30 ; 240] °C

Temperature ramp or step 1 °C.min−1 10 °C 1 °C.min−1 5 °C

Frequency 1 Hz [0.1 ; 10] Hz 1 Hz [0.1 ; 10] Hz

Mechanical behavior as a function of temperature

Fig. 2.4a and Fig. 2.4b show the storage and loss moduli of PEI as a function of temperature in

dynamic tensile and rectangular torsion mode, respectively.

Both figures show a classical dynamic mechanical behavior of an amorphous high-performance

thermoplastic polymer: a quasi-constant storage modulus over a wide temperature range followed

by a two decades drop at a temperature of 220 °C, approximately. This phenomenon, named α,

is associated with the mechanical manifestation of the PEI glass transition, the polymer going

from the glassy state to rubbery state. On the loss moduli, it results in a mechanical dissipation

peak.

At lower temperature, loss shear modulus G′′ exhibits a second relaxation phenomenon,

named β, characterized by a broad peak with a maximum at around 80 °C and linked to localized

molecular motions of benzene rings on the polymer main chain [70, 71]. Due to low signal-to-

noise ratio of dynamic tensile mode in glassy state, the β relaxation is hardly observed on the

thermogram. Above glass transition, dynamic tensile test reaches a rubbery plateau over a narrow

temperature range, beyond which a gradual decrease in modulus with temperature is observed
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(a) (b)

Figure 2.4: Dynamic mechanical analysis thermograms of PEI in dynamic tensile test (a) and
in rectangular torsion test (b).

(close to a purely dissipative behavior). This decrease is also visible on the tensile storage modulus

E′ in the thermogram. As PEI is an amorphous polymer, its mechanical strength on the rubbery

plateau is only allowed by the presence of physical entanglements. Above a certain temperature

(around 260 °C), these entanglements are no longer sufficient to retain the macromolecules: the

polymer flows. This polymer flow is not observed in rectangular torsion mode due to a torque

too low to be reliably measured by the ARES G1 facility.

Observing the glassy behavior from the thermograms, the magnitude of the storage modulus

are as follows: at 25 °C, E′ is about 3.72 GPa which is in agreement with values in Table 2.1,

and G′ is about 1.36 GPa, while at 150 °C, E′ is about 2.46 GPa and G′ is about 1.07 GPa. In

order to compare the consistency of these values with respect to external sources, we use the low

temperature values to compute the Poisson’s ratio and compare it to 0.36 from [72] for PEI at

room temperature. The calculated value of ν = (E′/2G′)− 1 is 0.3677, which is consistent with

the reported values.

Building of master curves in the frequency domain

As we have already discussed, the ability to construct such master curves comes from the afore-

mentioned time-temperature superposition (TTS) principle, which makes it possible to map the
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behavior of a polymer over a wide range of frequencies (i.e., time) by performing experiments at

a reduced interval and changing the constant temperature of the test. As a consequence of the

TTS, the behavior at a given time for a constant temperature greater than room temperature

can be interpreted as the behavior at the initial temperature but earlier, in other words, due

to temperature the behavior appears to be horizontally shifted (and we now know the origin

of the name of the shift factor, aT ). The same interpretation in time is given by frequency,

remembering that in this context low frequencies are associated with long term responses and

high temperatures, while high frequency values are associated with short term responses and low

temperatures.

Data in the frequency domain at different isotherms can be observed in Fig. 2.5. This is the

data used for building the master-curve of the tensile relaxation modulus (E∗ = E′ + jE′′) in

Fig. 2.6a. As can be inferred, the construction of the master curves happens in parallel with

the definition of the numerical values, given by maximizing the overlap between two subsequent

isotherms by shifting it a distance given by aT (see 2.7).

Figure 2.5: Example of raw data for building master curve in dynamic tensile behavior.

In order to study the PEI behavior over a wide frequency range, master curves has been

built for both dynamic tensile test and rectangular torsion test by using the Time-Temperature

Superposition (TTS) principle. Fig. 2.6a and Fig. 2.6b show the master curves obtained for

tensile moduli and for shear moduli, respectively. The reference temperature Tref used to build

master curves is close to α relaxation temperature and is indicated in the top right corner of
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each figure. As observed on DMA thermograms (Fig. 2.4a and Fig. 2.4b), dynamic tensile

(a) (b)

Figure 2.6: PEI master curves in dynamic tensile (a) and in rectangular torsion (b).

test allows studying the polymer behavior in rubbery and liquid state (i.e., at high temperature

an analogy of low frequency) while the rectangular torsion test allows a good signal-to-noise in

glassy state (i.e., at low temperature an analogy of high frequency). Therefore, depending on

the measurement geometry, the accessible temperature ranges for shift factors are not the same.

From the construction of these master curves using TTS principle, shift factors aT has been

extracted. Fig. 2.7 reports, as a function of temperature, the logarithm of shift factors obtained

for both dynamic tensile test and rectangular torsion test.

These data can be divided into three temperature ranges corresponding to different temper-

ature dependencies: [30 ; 70] °C, [100 ; 180] °C and [220 ; 300] °C (i.e., above Tα).

Below α relaxation, temperature dependency of shift factors aT were fitted by an Arrhenius

law as following:

log(aT (T,Tref)) =
Ea(T )

R ln(10)

(
1

T
− 1

Tref

)
(2.2)

Where Ea is the relaxation activation energy (J.mol−1) and R the universal gas constant (J.K−1.mol−1).

In Fig. 2.7 a graphical representation for Arrhenius equations is presented for both tensile and

shear DMA experiments, with numerical values reported in Table 2.3.
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Figure 2.7: Temperature dependency of PEI log(aT ) in creep and DMA experiments. Dashed
lines represent WLF fit of data for T > Tg .

Above α relaxation, WLF (Williams-Landel-Ferry) equation was used to describe the tem-

perature dependency of shift factor aT in rubbery state [37]:

log(aT (T,Tref)) =
−C1(T − Tref)

C2 + (T − Tref)
(2.3)

Where C1 (unitless) and C2 (°C) are parameters characteristic of the material, and Tref is the

reference temperature used to build master curves. It is possible to link these two parameters

to VTF law parameters which describe the temperature dependency of α relaxation time: C2 =

Tref − T∞ and αf = 1/(C1C2) [73].

Fit parameters are reported for each temperature ranges and each measurement geometries

in Table. 2.3. WLF fit above α relaxation are plotted as well in Fig. 2.7 for each measurement

geometries.

In glassy state, a slope break is observed at temperature of 80 °C which corresponds to peak

maximum temperature of the β relaxation as observed on DMA thermograms. In rectangular
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Table 2.3: Parameters obtained from the fit of log(aT ) for the different temperature ranges and
geometries.

[30 ; 70] °C [100 ; 180] °C [220 ; 300] °C

Ea (kJ.mol−1) Ea (kJ.mol−1) C1 C2(°C)

Tensile ∅ 133 10.2 44

Rectangular torsion 240 131 15.5 67

torsion, the activation energy Ea given by the Arrhenius fit above the slope break is 131 kJ.mol−1.

In dynamic tensile test, an activation energy of 133 kJ.mol−1 is calculated over this temperature

range. In the literature, the activation energy of β relaxation was measured by mechanical at

134 ± 6 kJ.mol−1 [71]. This confirms that on this temperature range, the shift factor temperature

dependency is controlled by the β molecular motions. Below 80 °C, the fit gives an activation

energy of 240 kJ.mol−1. The literature reports a second sub-glass relaxation named γ at about

−100 °C and associated with molecular motions due to absorbed water [70]. However, the activa-

tion energy of this relaxation was determined by Fontanella et al. through Thermally Stimulated

Depolarization Current analysis at a value of about 40 kJ.mol−1 [74]. Thus, it seems that the

PEI behavior on this temperature range is controlled by another process.

In rubbery state, above glass transition manifestation, the shift factor temperature depen-

dency follows a WLF behavior. Fit of both dataset gives quite different values for C1 and

C2 (Table 2.3). These values are close to the ones given by the WLF model (C1 = 17.4 and

C2 = 51.6 °C). In the literature, different values can be found for PEI like: C1 = 6.7 and

C2 = 46.4 °C determined by DMA in dynamic tensile [75] or C1 = 17.0 and C2 = 37.5 °C by

volume recovery [76]. Concerning dynamic tensile, the reported results are consistent with those

reported for the same solicitation geometry by Biddlestone et al. in [75]. These results tend to

show that shift factors aT in rubbery state, and their temperature dependency, can be dependent

on the experimental technique used to build the master curve. Alves et al. [77] reported the

same trend, but to a much greater extent, in PMMA between master curves build from DMA or

creep tests. The authors explained this behavior by the superposition of α (Tα ≈ 125 °C) and β

(Tβ ≈ 25 °C) relaxations of PMMA at the considered temperatures: this superposition depends

on the solicitation frequency, therefore, if the characteristic frequency of both techniques is being

different, then shift factors discrepancies are observed. This hypothesis could explain the shift

factor divergence observed for PEI.
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2.3 Thermal analysis

2.3.1 Specific heat determination by Differential Scanning Calorimetry

Differential Scanning Calorimetry (DSC) was used in order to measure the specific heat of PEI

as a function of temperature. Measurements were carried out on a DSC 8500 manufactured by

PerkinElmer. Samples were analyzed under nitrogen flow during a temperature ramp. During

the analysis, the instrument will maintain the reference and the sample at the same temperature

by adjusting the oven power (Eq. (2.4)).

W = Wech −Wref =
dH

dt
= q

dH

dT
= qmCP (2.4)

With W the power difference required to keep the two ovens at the same temperature in W,

H the enthalpy (J), q the temperature ramp rate (°C.min−1), m the sample weight (g) and CP

the sample specific heat at constant pressure (J.g−1.K−1).

The specific heat of samples was determined by the sapphire method. It consists of mea-

suring the heat flux in three different configurations: an empty aluminum pan, the same pan

containing the sapphire reference and the same pan containing the sample. The sample specific

heat CP,sample at a temperature T is then calculated as follows:

CP,sample(T ) =
H(T )

h(T )
× msapphire

msample
× CP,sapphire(T ) (2.5)

With H the heat flow difference between sample and empty pan (W), h the heat flow difference

between sapphire and empty pan (W), msapphire the sapphire weight (g), msample the sample

weight (g) and CP,sapphire the specific heat of sapphire (J.g−1.K−1) calculated using Eq. (2.4).

Fig. 2.8 presents the specific heat measured for PEI Ultem 1010 as a function of temperature.

This figure highlights the influence of glass transition on the temperature behavior of specific

heat : a specific heat jump, characteristic of this transition, is observed as well as a change

in the slope between CP,glass and CP,liquid. In order to include this data into the model, the

temperature dependence of CP,glass and CP,liquid was described with a linear fit. Theoretically, the

temperature behavior of CP,glass is not supposed to be linear [78]. However, over the temperature
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Figure 2.8: Specific heat of PEI ULTEM 1010 as a function of temperature.

range studied, a linear approximation of CP,glass is adequate. The two equations obtained are as

follows:

CP,glass (J.g−1.K−1) = 0.14 + 3.1× 10−3T(K) (2.6)

CP,liquid (J.g−1.K−1) = 1.2 + 1.5× 10−3T(K) (2.7)

2.3.2 Expansion coefficient

This section is devoted to the observation of free deformations induced by a variation in tem-

perature. This includes the calculation of the isotropic thermal expansion coefficient, α. As we

discussed in Chapter 1, more precisely Section 1.4, the target mathematical representation of the

expansion coefficient is a Prony series and is denoted as thermal creep function.

Several problems have been encountered in the performance of isothermal recovery experi-

ments, due to the fact that the specimens used for such experiments exhibit a violent response

when heated due to the relaxation of internal stresses generated during injection molding, and it
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was also observed the appearance of an additional phase made of bubbles in consequence of out-

gassing. The experiments were not carried out by the partners of our project, but by an external

contractor, and due to budget limitations, further research on this matter was not possible.

In the absence of reliable data, we then performed dilatation experiments using image cor-

relation for samples subjected to slow cooling (θ̇ = −0.05◦Cs−1) from 225◦C to 100◦C. In fact,

we also observed inconsistencies of volume variation during the heating of the sample with un-

expected contractions presented during the glass transition and is why the measurements of the

coefficient of expansion were finally carried out during the cooling and which associated coeffi-

cient of expansion values are consistent with those given by commercial suppliers and shown in

table 2.1. Below, in Fig. 2.9 the outputs of these experiments are presented.

Figure 2.9: Isotropic dilatation coefficient measured at constant linear cooling −0.5◦Cs−1.

Looking at this figure, we can see how the isotropic nature of the thermal expansion is veri-

fied, with the axial and transverse contractions being almost superposed. The low temperature

thermal expansion coefficient, αg = 5.32× 10−5mm/mm/◦C matches almost exactly with values

given in the table at the first of this chapter. The increase in temperature causes an increase of

the molecular motions of the polymer chains favoring the dilatation of the amorphous phase of

the polymer sample, therefore an increase of the measured dilatation coefficient is observed [79].
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The computed value of the high temperature thermal expansion coefficient, αl = 1.83 × 10−4

mm/mm/◦C is consistent with the latter affirmation. We were then able to give a reliable es-

timation of the asymptotic values of our isotropic thermal creep function in the absence of a

proper estimate of its spectrum.

2.4 Data analysis and identification

This section aims to the identification of the material parameters characterizing the thermo-

viscoelastic response of the chosen material. As it was already mentioned, due to the fact

that the material is isotropic, only two moduli are enough to build the fourth order thermo-

viscoelastic tensor. Therefore, the redundancy in the number of identified moduli allows having

an additional confirmation about the representativity of the measured data. Furthermore, the

measures reported in this work are compared with data from literature and industry suppliers.

2.4.1 DMA data

The numerical procedure implemented for the approximation of discrete viscoelastic spectra is the

one proposed in [7]. This framework corresponds to the Krein Nudelman method [80] combined

with the Honerkamp and Weese method [81], that was introduced in [7] for the identification

of viscoelastic parameters given frequency domain data. The highlight of this methodology is

that it allows the approximation of the time spectra as a part of the numerical implementation,

rather than imposing arbitrary distributions as is done in classical collocation methods.

As can be seen from the figures showing the DMA-data (i.e., Fig. 2.6a, Fig. 2.6b) the signals

obtained from experiments are noisy, which is not suitable for the identification procedure. To

overcome this, two smoothing steps are implemented: i) on the raw data, a procedure of locally

estimated scatterplot smoothing is implemented (or Savitzky-Golay filter). ii) The filtered data

is resampled using Hermitian interpolation of the first order to avoid local outliers and to limit

the number of data points in the identification step. The outputs of the preprocessing step are

shown in Fig. 2.10.

As can be inferred, the ideal case to effectively denoise the data is to know a priori the nature

of the noise, unfortunately this task was not achieved during the experimental campaign, and

the lack of sufficient redundancy in the experimental data make it a hard task to identify a
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good candidate for the noise representation. The decision was then made to perform this local

filter represented by a conjunction of the moving average technique with polynomial regression,

allowing a progressive smoothing based on a local moving neighborhood. As we can see from

this figure, the filter seems to smooth the curves properly, but since the nature of the noise is

not known, it is not possible to say that the desired phenomenon we want to observe is now the

only one present in the processed data. In fact, it is possible that a part of the real expected

data is lost due to this arbitrary filter, lying in the outliers and in the smoothness.

(a) (b)

Figure 2.10: Filtered data for dynamic tensile test (a) and rectangular torsion test (b).

Regarding the identification step, which outputs are shown in Fig. 2.11, the estimated

coefficients are good enough to capture the storage moduli for both, tensile and shear moduli,

but not good enough to characterize the dissipation (i.e., loss moduli). As mentioned in [7], the

identification methodology exhibits a remarkable behavior when not noisy data are entered, this

was confirmed in [4, 6], where artificial data were feeding the application examples, in those cases,

the methodology was able to approximate the coefficients of the macroscopic effective response

with a negligible associated error, which is not the case here. The latter can be observed when

comparing the fitted behavior of the tensile and torsion tests; the noise on the first is more

important, this makes it more difficult to reliably identify the coefficients associated with the

actual behavior covered by the noise, therefore, the nature of the filter applied could suggest
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that its output erases part of the true behavior. The fitted coefficients can be found in C.1.

(a) (b)

Figure 2.11: Fitted data for dynamic tensile test (a) and rectangular torsion test (b).

2.5 Final comments

The identified moduli appear to be consistent with observed data in similar measurements

from industry, pertinent sources were presented within the content of the present chapter. Con-

cerning the dilatation experiments and the compressibility and dilatation spectra, the lack of

consistency from experimental observations that were indeed very limited in terms of sampling

did not allow identifying the proper coefficients associated to the corresponding Prony series. To

fulfill the identification task for the experimental validation in Chapter 6 further assumptions

were considered to shape the evolution of the missing spectra.
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Chapter 3

Preamble to the problem of

homogenization in mechanics of

composites materials

In this part, we aim to give to the reader a global idea behind the notion of homog-

enization in mechanics of materials in order to facilitate the understanding of the

formulations as well as the intuition from which it derives. Recall that, as we have

already said during the introduction and previous chapters, the strategy here is to

test this effective medium theory on the approximation of the macroscopic response

of a 3D printed part. The following content is inspired by [1] mixed with our own

taste.

3.1 Brief history

The foundations of homogenization can be traced back to the early 1900s, with the works of

pioneering scientists such as Albert Einstein [82] and Marian Smoluchowski [83], who made

fundamental contributions to the understanding of the effective properties of heterogeneous ma-

terials while trying to give a consistent definition around the theory of Brownian motion (sounds

fun this, as we use this theory as support for the definition of the internal time inside the poly-

mer). To give a bit more about how this papers contribute to the idea of homogenization, let’s

talk a little bit about Einsteins works. The main goal of this early work was to demonstrate that
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bodies in suspensions perform motions as a consequence of thermal molecular motions (related

to Brownian motion). The contribution to heterogeneous materials domain is then given by his

way of defining locally the osmotic pressure, by introducing a subset of a sample volume limited

by a semi-permeable membrane and, in which the dissolve substance is represented by the sol-

vent within a group of suspended spheres that can not cross the membrane arguing that it was

difficult for him to not think that from the molecular kinetics theory point of view an “invisible”

particle field should produce osmotic pressure in the same way as the visible one. From this

starting idea he was able to obtain a macroscopic definition of the diffusion coefficient (for him

D) for a collection of suspended non-interacting bodies, proving that at great dilutions the ideas

of dissolved and suspended particles are superposed.

With Einstein at the core of all the knowledge we’ve used in this thesis, let’s move on to the

hall of stars of homogenization of solid composites. First, in the period between the 60s and 80s,

the homogenization technique gained significant momentum during this period, with contribu-

tions from researchers such as John D. Eshelby [84], the father of the modern homogenization

techniques in mechanical engineering and his famous works on the inhomogeneous ellipsoidal in-

clusion merged into an unbounded infinite body, the well known dilute approximation. Rodney

Hill [85] another pioneer of these techniques, we actually use his anisotropic basis to represent the

effective behavior at the microscale, and he was one of the first aiming to generalize the effective

properties up to any arbitrary concentration of the inclusions. Zvi Hashin (who introduced the

concept of “concentration/localization tensor”) and Shmuel Shtrikman [86, 87], who defined the

variational bounds of the homogenization problems for linear elastic materials. And finally we

should include Erwin Kröner [88] for the formulation of the statistical theory of heterogeneous

materials contributing to the understanding of the concept of effective properties in heteroge-

neous media; most of his works in this field are referred to within his lectures at CISM (Centre

International des Sciences Mécaniques in Udine, Italy, 1971).

The period between the 80s to the first decade of the century is characterized by a considerable

improvement of the computing capabilities of computer systems. This advances in computational

power and numerical methods during this period led to the development of computational mi-

cromechanics, which focused on modeling the local response of materials at the microscale level.

John R. Willis’s work on variational principles for the homogenization of heterogeneous materials

[89, 90] and his studies on the mechanics of random media [91] made important contributions to
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this field. Pierre Suquet’s work on homogenization techniques for inelastic materials [92]. And

finally, the development of the “variational asymptotic method” by Sanchez-Palencia and his

co-workers [93]. Furthermore, Bensoussan, Lions, and Papanicolaou introduced the homogeniza-

tion theory for partial differential equations, giving a formal statement to the theory of effective

medium. For now this is enough history, more details will be given during the application of the

homogenization theory in the context of the present thesis.

3.2 Formulation

Let’s start by considering again Fig. 2. From the previous content and the figure itself, we already

know that this is a composite material in which we have identified two scales (microscale and

mesoscale) of heterogeneity as being the reference scales from which the macroscopic behavior

should be estimated. To illustrate the generalities of a homogenization procedure, let’s take just

the transition from the microscale to the mesoscale, which in other words is: to find a continuous

equivalent of the composite filament.

In general, to ensure the applicability of the homogenization theory, we must ensure the

separation of the scales considered characterizing the heterogeneous medium; this is: the size

of the local volume at which we observe the heterogeneity must be greater than the size of the

heterogeneity itself (i.e., the size of the local volume must be large enough to contain as much

as heterogeneities as needed for the description of the observed scale) and moreover the size of

the total volume must be considerable larger and able to contain multiple local volumes (i.e.,

multiple representative elementary volumes or REVs).

We can divide the homogenization methodology into two steps: i) The representation step:

in which the choice of the REV is made as the unit containing the material, geometrical and

statistical information describing the observed scale, for example in our example case, this should

be a volume containing enough fibers spatially distributed in a way that is representative of the

whole volume in terms of their microstructural parameters (for instance, length and orientation

distributions). This REV will be used to solve the homogenization problem. ii) The homoge-

nization, starting by the localization, where modeling choices are made taking into account the

microstructure and the expected behavior to relate microscopic fluctuant fields and their homo-

geneous correspondent counterparts, this is a difficult and critical task as this step must consider
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the statistical description of the heterogeneous body (i.e., its spatial distribution) for some ob-

servable variables, such as the second order strain tensor ε and second order stress tensor σ.

Finally, following the localization, the effective behavior is computed, this gives the explicit ana-

lytical forms of the homogenized (or effective) medium in the case of mean-field homogenization,

or numerical values associated to it, in the case of full-field homogenization techniques.

Effective behavior

Assuming that the first step is fulfilled, we now proceed to describe the mathematical formulation

of the homogenization step. To do so, let’s start by considering the macroscopic effective medium

that we sought to be continuous, noting that, for the following forms, the linear thermoelastic

case is considered and in this case the local behavior is: σ(x) = L(x) · (ε(x)−α(x)θ(x)). If

this medium is subjected to a macroscopic homogeneous load, for instance ε̄, the mechanical

response is expected to be homogeneous too, this is :

σ̄ = L̃ ·
(
ε̄− α̃θ̄

)
, (3.1)

in other words we aim to write the mechanical problem of a heterogeneous body as it is done

for the case of a homogeneous one by finding an appropriate explicit form for the fourth order

effective elastic tensor L̃ (characterizing the effective medium), which by comparison will exhibit

an equivalent macroscopic behavior of its counterpart. We now assume that the macroscopically

observable fields can be expressed as :

σ̄ = ⟨σ⟩ = 1

|Ω|

∫

Ω
σ(x)dΩ, and ε̄ = ⟨ε⟩ = 1

|Ω|

∫

Ω
ε(x)dΩ. (3.2)

This imposes the macroscopic fields as being, by definition, the volume average (i.e., the spatial

average) of the correspondent microscopic fields within a representative elementary volume (Ω).

The localization step is achieved by constructing a fourth order localization tensor from a set of

test macroscopic homogeneous fields (ε̄0 or σ̄0) by solving the set of correspondent equilibrium

problems, for instance (the pure elastic problem):

∇ · σ(x) = 0 and σ(x) = L(x) · ε(x) ∀x ∈ Ω, with ⟨ε⟩ = ε̄0, or,

∇ · σ(x) = 0 and σ(x) = L(x) · ε(x) ∀x ∈ Ω, with ⟨σ⟩ = σ̄0.

(3.3)
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From the foregoing equation we can see that for the case of linear elasticity, the complementary

problems will differ in the choice of the elementary macroscopic fields to impose. Here, when

considering such macroscopic quantities, we choose the macroscopic strain field ε̄ as it is related

to the macroscopic stiffness instead of the macroscopic stress σ̄ associated to the computation

of the macroscopic compliance, recalling that these two problems are equivalent as the macro-

scopic stiffness must be equal to the inverse of its correspondent compliance, for the following

considerations we will refer to the strain imposed problem.

Choice of the appropriate set of boundary conditions

As the reader can note, the problems in Eq. (3.3) are ill-posed as there are no boundary conditions

associated to it. We overcome this by introducing the notion of homogeneous strain field on the

boundary (∂Ω) that is in fact to apply the displacement ud = ε̄0 · x, the consistency of such

boundary conditions can be verified by considering the expression of the volume average of the

strain field ⟨ε⟩:

⟨ε⟩ = 1

|Ω|

∫

Ω
ε(x)dΩ =

1

2|Ω|

[∫

Ω

(
∇ · u(x) + uT (x) · ∇T

)
dΩ

]

=
1

2|Ω|

[(∫

∂Ω
u(x)n(x)d∂Ω

)
+

(∫

∂Ω
nT (x)uT (x)d∂Ω

)]

=
1

2|Ω|

[
ε̄0 ·

(∫

∂Ω
x · n(x)d∂Ω

)
+

(∫

∂Ω
nT (x) · xTd∂Ω

)
· ε̄0T

]

=
1

2|Ω|

[
ε̄0 · I

(∫

Ω
dΩ

)
+

(∫

Ω
dΩ

)
I · ε̄0T

]

= ε̄0,

(3.4)

with (.)T representing the transpose. The foregoing expressions are indeed implications of the

Green’s theorem (see [1]). If one aims to solve the homogenization problem by imposing homo-

geneous stress fields on the boundaries of the REV, this is achieved by applying the stress vector

td = σ̄0 · n, with n being the outer normal on ∂Ω. Let’s show the consistency of such choice to

solve the second problem in Eq. (3.3) similarly as we just have done above, but we will substitute

the argument of the integral being σ, by ∇· (σ ·x), since ∇· (σ ·x) = (∇·σ) ·x+σ · (∇·x) = σ,
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with ∇ · σ = 0 from Eq. (3.3), and ∇ · x = I:

⟨σ⟩ = 1

|Ω|

∫

Ω
σ(x)dΩ =

1

|Ω|

∫

Ω
∇ · (σ · x)dΩ =

1

|Ω|

∫

∂Ω
(σ · x) · nd∂Ω

= σ̄0

(
1

|Ω|

∫

∂Ω
x · nd∂Ω

)
= σ̄0

(
1

|Ω|

∫

Ω
∇ · xdΩ

)
= σ̄0

(
1

|Ω|

∫

Ω
IdΩ

)

= σ̄0.

(3.5)

We have then demonstrated the pertinence of these homogeneous test fields to remove the

ill-posedness of the problems in Eq. (3.3). The other type of consistent boundary conditions

are those of the periodic composites (often the case when modeling textiles) denoted periodic

boundary conditions, for which the REV is characterized by a unit cell that is a pattern that is

periodically repeated in some particular the directions denoted as directions of the periodicity.

In this framework, as a consequence of the periodicity of the local field u can be decomposed in

a part derived from a macroscopic homogeneous field and fluctuating part, u = ε̄0 · x+ u′, the

associated local strain field is then derived by means of the linearity of the nabla operator with

respect to addition, ε = ε̄0 + ε(u′). The macrohomogenity condition by construction forces the

fluctuating field ε(u′) to vanish at the observer scale, thus ⟨ε⟩ = ε̄0 + ⟨ε(u′)⟩ = ε̄0.

This confirms the applicability of the periodic boundary conditions for solving the homoge-

nization problem for such microstructures. In terms of applications, in the present work we use

periodic boundary conditions in Chapter 6 to solve numerically the homogenization problem at

the mesoscale (see Fig. 2), the appropriate way of imposing the periodic boundary conditions is

not unique, one could think about solving the problem for the composed local field u enforcing

locally its periodicity, or instead of this, to solve the problem for the fluctuant part and to glob-

ally enforce the mean of u′ to vanish in the REV. The introduction of the appropriate choice of

the cinematic boundary conditions will be addressed in Chapter 6.
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Homogenization

For now, we can rewrite the well-posed form of the homogenization problem for the thermoelastic

case :





∇ · σ(x) = 0 ∀x ∈ Ω,

σ(x) = L(x) · (ε(x)−α(x)θ(x)) ∀x ∈ Ω,

u(x) = ε̄0 · x ∀x ∈ ∂Ω

θ(x) = θ̄ ∀x ∈ Ω

(3.6)

As we can note, the thermoelastic homogenization problem above consider a homogeneous tem-

perature field θ̄ in the REV, the fact that the estimation of effective properties is achieved

through the testing macroscopic fields in equilibrated representative elementary volumes, the

implications of homogeneous temperature fields on the boundaries is the uniform temperature in

each material point. We now introduce A(x) and a(x) as the strain localization tensors relating

the microscopic and macroscopic strain fields of the thermoelastic problem. By solving all the

set of problems associated to the set of appropriate homogeneous test fields ε̄0, and an arbitrary

θ̄, we are able to fill the elements of the fourth order localization tensor A(x) and the second

order localization tensor a(x), completing the following relation:

ε(x) = A(x) · ε̄+ a(x)θ̄ (3.7)

Finally, since we were able to compute the elements in A, the output of the localization step,

we can now pass to the estimation of the effective elastic stiffness in our example case, to do so

we now take the definition of the macroscopic stress and rewrite it by taking into account the

foregoing definition of the local strain ε(x):

σ̄ =
1

|Ω|

∫

Ω
L(x) ·

[
A(x) · ε̄− (α(x)− a(x))θ̄

]
dΩ

=

(
1

|Ω|

∫

Ω
L(x) · A(x)dΩ

)
· ε̄−

(
1

|Ω|

∫

Ω
L(x) · (α(x)− a(x))dΩ

)
θ̄

= L̃ · ε̄− L̃ · α̃θ̄,

(3.8)
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with L̃ and α̃ being the fourth order effective stiffness tensor and second order of effective thermal

dilatation coefficients respectively. As can be observed, the computation of explicit analytical

forms of this effective behavior is limited by the knowledge of the explicit forms defining A and

a. In fact, most of the widely used localization tensors forms are known for trivial symmetries

and trivial behaviors and even though this simple cases are observed it is almost sure that we

will need further assumptions to get an analytical form of it as the description of the fluctuations

of the microscopic fields represents a difficult task; all of this give us an idea of the level of

simplification in such approximations. Nevertheless, in the last 30 years these techniques have

being tested extensively in the literature, showing a good agreement when considering engineering

applications. This way of formulating the homogenization problem will indeed be the reference

for the formulations presented in Chapter 4 where different forms of the localization tensors

will be tested in order to compute the effective behavior by means of the expression above. In

Chapter 5 the numerical solutions of the homogenization problem will be presented for the case

of periodic structures.

Now to obtain an equivalent variational formulation of the homogenization problem in Eq.3.6

let’s start by introducing the suitable Sobolev space in which the solution field u(x) exists.

K =
{
u regular in Ω and ε(u) = 0.5(∇ · u+ uT · ∇T ) /u = ε̄ · x on ∂Ω

}
.

The variational form of the homogenization problem is formulated by considering that σ derive

from a potential (which is ensured in the case of our example), for instance the Helmholtz free

energy w. with the effective behavior computed as :

w̄(ε̄, θ̄) = inf
u∈K(ε)

〈
w(ε(u(x)), θ̄)

〉
=

1

2
ε̄ · L̃ · ε̄− L̃ · α̃θ̄ · ε̄, (3.9)

thus,

σ̄ =
∂w̄

∂ε̄
= L̃ · ε̄− L̃ · α̃θ̄. (3.10)

Finally, it is important to note that the effective computed behavior from the above variational

formulation is equivalent to the obtained from solving Eq.3.6, exhibiting the difference that by

construction the variational forms ensures the symmetry of the fourth order stiffness tensor L̃.
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To observe the latter in particular, let’s take a look at the derived form, that by virtue of the

Hill’s Lemma [1] takes the following form.

w̄(ε̄, θ̄) =
1

2
ε̄ · ⟨AT(x) · L(x) · A(x)⟩ · ε̄− θ̄⟨L(x) · (α(x)− a(x)) · A(x)⟩ · ε̄

=
1

2
ε̄ · L̃ · ε̄− L̃ · α̃θ̄ · ε̄.

(3.11)

This last presented form of the homogenization problem will be the starting point of the

formulations presented in Chapter 5. For now, this is all we need to move on to the estimation

of the residual stresses in our 3D printed part at the scale of the observer. We should recall

that, here, when considering multiscale problems we do not solve the problem simultaneously for

all the scales considered, our methodology as already mentioned is a two-step homogenization

methodology in which the effective behavior computed from lower scales serves as input of the

matrix (or continuous phase) of the upper scales.

Mean-field v.s. Full-field

Considering the solution of the problem in Eq. 3.6 we distinguish the two major category of

mean-field and full-filed techniques, a distinction made on the nature of the solution, one being

purely analytical including a set of complementary assumptions allowing to represent all the

elements in the problem in an analytical way, and the second one, which is achieved by solving

the problem numerically, by solving the associated set of PDEs in a weak sense and finally giving

a numerical approximation that is specific to the characteristics of the computational REV.

Each of these techniques has its own advantages, from one side mean-field techniques are

much lighter in cost, since the solution is represented by a set of symbolic expressions of the

microstructural parameters, meaning that these expressions can be used in similar situations

with some restrictions. The clear limitation of this technique is that we need to find suitable

functions for the representation step, judging their pertinence by their closeness to the physical

parameter that we are trying to model and the existence of analytical forms to the integrals of

the volume averaged quantities.

The second one is much more flexible in terms of representation, since a computational

REV covers a much wider range of geometries mapping the heterogeneities, since no analytical

representation of the geometry is needed and a discrete map from, for example microphotography



58

is sufficient to create a computational domain that matches the actual microstructure with a high

degree of accuracy. As mentioned before, the cost of these computations is higher compared to

their analytical counterparts and the quality of the approximation is a function of the quality of

the numerical map and the numerical strategy that we have chosen to solve the homogenization

problem in the REV.

In the case of mean-fields, in general we assume that the localization tensors are constant

per phase which reduces the computation of the integrals in the second line of Eq. 3.8 to the

computation of a finite linear combination which weights are the volume fractions, we can then

write the expressions of the effective behavior considering the following decomposition applied

to the volume integrals under the assumption of perfect interphases for a REV Ω with N + 1

phases: Ω = ∪N
r=0Ω

(r), thus,
∫
Ω f(x)dΩ =

∑N
r=0

∫
Ω(r) f(x)χ(x)(r)dΩ(r), with χ(x)(r) the level

set function, being 1 inside the phase Ω(r) and 0 otherwise.

L̃ =
1

|Ω|

∫

Ω
L(x) · A(x)dΩ =

N∑

r=0

1

|Ω|

∫

Ω(r)

L(r) · A(r)χ(x)(r)dΩ(r)

=
N∑

r=0

1

|Ω|L
(r) · A(r)

∫

Ω(r)

χ(x)(r)dΩ(r) =
N∑

r=0

|Ω(r)|
|Ω| L(r) · A(r) =

N∑

r=0

c(r)L(r) · A(r),

(3.12)

and,

L̃ · α̃ =
1

|Ω|

∫

Ω
L(x) · (α(x)− a(x))dΩ =

1

|Ω|
N∑

r=0

∫

Ω(r)

L(r) · (α(r) − a(r))χ(x)(r)dΩ

=
1

|Ω|
N∑

r=0

L(r) · (α(r) − a(r))

∫

Ω(r)

χ(x)(r)dΩ =

N∑

r=0

c(r)L(r) · (α(r) − a(r)),

(3.13)

with c(r) being the volume fraction of the phase Ω(r).

As mentioned above, the computation of the effective behavior by means of full-field technique

implies the computation of the numerical solution of the homogenization problem, which no

longer need the restriction of homogeneous per phase localization tensors to compute the effective

behavior. The full-field solution of the homogenization problem gives a numerical approximation

of the local field u(x) ∈ K(ε̄) in solving the weak form associated to Eq. 3.8; the local strain

and stress fields, ε(u) and σ(u), are then computed as a post-processing step. Let’s take a look
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at the expression of the average stress σ̄ in this case :

σ̄ =
1

|Ω|

∫

Ω
σ(u(x))dΩ =

1

|Ω|
N∑

r=0

∫

Ω(r)

L(r) ·
(
ε(u(x))−α(r)θ̄

)
dΩ

=
1

|Ω|
N∑

r=0

L(r) ·
∫

Ω(r)

ε(u(x))dΩ−
N∑

r=0

c(r)L(r) ·α(r)θ̄

=
N∑

r=0

L(r) ·
[(

1

|Ω|

∫

Ω(r)

A(x)dΩ
)
· ε̄+

(
1

|Ω|

∫

Ω(r)

a(x)dΩ

)
θ̄

]
−

N∑

r=0

c(r)L(r) ·α(r)θ̄

=
N∑

r=0

L(r) · ⟨A⟩(r) · ε̄−
N∑

r=0

L(r) ·
(
c(r)α(r) − ⟨a⟩(r)

)
θ̄ = L̃ · ε̄− L̃ · α̃θ̄.

(3.14)

From above, as we mentioned, the computed localization tensors for the phase Ω(r) with no

prior restrictions are in fact the approximation of the volume average of the localization tensor

in that phase and noted ⟨(·)⟩(r) . We will use this technique to solve the homogenization problem

at the mesoscale (see Chapter 6).

The thermo-viscoelastic homogenization problem

As it was presented in the previous chapters, since the printed material is a polymer composite, its

mathematical representation is a function of the time and the temperature, which is an implicit

function of time itself. The homogenization problem for this case reads :





∇ · σ(x, θ̄, t) = 0 ∀x ∈ Ω,

σ(x, θ̄, t) =
[
L(r) ⊛

(
ε(x, ·)− β(r)(θ̄, ·)

)]
(t) ∀x ∈ Ω(r),

β(r)(t) =
[
α(r)(θ̄, ·)⊛ θ̄

]
(t),

⟨ε(x, t)⟩ = ε̄(t),

(3.15)

This is the starting point for the following chapters devoted to the estimation of the effective

behavior. This concludes the discussion in this preamble. In the newt chapter, we will solve this

problem for the case of a single polymer composite (SPC) where the polymer phase is modeled

using the extension of the internal time technique for continuous variations of temperature (see

1.2.2) which allows using the correspondence principle in this context [4].
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Chapter 4

Microscale Analysis :

thermorheologically simple material

This chapter is devoted to the estimation of the effective behavior of the fiber-

reinforced filament, and it is already published in the European journal of Mechanics

- A/Solids [4]. To adresse this task a consistent artificial material law inspired on

the PEI is used. The effective behavior at this scale is computed analytically by

considering the extension of the correspondence principle to continuous variations

of temperature, allowing an straighforward implementation of the wide developped

mean-field analytical approximation for lineart thermoelastic materials.

The scale characterizing the heterogeneity of the reinforced thermoplastic filament is the scale

of glass fibers (around 100 µm length and 10 µm diameter) and is much lower than the scale

of the printed part (the composite structure of the PEI filament reinforced with glass fibers is

observed by means of three-dimensional computerized tomography scans (CT-scans) as shown

in Fig. 4.1). As we were mentioning before, due to this separation of scales it is no longer

possible to use conventional codes based on the finite element method to take into account the

effect of the reinforcement on the behavior of the printed composite filament inside the part, as it

becomes too expensive to predict. During the introduction, we pointed out that there are several

works proposing multiple analytical and numerical alternatives to deal with this computation

(see for instance [3, 2, 1]). The macroscopic behavior can be given as a result of numerical

simulations in the case of full-field methods (see for instance [94, 95, 96, 97, 98]). In case of
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complex microstructures (meaning by complex the fact that there is not an optimal analytical

representation of the heterogeneity shape), the estimates given by the mean field methods are no

longer accurate and require numerical calculations to be approximated (see [99] and [100] in the

case of poly-crystals). Full-field methods can handle a lot of complexities not only in geometry

but in constitutive laws describing their behavior (non-linearity, plasticity, aging. . . ), the problem

is that they only give the response of the composite for a particular loading path. This requires a

large amount of computations on many REVs (Representative Elementary Volume) with different

distributions of inclusions to get an appropriate estimation of the effective behavior.

(a) lateral view (b) sectional view

Figure 4.1: 3D reconstruction of CT-scans acquisitions performed on the PEI FDM glass fiber
reinforced filament with a volume fraction of 10%. The scanning step used an X-ray source with
a voxel size of 2.67 µm, a voltage of 150 kv and a current of 18 µA. The imager has a resolution
of 1920 × 1536 pixels. The device used is an EasyTom XL Ultra 150/160 (µCT) produced by
RX Solution. The pictures describe the volume rendering of fibers embedded in the PEI matrix.

Considering that previous works in fibrous composites homogenization have shown that the

analytical representation of fibers as prolate spheroids is a good approximation of the finite

cylinder-like shape of the fiber, we follow this fashion choosing as target framework the Mean-

field homogenization methodology (see among others [84, 101, 102, 103, 104, 105, 106]) intending

an extension of the classical well described methodologies for the case of linear thermo-viscoelastic

theory. In linear viscoelasticity framework, by using the correspondence principle, several authors

like [107] or [60] among others, find some estimates in closed form for the macroscopic behavior of

isotropic composites with microstructures following the Hashin-Shtrikman lower bound. Gupta et

al. [108] has investigated a Mori-Tanaka (MT) approach to predict the elastic effective properties
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of a 3D-printed composite material, assuming that the matrix (thermoplastic polymer) and fibers

(carbon fiber) are linearly elastic and homogeneous, to predict the elastic effective properties

of 3D-printed composite material. Hessman et al. [109] has confronted different mean field

homogenization schemes to predict elastic effective properties for short fiber reinforced composites

using a fiber length distribution and an orientation distribution in Advani and Tucker form

[110]. The authors show that reasonable predictions for effective elastic properties are possible

even with limited microstructural information. Muliana [111] has proposed a micromechanical

model to predict thermal properties and thermo-viscoelastic response of a functionally graded

material idealized as solid spherical particles spatially distributed in a homogeneous matrix.

Both constituents are considered thermo-viscoelastic. Although mean-field approximations are

more difficult to obtain for complex constituents behaviors, certain non-linearities exhibited by

polymer matrices can be accounted for, see the case of an elastoplastic matrix in [112, 113].

Then here we propose to predict the residual thermal internal stresses during the cooling

of this HT-FRAM 3D-printed composite filament by means of mean field homogenization tech-

nique and correspondence principle to estimate the effective behavior of a thermo-viscoelastic

amorphous polymer matrix (PEI) reinforced with a transverse isotropic distribution of the elastic

inclusions (short Glass Fibers (GF)) for us, the microscale. Because of some limitations dur-

ing the experimental campaign, the results that we will be presenting here are obtained from

a polymer matrix that is artificial but which behavior preserves the mathematical structure of

the property model, more details about the precise coefficients will be given in the following

section, recalling that from Chapter 2, the matrix in which the short glass fibers are embedded

is an amorphous polymer assumed to belong to the group of thermorhelogically simple mate-

rials [54]. The polymer follows the time temperature superposition principle (TTS) [55] and

the material functions describing its behavior are presented using the notion of “internal time”

[45, 43]. The PEI-like matrix thermo-viscoelastic model parameters are identified (and some of

them estimated) with the experimental data taken from the precedent section and data-sheet

from SABIC [114]. In Section 4.2, the procedure to perform mean-field homogenization in single

polymer composite (SPC) with elastic fibrous reinforcements is presented. Probabilistic descrip-

tion of the Representative Elementary Volume (REV) and supplementary identification step to

ensure the same mathematical structure for the matrix and the composite are presented as well.

In Section 4.3, first, the internal variables’ approach to rewrite the local thermo-viscoelastic
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problem is given, as well as its incremental scheme to update the residual stress. Three different

scenarios are considered to compare the accuracy of the presented mean-field homogenization

procedure with respect to Fast Fourier Transform (FFT) based full-field homogenization simula-

tions. The reference solutions are computed using REVs that are statistically equivalent to the

distribution parameters chosen for the microstructure iterations that are used in the mean-field

computations. Convergence studies for the reference solutions are presented as well. Finally, a

comparative analysis is performed for each scenario.

4.1 Amorphous polymer matrix behavior

Now let’s take a look at the thermo-viscoelastic model used to describe the behavior of the PEI-

like amorphous polymer, recalling that as it was told during the introduction, the advances of

the work in terms of its particular goals were not completed sequentially, and for the analysis

of the reinforced filament we were able to get reliable data just for the shear behavior and

its correspondent shift function. The PEI-like model’s parameters are then complemented by

using data given by the material supplier SABIC [114], and other supplementary assumptions to

circumvent the lack of experimental data. Numerical values are given in C.2, correspondent to

the material constitutive models presented in Eq. (1.9) and Eq. (1.10). As we start discussing

at the end of the Chapter 1, we impose shared characteristic times for the viscoelastic spectra

in L and can be noted in Figure.4.2a in which we can observe the moduli κ(u) and µ(u) for the

different relaxation times τ
(u)
L . Fig. 4.2b shows the evolution of the relaxation moduli κ and µ,

with respect to time at the reference temperature, the master curves of the isotropic relaxation

moduli.

The explicit form of the shift factor function aT for polymers varies in literature with the

range of temperature of the observed material [62]. The most widely used formulations are

the WLF (Williams-Landel-Ferry [57]) that we have used previously in the experiments and

commonly used for temperatures above the glass transition, the VFTH (Vogel-Fulcher-Tamman-

Hesse) equation, and the Arrhenius equation for terminal flow [62] that we’ve implemented as

well. In view of the experimental results available on PEI matrix of the 3D-printed filament, it

was found that, the best one is the model VFTH as we can conserve the same mathematical

structure and define a shift function that have discontinuous coefficients which evolution is a step
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(a) Moduli distributions with shared times. (b) Relaxation moduli vs. time.

Figure 4.2: Relaxation spectra characterizing the linear viscoelastic behavior of a PEI-like poly-
mer matrix used in the present work.

function with zero on the “split” temperature value Ts chosen to improve the numerical accuracy

of the approximation, the form of the aT function is then:

log10 aT (T,Tr) = a+
b

c+ (T − Tr)
, (4.1)

with a, b and c, three material parameters. This function is implemented in the whole char-

acteristic range of temperature with piecewise constant coefficients (with Ts characterizing the

discontinuity) from either side of the glass transition temperature Tg = Tr = 216◦C, which give

the evolution plotted on Fig. 4.3a. Numerical values of the material parameters are shown in

Table. 4.1.

Table 4.1: Piece-wise constant coefficients of the VFTH function

Ts=205.099 T<Ts T>Ts

a -3.58611 -17.0449

b 1882.297 1129.382

c 288.3494 66.36251

In Fig. 4.3b, the above-mentioned shift factor is used to show an example of the TTS

principle on the compressibility relaxation modulus. In Fig. 4.4, examples of internal time

and computed matrix’ artificial material thermal isotropic dilatation are shown for various linear
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cooling histories. To close this section, we can say that at this point of the formulation as we have

ensured the applicability of the correspondance principle in the context of continuous variations

of temperature for thermorheologically simple polymers (see : Section 1.2.3), the applicability of

the mean-field homogenization methods as it is performed in [Hashin65 , 60] is also ensured,

we can now pass to show the methodology followed to obtain the effective thermo-viscoelastic

behavior of the composite filament.

(a) VFTH shift function with piecewise constant co-
efficients.

(b) Time-temperature superposition in compress-
ibility modulus.

Figure 4.3: Time temperature superposition principle for the PEI-like matrix.

(a) ξ vs. T . (b) matrix’ thermal strain β
(1)
11 .

Figure 4.4: Computed internal time and thermal strains of the amorphous polymer matrix,
identified with a superscript (1) (i.e. {·}(1)) for various linear cooling rates.
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4.2 Effective thermo-viscoelastic behavior of the reinforced fila-

ment

This section presents the mean-field homogenization procedure. The objective is to give an

estimation of the macroscopic stress, σ̄, for given histories of the macroscopic, strain and tem-

perature, ε̄ and T̄ respectively, and for a given Representative Elementary Volume, Ω. To do

so, we have extended the well-known correspondence principle [59, 60, 5, 44, 45, 35] to thermo-

mechanical loading by using the fact that, in our case, all the materials constituting the REV

share the same internal time ξ. This property is verified under the following assumptions: i)

In the considered REV, only the matrix is thermo-viscoelastic, the fibers are purely elastic and

therefore time-independent. ii) The matrix is thermo-rheologically simple, with its behavior

given by the equations (1.18) and (1.19). iii) For coupled thermo-mechanical homogenization

problem, at the REV scale, the mechanical problem has to be solved by considering a homoge-

neous temperature field T̄ which is the average in the REV of the temperature field T (x) solving

the heat equation in the REV, i.e. T̄ = ⟨T (x)⟩ = 1
|Ω|
∫
Ω T (x)dΩ. This had been demonstrated by

[115] for periodic composites by using asymptotic homogenization in the framework of thermo-

viscoelasticity. The effective thermo-viscoelastic response to a thermo-mechanical loading is then

given by: σ̄(ξ) = ⟨σ(x, ξ)⟩, with σ(x, ξ) solving the following equations in Ω:





∇ · σ(x, ξ) = 0 ∀x ∈ Ω,

σ(x, ξ) =
[
L(r) ⊛

(
ε(x, ·)− β(r)

)]
(ξ) ∀x ∈ Ω(r),

β(r)(ξ) =
[
α(r) ⊛ θ̄

]
(ξ),

⟨ε(x, ξ)⟩ = ε̄(ξ),

(4.2)

with Ω(r) being the volume occupied by phase r in the REV (Ω = ∪R
r=1Ω

(r)). Boundary conditions

and compatibility conditions on ε must complete this problem. The implementation of mean-

field schemes is achieved by using the correspondence principle [5, 45], that utilizes the Laplace-

Carson transform to rewrite (4.2) as a symbolic equivalent of a linear thermoelastic composite.

The explicit form of the Laplace-Carson transform (LC{·}) is defined as follows (see: A.3):

f∗(p) = LC{f}(p) = pL{f}(p) = p

∫ ∞

0
f(ξ)e−pξdξ, (4.3)
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and recalling the property for the Stieltjes convolution product f ⊛ g,

LC{f ⊛ g}(p) = pL{f}(p)pL{g}(p) = f∗(p)g∗(p), (4.4)

as all the mechanical quantities in (4.2) are defined in terms of the internal time domain, ensuring

the applicability of the property in Eq. (4.4) to the constitutive equations in (4.2), the implication

of the TTS are indeed grater which is the fact that the TTS principle definitions for an SPC

filament will remain the same as the matrix, and this is actually verified for another experimental

work we have conducted and that is on the way of being published. In the Laplace domain, the

symbolic homogenization problem reads





∇ · σ∗(x, p) = 0 ∀x ∈ Ω,

σ∗(x, p) = L∗(r)(p) ·
(
ε∗(x, p)− β∗(r)(p)

)
∀x ∈ Ω(r),

β∗(r)(p) = α∗(r)(p)θ̄∗(p) ∀x ∈ Ω(r),

⟨ε∗(x, p)⟩ = ε̄∗(p),

(4.5)

with compatibility and boundary conditions.

Based on the theory of effective moduli [1, 91, 3], an approximated solution of the linear

problem in (4.5) is sought using mean-field approaches, that are widely applied to randomly

distributed microstructures [109, 116, 117, 118, 119, 120]. In this context, localization tensors

(A∗(r)(p) and a∗(r)(p)) are characterized as linear operators relating the local strain of a given

phase r of volume fraction c(r), and the macroscopic strain imposed on the REV by assuming

strain fields that are uniform per phase (ε∗(r)(p) = A∗(r)(p)·ε̄∗(p)+a∗(r)(p)θ̄∗(p)). By considering

the relation given in [91] between the concentration tensors A∗(r)(p) and a∗(r)(p), the effective

behavior (L̃∗(p), α̃∗(p)) of an R-phases composite in the Laplace-Carson domain is obtained

through the following relationships, noting that, in order to lighten the writing, the dependency

on the complex variable p of every transformed quantity is not presented explicitly, but it can

be understood in every starred variable, {·}∗.

σ̄∗ = L̃∗ · (ε̄∗ − α̃∗θ̄∗), (4.6)
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with

L̃∗ =

(
L∗(1) +

R∑

r=2

c(r)
(
L∗(r) − L∗(1)

)
· A∗(r)

)
, and

α̃∗ =
(
L̃∗
)−1

·
(
L∗(1) ·α∗(1) +

R∑

r=2

c(r)
(
A∗(r)

)T
·
(
L∗(r) ·α∗(r) − L∗(1) ·α∗(1)

))
,

(4.7)

where the superscript (1) denotes the matrix. Three mean-field schemes are implemented: Mori-

Tanaka, Lielens and IDD (Interaction Direct Derivative), each of them with a particular form

of A∗(r). It must be noted that in the present work, all chosen schemes involve the mean over

the phases of some quantities inside its formulation of the localization tensor. Details about the

choices made are presented in Appendix B.2.

4.2.1 Short-fibers description

A microstructure like the one presented in the microtomography in Fig. 4.1, should be consid-

ered as a heterogeneous medium with R− 1 linear thermoelastic phases embedded in a thermo-

viscoelastic matrix (each phase corresponds to a family of elastic fibers sharing the same mi-

crostructural parameters (i.e. length and orientation)). The fibrous inclusions of the engineering

thermoplastic polymers are commonly made of carbon (transverse isotropic) or glass (isotropic).

In the next definitions, transverse-isotropic symmetry will be used for both, the inclusions’ and

matrix’ properties, since an isotropic material can be represented in any transverse-isotropic basis

with arbitrary orientation vector n of the symmetry axis [46]. The chosen 4th order tensor basis

is the Hill basis {H(1), ..,H(b), ..,H(6)}(n) (Appendix A.5). Constitutive equations of the fibrous

inclusions (defined in the internal time), denoted by the superscript (f), are presented directly in

the Laplace-Carson domain as the explicit form of the fibers’ properties remains the same after

transformation (i.e. L∗(f) = L(f), α∗(f) = α(f) ).

σ∗(f)(p) = L(f)(n) · (ε∗(p)− β∗(p)) =
6∑

b=1

l(b,f)H(b)(n) · (ε∗(p)− β∗(p)) ,

β∗(f)(p) = α(f)θ∗(p) =
(
α
(f)
11Θ+ α

(f)
33N

)
θ∗(p),

(4.8)

with, α(f)
11 and α

(f)
33 , being the transverse and longitudinal fibers’ expansion coefficients associated

to the second order tensor basis N = n⊗ n and Θ = I −N in terms of the orientation vector
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n (Appendix A.5).

Probabilistic approach to account the presence of fibers:

In the present study, instead of a deterministic description of the fibers, a continuous distribu-

tions approach is implemented for the microstructural parameters [110, 109]. To illustrate this,

only the effective mechanical behavior (L̃∗) is presented, as it is enough to show the impact of

this technique in the thermo-mechanical macroscopic response. Since it is sought a binary rep-

resentation of the composite (polymer matrix + fibers), the superscript (1) is substituted by (m)

as the matrix identification character in Eq. (4.7). The volume fraction of the polymer matrix

is then expressed by: c(1) = c(m) = 1 −∑R
r=2 c

(r) = 1 − c(f). With c(f) being the fibers’ total

volume fraction. Then, L̃∗ from Eq. (4.7) is rewritten by considering the explicit form of L∗(f)

in Eq. (4.8) to write both, matrix and inclusions’ mechanical properties in the fibers’ basis.

L̃∗ = L∗(m) + c(f)
6∑

b=1

(
l∗(b,f) − l∗(b,m)

) R∑

r=2

c(r)

c(f)
H(b)(n(r)) · A∗(r)(n(r), w(r)). (4.9)

The above presentation is possible because the fiber families differ only in their orientation

(n(r)) and length (i.e. aspect ratio w(r) = l(r)/d), so their only differences are in the explicit forms

of the Hill basis and the localization tensor. Considering as it is shown in [46] for spheroidal

inclusions, that the localization tensor of a fiber family with orientation n(r) can be written

down in the same basis as its mechanical properties (A∗(r) =
∑6

b=1 a
∗(r)(w(r))H(b)(n(r))), and by

introducing the relative volume fraction of a family of fibers with respect to the total number of

fibers c
(r)
f = c(r)/c(f) (with

∑R
r=2 c

(r)
f = 1), Eq. (4.9) reads,

L̃∗ = L∗(m) + c(f)
6∑

b=1

(
l∗(b,f) − l∗(b,m)

) R∑

r=2

c
(r)
f H(b)(n(r)) ·

6∑

v=1

a∗(v,r)(w(r))H(v)(n(r))

= L∗(m) + c(f)
6∑

b=1

6∑

v=1

(
l∗(b,f) − l∗(b,m)

)〈
a∗(v,r)(w(r))

(
H(b)(n(r)) ·H(v)(n(r))

)〉
Ω\Ω(m)

.

(4.10)

The expression between angle brackets in the foregoing equation represents the volume av-

erage over the space of orientations and lengths of the concerned quantities. For the case of an

REV with a finite number of fibers, Eq. (4.10) can be computed explicitly in a deterministic way,

however this approach limits the number of fibers describing the distribution of the microstruc-

tural parameters. As it is mentioned in [110], The most general description of the fibers’ state
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is the probability distribution function, in which it is possible to consider an infinite number

of fibers covering in a more accurate way the distribution of parameters in the composite. The

probabilistic approach is then introduced as the number of fibers in Ω tends to infinity, therefore

its microstructural parameters are no longer defined in a discrete way but characterized by a

continuous distribution of the observed parameter.

〈
a∗(v,r)(w(r))

(
H(b)(n(r)) ·H(v)(n(r))

)〉
Ω\Ω(m)

=
1

|Ω\Ω(m)|

∫

Ω\Ω(m)

a∗(v,r)(w(r))
(
H(b)(n(r)) ·H(v)(n(r))

)
dΩ

=

∫ wmax

wmin

fw(w)a
∗(v)(w)dw

∫

S
fn(n)

(
H(b)(n) ·H(v)(n)

)
dS.

(4.11)

The mean over the distribution of lengths is characterized by the integral of the normalized

distribution function (fw(w)), that depends on the aspect ratio (w = l/d ∈ [wmin, wmax]) being

a function of the fiber length (l ∈ [lmin, lmax]) under the hypothesis of constant fibers’ diameter

(d). The mean over the orientations is computed by integrating over the unit sphere (S) the

distribution function (fn(n)), depending on the unit direction vector (n).

For the simulation examples of the present work, glass fiber inclusions are considered, in

consequence L∗(r) is independent of the orientation vector n of the fiber as it is isotropic and can

be represented in any arbitrary transverse isotropic basis {H(b)}(n) , therefore in Eq. (4.10) only

the localization tensor A∗(r)(w(r),n(r)) is different for each family of fibers. This fact reduces the

computation of the distribution averages to the computation of the mean coefficients {a∗(v,f)⋆ }

and associated mean Hill basis tensors {H(v,f)
⋆ } (Eqs. (A.40) - (A.42)). Considering this, Eq.

(4.10) under the continuous distribution representation (Eq. (4.11)) reads

L̃∗ = L∗(m) + c(f)
(
L∗(f) − L∗(m)

)
·

6∑

v=1

∫ wmax

wmin

fw(w)a
∗(v)(w)dw

∫

S
fn(n)H(v)(n)dS

= L∗(m) + c(f)
(
L∗(f) − L∗(m)

)
·

6∑

v=1

a
∗(v,f)
⋆ H(v,f)

⋆ = L∗(m) + c(f)
(
L∗(f) − L∗(m)

)
· A∗(f)

⋆ ,

(4.12)

with A∗(f)
⋆ being the distribution averaged fibers’ localization tensor. The two-phases like version

of the effective thermo-viscoelastic behavior (Eq.4.7) for the case of isotropic linear elastic glass
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fibers inclusions is given by:

L̃∗ = L∗(m) + c(f)
(
L∗(f) − L∗(m)

)
· A∗(f)

⋆ ,

α̃∗ = ᾱ+
(
S∗(f) − S∗(m)

)−1
·
(
S̃∗ − S̄∗

)
·
(
α∗(f) −α∗(m)

)
,

(4.13)

where S̃∗ and S̄∗ = c(m)S∗(m)+ c(f)S∗(f), are the effective and average, transformed creep moduli

tensor (S∗ = (L∗)−1) respectively. α∗(m), α∗(f), are the matrix’ and fibers’ thermal expansion

second order tensors, respectively. The second equation in Eq. (4.13) is equivalent to the well-

known Levin’s equation (Hashin-Rosen, [121, 120]). The choices made for the explicit form of

fw(w) and fn(n) are presented below.

Weibull’s law for length distributions:

The chosen length probability density function (fw(w)) is the Weibull’s law, used in the literature

in the context of injection molding thermoplastic composites, where it was demonstrated its

accuracy compared to the deterministic approach [51]. The explicit form of the function reads

fw(w) = W (wp(w)) , with

p(w) =
cw
w0

(
w

w0

)cw−1

e
−
(

w
w0

)cw

, and W =

(∫ wmax

wmin

wp(w)dw

)−1

,
(4.14)

where cw, w0 are the Weibull’s law parameters to be fitted from data statistics obtained from

image processing (e.g. microtomography Fig. 4.1). Examples of the parameters range chosen

for the present study are presented in Fig. 4.5. From this figure, it can be noted that the value

of w0 represents the mean aspect ratio. Furthermore, by increasing the value of cw at a given w0

the number of fibers with aspect ratio w0 is increased.

Advani and Tucker law for orientation distributions:

Primal observations of filament microtomography (Fig. 4.1) suggest an axisymetric distribution

of the fibers’ orientation about the filament axis. For this case, the Advani-Tucker’s law is

proposed in [110] in the context of injection molding composites. In the axisymetric case, this law

is characterized by a single parameter (mAT) to be computed from microphotography analysis.
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(a) Probability density plot for a given w0 = 30 and
various cw

(b) Probability density plot for a given cw = 1.5
and various w0.

Figure 4.5: Weibull’s probability density (p(w)) plots for various combinations of the parameters
(cw, w0) used in the present study.

The explicit form of the distribution law is presented below.

fn(θ, ϕ) = K sinmAT(θ) cosmAT(ϕ), (4.15)

where K is a normalization constant and, θ and ϕ are the direction angles characterizing the

orientation deviation of a fiber from the filament axis. The implementation of this approach

is simplified by using the mean orientation tensors (η2 and η4) as it is done in [110]. This

procedure is of particular interest in the case of composites holding material symmetries that

enables to write down the effective behavior in a particular choice of basis. Information about

the application of the law and computation of orientations tensors can be found in A.6. Some

examples of the orientation distributions used in the present work are presented in Fig. 4.6.

As can be noted from this figure, the number of fibers, oriented in the principal filament’s axis

direction, increases as mAT becomes greater. Indeed, the unidirectional case corresponds to the

limit mAT → ∞.
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(a) Probability density plot for mAT = 2 (b) Probability density plot for mAT = 10

Figure 4.6: Advani-Tucker probability density fn(n) for deviation angles θ ∈ [0, π] and ϕ ∈
[−π/2, π/2]

4.2.2 Effective Prony series

To ensure the same mathematical representation of the effective behavior as it was presented for

the matrix in the time domain (Prony-series), this study considers a supplementary identification

step. In Eq. (4.13), the effective thermo-viscoelastic behavior is given in the Laplace-Carson

domain (L̃∗, α̃∗). In function of the length of the Prony-series of the polymer matrix and the

choice of mean-field scheme, the complexity of the rational polynomials of the elements in L̃∗

and α̃∗ varies, therefore the analytical inversion of the Laplace-Carson transform is sometimes

too expensive in terms of computational time or is not giving a sum of weighted exponential

functions (Prony-series) as it is desired. Since a complex relaxation moduli tensor L(jω) is

equivalent to the above defined Laplace-Carson transform of the relaxation moduli tensor [122,

45], artificial dynamical mechanical analysis (DMA) is performed, and then processed using

KN-HW identification procedure from [7] to obtain an approximation of the discrete spectra

(Appendix A.7). The advantage of this method in contrast with the collocation methods is

that it includes an accurate approximation of the characteristic discrete time spectrum. This

is performed identically for both, mechanical and thermal Prony-series, differing only on the

physical meaning of the identified coefficients. The expected explicit form of L̃∗ and α̃∗ after
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parameters’ identification reads

L̃∗ = L̃g −
6∑

b=1

Nb∑

nb=1

l̃(b,nb)/τ
(nb)
L

p+ (τ
(nb)
L )−1

H(b)
⋆ , (4.16)

α̃∗ = α̃g +
M∑

m=1

α̃
(m)
11 /τ

(m)
α

p+ (τ
(m)
α )−1

Θ⋆ +
O∑

o=1

α̃
(o)
33 /τ

(o)
α

p+ (τ
(o)
α )−1

N ⋆. (4.17)

Here, L̃g is the effective glassy 4th order stiffness tensor, α̃g is the glassy 2nd order thermal

expansion tensor, Θ⋆ = I − η2 is the second-order tensor that characterizes the orthogonal

behavior, N ⋆ = η2 is the second-order tensor that characterizes the symmetry axis behavior

(see: Appendix A.5.2), Nb is the length of the Prony-series of the relaxation modulus l̃∗(b), and,

M and O are the lengths of the Prony-series of the effective thermal creep functions α̃∗
11 and

α̃∗
33, respectively.

4.3 Simulation results

The modeling of the matrix thermo-viscoelastic behavior for the specific range of temperatures

of the 3D-FDM printing have been presented in Section 4.1, where linear viscoelasticity, time-

temperature superposition principle and the internal time technique were introduced. Section

4.2 presents the methodology to obtain the effective behavior. The homogenization procedure

via mean-field schemes is achieved based on the validity of the applicability of the correspon-

dence principle (Laplace-Carson transform) in continuous variations of temperature for thermo-

rheologically simple polymers. Mean-field schemes were presented in a general shared formula-

tion, differing only in the form of the localization tensor A∗(n(r), w(r)) in function of the chosen

scheme (Appendix B.2). Probabilistic approach to account for the variability of lengths and ori-

entations of the fibers was introduced as a powerful tool able to map distributions over greater

spaces and being very simple in terms of implementation. Finally, the methodology to identify

the coefficients of the effective properties of the composite was introduced, ensuring that the

composite is represented in the same way as the matrix. This Prony-series representation al-

lows applying directly the internal variables’ formulation [5, 26, 60] for the incremental scheme

in the computation of stress as a function of time and temperature. In this section, the accu-
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racy of the presented methodology will be compared to extensive heterogeneous simulations in

computational REVs using the FFT-based full field homogenization method.

4.3.1 Internal variables’ technique for stress computation

The stress computation problem can be formulated as follows:

Given L̃(t), α̃(t), aT (T ), ε̄(t) and θ̄(t) = T̄ (t)− T̄0, compute σ̄(t).

First, ξ(t) is computed by using Eq. (1.16) in function of T̄ (t) and the total observation time

of the simulation. Then, a simple way to start the procedure to compute the evolution of the

macroscopic stress σ̄(t) is by considering the explicit form of the Laplace-Carson transform of

the stress function (Eq. (1.18)) for the case of a transverse isotropic homogenized material (Eqs.

(4.16) - (4.17)), noting that, in order to lighten the writing, the implicit form of the thermal

strains is conserved, and its computation is treated separately. It must be note that as [59, 60],

the following formulation allows a simple and natural definition of the internal variables forms

avoiding integral operations, and reducing the formulation to algebraic operations in rational

polynomials.

σ̄∗(p) =


L̃g −

6∑

b=1

Nb∑

nb=1

l̃(b,nb)/τ
(nb)
L

p+ (τ
(nb)
L )−1

H(b)
⋆


 ·

(
ε̄∗(p)− β̃∗(p)

)

= σ̄∗
g(p)−

6∑

b=1

Nb∑

nb=1

l̃(b,nb)
H(b)

⋆ ·
(
ε̄∗(p)− β̃∗(p)

)

τ
(nb)
L

(
p+ (τ

(nb)
L )−1

) ,

(4.18)

with

β̃∗(p) =

(
α̃g +

M∑

m=1

α̃
(m)
11 /τ

(m)
α

p+ (τ
(m)
α )−1

Θ⋆ +

O∑

o=1

α̃
(o)
33 /τ

(o)
α

p+ (τ
(o)
α )−1

N ⋆

)
θ̄∗(p)

= β̃∗
g(p) +

M∑

m=1

α̃
(m)
11 θ̄∗(p)

τ
(m)
α

(
p+ (τ

(m)
α )−1

)Θ⋆ +
O∑

o=1

α̃
(o)
33 θ̄

∗(p)

τ
(o)
α

(
p+ (τ

(o)
α )−1

)N ⋆,

(4.19)

where σ̄∗
g(p) and β̃∗

g(p) are the Laplace-Carson transform of the glassy responses in terms of

stress and thermal strains, respectively. Introducing three sets of second order tensor internal
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variables {q∗(nb)
L }, {q∗(m)

α1 } and {q∗(o)α3 } the foregoing equations reads:

σ̄∗(p) = σ̄∗
g(p)−

6∑

b=1

Nb∑

nb=1

l̃(nb)H(b)
⋆ · q∗(nb)

L (p), q
∗(nb)
L (p) =

ε̄∗(p)− β̃∗(p)

τ
(nb)
L

(
p+ (τ

(nb)
L )−1

) ,

β̃∗(p) = β̃∗
g(p) +

M∑

m=1

q∗(m)
α1

(p) +

O∑

o=1

q∗(o)α3
(p), q∗(m)

α1
(p) =

α̃
(m)
11 θ̄∗(p)Θ⋆

τ
(m)
α

(
p+ (τ

(m)
α )−1

) ,

q∗(o)α3
(p) =

α̃
(o)
33 θ̄

∗(p)N ⋆

τ
(o)
α

(
p+ (τ

(o)
α )−1

) .

(4.20)

Reordering the expressions of the internal variables and performing the inverse transform of the

equations in Eq. (4.20) we obtain equivalent forms to those presented in [60]. the internal-time

forms and the associated O.D.E’s of the internal variables are obtained as follows:

σ̄(ξ) = σ̄g(ξ)−
6∑

b=1

Nb∑

nb=1

l̃(nb)H(b)
⋆ · q(b,nb)

L (ξ),
d

dξ
q
(nb)
L (ξ) +

1

τ
(nb)
L

q
(nb)
L (ξ) =

ε̄(ξ)− β̃(ξ)

τ
(nb)
L

,

β̃(ξ) = β̃g(ξ) +

M∑

m=1

q(m)
α1

(ξ) +

O∑

o=1

q(o)α3
(ξ),

d

dξ
q(m)
α1

(ξ) +
1

τ
(m)
α

q(m)
α1

(ξ) =
α̃
(m)
11 θ̄(ξ)Θ⋆

τ
(m)
α

,

d

dξ
q(o)α3

+
1

τ
(o)
α

q(o)α3
=

α̃
(o)
33 θ̄(ξ)N ⋆

τ
(o)
α

.

(4.21)

The computed stress is then obtained in the internal-time domain. Thanks to the mapping

t 7→ ξ, quantities measured in the internal time take the same values in the correspondent observer

times, in fact since the values of ξ are computed as an initial step for a given temperature

at a given instant, the return to the observer time is trivial. For the simulation examples,

the non-homogeneous ODE’s characterizing the evolution of the internal variables are solved

numerically by implementing the Taylor’s integration scheme [58]. This methodology is based on

the assumption of a linear evolution of the right-hand side of the ODE’s for the computation of its

particular solution. The discrete evolution equation for an ODE relating second order tensorial

functions (Eq. (4.21)), for instance, an arbitrary internal variable q(ξ), and a right-hand side
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Υ(ξ)
τ , is written down as follows:

∀ξk ∈ {0, ξ2, ..., ξk, ..., ξK}, and, ∆ξk+1 = ξk+1 − ξk

q(ξk+1) = q(ξk)e
−

∆ξk+1
τ +Υ(ξk)

(
1− e−

∆ξk+1
τ

)
+ (Υ(ξk+1)−Υ(ξk))

(
1− τ

∆ξk+1
(1− e−

∆ξk+1
τ )

)

(4.22)

4.3.2 Problems setting

Macroscopic loading:

Three scenarios of simulation are presented. All these situations consider a linear cooling while

different mechanical constraints are applied to the REV. Five constant cooling rate ( ˙̄θ) are

studied, from very fast (8.64s) to slow cooling (24h). The cooling rate iterations are given by

∆T̄ /tc, with tc being the cooling times, previously presented in Fig. 4.4, and ∆T the total

variation of temperature, here, −225◦C. Numerical values are presented below.

˙̄θ ∈ {−0.00260417,−0.0260417,−0.260417,−2.60417,−26.0417}[◦C s−1].

For the mechanical constraints, three different cases are considered: the strains-free case, this

is, ε̄(t) = 0 (load case 1). The second case is the stress-free case, this is, σ̄(t) = 0 (load case

2). Finally, the mixed conditions’ case is implemented, this is, σ̄22(t) = 0 and ε̄33(t) = ε̄11(t) = 0

(load case 3), which corresponds to the case of a laminate composed by two thin plates with

an angle of relative deviation of the material’s symmetry axis of 90◦ with e2 being the stacking

direction of the laminate.

Sensibility to the starting temperature:

The study range of the temperature characterizing the FDM 3D-printing of a PEI filaments

is between 355◦C to room temperature (≈ 25◦C). Primary studies of the amorphous PEI-like

matrix used in the present work have suggested the quasi-pure dissipative behavior between 355

and 250◦C, reflected by a negligible amount of residual stress produced within this temperature

interval. This can be identified easily by observing the values of aT (T ) associated to high

temperatures, it is observed that, the amount of viscous strain is increased at high temperatures
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as most of the relaxation mechanisms are activated simultaneously. The influence of the starting

temperature on the magnitude of the residual stress is presented in Fig. 4.7. This analysis was

performed at maximum cooling rate as it is the one giving the highest levels of stress. From

this figure, it is clear that the generation of stress at high temperature is negligible compared to

the level produced as the glass transition temperature (Tg = 216◦C) is closer and below it. The

maximum relative error on the stress is close to 2%. For the interest of the present work, low

stages of stress are not displayed. In conclusion, the starting temperature is set to T (0) = 250◦C,

which imposes the before mentioned ∆T = −225◦C.

(a) stress component σ11 vs. temperature T (b) Relative error on σ∞
11 vs. initial temperature T0.

Figure 4.7: Influence of the starting temperature T0 of the simulation on the magnitude of the
residual stress at minimum cooling time (8.64[s]). Study performed for the load case 1 (Section
4.3.4).

4.3.3 Numerical considerations

Reference solutions are obtained from FFT-based full-field homogenization [95] by using the

in-house code Craft1. This method uses 3D images discretized in voxels for the REVs (Fig.

4.8). The fibers’ are represented by long capsules (cylinders with hemispherical ends), that

is closer to the actual geometry of the fibers. In contrast, mean-field schemes uses prolate

spheroids as representation for the fibers. For this study, it is considered a spheroid that preserves

the quadratic moment of the capsule used in the full-field simulations instead of keeping the

same aspect ratio [119], this is, w0 = wref
0 (2/

√
3). Comparison data of the consequences of the

1http://craft.lma.cnrs-mrs.fr/
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precedent choice is presented in Fig. 4.9. In this figure, the error is measured just on the Lielens

scheme, comparing the closeness of the asymptotic stress with the reference solutions. Finally,

the simulations used for these plots consider the case of maximum volume fraction (c(f) = 40%)

as it represents a greater influence of the presence of fibers on the macroscopic behavior.

The computational 3D REVs for the simulations are generated using the probability distribu-

tion functions described in Section 4.2. The generation task has to ensure the non superposition

of fibers as priority, in consequence the distributions are exposed to violations during the sam-

pling process, this is why after generation, the distribution parameters are refitted from the

generated microstructures to avoid the loss of accuracy when comparing the mean-field data (in

results, only theoretical values of the distribution parameters are displayed).

(a) mAT = 2, cw = 0.5 and w0 = 20 . (b) mAT = 60, cw = 2.5 and w0 = 40.

Figure 4.8: Examples of computer generated representative elementary volumes (REV) used
in the computation of reference solutions. The volume fraction of fibers in the displayed mi-
crostructures is c(f) = 10% . On the left side, the more disoriented case with a higher variability
of lengths. On the right side, the most oriented and less variable lengths.

Discretization and Sampling convergence: Due to the high cost in terms of computation

time of references solutions, the discretization of the REVs is limited by the computation capa-

bilities of the available hardware. This is why a study of discretization convergence is performed

to improve the time of computations. By imposing a maximum admissible error of 1.0 × 10−4,

the microstructure discretization is set to 300 × 300 × 300 voxels. On the other hand, a study

characterizing the convergence in terms of the number of inclusions is performed too. This is
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(a) Error on σ∞
11 . (b) Error on σ∞

33 .

Figure 4.9: Relative error of the inclusions’ representation, measured on the asymptotic stress
for Lielens’ scheme vs. normalized cooling rate. volume fraction c(f) = 40%. Distribution
parameters, mAT = 60, cw = 2.5 and w0 = 40.

equivalent to the study of the size of the REV, as the dimensions of the fibers are obtained by

relative sizing from the total volume and the volume fraction; this study characterizes the accu-

racy of the representation of the REV with respect to the whole composite volume. Similarly,

by imposing the maximum error in the number of fibers to 1.5× 10−4, the number of inclusions

for the simulations is set to 300 fibers. Results of the Convergence studies are presented in Fig.

4.10. In addition, in Table. 4.2 the times for reference and mean-field solutions’ computations are

presented, the values correspond to the “faster” FFT simulation and its correspondent obtained

through mean-field schemes. In the case of the reference solutions, each simulation was obtained

in two computational nodes with 56 cores and 128 Gigabytes of RAM.

For mean-field computations, a machine with 16 cores and 128 Gigabytes of RAM was used.

As can be noted from the table, even under less computational power conditions, the time for

mean-field computations is always negligible compared to the full-field reference solutions. In

fact, as the effective behavior is in an explicit form, the computation of effective behavior (in

the Laplace-Carson domain) is a fraction of the time shown in the table. Most of the time is

consumed in approximating effective Prony series and computing each simulation scenario.
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Table 4.2: Time of computations for effective residual stress simulations

Method Time (h.m.s)

FFT(300x300x300) 05:11:17

FFT(400x400x400) 08:04:21

FFT(500x500x500) 12:19:03

Mean-field 00:02:46

(a) Error on σ̄∞ vs number of voxels per edge (Nvx). (b) Error on σ̄∞ vs number of inclusions (Ninc).

Figure 4.10: Convergence study for reference solutions. volume fraction c(f) = 40%. Distribution
parameters, mAT = 60, cw = 2.5 and w0 = 40.

4.3.4 Comparisons

Here, results are presented for the simulations settings specified in Section 4.3.2. The solutions are

obtained for multiple combination of microstructural parameters, that are, the volume fraction

c(f), the orientation distribution parameter mAT, and length distribution parameters w0 and

cw. Numerical values of the parameters are presented in the Table. 4.3. All combinations of

parameters have been tested, and as can be noted this represents a large amount of data. For

the sake of clarity in comparisons, just some representative combinations are presented for each

load case.

Simulation results are presented as follows: First, for each load case, the evolution of the

computed mechanical quantities is presented in function of the temperature (figures Fig. 4.11,

Fig. 4.16 and Fig. 4.21). Each of these figures shows the evolution for three different values
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of the imposed cooling rate, from the slowest (blue lines) passing by a middle velocity (green

lines), to the fastest (purple lines). As can be noted from the gaps in each group, they are almost

consistent in each figure, this fact verifies the ability of the method to predict residual stress in a

wide range of cooling rates. Then, having this initial figures for each load case, the influence of

the microstructural parameters is studied by presenting the asymptotic value of the mechanical

quantities as a function of the microstructural parameters by sweeping in one parameter while

the rest of them remains constant and equal to the values of the evolution plots: Figures Fig.

4.12, Fig. 4.17 and Fig. 4.22 showing the influence of the volume fraction c(f), figures Fig. 4.13,

Fig. 4.18 and Fig. 4.23 presents the influence of the Advani-Tucker orientation parameter mAT.

To study the influence of the length distribution parameters (Weibull’s law), Figures Fig. 4.14,

Fig. 4.19 and Fig. 4.24 show the influence of cw, and figures Fig. 4.15, Fig. 4.20 and Fig. 4.25

present the influence of w0. Regarding the plotted stress, it is normalized by the elastic response

of the matrix σ(m),e.

From all these figures, the high accuracy of the proposed methodology is verified noting

that, Lielens’ scheme is almost always slightly closer to the reference solutions, but despite this

fact the magnitude of the gaps are negligible between the implemented mean-field schemes.

The closeness of the responses of the Mori–Tanaka and IDD schemes is explained from the

fact that the IDD approximation was computed using a unique spatial distribution cell which

aspect ratio is very close to the fiber’s mean aspect ratio (w(D,r) = 0.8w0). A better use of

the capabilities of this scheme should consider a non-uniformly distributed spatial distribution

cell (Ω(D,r)) space using a probabilistic distribution, as it was for example implemented for the

variation in the fiber lengths and suggested in [118]. As inferred in [117], the Lielens’ scheme

is able to improve the approximation of the effective behavior at higher volume fractions of the

fibrous phase by considering the computation of localization tensors as an interpolation of the

Mori–Tanaka scheme and another one obtained by considering the same estimate but in a case

in which the fibers become the continuous phase and the matrix the dispersed one. The latter

justifying why this approximation shows better results when comparing the asymptotic responses

as a function of the volume fraction (Fig. 4.12, Fig. 4.17 and Fig. 4.22), anyway considering

the volume fraction interval in the present work, that is representative of the charge of fibers in

composite filaments for HT-FRAM technology, the gaps between the mean-field schemes are not

so significant which explains the closeness between all of them. In the same fashion, the effects
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of the variations of the microstructural parameters (i.e. length and orientation distributions)

representing the particular state of the fibers inside the composite filament are enhanced by

Lielens approach. Regarding the effect of the variation of the orientation parameter mAT, in Fig.

4.13, Fig. 4.18 and Fig. 4.23, the mean-field approach exhibits consistency in all cases when

going from the more disoriented distribution (more isotropic) to the more filament axis aligned

distribution (increasing the stiffness in the axis direction). However, the proposed methodology

and the reference solutions are slightly closer in the cases where the fiber orientation disorder

increases (lower values of the Advani and Tucker parameter). Finally, considering the variation

of the length parameters w0 and cw, representing the mean length and intensification of the

distribution around this value respectively. The simulation results are still consistent when

considering combinations resulting in microstructures of long fibers and more or less homogeneous

in distribution, with those that have a distribution of different lengths. The variations of the

gaps are always on the same order, and as pointed out before, Lielens’ scheme is always better

at accounting the effect of these variations when comparing with reference solutions. From

the aforementioned, one can conclude that any of these three methods could be a good choice,

however it must be noted that if one aims to make an objective choice based on the quality and

the complexity of the implementation, the choice should be the Mori-Tanaka Scheme.

Parameter Values

mAT 2 10 60 -

cw 0.5 1.5 2.5 -

w0 20 30 40 -

c(f) 0.1 0.2 0.3 0.4

Table 4.3: Microstructural parameters for simulations

Load case 1:

Due to the fact that the imposed macroscopic strain is ε̄(t) = 0, this case presents the highest

levels of stress. The figure Fig. 4.12 showing the normalized asymptotic stress in function of

the volume fraction allows seeing the effect of the reinforcement in the macroscopic behavior,

then from the left to the right side the values of the normalized stress are always increasing as

the effective relaxation moduli tensor increases in magnitude. The figure Fig. 4.13, showing the

normalized asymptotic stress on-plane and on-axis, allows seeing the level of anisotropy in terms
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of the principal directions e1 and e3. from the less to the most oriented, one can see how the level

of isotropy decrease as the fibers become more organized around the filament axis, the ability

of the probabilistic approach to map these variations is then verified because the gap between

reference and mean-field solutions is almost consistent. From these figures, one can note that it

is difficult to differentiate the gap between the different mean-field schemes implemented in the

comparisons. Indeed, it seems that the three of them are giving high quality approximations. To

be able to compare between them. The figure Fig. 4.14 and Fig. 4.15 showing the influence of the

length distribution parameters shows small variations of the observed stress as these parameters

varies; regarding Fig. 4.14 and considering that the fixed value of mAT is 10 which represents

a larger number of fibers in the filament axis direction (Fig. 4.6), one can note how the fact of

increasing the number of fibers with a length that is close to the mean value w0 = 30, significantly

increases the asymptotic response of the stress in the filament axis direction compared to the

behavior in the transverse plane. Looking at the variations of the asymptotic stress as a function

of the mean length w0, and holding the distribution parameter cw to 1.5, a decrease in the

asymptotic stress is observed as w0 increases, this can be interpreted supported by Fig. 4.5 in

which this fact gives as output a "more distributed" population of fibers but always being notably

higher to the side of the shorter fibers, then as the diameter of fibers is considered constant the

fact that shorter fibers are populating the REV gives an effective stiffness that is lower, ergo it

is reasonable that the asymptotic stress decrease. From all the figures showing the asymptotic

response, it is confirmed that despite the scheme chosen for the approximations, all of them are

very close to the reference solutions. Anyway, Lielens scheme is always slightly better in all

situations.

Load case 2:

In this case, the macroscopic stress σ̄ is set to 0 in the REV, therefore the corresponding strain

solution is equal to the macroscopic thermal strain, since it is the only source of deformation in the

REV. As can be noted from the figures of this case (Figs. 4.16-4.20), the computed macroscopic

strains remain inside the linear domain, which validates the material model adopted in the present

work, that is linear viscoelastic. The figure Fig. 4.16 showing the evolution of the strain elements

in function of temperature confirms the consistency of the methodology when computing stress

or strain. Similarly to the load case 1, in figure Fig. 4.18 the degree of anisotropy is controlled
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via the values of mAT, the effect of the reinforcement in the macroscopic strain presented in Fig.

4.17 shows the high accuracy of the proposed procedure as the solutions are very close to the

reference (FFT), specially when regarding the filament axis direction (e3). When looking figures

Fig. 4.19 and Fig. 4.20 one can note how the macroscopic strain decreases as the parameters

increases, this represents the fact that the mean length of the fibers increases and the number of

fibers associated to this value increases.

Load case 3:

This is the case of mixed macroscopic constraints, here the laminate case, in which the stacking

direction is e2. Results are presented in the same way as the precedent load cases, Fig. 4.21

shows the evolution of the showing the non-zero elements of the mechanical response (ε̄22 = ε̄11

and σ̄33) in function of temperature. In agreement with the precedent cases, the solutions plotted

show remarkable accuracy compared to reference solutions in both, stress and strain. Similarly to

the precedent load cases, the influence of the microstructural parameters in presented in figures

Fig. 4.22- 4.25. In the same way as for the precedent load cases, Lielens schemes seems to be

slightly better when estimating both, macroscopic stress or strain.

(a) On-plane residual stress (σ11). (b) Filament axis residual stress (σ33).

Figure 4.11: Normalized stress vs. temperature (T ), computed for load case 1, c(f) = 0.2,
mAT = 10, cw = 1.5 and w0 = 30 .
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(a) On-plane residual stress (σ11). (b) Filament axis residual stress (σ33).

Figure 4.12: Asymptotic normalized stress vs. the volume fraction (c(f)), computed for load case
1, Cooling time = 8.64[s], mAT = 10, cw = 1.5 and w0 = 30 .

(a) On-plane residual stress (σ11). (b) Filament axis residual stress (σ33).

Figure 4.13: Asymptotic normalized stress vs. the Advani-Tucker parameter mAT, computed for
load case 1, Cooling time = 8.64[s], c(f) = 0.2, cw = 1.5 and w0 = 30 .
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(a) On-plane residual stress (σ11). (b) Filament axis residual stress (σ33).

Figure 4.14: Asymptotic normalized stress vs. the Weibull’s parameter cw, computed for load
case 1, Cooling time = 8.64[s], c(f) = 0.2, mAT = 10 and w0 = 30 .

(a) On-plane residual stress (σ11). (b) Filament axis residual stress (σ33).

Figure 4.15: Asymptotic normalized stress vs. the Weibull’s parameter w0, computed for load
case 1, Cooling time = 8.64[s], c(f) = 0.2, mAT = 10 and cw = 1.5 .
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(a) On-plane residual strain (ε11). (b) Filament axis residual strain (ε33).

Figure 4.16: Strain vs. temperature (T ), computed for load case 2, c(f) = 0.2, mAT = 10,
cw = 1.5 and w0 = 30 .

(a) On-plane residual strain (ε11). (b) Filament axis residual strain (ε33).

Figure 4.17: Asymptotic strain vs. the volume fraction (c(f)), computed for load case 2,
Cooling time = 8.64[s], mAT = 10, cw = 1.5 and w0 = 30 .
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(a) On-plane residual strain (ε11). (b) Filament axis residual strain (ε33).

Figure 4.18: Asymptotic strain vs. the Advani-Tucker parameter (mAT), computed for load case
2, Cooling time= 8.64[s], c(f) = 0.2, cw = 1.5 and w0 = 30 .

(a) On-plane residual strain (ε11). (b) Filament axis residual strain (ε33).

Figure 4.19: Asymptotic strain vs. the Weibull parameter cw, computed for load case 2,
Cooling time = 8.64[s], c(f) = 0.2, mAT = 10 and w0 = 30 .
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(a) On-plane residual strain (ε11). (b) Filament axis residual strain (ε33).

Figure 4.20: Asymptotic strain vs. the Weibull parameter w0, computed for load case 2,
Cooling time = 8.64[s], c(f) = 0.2, mAT = 10 and cw = 1.5 .

(a) On-plane residual strain (ε11). (b) Filament axis residual stress (σ33).

Figure 4.21: Strain and normalized stress response vs. temperature (T ), computed for load case
3, c(f) = 0.2, mAT = 10, cw = 1.5 and w0 = 30 .
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(a) On-plane residual strain (ε11). (b) Filament axis residual stress (σ33).

Figure 4.22: Asymptotic strain and normalized stress response vs. the volume fraction (c(f)),
computed for load case 3, Cooling time = 8.64[s], mAT = 10, cw = 1.5 and w0 = 30 .

(a) On-plane residual strain (ε11). (b) Filament axis residual stress (σ33).

Figure 4.23: Asymptotic strain and normalized stress response vs. the Advani-Tucker parameter
mAT, computed for load case 3, Cooling time = 8.64[s], c(f) = 0.2, cw = 1.5 and w0 = 30 .



92

(a) On-plane residual strain (ε11). (b) Filament axis residual stress (σ33).

Figure 4.24: Asymptotic strain and normalized stress response vs. the Weibull’s parameter cw,
computed for load case 3, Cooling time = 8.64[s], c(f) = 0.2, mAT = 10 and w0 = 30 .

(a) On-plane residual strain (ε11). (b) Filament axis residual stress (σ33).

Figure 4.25: Asymptotic strain and normalized stress response vs. the Weibull’s parameter w0,
computed for load case 3, Cooling time = 8.64[s], c(f) = 0.2, mAT = 10 and cw = 1.5 .
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4.4 Final comments

As it was shown in the simulations section, the proposed procedure to compute the effective

macroscopic behavior of an SPC filament exhibits a remarkable accuracy compared to the full-

field simulations for all the different REVs that were tested. In addition, this fact confirms the

validity of the probabilistic description of the fibers’ microstructural parameters (i.e. length and

orientation). This procedure holds consistency when computing the mechanical response (stress

or strain) when different mechanical constraints are applied. The accuracy of the procedure

was verified when different cooling rates are applied in the thermal history, then confirming the

good agreement when considering the instantaneous or delayed components of the macroscopic

mechanical responses. The highlights of the proposed methodoly are:

• Polymer matrix representation that holds thermodynamic consistency; being able to map

the delayed response in terms of volume variations in function of temperature, reproducing

the transitional states from rubbery to glassy behavior. This fact is indeed of primal

importance, as the nature of the manufacturing process imposes the thermal strain as the

main source of residual stress and dimensional instability in an HT-FRAM 3D-printed

composite part.

• Concise methodology, constructed around practical and functional choices, giving to the

formulation simplicity while conserving its reliability, reducing dramatically the time of

computations when comparing to full-field analysis (Table. 4.2). This is achieved through

the introduction of the extension of analytical homogenization in the context of thermo-

viscoelasticity via the internal-time technique for the correspondence principle in continu-

ous variations of temperature, and ensuring the mathematical representation of the com-

posite in the same way as the matrix by introducing an identification step, able to identify

optimal values of the discrete spectra when no noisy data is used.

• Efficient implementation of the estimation of the influence of the variability of length and

orientations in the effective behavior by implementing probabilistic descriptions of the

parameters’ distributions. Giving a plus in simplicity of formulation while being a more

accurate description of the general state of the composite.

• High accurate Methodology to approximate effective thermo-viscoelastic behavior in discontinuous-
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fiber reinforced amorphous polymers, with high capacity of adaptation in finite elements

commercial software products, as it has already been tested (Abaqus and Digimat).

In terms of perspectives, the next step will be to model the effective thermo-viscoelastic behavior

of the printed part at the upper scale with the porosities due to the stacking of the filaments

(mesoscale) by integrating the effective behavior model of the composite filament proposed in

this paper and the topology of the porosities to solve the thermomechanical structure calculation

in order to predict the warping of the HT FRAM 3D-printed part and to compare against

experiments performed in simple structures.
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Chapter 5

Microscale Analysis :

thermorheologically complex material

In this chapter we will address a special apart to treat the thermorheologically com-

plex solids, this is the case in which the unicity of the shift function aT is no longer

ensured, equivalently to the case in which the polymer matrix can no longer be

modeled as it was presented in Chapter 1. This work is already published in the

European journal of Mechanics - A/Solids [6]. The applicability of the mean-field ho-

mogenization in ensured through a model order reduction of the thermo-viscoelastic

homogenization problem. Analytical verification is considered for exact forms derived

form conventional mean-field estimates as it is demonstrated in Chapter 4. Using

the same material properties of that chapter a numercial simulation section is pre-

sented to compare conventional y reduced models in the case of rigid reinforments of

continuous fiber composites.

During their consolidation, reinforced polymers develop internal stresses due to the pro-

nounced mismatch between the thermomechanical properties of the matrix and the reinforce-

ment [123]. These so-called thermal residual stresses can significantly reduce the mechanical

strength and fatigue endurance of the composite material, and can induce undesired dimensional

changes of the structural element [124]. This has motivated numerous attempts to correlate the

magnitude of residual stresses with material and process parameters such as matrix rheology,

reinforcement shape and distribution, and cooling rate [125, 126, 127, 128, 129]. In the absence
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of chemical changes —as in amorphous thermoplastics—, the problem reduces to that of estimat-

ing the macroscopic behavior and microscopic field statistics of a viscoelastic composite in terms

of the thermomechanical properties and microgeometrical arrangement of its constituents. The

use of mean-field descriptions derived by homogenization methods thus constitutes an effectual

approach. However, given that consolidation processes often vary the temperature of the sample

across the glass transition temperature of the thermoplastic matrix, the method of choice should

account for the strong coupling between elastic and viscous deformation mechanisms along with

the strong variation of matrix rheology with temperature. This hinders the use of most mean-

field descriptions commonly employed for describing isothermal processes, especially if the matrix

response is thermorheologically complex in the sense of [130]. The sections that follow present

mean-field descriptions adequate for such situations.

The descriptions follow from a homogenization procedure proposed by [131] for composites

undergoing isothermal deformations, recast as in [132] and generalized to non-isothermal pro-

cesses. Thus, the thermo-viscoelastic response of the constituent phases is described in Section

5.1 via generalized standard models in terms of viscous deformations that play the role of mi-

croscopic internal variables. Given that the homogenized thermo-viscoelastic response of the

composite then depends on the entire spatial distribution of these microscopic internal variables

over a representative volume element, a variational model reduction is then employed in Section

5.2 to generate an approximate homogenized description in terms of a finite number of macro-

scopic internal variables identified with low-order statistics of the microscopic internal variable

fields. Unlike descriptions based on the correspondence principle [59, 133], the reduced-order

mean-field descriptions thus obtained can account for thermorheologically complex constitutive

laws with multiple internal times —or even none— and can provide information not only on the

macroscopic response but also on statistics of the microscopic mechanical fields up to second

order. Furthermore, it is demonstrated that these descriptions can also accommodate a spe-

cial class of hereditary laws of common use in polymer science. Simple expressions for material

systems with elastically rigid but thermally dilatant reinforcements are provided in Section 5.3.

In order to assess the capabilities of the reduced descriptions, results are generated in Section

5.4 for a special class of rigidly reinforced solids whose effective response can be determined

exactly by means of the correspondence principle. The reduced and exact descriptions for this

reinforced solids are confronted and discussed in Section 5.5. The presentation concludes with
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final comments elaborated in Section 5.6.

5.1 Material description

5.1.1 Microscopic description

We consider a representative volume element of a composite material made up of N constituent

phases, and denote by Ω and Ω(r) (r = 1, ..., N) the domains occupied by the element and the

phases within it, respectively, so that Ω = ∪N
r=1Ω

(r). Also, we denote by χ(r)(x) the character-

istic function of each subdomain Ω(r). Let’s assume that the local viscoelastic response can be

described within the framework of generalized standard materials by constitutive relations of the

form [134]

σ =
∂w

∂ε
(x, ε, q, θ) and

∂w

∂q
(x, ε, q, θ) +

∂φ

∂q̇
(x, q̇, θ) = 0, (5.1)

where

w(x, ε, q, θ) =
N∑

r=1

χ(r)(x)w(r)(ε, q, θ) and φ(x, q̇, θ) =
N∑

r=1

χ(r)(x)φ(r)(q̇, θ). (5.2)

In these expressions, ε and θ denote the strain and temperature change relative to a stress-free

reference configuration, q is a collection of internal variables describing viscous effects, the dot

over a variable denotes a time derivative, and the functions w(r) and φ(r) denote, respectively,

the Helmholtz free-energy density and the dissipation potential of phase r. These potentials are

convex functions of the mechanical fields and are bounded from below. The dissipation potentials

are, at the same time, positive functions vanishing at the origin.

For our purposes, it suffices to consider viscoelastic phases characterized by generalized

Maxwell rheologies with an arbitrary number of viscoelastic units. To each unit we associate a
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viscous strain tensor q(u) (u = 1, ..., U) and write the thermodynamic potentials as

w(r)(ε, q, θ) =
U∑

u=1

1

2

(
ε− β(r)(θ)− q(u)

)
· L(r,u)(θ)

(
ε− β(r)(θ)− q(u)

)
+ f (r)(θ) and

(5.3)

φ(r)(q̇, θ) =
U∑

u=1

1

2
q̇(u) ·M(r,u)(θ)q̇(u), (5.4)

where L(r,u) and M(r,u) denote positive-definite tensors of elastic and viscous moduli, respectively,

characterizing the uth unit of the rheological model for phase r, and β(r) is the corresponding

thermal straining. The form of these potentials is motivated by a rheological model corresponding

to U units of the Maxwellian type connected in parallel, along with a thermal unit connected

in series, as depicted in figure 1.2. It generates constitutive relations and evolution equations of

the form

σ =
U∑

u=1

L(r,u)(θ)
(
ε− β(r)(θ)− q(u)

)
(5.5)

and

M(r,u)(θ)q̇(u) + L(r,u)(θ)q(r,u) = L(r,u)(θ)
(
ε− β(r)(θ)

)
. (5.6)

The elastic stiffness of the material is thus

L(r)(θ) =
U∑

u=1

L(r,u)(θ). (5.7)

This model can accommodate any variation of material properties with instant temperature

change, provided it satisfies the requirements imposed on the thermodynamic potentials.

5.1.2 Macroscopic description

The homogenized mechanical response relates the macroscopic stress σ to the macroscopic strain

ε and temperature change θ, which are the averages of the local stress, strain, and temperature

fields over the representative volume element. This relation can be written in terms of the
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macroscopic free-energy density and dissipation potential as [134, 135]

σ =
∂w

∂ε
(ε, q, θ) and

δw

δq(x)
(ε, q, θ) +

δφ

δq̇(x)
(q̇, θ) = 0, (5.8)

where

w(ε, q, θ) = inf
ε∈K(ε)

〈
w(x, ε, q, θ)

〉
and φ(q̇, θ) =

〈
φ(x, q̇, θ)

〉
. (5.9)

In these expressions, K(ε) is the set of kinematically admissible strain fields with average ε, ⟨·⟩

denotes volume averaging over the representative volume element, and the δ operator denotes

a functional derivative. That the temperature change within the entire representative volume

element is uniformly given by the macroscopic temperature change θ has been found in multiple

works with varying degrees of rigor and generality [136, 115, 137, 138] provided the local ther-

modynamic potentials satisfy certain mathematical properties that are assumed to hold in this

work.

It is observed that the macroscopic free-energy density and dissipation potential are the

volume averages of their microscopic counterparts, and are therefore functionals of the micro-

scopic viscous strain fields and their rates. In the case of the generalized Maxwellian rheologies

considered in this work, they take the forms

w(ε, q, θ) = inf
ε∈K(ε)

N∑

r=1

U∑

u=1

c(r)
〈
1

2

(
ε− β(r)(θ)− q(u)

)
· L(r,u)(θ)

(
ε− β(r)(θ)− q(u)

)〉(r)

(5.10)

and

φ(q̇, θ) =

N∑

r=1

U∑

u=1

c(r)
〈
1

2
q̇(u) ·M(r,u)(θ)q̇(u)

〉(r)

, (5.11)

where the functions f (r) have been dropped to shorten notation, given their irrelevance to the

stress response and our disinterest in the entropic response of the solid. These functionals inherit

the convexity of the local potentials. Thus, homogenization preserves the generalized standard

structure of the local reponse, with the microscopic viscous strain fields playing the role of

macroscopic internal variables albeit of infinite dimension. The purpose of the approximate
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scheme presented in the next section is to reduce the dimensionality of the macroscopic internal

variables to a finite number.

5.1.3 Extension to a class of hereditary responses

Thermal strains in polymers near the glass transition temperature are time dependent and can

exhibit significant differences depending on whether heating or cooling occurs. Hereditary laws

are often employed to describe such behavior [50]. While the formalism presented above along

with the model reduction presented below are cast in terms of internal-variable laws, they remain

valid ut stat for more general constitutive laws of the form (5.5)-(5.6) with the dependence on

temperature change θ replaced by a dependence on temperature change history θt up to time t as

defined by θt(τ) = θ(t−τ) for 0 ≤ τ < ∞, provided the replacement maintains the validity of the

homogenization procedure leading to the macroscopic description (5.8)-(5.9). This is because the

equilibrium conditions and the evolution laws for the internal variables within such representative

volume element still follow from the macroscopic potentials (5.10) and (5.11) —now functionals

of the macroscopic temperature change histories θ
t—, and the incremental statement (5.13)

still constitutes a valid time discretization of those evolution laws. On the other hand, the

thermodynamic status of the potentials may be altered [cf., e.g., 139, 140].

5.2 Reduced-order description

5.2.1 Model reduction

Central to our purposes is the observation that the model reduction for viscoelastic composites

proposed by [131] carries over to thermo-viscoelastic composites unaltered, regardless of the

variation of mechanical properties with temperature. This model reduction relies on an implicit

Euler discretization in time of the macroscopic evolution law (5.8)2, so that the internal variables

at the current instant are the solution to the algebraic equation

δw

δq(x)
(ε, q, θ) +

δφ

δq̇(x)

(
q − qn
∆t

, θ

)
= 0, (5.12)

where qn are the values of the internal variables in the previous instant and ∆t is the time step.

In view of the convexity of the macroscopic potentials, this equation is the optimality condition
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of the variational problem

inf
q

[
w(ε, q, θ) + ∆t φ

(
q − qn
∆t

, θ

)]
. (5.13)

As recently elicited by [132], the model reduction of [131] is effected upon estimating each phase

average in the discretized dissipation (5.11) by Cauchy-Schwarz lower bounds. In practice, these

bounds are applied on suitably chosen projections by expressing the constitutive tensors as

L(r,u)(θ) =
B∑

b=1

ℓ(r,u,b)(θ) B(r,u,b) and M(r,u)(θ) =
B∑

b=1

m(r,u,b)(θ) B(r,u,b), (5.14)

where B(r,u,b) are fourth-order symmetric tensors such that B(r,u,b)B(r,d) = 0 if b ̸= d and the

moduli ℓ(r,u,b) and m(r,u,b) are all positive functions of temperature [141]. For instance, within

an isotropic phase use can be made of the decomposition B(r,1) = J and B(r,2) = K with B = 2,

where J and K are the standard fourth-order, isotropic, hydrostatic and shear projection tensors,

respectively. The macroscopic potentials can then be written as

w(ε, q, θ) = inf
ε∈K(ε)

N∑

r=1

U∑

u=1

B∑

b=1

c(r)ℓ(r,u,b)(θ)

〈
1

2

(
ε− β(r)(θ)− q(u)

)
· B(r,u,b)

(
ε− β(r)(θ)− q(u)

)〉(r)

(5.15)

and

φ

(
q − qn
∆t

, θ

)
=

N∑

r=1

U∑

u=1

B∑

b=1

c(r)m(r,u,b)(θ)

〈
1

2

q(u) − q
(u)
n

∆t
· B(r,u,b)q

(u) − q
(u)
n

∆t

〉(r)

. (5.16)

Now, each term in this last expression for the discretized dissipation potential can be bounded

from below as [132]

〈(
q(u) − q

(u)
n

∆t

)
· B(r,u,b)

(
q(u) − q

(u)
n

∆t

)〉(r)

≥ ⟨q(u)⟩(r) − ⟨q(u)n ⟩(r)
∆t

· B(r,u,b) ⟨q(u)⟩(r) − ⟨q(u)n ⟩(r)
∆t

+

(
C

(r,u,b)1/2

α − C
(r,u,b)1/2

αn

∆t

)2

,

(5.17)
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where

C(r,u,b)
α =

〈
(q(u) − ⟨q(u)⟩(r)) · B(r,u,b)(q(u) − ⟨q(u)⟩(r))

〉(r)
(5.18)

and C
(r,u,b)
αn are traces of the intraphase fluctuations of the viscous strain field q(u) at each time

instant. The discretized dissipation functional is thus approximated by the discretized dissipation

function

φ

(
q − qn
∆t

, θ

)
≈φ̂

({
⟨q(u)⟩(r) − ⟨q(u)n ⟩(r)

∆t

}
,

{
C

(r,u,b)1/2

α − C
(r,u,b)1/2

αn

∆t

}
, θ

)

=
1

2

N∑

r=1

U∑

u=1

c(r)

[
⟨q(u)⟩(r) − ⟨q(u)n ⟩(r)

∆t
·M(r,u)(θ)

⟨q(u)⟩(r) − ⟨q(u)n ⟩(r)
∆t

+

B∑

b=1

m(r,u,b)(θ)

(
C

(r,u,b)1/2

α − C
(r,u,b)1/2

αn

∆t

)2

 ,

(5.19)

which depends on the viscous strain fields only through their phase averages and intraphase

fluctuations. Here, {·} refers to an entire collection of variables for all r = 1, ..., N , u = 1, ..., U ,

and b = 1, ..., B. Making use of this estimate in the discretized evolution law (5.13) generates

the variational approximation

inf
q

[
w(ε, q, θ) + ∆t φ̂

({
⟨q(u)⟩(r) − ⟨q(u)n ⟩(r)

∆t

}
,

{
C

(r,u,b)1/2

α − C
(r,u,b)1/2

αn

∆t

}
, θ

)]
, (5.20)

which, upon partitioning the infimum problem, can be written as

inf
q(r,u)

q̃(r,u,b)≥0

[
ŵ
(
ε,
{
q(r,u)

}
,
{
q̃(r,u,b)

}
, θ
)

+

∆t φ̂

({
⟨q(u)⟩(u) − ⟨q(u)n ⟩(u)

∆t

}
,

{
C

(r,u,b)1/2

α − C
(r,u,b)1/2

αn

∆t

}
, θ

)]
, (5.21)

where

ŵ
(
ε,
{
q(r,u)

}
,
{
q̃(r,u,b)

}
, θ
)
= inf

q∈J
({
q(r,u)

}
,{q̃(r,u,b)}

)w (ε, q, θ) (5.22)
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and

J
({

q(r,u)
}
,
{
q̃(r,u,b)

})
=
{
q :

〈
q(u)

〉(r)
= q(r,u) and

C(r,u,b)1/2

α = q̃(r,u,b) for r = 1, ..., N, u = 1, ..., U, b = 1, ..., B
}
.

(5.23)

For later reference, we note that the internal variable fields q(u)(x) minimizing the free-energy

density (5.22) can be shown to be

(
q(u)(x)− q(r,u)

)
=

B∑

b=1

q̃(r,u,b)

C
(r,u,b)1/2
ε

B(r,u,b)
(
ε(x)− ⟨ε⟩(r)

)
in Ω(r), (5.24)

where use has been made of the decomposition (5.14), and the symbols C
(r,u,b)
ε = B(r,u,b) · C(r)

ε

have been introduced to denote traces of the fourth-order covariance tensors of the strain field

within phase r as given by

C(r)
ε =

〈
(ε− ⟨ε⟩(r))⊗ (ε− ⟨ε⟩(r))

〉(r)
. (5.25)

The infimum problem (5.21) is now seen to constitute an implicit Euler discretization of the

continuous evolution laws

∂ŵ

∂q(r,u)

(
ε,
{
q(r,u)

}
,
{
q̃(r,u,b)

}
, θ
)
+

∂φ̂

∂q̇
(r,u)

({
q̇
(r,u)

}
,
{
˙̃q
(r,u,b)

}
, θ
)
= 0, (5.26)

∂ŵ

∂q̃(r,u,b)

(
ε,
{
q(r,u)

}
,
{
q̃(r,u,b)

}
, θ
)
+

∂φ̂

∂ ˙̃q
(r,u,b)

({
q̇
(r,u)

}
,
{
˙̃q
(r,u,b)

}
, θ
)
= 0, (5.27)

for r = 1, ..., N , u = 1, ..., U , and b = 1, ..., B, where

ŵ
(
ε,
{
q(r,u)

}
,
{
q̃(r,u,b)

}
, θ
)
= inf

ε∈K(ε)

N∑

r=1

U∑

u=1

c(r)

2

[(
⟨ε⟩(r) − β(r)(θ)− q(r,u)

)
·

L(r,u)(θ)
(
⟨ε⟩(r) − β(r)(θ)− q(r,u)

)
+

B∑

b=1

ℓ(r,u,b)(θ)
(
C(r,u,b)1/2

ε − q̃(r,u,b)
)2
]

(5.28)
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and

φ̂
({

q̇
(r,u)

}
,
{
˙̃q
(r,u,b)

}
, θ
)
=

N∑

r=1

U∑

u=1

c(r)

2

[
q̇
(r,u) ·M(r,u)(θ)q̇

(r,u)
+

B∑

b=1

m(r,u,b)(θ) ˙̃q
(r,u,b)2

]
.

(5.29)

Expression (5.28) follows from expression (5.22) evaluated at the minimizing internal variable

fields (5.24), while expression (5.29) follows from expression (5.19) evaluated at a vanishing time

step ∆t → 0 [see 132, for details]. The main observation in the context of these expressions

is that the system of equations (5.26)-(5.27) provides a reduced-order description of the macro-

scopic thermo-viscoelastic evolution problem in terms of a finite set of effective internal variables

identified with the first moments of the viscous strains over each phase q(r,u) and the second mo-

ments of their intraphase fluctuations q̃(r,u,b), and a pair of reduced effective potentials identified

with a free-energy density ŵ and a dissipation potential φ̂; in addition, the reduced free-energy

density provides the estimate

σ =
∂ŵ

∂ε

(
ε,
{
q(r,u)

}
,
{
q̃(r,u,b)

}
, θ
)

(5.30)

for the macroscopic stress.

Evaluating the various derivatives in these expressions we obtain the reduced constitutive

relation

σ =
N∑

r=1

U∑

u=1

c(r)L(r,u)(θ)
(
ε(r) − β(r)(θ)− q(r,u)

)
(5.31)

along with the reduced evolution equations

M(r,u)(θ) q̇
(r,u)

+ L(r,u)(θ) q(r,u) = L(r,u)(θ)
(
ε(r) − β(r)(θ)

)
(5.32)

m(r,u,b)(θ) ˙̃q
(r,u,b)

+ ℓ(r,u,b)(θ) q̃(r,u,b) = ℓ(r,u,b)(θ) ε̃(r,u,b) (5.33)

for r = 1, ..., N , u = 1, ..., U , and b = 1, ..., B, where ε(r) = ⟨ε⟩(r) and ε̃(r,u,b) = C
(r,u,b)1/2

ε are

the phase averages and intraphase fluctuations of the strain field that minimizes the reduced

free-energy density (5.28) at the prescribed macroscopic strain ε and temperature change θ. The

Euler-Lagrange equations for the minimizing strain field, along with the minimizing internal
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variable fields (5.24), also imply the intraphase reduced stress statistics

σ(r) = ⟨σ⟩(r) =
U∑

u=1

L(r,u)(θ)
(
ε(r) − β(r)(θ)− q(r,u)

)
(5.34)

and

σ̃(r,b) =
〈
(σ − ⟨σ⟩(r)) · B(r,u,b)(σ − ⟨σ⟩(r))

〉(r)1/2
=

∣∣∣∣∣
U∑

u=1

ℓ(r,u,b)(θ)
(
ε̃(r,u,b) − q̃(r,u,b)

)∣∣∣∣∣ ,

(5.35)

which will serve to quantify the amount of residual stresses present within each phase r of the

composite.

5.2.2 Mean-field homogenization

Instrumental to the above order reduction is the fact that the reduced constitutive relation and

evolution equations (5.31)-(5.33) depend on the strain field only through its first and second

moments over each phase, and that these moments can be evaluated via linear homogenization

techniques. This is evident by noting that, even though the minimization problem (5.28) for the

strain field is nonlinear, the associated Euler-Lagrange equations are those of a linear thermoe-

lastic comparison solid with the same microstructure as the thermo-viscoelastic composite but

with piecewise uniform stiffness tensor and eigenstress field given by

L(r)
0 =

U∑

u=1

B∑

b=1

ℓ
(r,u,b)
0 B(r,u,b) and τ

(r)
0 =

U∑

u=1

L(r,u)(θ)
(
ε(r) − β(r)(θ)− q(r,u)

)
− L(r)

0 ε(r).

(5.36)

where

ℓ
(r,u,b)
0 = ℓ(r,u,b)(θ)

ε̃(r,u,b) − q̃(r,u,b)

ε̃(r,u,b)
, (5.37)

Therefore, the minimizing strain field in (5.28) is exactly identical to that of a linear comparison

problem
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ŵ0(ε, θ) = stat
ε∈K(ε)

N∑

r=1

c(r)
〈
1

2
ε · L(r)

0 ε+ τ
(r)
0 · ε

〉(r)

(5.38)

with constitutive tensors given self-consistently by (5.36). The stationary rather than extremal

character of the variational problem (5.38) is due to the fact that the tensors L(r)
0 are not

necessarily positive definite. In any event, this comparison energy density can be expressed as

ŵ0(ε, θ) =
1

2
ε · L̃0ε+ τ̃ 0 · ε+ g̃0, (5.39)

where L̃0, τ̃ 0 and g̃0 are effective properties that can be determined with any suitable mean-field

homogenization technique for N -phase linear thermoelastic solids [see, for instance, 142]. The

first and second moments of the strain field within each phase can then be determined from this

comparison energy by evaluating the derivatives

⟨ε⟩(r) = 1

c(r)
∂ŵ0

∂τ
(r)
0

(ε, θ) and ⟨ε⊗ ε⟩(r) = 2

c(r)
∂ŵ0

∂L(r)
0

(ε, θ) for r = 1, ..., N, (5.40)

which follow from well-known relations for field statistics in linear heterogeneous media and, to-

gether with relations (5.36), constitute a set of algebraic non-linear equations for those moments.

Whenever these equations exhibit multiple roots, the root giving the minimum value of (5.28)

with positive-definite phase covariances of the strain field must be selected. In any event, the

reduced free-energy density (5.22) and ensuing relations (5.31)-(5.33) are completely determined

by the linear homogenization scheme of choice.

Since the stress fields associated with both variational problems agree exactly as well, the

reduced constitutive relation (5.31) can also be obtained from the comparison energy density as

σ =
∂ŵ0

∂ε
(ε, θ) = L̃0ε+ τ̃ 0, (5.41)

where the partial derivative has been taken with comparison properties L(r)
0 and τ

(r)
0 held fixed.

Finally, relations (5.40) provide the first- and second-order intraphase statistics of the underlying
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strain field, and the corresponding stress statistics follow from the identities

σ(r) = L(r)
0 ε(r) + τ

(r)
0 and C(r)

σ = L(r)
0 C(r)

ε L(r)
0 , (5.42)

where C(r)
ε and C(r)

σ are the fourth-order covariance tensors of the strain and the stress fields,

respectively, within phase r.

5.3 Specialization to rigidly reinforced solids with isotropic con-

stituents

Viscoelastic solids containing elastically rigid reinforcements are of particular practical inter-

est. We consider reinforced systems (N = 2) composed of a viscoelastic matrix phase (r = 1)

characterized by isotropic constitutive tensors of the form

β(1)(θ) = β(1)(θ)I, L(1,u) = L(u) and M(1,u)(θ) = τ(u)(θ) L(u)

with L(u) = 3κ(u)J+ 2µ(u)K
(5.43)

u = 1, ..., U , recalling that I denotes the second-order identity tensor, J and K denote the stan-

dard fourth-order isotropic bulk and shear projection tensors, respectively, κ(u) and µ(u) represent

bulk and shear elastic moduli, respectively, and the τ(u) represent temperature-dependent relax-

ation times. These constitutive assumptions are typically employed to model the response of

amorphous polymers [43]. In turn, the corresponding tensors in the reinforcement phase (r = 2)

are all set to infinity. Thus, the reinforcements undergo purely thermal deformations given by

β(2)(θ) = β(2)(θ)I. (5.44)

Results reported below make use of the simplest possible choice of basis tensors given by

L(u) = ℓ(u) B(u) where ℓ(u)
2
= 9κ(u)

2
+ 20µ(u)2 and B(u) =

3κ(u)

ℓ(u)
J+

2µ(u)

ℓ(u)
K, (5.45)
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so that B(u) · B(u) = 1. The reduced potentials (5.28) and (5.29) can then be written as

ŵ
(
ε,
{
q(u)

}
,
{
q̃(u)
}
, θ
)
= inf

ε∈K∗
(
ε−β(2)

(θ)
) 1− c

2

U∑

u=1

[(
ε− β(θ)

1− c
− q(u)

)
· L(u)

(
ε− β(θ)

1− c
− q(u)

)

+ℓ(u)
(
ε̃(u) − q̃(u)

)2]
and (5.46)

φ̂
({

q̇
(u)
}
,
{
˙̃q
(u)
}
, θ
)
=

1− c

2

U∑

u=1

τ(u)(θ)

[
q̇
(u) · L(u)q̇

(u)
+ ℓ(u) ˙̃q

(u)2
]
, (5.47)

where c = c(2) is the reinforcement content, β = c(1)β(1) + c(2)β(2) is the average thermal strain,

q(u) ≡ q(1,u) and q̃(u) ≡ q̃(1,u,1) are the effective internal variables associated with the viscoelastic

matrix, ε̃(u) ≡ ε̃(1,u,1) is a measure of the strain fluctuations within the matrix phase given by

ε̃(u) =

√
B(u) · C(1)

ε =

√
2µ(u)

ℓ(u)
ε̃
(1)2

d +
9κ(u)

ℓ(u)
ε̃
(1)2

m (5.48)

in terms of the fluctuations of the mean and deviatoric parts of the strain field ε̃
(1)2

m = J ·C(1)
ε /3

and ε̃
(1)
d = K · C(1)

ε , respectively, and K∗(ε − β(2)(θ)) is the set of kinematically admissible

strain fields with average ε − β(2)(θ) that vanish identically within the reinforcing phase. In

deriving this expression for the free-energy density, use has been made of the change of variables

ε → ε+ β(2)(θ) for convenience; the strain fluctuations (5.48) are insensitive to this change.

Following the arguments provided in the previous subsection, and invoking well-known rela-

tions for two-phase composites derived by [121], the effective constitutive relations and intraphase

strain statistics generated by (5.46) can be conveniently computed from the comparison energy

density

ŵ0(ε, θ) =
1

2
(ε− β(2)(θ)) · L̃0(ε− β(2)(θ)) + τ 0 · (ε− β(2)(θ)), (5.49)

where L̃0 is the effective elasticity tensor of a rigidly reinforced solid with the same microstruc-

tural morphology as the reinforced solid of interest but with matrix properties

L0 = 3κ0 J+ 2µ0 K ≡
U∑

u=1

ℓ
(u)
0 B(u) and τ 0 =

U∑

u=1

L(u)

(
ε− β(θ)

1− c
− q(u)

)
− L0

ε− β(2)(θ)

1− c

(5.50)
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given in terms of the comparison moduli ℓ(u)0 defined by

ℓ
(u)
0 = ℓ(u)

ε̃(u) − q̃(u)

ε̃(u)
u = 1, ..., U, (5.51)

and determined self-consistently by the accompanying identities

ε̃
(1)
d =

1

1− c

√√√√(ε− β(2)(θ)
)
·
[
(1− c)

∂L̃0

∂(2µ0)
−K

](
ε− β(2)(θ)

)
and

ε̃(1)m =
1

1− c

√√√√(ε− β(2)(θ)
)
·
[
(1− c)

∂L̃0

∂(9κ0)
− 1

3
J

](
ε− β(2)(θ)

)
. (5.52)

Note that expressions (5.45)3 and (5.50)1 imply the relations

κ0 =
U∑

u=1

ℓ
(u)
0

ℓ(u)
κ(u) and µ0 =

U∑

u=1

ℓ
(u)
0

ℓ(u)
µ(u), (5.53)

which should be invoked to express the strain fluctuations (5.52) in terms of the comparison

moduli ℓ(u)0 , and with (5.51), in terms of the strain fluctuations ε̃(u). Evaluation of the reduced

free-energy density (5.46) requires introducing the resulting expressions into (5.48) to generate a

set of equations for the quantities ε̃(u) to be solved for given temperature change θ, macroscopic

deformation ε and internal variables q̃(u) (u = 1, ..., U). In general, the set of equations requires

numerical treatment.

Differentiation of (5.49) with respect to the macroscopic deformation generates the effective

constitutive relations

σ = L̃0

(
ε− β(θ)

)
+ τ

(1)
0 , (5.54)

while differentiation of the reduced potentials (5.46) and (5.47) with respect to the internal

variables generates the evolution laws

τ(u)(θ) q̇
(u)

+ q(u) =
ε− β(θ)

1− c
and τ(u)(θ) ˙̃q

(u)
+ q̃(u) = ε̃(u) u = 1, ..., U. (5.55)
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5.4 Exact results for a class of rigidly reinforced solids with isotropic

constituents

In order to assess the capabilities of the reduced-order mean-field description proposed above,

results are generated in this section for a special class of rigidly reinforced solids whose effective

response can be determined exactly by means of the correspondence principle. The viscoelastic

matrix is characterized by constitutive tensors of the form (5.43) with relaxation times [43]

τ(u)(θ) = τ
(u)
◦ aT (θ) u = 1, ..., U. (5.56)

Thus, each rheological unit u can exhibit a viscosity characterized by a different relaxation time

constant τ
(u)
◦ but the same temperature dependence through the common shift function aT (θ);

the ratio between relaxation times of different units is insensitive to temperature changes. For

a given thermomechanical loading program, the constitutive relation and evolution laws within

the matrix phase are then given by

σ(t) =
U∑

u=1

L(u)
(
ε(t)− β(1)(θ(t))− q(u)(t)

)
and (5.57)

τ
(u)
◦ aT (θ(t))q̇

(u)(t) + q(u)(t) = ε(t)− β(1)(θ(t))

for u = 1, ..., U . This form of evolution laws motivate the introduction of an “internal” time

variable defined as

ξ =

∫ t

0

dτ

aT
(
θ(τ)

) , (5.58)

so that, again with a slight abuse of notation,

σ(ξ) =

U∑

u=1

L(u)
(
ε(ξ)− β(1)(ξ)− q(u)(ξ)

)
and τ

(u)
◦ q̇(u)(ξ) + q(u)(ξ) = ε(ξ)− β(1)(ξ),

(5.59)
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where ˙(·) denotes differentiation with respect to ξ. Application of the Laplace-Carson transform

to these expressions yields

σ∗(p) = L∗(p)
(
ε∗(p)− β(1)∗(p)

)
with L∗(p) =

U∑

u=1

p

p+ τ
(u)−1

◦
L(u), (5.60)

where (·)∗ refers to a transformed function. The correspondence principle together with the

Levin relations then imply the effective response

σ∗(p) = L̃∗(p)
(
ε∗(p)− β(2)∗(p)

)
+ L∗(p)

(
β(2)∗(p)− β(1)∗(p)

)
, (5.61)

where L̃∗(p) depends on the microstructural morphology of the composite. When this dependence

is of the form

L̃∗(p) =

R∑

ρ=1

p

p+ τ
(ρ)−1

∗
Ã(ρ), (5.62)

the inverse transform of (5.61) yields

σ(ξ) =

R∑

ρ=1

Ã(ρ)

∫ ξ

0

(
ε̇(s)− β̇

(2)
(s)
)
e
− ξ−s

τ
(ρ)
∗ ds+

U∑

u=1

L(u)

∫ ξ

0

(
β̇
(2)

(s)− β̇
(1)

(s)
)
e
− ξ−s

τ
(u)
◦ ds.

(5.63)

Two particular cases are considered next.

5.4.1 Particulate composites under hydrostatic loadings

We consider particulate composites with isotropic microstructural statistics such that the effective

bulk modulus is given exactly by the Hashin-Shtrikman lower bound; thus [90]

3κ̃∗(p) =

U∑

u=1

p

p+ τ
(u)−1

◦

3κ(u) + 4cµ(u)

1− c
, (5.64)
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which is of the form (5.62) with R = U and τ
(u)
∗ = τ

(u)
◦ . The macroscopic response (5.63) for

spherical deformations ε(ξ) = εm(ξ)I is then given by

σm(ξ) =
U∑

u=1

∫ ξ

0

[
3κ(u) + 4cµ(u)

1− c

(
ε̇m(s)− β̇(2)(s)

)
+ 3κ(u)

(
β̇(2)(s)− β̇(1)(s)

)]
e
− ξ−s

τ
(u)
◦ ds.

(5.65)

Corresponding results in the absence of thermal strains were given by [59] and [60].

5.4.2 Fiber-reinforced composites under thermal loadings

We now consider fiber-reinforced composites with transversely isotropic microstructural statistics

such that the effective elasticity tensor is given exactly by the Hashin-Shtrikman lower bound;

thus [90]

L̃∗(p) =
U∑

u=1

p

p+ τ
(u)−1

◦

[
6κ(u) + 2(1 + 3c)µ(u)

3(1− c)
H1 +

(1− 3c)3κ(u) − (1 + 3c)2µ(u)

3(1− c)
(H2 +H3)

+2µ(u)

∑U
v=1

(
p+ τ

(v)−1

◦

)−1 [
3(1 + c)κ(v) + (7 + c)µ(v)

]

(1− c)
∑U

v=1

(
p+ τ

(v)−1

◦

)−1 [
3κ(v) + 7µ(v)

] H5 + 2µ(u) 1 + c

1− c
H6


 ,

(5.66)

where the set of tensors Hi corresponds to the basis for transversely isotropic tensors of [141].

This expression is of the form (5.62) with R depending on U . For a given number of units U ,

the parameters τ
(ρ)
∗ and corresponding tensors Ã(ρ) (ρ = 1, ...,R) can be obtained by means of

the methodology presented in [7] for frequency dependent responses. This procedure combines

a highly accurate approximation of the discrete time spectra derived from the Nevanlinna Pick

interpolation problem [143] with a conventional mean-squares procedure for the computation of

the associated moduli distributions.

5.5 Sample comparisons and discussion

5.5.1 Particulate composites under hydrostatic loadings

We consider the particulate composites of Section 5.4.1 subject to spherical deformations ε =

εmI. The reduced description based on effective internal variables require the effective bulk
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modulus of the comparison solid, which is given by [90]

3κ̃0 =
3κ0 + 4cµ0

1− c
. (5.67)

Expression (5.52) can then be easily evaluated, and upon introducing this expression into (5.48)

we obtain the expression

ε̃(u) =

√
12cµ(u)

ℓ(u)
|εm − β

(2)
m (θ)|

1− c
(5.68)

for the intraphase strain fluctuations. In turn, symmetry implies that q(u) = q(u)I for all

u = 1, ..., U throughout the deformation history, provided all internal variables depart from zero.

The reduced effective potentials (5.46) and (5.47) are thus given by

ŵ
(
εmI,

{
q(u)
}
,
{
q̃(u)
}
, θ
)
=

1− c

2

U∑

u=1

[
9κ(u)

(
εm − β(θ)

1− c
− q(u)

)2

+

ℓ(u)



√

12cµ(u)

ℓ(u)
|εm − β(2)(θ)|

1− c
− q̃(u)




2
 and

(5.69)

φ̂
({

q̇
(u)
}
,
{
˙̃q
(u)
}
, θ
)
=

1− c

2

U∑

u=1

τ(u)(θ)

[
9κ(u)q̇

(u)2
+ ℓ(u) ˙̃q

(u)2
]
, (5.70)

where β = (1 − c)β(1) + cβ(2). These reduced potentials are explicit and completely charac-

terize the overall response of the composite under any hydrostatic thermomechanical loading

conditions. However, while the reduced dissipation potential is a convex function of the inter-

nal variable rates, the reduced free-energy density is not a convex function of the macroscopic

deformation and internal variables conjointly. This non-convexity is introduced by the model re-

duction performed in Section 5.2.1 for reasons already elicited by [132] in the context of isothermal

viscoelasticity. The negative consequences on ensuing predictions for the macroscopic response

have been assessed in depth by [144]. However, it was also found in that work that an efficacious

convexification of this reduced free-energy could be carried out in some simple cases like the one

considered here. This convexification amounts to eliminating the absolute value in the last term
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of (5.69) and adopting the function

ŵ
(
εmI,

{
q(u)
}
,
{
q̃(u)
}
, θ
)
=

1− c

2

U∑

u=1

[
9κ(u)

(
εm − β(θ)

1− c
− q(u)

)2

+

ℓ(u)



√

12cµ(u)

ℓ(u)
εm − β(2)(θ)

1− c
− q̃(u)




2
 (5.71)

as the reduced free-energy density. This function is now convex. Upon differentiating these

reduced potentials we obtain the effective constitutive relation

σm =
U∑

u=1


3κ(u)

(
εm − β(θ)

1− c
− q(u)

)
+

√
4cµ(u)ℓ(u)

3



√

12cµ(u)

ℓ(u)
εm − β(2)(θ)

1− c
− q̃(u)






(5.72)

along with the evolution laws for the internal variables

τ(u)(θ)q̇
(u)

+ q(u) =
εm − β(θ)

1− c
and τ(u)(θ) ˙̃q

(u)
+ q̃(u) =

√
12cµ(u)

ℓ(u)
εm − β(2)(θ)

1− c
. (5.73)

The reduced description (5.72)-(5.73) admits any choice of relaxation times τ(u)(θ). Now, it

is easy to show that for the special choice (5.56), it reproduces the exact response (5.65). Indeed,

in that case the Laplace-Carson transform of the evolution laws (5.73) expressed in terms of the

internal time (5.58) yields

q(u)∗(p) =
1

1 + τ
(u)
◦ p

ε∗m(p)− β
∗
(p)

1− c
and q̃(u)∗(p) =

1

1 + τ
(u)
◦ p

√
12cµ(u)

ℓ(u)
ε∗m(p)− β(2)∗(p)

1− c
,

(5.74)

and introducing these expressions into the corresponding Laplace-Carson transform of (5.72)

yields

σ∗
m(p) =

U∑

u=1

p

p+ τ
(u)−1

◦

[
3κ(u) + 4cµ(u)

1− c

(
ε∗m(p)− β(2)∗(p)

)
+ 3κ(u)

(
β(2)∗(p)− β(1)∗(p)

)]
,

(5.75)

whose inverse transform is precisely (5.65). This remarkable result is in line with earlier results
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already reported in the context of isothermal viscoelasticity with simpler rheologies by [144] and

[145]. It shows that the variational model reduction performed in Section 5.2.1 has the capa-

bility of reproducing exact thermomechanical responses for composite materials with complex

local responses and microstructural morphologies, even in the presence of multiple relaxation

mechanisms.

Under stress-free conditions, the reduced description (5.72)-(5.73) predicts a macroscopic

strain

εm = β(θ) +
4cµ

3κ̃

(
β(2)(θ)− β(1)(θ)

)
+

U∑

u=1

[
κ(u)

κ̃
q(u) +

√
4cµ(u)ℓ(u)

27κ̃2
q̃(u)

]
(5.76)

and evolution laws

τ(u)(θ)q̇
(u)

+ q(u) −
U∑

v=1

[
κ(v)

κ̃

q(v)

1− c
+

√
4cµ(u)ℓ(u)

3

q̃(v)

1− c

]
=

c

1− c

4µ

3κ̃

(
β(2)(θ)− β(1)(θ)

)

(5.77)

τ(u)(θ) ˙̃q
(u)

+ q̃(u) −
U∑

v=1

[
κ(v)

κ̃

q(v)

1− c
+

√
4cµ(u)ℓ(u)

3

q̃(v)

1− c

]
=

c3/2

1− c

12µ(u)

ℓ(u)

(
β(2)(θ)− β(1)(θ)

)
.

(5.78)

Casting expressions in this form makes it plain that the source of viscous deformations within

the matrix phase is solely the mismatch between microscopic thermal strains, which consequently

generate a dependence of the macroscopic thermal strain on cooling or heating rate even when

the microscopic thermal strains are rate insensitive.

5.5.2 Fiber-reinforced composites under monotonic cooling

We now consider the unidirectional fiber-reinforced composites of Section 5.4.2 with thermal

strains within the matrix phase given by the functional [50] (see: 1)

β(1)(θ) =

∫ ξ

0
α(1)(ξ − s) θ̇(s)ds, (5.79)
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where ξ is the internal time defined by (5.58), and α(1) is a thermal creep function given by

α(1)(ξ) = α(1)
∞ −

V∑

v=1

α(1,v)e−ξ/τ
(v)
α . (5.80)

In this expression, τ
(v)
α and α(1,v) represent thermal relaxation times and thermal expansion

coefficients, respectively, and α
(1)
0 represents a thermal expansion coefficient at high temperature.

With this choice, the constitutive relations (5.5)-(5.6) become hereditary laws of the single-

integral type like the ones studied in [139], this is indeed the matrix model that we have used

in 4 for the artificial matrix representation in preserving the same mechanical spectra but with

a simplification in the thermal creep function performed by preserving its asymptotic values as

they are in agreement with data found in literature and reducing the number of viscoelastic

thermal branches to just a single one aiming to simplify the numerical computations. As it is

shown in the previous chapter, this model takes into account the influence of heating and cooling

rates on thermal expansion. On the other hand, the thermal strain within the fibers is chosen as

β(2)(θ) = α(2)θ, (5.81)

where α(2) is a thermal expansion coefficient, which is indeed the same model used in the previous

section for the case of the fiber, the difference in the present application examples is that another

simplification is applied aiming to obtain a simple expression of the explicit forms, this is by

considering the asymptotic case in which the fibers are too stiff compared to the matrix, and

then we consider them as rigid. The composites are taken as representative of a lamina situated

in the bulk of a symmetric cross-ply laminate undergoing monotonic cooling at constant pressure,

as in a consolidation process. The presence of contiguous orthogonal laminae is mimicked by

subjecting the composite lamina to mixed boundary conditions of the form

ε11 = ε33 = β(2)(θ), σ22 = 0, ε12 = ε13 = ε23 = 0, (5.82)

where tensor components are referred to a basis with directions 2 and 3 aligned with the directions

of lamination and of the lamina fibers, respectively. Under these circumstances, the reduced

description for the reinforced lamina depends on the effective in-plane bulk and shear moduli of
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the comparison solid, which are given by [90]

k̃0 =
2κ0 + (2/3)(1 + 3c)µ0

1− c
and m̃0 =

3(1 + c)κ0 + (7 + c)µ0

3κ0 + 7µ0

µ0

1− c
, (5.83)

respectively. Expressions (5.52) for the intraphase strain fluctuations then become

ε̃(1)m =
1

1− c

√√√√1− c

9

(
∂k̃0

∂(2κ0)
+

∂m̃0

∂κ0

)
− 1

9
|ε22 − β(2)(θ)| and (5.84)

ε̃
(1)
d =

1

1− c

√√√√1− c

2

(
∂k̃0

∂(2µ0)
+

∂m̃0

∂µ0

)
− 2

3
|ε22 − β(2)(θ)|, (5.85)

which should be introduced in (5.48) to generate the set of equations for the strain fluctuations

ε̃(u) required to evaluate the reduced free-energy density for the boundary conditions (5.82).

For a given cooling program θ(t), the evolution laws (5.55) are discretized in time following

an implicit Euler scheme and taken as additional equations which, together with the previous

set of equations, are solved numerically for the quantities q(u), q̃(u), ε̃(u), and ε22. Once these

quantities are determined, the macroscopic stress component σ11 is computed from (5.54), while

the statistics of the stress field within the matrix phase are computed from (5.34) and (5.35).

Specific results are reported below for matrix responses described with nineteen viscoelastic

units (U = 19) characterized by constitutive tensors of the form (5.43) with relaxation times of

the form (5.56). Figure 4.2 of the precedent chapter shows the choice of elastic moduli and relax-

ation times (κ(u), µ(u), τ
(u)
◦ ) with numerical values specified in C.2, and Fig. 4.3a shows the choice

of shift factor aT (θ). In turn, as mentioned before, we adopt only one term (V = 1) in (5.80)

with α
(1)
∞ = 1.02×10−4 ◦C−1, α(1,1) = 4.22×10−5 ◦C−1 and τ

(1)
α = 0.2017s. This set of material

parameters is taken to represent the thermomechanical response of an amorphous thermoplastic

like polyetherimide [see 4]. In particular, it is noted that the choice of shift factor pertains to a

material response that transitions from negligible elasticity at the higher temperatures to negligi-

ble viscosity at the lower temperatures. Finally, the choice α(2) = 2.21×10−5 ◦C−1 is adopted for

the thermal expansion coefficient of the fibers. A composite with reinforcement content c = 0.3

is subject to monotonic cooling from a processing temperature of 250 ◦C down to room tempera-

ture 25 ◦C, so that the total macroscopic temperature change relative to the initial temperature

is θ0 = −225 ◦C. Various cooling rates θ̇ in the wide range between −225 × 10−12 ◦C/s and
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−225× 1020 ◦C/s are considered. These unrealistically extreme values have been chosen so that

elastic deformations are negligible at the slowest rate while viscous deformations are negligible at

the fastest rate. This last case is considered as representative of non-dissipative material models

based on purely thermoelastic constitutive laws.

Figure 5.1 displays predictions for the macroscopic stress (σ11) and strain (ε22) versus tem-

perature drop for the various cooling rates, normalized by the final stress and strain levels (σe
11,

εe22) produced by the fastest cooling rate. The main observation in the context of this figure is

that the reduced and exact predictions are quantitatively indistinguishable for the entire range

of temperature drops and cooling rates considered. As a consequence of the choice of shift

factor, the stresses and strains at the end of the cooling process do not relax but remain as

residual instead. These residual stresses and deformations increase with increasing cooling rate,

as expected. The reduced description is seen to provide accurate predictions for both of these

quantities. In practice, cooling rates in the order of 1 ◦C/min (0.017 ◦C/s) are commonly em-

ployed. At such rates, the residual stress levels predicted by the thermo-viscoelastic model are

in the order of 40% of those predicted by a purely thermoelastic model; the residual thermal

shrinkages, in turn, are seen to be in the order of 80%. Also displayed in the figure are cor-

responding reduced predictions for the average values and fluctuations of the mean (σm) and

deviatoric (σd) stresses within the matrix phase (r = 1). Exact results for stress fluctuations

are not reported due to the well-known limitations of descriptions based on the correspondence

principle to predict intraphase stress statistics of order higher than one. The reduced and exact

predictions are seen to remain indistinguishable for the average stresses over the matrix phase.

The predicted residual stress field within that phase is seen to exhibit fluctuation levels of about

half of the average values. Once again, values for realistic cooling rates are seen to be well below

the values for the fastest cooling rate. The associated evolution of the effective internal variables

is provided for five representative units out of the nineteen, for the cooling rate 2.25 ◦C/s. In all

cases the internal variables are seen evolve from the outset and up to certain temperature below

which they remain constant. This is a manifestation of the viscous-to-elastic transition effected

by the choice of shift factor. The saturation value and temperature change of each internal

variable is dictated by the associated relaxation time τ
(u)
◦ shown in Fig. 4.2. In any event, these

results suggest that purely thermoelastic analyses which neglect all viscous mechanisms will, in

general, provide quite inaccurate predictions for residual stresses resulting from consolidation
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a) b)

c) d)

e) f)

Figure 5.1: Reduced-order estimates (EIV) and exact results (Reference) versus temperature
change for fiber-reinforced composites subject to monotonic cooling at various cooling rates: (a)
macroscopic stress, (b) macroscopic strain, (c) and (d) average stress and stress fluctuations
within the matrix phase, (e) and (f) evolution of effective internal variables for the cooling rate
2.25 ◦C/s. Stress and strain quantities are normalized, respectively, by the macroscopic residual
stress and strain for the fastest cooling rate. The reinforcement content is c = 0.3.
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processes of this sort.

We conclude this discussion by noting that the reduced free-energy density of the fiber-

reinforced composite employed by this reduced description is non-convex and cannot be convexi-

fied like the reduced free-energy density of the particulate composites considered in the previous

subsection. Predictions will exhibit spurious transients for certain classes of non-monotonic ther-

momechanical programs, for which the intraphase fluctuations of some thermodynamic forces

may vanish [132, 144]. However, this is unlikely to occur during thermomechanical programs

commonly employed in consolidation processes of practical interest. The reduced mean-field de-

scriptions derived in this work are thus expected to provide a valuable tool to identify processing

routes to lower residual stresses or use them to our advantage.
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5.6 Final comments

A dual mean-field description wherein the mechanical fields entering the potentials are the stresses

and thermodynamic forces rather than the strains and internal variables was proposed by [146]

and applied to viscoelastic composites and polycrystals by [147], [145] and [148]. The predictions

generated by this alternative description are different from those generated by the primal de-

scription considered in this work, and their relative merits have been discussed by [149] and [150].

This last work casts the description within an alternative formalism to that of [146] which makes

the generalization of the dual description to thermorheologically complex solids mathematically

similar to the one observed here for the primal description. An thorough comparison between

the primal and dual versions of the reduced descriptions, along with approximate extensions of

the correspondence principle to ageing behaviors [151, 152], will be reported elsewhere.

In any event, the mean-field descriptions provided in this work already apply to a large class

of thermorheologically complex reinforced solids and, moreover, admit further generalizations

with ease. For instance, they can incorporate nonlinear viscous mechanisms via non-quadratic

dissipation potentials together with well-known linearization strategies [153, 149, 154]. More

importantly, they can incoporate curing deformations arising in thermosetting composites [155]

via homogenization results for well-known curing kinetic laws [137]. Future efforts will be directed

towards these problems.
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Chapter 6

Mesoscale Analysis : the

poro-thermo-viscoelastic network

This chapter is devoted to the second upscaling. We will then take the results of

chapter 4 and we will use them as the material properties of the matrix for the upper

scale, that of the printed filaments arrangements in a cohesive structure exhibiting

a porous network. The effective behavior is computed using the FEM framework to

solve the homogenization problem in sample mesostructures presenting periodicity.

This work is on preparation for publication with target journal: Journal of Additive

manufacturing. The outputs from the computation on the effective properties are

then tested to compare the macroscopic response of mesostructures lacking period-

icity in the stacking direction of the printed layers. Numerical validation is initially

presented for the low temperature behavior (the glassy case) to simplify the numer-

ical cost while ensuring representativeness. Numerical thermoviscoelastic validation

examples are presented for a thin plate and an experimental validation section is

presented the end as final source of validation while comparing deflection in actual

3D printed non-symmetric thin plates

So far, we have been able to obtain reliable approximations for the effective behavior of the rein-

forced filament both for a thermorheologically complex matrix (Chapter 5) and for our reference

material (Chapter 4), a thermorheologically simple matrix (i.e., PEI). Our two-step homogeniza-

tion methodology is now located at the transition from the mesoscale porous network to the
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macroscopic scale of the printed part, which we see as continuous to the naked eye.

It is now appropriate to summarize a bit the work we have done so far. As already mentioned,

the fact that the matrix of the filament is a polymer takes the first homogenization step out of

the conventional context in which it is classically applied. The mechanical behavior is defined as

thermo-viscoelastic, which means that the properties of the material are a function of time and

temperature. With respect to the linear theory of classical viscoelasticity, the analytical homog-

enization is performed using the correspondence principle, a mathematical strategy based on the

Laplace-Carson transform [59], which allows to implement the analytical homogenization in an

equivalent way as it is done for linear thermoelasticity. This technique was introduced by Eshelby

[1, 3, 2], fully developed and presented in [60] with explicit forms for the Hashin-Shtrikman esti-

mate in the case of isotropic distributions of isotropic spheres in a linear viscoelastic matrix. The

temperature dependence of the properties was not considered in that work. We dealt with the

thermo-viscoelastic behavior by extending the correspondence principle to continuous tempera-

ture variations by means of the internal time technique, an extension of the time-temperature

superposition principle for thermo-rheologically simple materials. This work has already been

published in [4] and presented in Chapter 4. In this paper, the effective thermo-mechanical be-

havior of short fiber reinforced polymer filament is calculated using three different approaches:

Mori-Tanaka scheme, Lielens scheme [117] and Interaction Direct Derivative (IDD) scheme [119],

showing the closeness of these estimates in calculating the stress response to a thermo-mechanical

load. The diversity in the orientations and lengths of the fibrous inclusions was accounted for by

considering probabilistic distributions. Finally, the heterogeneous filament is exchanged for its

continuous version to serve as the matrix material for the calculation of the effective behavior of

the porous layered structure. And again, it is at this point that we are, at the second upscaling.

When the 3D printed part is growing inside the printing chamber, layers of material are

deposed by extruding the cylindrical filament and promoting the consolidation of their lateral

interphases by juxtaposing them while ensuring their contact. In principle, this technology

allows an arbitrary combination of trajectories serving to obtain the part. If for instance we

see Fig. 2 of the introduction, the pattern shown is a consequence of a particular choice of the

printing trajectories which represents the simplest one, and this is in fact our choice as starting

point for characterizing the mesostructure in Section 6.1.1. By choosing the same direction for

all trajectories of the printing head, we obtain this pattern in which the cross-section of the
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elongated porosities are represented by curved diamonds.

Of course this choice of trajectories will influence the macroscopic behavior of the part, as from

the precedent homogenization step, the presence of isotropic short glass fibers embedded in an

isotropic amorphous polymer matrix gave us an effective behavior of the composite filament that

is transverse isotropic, represented by the presence of a longitudinal symmetry axis in the material

properties. Therefore, the printing direction will create an arrangement of oriented transverse

isotropic cylinders within a distribution of porosities. The present study considers printing

layers conserving the same printing direction at least each couple of layers, lying in oriented

porosities shapes that are close to the ideal geometry presented in Fig. 6.2. The particularity

of such microstructures is the presence of periodicity. If one aims to solve analytically such

problems, the inconvenient raises when choosing an analytical representation of the elongated

curved diamond necessary to define the explicit form of the localization tensor A as we did

in Chapter 4 where we represented the glass fibers as oriented prolate ellipsoids. We work

around this issue by addressing the computation of the effective behavior at the mesoscale by

means of full-field estimates implementing numerical homogenization of periodic microstructures

[156, 157], as is presented in Section 6.1. Similarly to Chapter 4, in Section 6.1.2 here we use

the correspondance principle to reformulate the homogenization problem in the Laplace-Carson

domain to immediately identify this problem as equivalent to the steady state response to a

harmonic loading, allowing us to implement homogenization again analogically as it is performed

for composites with thermoelastic constituents.

The implementation of the computation of the effective thermo-mechanical behavior at this

scale is computed using finite element commercial solver Abaqus®, a full-field estimate. The

parametric characterization of the REV is also presented in this section (Section 6.1.1). In Section

6.2 to assess the effectiveness of the chosen methodology, the effective thermo-elastic response is

considered instead of the thermo-viscoelastic response, due to the fact that the homogenization

procedure is carried out in the Laplace-Carson domain (an analogy of the steady-state response

in the frequency domain), in consequence the thermo-elastic response is enough to perform the

comparative analysis between the homogenized and full heterogeneous response, avoiding the

large amount of computations of the discretized frequency space. Discretization convergence

studies are presented as well for both the homogenized and reference solutions.

In Section 6.2.3 the volume fraction of the porosities is chosen to be approximately 0.05, the
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macroscopic effective response is computed using the REV of the precedent section, and tested in

two different models. These are, a 10mm× 10mm× 10mm cube, and a 100mm× 100mm× 2mm

plate. In the case of the homogenized cube response, it is compared with two 2D generalized

plane strain simulations, these are, a homogeneous plate which properties are the same as the

cube, and a heterogeneous plate with 0.05 of porosity. For the homogenized 3D plate model, it

is compared with a heterogeneous 3D plate with the same volume fraction of porosity and a 2D

shell model under plane stress. The loading conditions for the simulation cases are: i) distributed

bending, ii) uniaxial traction and iii) free-load cooling.

In section 6.2.4, the macroscopic response for an oriented stacking of printed layers is con-

sidered, the stacking is done in a way that a layer is defined as two sublayers with a same

single printing trajectory (ensuring the validity of the cavities idealized geometry), which is a

100mm× 100mm× 4mm plate for two different volume fractions of porosity, 0.05 and 0.15. 3D

homogenized models and 2D homogenized laminate models are compared with 3D heterogeneous

reference solutions for three cases of the stacking orientation, two asymmetric cases, [0, 0, 90, 90]

and [0, 90, 0, 90], and a symmetric stacking [0, 90, 90, 0]. The simulations consider the cooling

under load-free conditions, comparing the deflection of the models. The objective here is to

propose a simplified model for the warping of built-up parts.

Finally, a last verification study is presented in in Section 6.3, one of the key points of

the present work that is to face the proposed methodology against experiments. To do so, an

experimental procedure is proposed. The object of the comparisons is the deflection exhibit by a

3D printed thin plate made of composite filament with 30% of short glass fibers and a polymeric

matrix in Ultem® 1010. A full report of results and further discussion is presented in this section.

This chapter closes with a local set of final comments in Section ??.

6.1 Effective behavior of the layered structure

We start here with the first step of any homogenization procedure, the representation. We

must then be able to give an appropriate geometrical and material description of the phases

that coexist in the heterogeneous domain. As we can see in the microphotograph (Fig. 6.1),

there are two clear phases, filaments and voids, we then identify this composite material in

the simplest category of a binary composite. In terms of material properties, we already have



126

a suitable mathematical description for the continuous phase, the matrix, which in our case

consists of a transversely isotropic thermo-viscoelastic material (obtained from Chapter 4). The

voids are assumed to have negligible constant mechanical properties. Further comments on the

implications of this will be presented later in this section. For now, we will first consider the

geometric representation of the Representative Elementary Volume (REV).

6.1.1 Choice of the REV

As we have just said, we will address homogenization in this step by considering a restricted

scenario of unidirectional printing trajectories. Figure 6.1 shows a microphotograph of the cross-

section of such mesostructure from [158], which is the reference geometry for the present work.

As can be observed in this figure, the predominant shape is a curved diamond like shape. To

Figure 6.1: Microphotography of the cross-section of the layered structure.

model this, we consider an idealized mesoscructure assuming that this predominant shape is

extended uniformly in the whole volume of the printed part (see Fig. 6.2). Here, the simplest

geometrical representation of the porosity shape is sought, in other words the choice will be done

in a way that the generation of the geometry is achieved by using a parametric representation

with the lowest number of parameters. As we have already mentioned, the REV is chosen

based on the observations reported by [158] (Fig. 6.1). In this work, the authors represent

the filaments as hexagonal prisms, in consequence, the porosity cross-section takes the shape

of a diamond. In [159], the authors assimilate the printed filaments as elliptical cylinders, in

consequence the porosity cross-section’s shape is a curved diamond. For the present work, the

latter representation is taken as it is more realistic. Moreover, a supplementary assumption is
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made for the sake of simplicity in the porosity parametrization for the first round of numerical

tests, this is, the equal length of the semi-axes of the curved-diamonds, obtained by considering

circular cylinder shaped filaments with some degree of overlapping, or equivalently, rounded

rectangular or square cylinders with no overlapping. As can be noted in Fig. 6.2, the volume of

the cavities is defined as a function of the degree of overlapping of the neighboring filaments [159,

160]. It must be recalled that this representation is an idealization of the mesostructure since

the real situation does not hold the symmetry of a curved-diamond. Indeed, other assumptions

are made to be able to characterize the REV as the hypothesis of translation symmetry in the

normal direction of the cross-section of the mesostructure and perfect interphases in the contact

zones of the neighboring filaments.

Parametric characterization of the porosity

The idealized mesostructure is presented in Fig. 6.2. In consequence of the foregoing assump-

tions, the mesostructure can be characterized as a periodic medium with periodicity vectors

being collinear to the principal orthogonal directions of the symmetry plane (e1 and e2) and

geometrical invariance in the normal direction (e3). The REV is then characterized by a unit

square cell of side l = 1 with a centered curved-diamond shaped porosity. The parametrization of

the porosity is obtained by considering the given volume fraction of porosity vf of the part, that

due to the geometrical invariance in the normal direction is identical to the surface fraction of the

cross-section, to calculate the surface parameters of the curved diamond of the single porosity

in the REV that serve as inputs in the geometry generation of the computational domain. By

considering equal lengths of the two semi-axis of the curved-diamond, the explicit form of the

volume fraction of the porosity is presented as follows:

vf =
(a
l

)2
(1− π

4
). (6.1)

The volume fraction space of the porosity for the present study is set to vf = {0.05, 0.075, 0.1, 0.125, 0.15},

these values were chosen considering the experimental measurements reported in [161]. As men-

tioned above, this shape for the centered porosity of the REV will be the subject of our numerical

validation experiments. In the experimental validation section, the choice of the appropriate

shape will be considered from the observations of the actual printed parts used for comparisons.
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Figure 6.2: Idealized mesostructure with periodic REV.

In any case, if one wants to address the case of the squeezed curved diamond, the geometric rep-

resentation will be defined by two parameters a1 and a2, which are the lengths of its semi-axis,

as shown in the figure below:

Figure 6.3: The squeezed porosity REV.
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With this two parameters, the expression relating them to the volume fraction of the porous

network becomes

vf =
a1a2
l2

(1− π

4
). (6.2)

6.1.2 Homogenization procedure

Having defined the suitable representation for the REV, we now pass to formulate the homoge-

nization problem that is solved numerically by means of the conventional finite elements method.

At the beginning of the section when referring to the material properties of the phases we have

said that the mechanical properties of the porosities are assumed to be always negligible com-

pared to those of the matrix and constant in function of time and temperature. We are then

in a similar situation to the one in Chapter 4; a thermo-viscoelastic matrix with inclusions pre-

senting constant mechanical properties. This implies the applicability of the Correspondence

principle as it is done in Section 4.2, as we still maintain the uniqueness of the shift factor aT

since at this scale we are also in the case of a single polymer composite (SPC) whose matrix is

thermorheologically simple. Before going into the details of the implementation, we will present

a supplementary simplification. To illustrate it, we consider the Levin relations [121, 120, 91]

for binary composites, recalling the analogy of the thermoelastic problem in virtue of the afore-

mentioned principle. For a given thermomechanical properties of the porous phase, L(p), and

α(p) with volume fraction vf , and the matrix thermomechanical properties, L(m) and α(m), with

volume fraction, 1−vf , the Levin relation (see Chapter 4) for α̃ for the case of a porous media is

obtained by considering the fact of the nullity of the mechanical properties of the porous phase,

therefore, L(p) = 0I, with 0I the fourth order tensor with all elements equal to zero, the Levin

relation for a biphasic composite with porous inclusions becomes:

L̃ · α̃ =[(1− vf )L(m) ·α(m)] + [L̃− (1− vf )L(m)] · [−L(m)]−1 · [−L(m) ·α(m)]

=(1− vf )L(m) ·α(m) + L̃ ·α(m) − (1− vf )L(m) ·α(m)

=L̃ ·α(m).

(6.3)

The above expressions are a sufficient proof of, α̃ = α(m), and then, no further computations are

addressed to the effective tensor of thermal creep functions as we will be using for the macroscopic
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behavior the same obtained from the first homogenization step and computed in Chapter 4. After

this simplification of the computation of the effective macroscopic behavior, which is reduced

to the computation of the effective fourth relaxation tensor L̃ at the mesoscale, and recalling

from Chapter 4 that the macroscopic shift factor of an SPC remains the same as the thermo-

viscoelastic matrix, the homogenization procedure is then reduced to compute numerically the

effective viscoelastic behavior at the reference temperature Tr using the correspondance principle.

After this initial considerations reducing the complexity of the homogenization problem at the

mesoscale, we can now continue on its formulation.

A periodic microstructure exhibits invariance of geometry along the periodicity vectors; for

the mesostructure considered in the present work (Fig. 6.2), the periodicity vectors are those of

the principal directions of the porosity cross-section (i.e., e1 and e2). For such mesostructure,

the solution of a homogenization problem considering macroscopic homogeneous fields (ε̄ and

σ̄) introduced in Chapter 3, the local fields, ε(x) and σ(x), are in the same way invariant

by translation with period lengths equal to the sides of the REV. Indeed, it is possible to

decompose the local fields in a mean and fluctuant part, for instance the strain field: ε(x) =

ε̄ + ε(u′(x)). Where ε̄ = ⟨ε(x)⟩ = 1
|Ω|
∫
Ω ε(x)dΩ by construction, and u′(x) stands for the

periodic fluctuation of the displacement field u(x) whose associated strain field ε′ = ε(u′(x))

vanishes at the macroscopic scale in consequence of its periodicity ⟨ε′(x)⟩ = 0. The strong form

of the homogenization problem presented in Chapter 3 can be rewritten for the case of a periodic

REV (Ω) as follows:





∇ · σ(x, t) = 0 ∀x ∈ Ω,

σ(x, t) = [L(x, ·)⊛ ε(x, ·)] (t) ∀x ∈ Ω,

ε(x, t) = ε̄+ ε′(x, t) ∀x ∈ Ω,

u′(x, t) Ω-periodic,

(6.4)

Again, as it is done in Chapter 4 we use the Laplace-Carson transform to rewrite the viscoelastic
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problem above as a symbolic analogy of the elastic problem in the Laplace-Carson domain:





∇ · σ∗(x, p) = 0 ∀x ∈ Ω,

σ∗(x, p) = L∗(x, p) · ε(x, p) ∀x ∈ Ω,

ε∗(x, p) = ε̄∗ + ε′∗(x, p) ∀x ∈ Ω,

u′∗(x, p) Ω-periodic.

(6.5)

As we aim to solve this problem numerically, we will now identify this problem to be equivalent

to the steady state dynamic problem when harmonic loads are considered. This is done by

considering the change of variable p = jω, with jω being the complex angular frequency. This

equivalency is already presented in [5, 35], where the local fields solving the problem above have

to satisfy the same equations of a boundary value problem on an elastic body, with application

examples including more recent publications in [45, 162]. The above linear problem is rewritten

in the frequency space as:





∇ · σ∗(x, jω) = 0 ∀x ∈ Ω,

σ∗(x, jω) = L∗(x, jω) · ε(x, jω) ∀x ∈ Ω,

ε∗(x, jω) = ε̄∗ + ε′∗(x, p) ∀x ∈ Ω,

u′∗(x, jω) Ω-periodic.

(6.6)

In the constitutive equation of the stress in the above problem, the Laplace-Carson trans-

form of the relaxation moduli tensor L∗(p) is now identified as the complex moduli fourth order

tensor L∗(jw). This complex moduli are identified in practice from dynamical mechanical ex-

periments, as we did for the identification of the mechanical properties of the PEI in Chapter

4. This experiment is performed by applying harmonic displacements or forces in samples under

controlled boundary conditions, the DMA, a common procedure in rheology and often preferred

instead of relaxation or creep experiments. For the sake of clarity, we will present explicitly the

correspondence of both forms starting from the frequency domain experience.

The response of the polymer in the case of steady-state oscillations of the form ε(t) = ε0e
jωt =

ε(jωt). First, ε(t) is substituted in the integral form of the constitutive equation of the stress in
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Eq. (6.4):

σ(jωt) =

(
jω

∫ t

−∞
L(t− τ)ejωtdτ

)
: ε0, (6.7)

now we perform the change of variable u = t− τ :

σ(jωt) =

(
jω

∫ ∞

0
L(u)e−jωudu

)
: ε0e

jωt = L∗(jω) : ε(jωt). (6.8)

Then the equivalence is given by changing the complex angular frequency jω by the Laplace-

Carson variable p in L∗(jω):

L∗(p) = p

∫ ∞

0
L(u)e−pudu = pL{L}(p) = LC{L}(p) (6.9)

A complex relaxation moduli tensor L∗(jω) is then identical to the Laplace-Carson transform

of the relaxation moduli tensor in Eq. (4.3) and Eq. (4.4), this is why the same notation is used.

Similarly, as it is done in practice during experiments, we will solve the homogenization problem

for a set of constant frequencies {ωn} describing the service conditions of the material in terms

of time and temperature, computing the numerical values of the effective complex moduli tensor

by solving numerically for each ωn, the homogenization problem defined above by imposing six

elementary harmonic loads as virtual experiments of traction and shear deformation necessary

to fill the elements in L̃∗(jωn). Precision about how we actually do this will be given after

formulating a weak form of the linear elastic like problem with complex coefficients.

The macrohomogenity condition imposes the nullity of the volume average of the strain fluc-

tuation, ⟨ε′∗(x)⟩ = 0. First, consider the decomposition of all plane boundaries enclosing Ω

as, ∂Ω = ∪D
d=1∂Ω

(d). The periodicity condition of the displacement fluctuation is traduced by

its equality on the boundaries concerned by the periodicity vectors. This can be interpreted as

follows : Consider the set of periodicity vectors v(b), b ∈ {1, ..., B}, a subset of n(d), the set of all

outer normal vectors of the surfaces enclosing the REV (Ω). Let l(b) be the set of characteristic

lengths representing the normal distance between each reference periodic boundary and its cor-

respondent. To derive the weak form of the homogenization problem, the periodicity constraint

can be introduced in the definition of the appropriate Sobolev space S in which the solution

to the homogenization problem exist by considering the decomposition of the displacement field
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u∗(x) = ε̄∗ · x+ u′∗.

u∗ ∈ S(Ω) = {u∗ ∈ R3(Ω) : u∗(x+ l(b)v(b))− u∗(x) = l(b)ε̄∗ · v(b) ∀x ∈ ∂Ω(b)} (6.10)

In practice, to define S for numerical applications, multipoint constraints are imposed on the

periodic boundaries ∂Ω(b). To define this easily on discretized domains, a periodic mesh is

generated, that is, a mesh with outer boundaries with matching nodes on the corresponding

opposite boundary. The formulation of the variational problem is equivalent to the conventional

formulation of the linear elastic body, starting from the equilibrium equation. The index notation

is used in the following steps:

σ∗
ij,j = 0i (6.11)

This traduces the nullity of each element in the three-dimensional vector resulting from the diver-

gence of the stress in each material point x = xi. Assuming that this is hold, the introduction of

the weighting function w∗ ∈ V (with V being the vector space holding the homogeneous Dirichlet

boundary conditions) does not affect the previous statement.

w∗
i σ

∗
ij,j = 0 =

(
w∗
i σ

∗
ij

)
,j
− w∗

i,jσ
∗
ij . (6.12)

Integrating in Ω the foregoing expression and by means of the Green’s theorem, the global

equilibrium equation reads:

∫

Ω
w∗
i,jσ

∗
ijdΩ =

∫

Ω

(
w∗
i σ

∗
ij

)
,j
dΩ =

∫

∂Ω
w∗
i σ

∗
ijnjd∂Ω (6.13)

The homogenization problem is formulated by imposing the macroscopic homogeneous strain

field ε̄∗ij , this is traduced by an absence of any kind of external stress loading on the boundaries.

In consequence, the right-hand side of the above equation vanishes. By using the constitutive

equation, the global equilibrium equation takes the following form considering here that this

linear problem is solved for each frequency ωn, the fourth order complex moduli tensor L∗
ijkl
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corresponds to L∗
ijkl(ωn),

∫

Ω
w∗
i,jL

∗
ijklu

∗
k,ldΩ = 0. (6.14)

Finally, the weak form of the variational formulation of the homogenization problem for periodic

microstructures reads:

Find u∗i ∈ S(Ω) such that:
∫

Ω
w∗
i,jL

∗
ijklu

∗
k,ldΩ = 0, ∀w∗

i

(6.15)

6.1.3 FEM based periodic homogenization

As pointed out before, to solve numerically the above set of problems, we use conventional finite

elements method [156, 157]. The computation of the effective behavior under the framework of

composite materials with periodic microstructures is carried out using the commercial software

Abaqus® through the home plugin HomTools [163]. This plugin allows to easily impose periodic

boundary conditions in periodic meshes and macroscopic fields for both ε̄∗ and σ̄∗, here, we use

the first which correspond to the elements in L̃∗. After solving for u the problem in Eq. (6.15)

these elements are computed in a post-processing procedure by considering the volume average

of the strain and stress fields in Ω.

Numerical implementation with Abaqus®

In our case, this procedure combines the implementation of material’s subroutine (UMAT) for

transverse isotropic thermo-viscoelasticity in the frequency domain, the imposition of periodic-

ity constraints with the aid of the home plugin HomTools and the parametric study utility of

Abaqus® (.psf script), launching the series of steady state dynamics simulations and then exe-

cuting the first post-processing by extracting the frequency series of the elements of the 4th order

effective relaxation tensor (L̃∗). A general description of the implementation of the numerical

homogenization procedure is given below:

i. REVs are generated using Abaqus CAE (see Fig. 6.6), including: material properties

defined by choosing the user material option of the properties dialog, pointing to the UMAT

subroutine. The mesh generation must ensure matching nodes between correspondent

http://homtools.lma.cnrs-mrs.fr/
http://homtools.lma.cnrs-mrs.fr/
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surfaces in the periodicity directions (a periodic mesh).

ii. Using HomTools we impose periodic kinematic boundary conditions on the periodic bound-

aries, constraining the solution space corresponding to Eq. (6.10).

iii. During the step definition, a steady state dynamics simulation is defined within a set of

discrete frequencies ωn that matches with the space of the frequency spectrum character-

izing the mechanical properties of the matrix. Finally, boundary conditions are initialized

on reference points that must be defined during the imposition of the periodic boundary

conditions, this kinematic boundary conditions are used to impose the macroscopic test

fields for the estimation of the elements of the effective relaxation tensor for each frequency.

After this, no further operations are needed on the graphical CAE, and we generate an

input file for the simulations.

iv. Now we modify the input file to introduce the values of the complex moduli using a python

script, these are the coefficients of the Prony series of the matrix mechanical properties to

be passed as inputs for the UMAT subroutine. Then we introduce some lines in the input

file to change the parameters for the above initialized boundary conditions imposed on

the reference points, these parameters will be modified internally by means of an Abaqus

parametric study file.

v. The UMAT subroutine serve to compute the fourth order complex moduli tensor for a given

frequency defined in the input file; to do so, we read the frequency step of the dynamic

study, then we read the mechanical properties that we just have introduced before in the

input file, and we give the corresponding value of the complex coefficients of L(m)∗(ωn). If

one wants to address a different set of frequencies for the simulations, a linear interpolation

is performed if the given frequency is within the frequency range of the material properties.

vi. In the parametric study that takes the form of a .psf script, we write the instructions to

copy and modify the parameters of a generic input file (the one that we have just created),

then we use it to automatically launch the six dynamic simulations switching boundary

conditions corresponding to the six elementary kinematic loads (see Fig. 6.5), that solves

the linear problem in Eq. (6.15) for each frequency defined in the input files.
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vii. Having the set of output database files (.odb) after the simulations, a python script post-

process the results computing and collecting the values of the nine complex orthotropic

coefficients of the effective behavior L̃(m)∗(ωn) and giving as output a .csv file.

The last step is to use the obtained frequency data to estimate the best set of parameters

for each Prony series representing each coefficient of the 4th order relaxation tensor, following

the Krerin-Nuddleman method from [7] and already implemented in Chapter 4. In the following

section, we will perform a first set of numerical experiments to evaluate the pertinence of such

approximation for our application context. In Fig. 6.4 an example of the outputs used for the

numerical validation examples in the present work is presented.

6.2 Primal comparative analysis

The study of the reliability of the homogenization procedure chosen to estimate the macroscopic

behavior will be performed by considering that the matrix-material is linear elastic, i.e., only the

glassy effective behavior will be considered for this first set of numerical comparisons [164]. The

justification of this comes from recalling the fact that the effective behavior is computed in the

frequency domain by using the correspondence principle [5, 44]. In practice, this is achieved by

using the analogy of the steady-state oscillations simulations, as we have already mentioned.

6.2.1 Phases properties for comparative analysis

The properties are taken from [4] considering a composite filament with 20% of short glass

fiber inclusions with a representative choice of length and orientation distributions, that is :

the Advani-Tucker axisymmetric coefficient mAT = 60 representing the tendency of the fibers to

follow the direction of the filament length, and the Weibull coefficients cw = 2.5 and w0 = 30 with

a population of fibers whose length is concentrated around its mean value. Therefore, the matrix-

material is transverse isotropic with the symmetry axis being normal to the filament’s cross-

section and is represented using the Hill basis notation [46, 4] (see A.5). The thermomechanical
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Figure 6.4: Output example of the effective orthotropic thermo-viscoelastic behavior of the
mesoscale, vf = 0.05.

properties are presented below.

L(m) = 2κ
(m)
t H(1) + ℓ(m)(H(2) +H(3)) + n(m)H(4) + 2µ

(m)
t H(5) + 2µ

(m)
l H(6) =

6∑

b=1

l(m,b)H(b).

α(m) = α
(m)
t Θ+ α

(m)
l N ,

(6.16)

with κt, µt and αt being the in-plane modulus of compressibility, shear and thermal expansion

respectively, µl and αl are the longitudinal shear and thermal expansion modulus respectively,
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(a) elementary case traction in direction e1 (b) elementary case traction in direction e2

(c) elementary case traction in direction e3 (d) elementary case shear on plane e1 × e2

(e) elementary case shear on plane e1 × e3 (f) elementary case shear on plane e2 × e3

Figure 6.5: Equivalent stress distribution of numerical homogenization simulations for the set of
elementary loads, vf = 0.05.
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finally, n is related to the axial response and ℓ relating the on-plane and longitudinal responses

[4, 46]. Numerical values are presented in Table. 6.1. The fourth order tensor basis H(b), stands

for the Hill’s transverse isotropic basis, N is the second order orientation tensor obtained as the

tensor product of the symmetry axis (for instance e3) by itself, and Θ = I −N is the second

order tensor characterizing the symmetry plane, for instance e1 × e2.

Parameter κt [GPa] ℓ [GPa] n [GPa] µt [GPa] µl [GPa] αt [1/K] αl [1/K]

Values 5.42 3.80 13.07 1.53 1.66 0.0000617 0.0000329

Table 6.1: Thermo-mechanical properties of the matrix-material for the glassy cases.

Convergence study

As pointed out before because the effective thermo-viscoelastic behavior can be interpreted as a

symbolic thermoelastic behavior by means of the correspondance principle, the present study is

limited to classic thermoelastic simulations. Computationally speaking, some differences should

be considered when one wants to discuss the pertinence of such studies on the actual behavior.

First, the computation of the effective thermoelastic behavior can be observed as one step of a

series of steps in the frequency domain with moduli holding a null imaginary part; therefore, the

greatest differences are i) the computational time: if one fixes the discretization of the frequency

domain, and suppose numerical stability regarding the material properties (difficult to ensure

due to high contrast in the frequency sweep), an initial approximation of the ratio between the

thermoelastic and thermo-viscoelastic simulations is Nf , the scalar representing the number of

steps of the discrete frequency interval whose limits are a function of the operating conditions of

the material. ii) inverting complex matrices : considering the symbolic problem, the coefficients

associated to the fourth order stiffness tensor of each frequency step are no longer real numbers

but complex, as can be inferred, to invert complex valued systems is indeed more difficult than to

invert real valued systems. The numerical cost of the actual behavior is then greater. This study

considers the latter comments to choose the best combination of discretization parameters, giving

an accurate approximation while conserving a reasonable numerical cost as a starting point to

study the computation of the frequency series for the effective poro-thermo-viscoelastic behavior

that will be presented in Section 6.3.

This section aims to present the numerical setting established for the computation of the
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Effective behavior by solving the problem of Eq. (6.15) in the representative elementary volume

(REV). The simulations were performed using the HPC services of the university of Luxembourg.

Parallel computations were carried out by using intel MPI v2020b libraries in conjunction with

Abaqus® 2021.HF11. As can be inferred, the convergence studies are limited by the access

to computational resources (i.e., maximum number of nodes / licences) and the upper limit of

execution time; an example of such compromise in the cost is presented in Fig. 6.8b, where the

memory requirement is plotted as a function of the number of degrees of freedom Ndof . The

observed values were fitted to a polynomial function of third order with positive coefficients,

ensuring the strictly increasing behavior of the memory requirement, allowing an estimation of a

possible minimum of hmax for the convergence study. Quadratic tetrahedral elements were used

when defining the function space. The controlled meshing parameter is hmax, representing the

maximum distance between each couple of principal degrees of freedom. Convergence analysis for

the effective behavior simulations is performed only in the extreme values of the volume fraction

range chosen for this study (i.e. {0.05, 0.15}, see the figure below).

Figure 6.6: Example of the meshed REV’s for the convergence study. From left to right, volume
fractions of 0.05 and 0.15.
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Figure 6.7: Relation between the meshing parameter hmax and the total number of degrees of
freedom Ndof .

(a) Simulation cost in terms of memory allocation. (b) Simulation cost in terms of execution time.

Figure 6.8: REV with vf = 0.05 : Number of degrees of freedom Ndof vs. Computational
efficiency parameters.
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Considering the measure of the convergence rates, the relative error is measured taking as

reference the finest mesh simulation, concerning the comparisons, two norms are considered:

the L2-norm and the L∞-norm with explicit forms for the error e of a one dimensional vector

v = {v(1), ..., v(i), ..., v(dim(v))}:

||e(v)||L2 =

√√√√√√

∑i=dim (v)
i=1

(
v
(i)
ref − v(i)

)2

∑i=dim (v)
i=1

(
v
(i)
ref

)2 , ||e(v)||L∞ = max
i=1,dim(v)

∣∣∣v(i)ref − v(i)
∣∣∣

∣∣∣v(i)ref

∣∣∣
. (6.17)

The latter are presented in Fig. 6.9. One can note that the L2-norm is always lower than

L∞-norm for a given number of degrees of freedom Ndof , this can be explained from the different

order of magnitudes regarding the orthotropic coefficients. Therefore, the maximum relative error

norm (L∞-norm) should be considered as the main referent to choose the appropriate meshing

parameter. However, as pointed out before, the scope of the convergence study is limited by the

computational resources available.

Finally, in Fig. 6.10 one can observe the evolution of the independent coefficients of the

orthotropic fourth order elasticity tensor by means of the normalized graph. To compute the

vertical axis values, each effective coefficient is divided by the correspondent value in the matrix,

this corresponds to the contrast of each effective orthotropic coefficient of the composite with

respect to the corresponding values for its matrix, the mechanical contrast vector :

γ =
L̃ijkl

L
(m)
ijkl

=

{
L̃1111

L
(m)
1111

,
L̃1122

L
(m)
1122

,
L̃2222

L
(m)
2222

,
L̃1133

L
(m)
1133

,
L̃2233

L
(m)
2233

,
L̃3333

L
(m)
3333

,
L̃1212

L
(m)
1212

,
L̃1313

L
(m)
1313

,
L̃2323

L
(m)
2323

}
.

and then the vector γ is normalized to get closer the different curves of the evolution of its

elements in function of the Ndof , this allows to observe more clearly the rate of convergence of

each of these values :

γ̂ =
γ

(γ · γ)1/2 ,

note that in the figure in question, we use the index of the independent coefficients to refer to

the corresponding elements in γ̂ for the legends.
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From this figure, one can note the similar evolution of the coefficients, in special the almost

superposition of the evolution of the coefficients that takes the same values in transverse-isotropic

symmetry. In fact, the implications of the symmetric curved diamond impose the effective

behavior of the mesoscale to remain transverse isotropic, the differences observed in the outputs

(i.e., 1111 ̸=2222, 1133 ̸=2233 and 1313̸=2323) are originated due to the asymmetric distribution

of the elements in the representative elementary volume, since the only constraints applied to

the meshing generation was to ensure periodic boundaries.

(a) L2 norm of error (b) L∞ norm of error

Figure 6.9: REV with vf = 0.05 : Relative error vs. the number of degrees of freedom Ndof .

6.2.2 Influence of the porosity volume fraction

Effective properties have been computed for the above specified discrete interval of characteristic

volume fractions at the observed scale. Numerical results are presented in the Table. 6.2. The

evolution of the different elastic independent coefficients as a function of the volume fraction

is shown in Fig. 6.11, where the legends stand for the indexes of the observed elements of the

stiffness tensor. In this figure, the curves “1111” and “2222” appears to be almost superposed,

suggesting a conservation of these two coefficients, characterizing the on-plane response and a

consequence of the symmetry exhibit by the voids’ shape. In the same fashion, “1313” and

“2323” are almost superposed and then suggesting this conservation but in the outer plane shear

behavior, finally, the same situation can be observed when comparing “1133” and “2233” related
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Figure 6.10: Normalized evolution of the contrast in orthotropic independent coefficients γ̂ vs.
number of degrees of freedom Ndof .

to the second Lamé coefficient λ. The foregoing affirmations are indeed confirmed when observing

the numerical values in the aforementioned table. Regarding the loss of stiffness, “1122”, “1133”,

“2233” and “1212” are found below half of it correspondent matrix magnitude. As mentioned

before, in general, one can conclude that, due to the symmetry of the porosity, the effective

behavior should be transverse isotropic, but it appears as an orthotropic behavior which is a

subtle deviation of a perfect transverse isotropic behavior in consequence of the mesh used to

solve the periodic problem numerically.

vf L̃1111 L̃1122 L̃2222 L̃1133 L̃2233 L̃3333 L̃1212 L̃1313 L̃2323

0.000 6.96 3.89 6.95 3.80 3.80 13.07 1.53 1.66 1.66

0.050 4.26 2.04 4.25 2.20 2.20 11.42 1.25 1.36 1.36

0.075 3.44 1.49 3.44 1.73 1.73 10.84 1.12 1.23 1.23

0.100 2.81 1.09 2.81 1.37 1.37 10.32 0.98 1.11 1.11

0.125 2.30 0.78 2.30 1.08 1.08 9.86 0.86 0.98 0.98

0.150 1.87 0.55 1.86 0.85 0.84 9.43 0.73 0.86 0.86

Table 6.2: Effective elastic (i.e., glassy) constants in GPa for different volume fractions of porosity.

The validation of the computed estimations of the effective behavior will be carried through

comparisons of the macroscopic responses regarding different geometries affecting the periodicity

of the REV. Three different simulation scenario will be presented: i) the distributed bending
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Figure 6.11: Effective orthotropic constants normalized by its correspondent matrix value ( L̃ijkl

L
(m)
ijkl

)

vs. volume fraction (vf ).

case (Fig. 6.12a) in which the body will exhibits a deflection u2 in the negative second principal

direction (i.e. −e2). ii) The distributed horizontal traction case (Fig. 6.12b) with load direction

e1 and comparison field u1. and iii) The pure thermoelastic case (Fig. 6.12c) with comparison

variable still u1 and magnitude of the temperature variation ∆T = 200◦C. One could claim

that the pertinent comparison variable should be the displacement norm as this case causes a

volume variation of the body, the issue to consider such variable is that in some simulations

geometrical simplifications are made then some elements of the displacement vector could be

missing. It must be noted that in all simulations the same kind of Dirichlet boundary conditions

are applied. Finally, regarding the comparisons when the error is referred, it corresponds to the

L2-relative error norm expressed in percentage.

6.2.3 2D periodic mesostructures

Here, some validation tests are performed to ensure the reliability compared to full field simu-

lations with massive structures compared to the REV. For this study, only the lower porosity

volume fraction will be considered (i.e. vf = 0.05). The periodicity of the mesostructures is the

one proposed from the model of the REV (i.e. periodicity conserved in e1 and e2). Therefore,

these tests are equivalent to consider a unidirectional printing trajectory program in each layer

which is constant in the stacking direction e2.
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(a) Distributed bending. (b) Distributed horizontal traction.

(c) Thermoelastic case.

Figure 6.12: Load cases for the benchmarking examples

Cube

For these simulations, a 3D cube with sides 10× 10× 10 mm is considered. The comparisons are

made by considering the displacement response obtained in a linear section that is collinear to the

symmetry axis of the symmetry plane of the mesostructure. The mechanical cases consider the

same uniaxial pressure ∥−→P ∥ = 1 MPa. Three different simulation approaches are implemented.

First, a full homogeneous 3D cube with mechanical properties being the effective properties

previously computed (vf = 0.05) and reported in Table. 6.2. The second is a heterogeneous

domain simulated under the framework of plane strains, with the plane being coplanar to the

symmetry plane of the voids’ geometry (i.e. e1 × e2). The last one is a plane strain simulation

of the symmetry plane but instead of the heterogeneous domain, a homogenized uniform one is

considered.

Distributed bending:

The deflection u2 is used for comparisons. Regarding the reported results in Fig. 6.13a, one can

note the closeness of the computed responses along the middle line, compared to the reference

solution (in green on Fig. 6.13a) the error is considerably small, with reported values: 0.6% with

respect to the 3D homogeneous and 0.9% compared to 2D homogeneous simulation. This shows,

as expected, a good agreement between the full heterogeneous simulations and the homogenized

responses that appears to be almost superposed.

Horizontal traction:

The observed field for comparisons is the horizontal displacement u1 along the middle line of
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the top surface of the cube. Results are reported in Fig. 6.13b. Similarly to the latter case, the

uniaxial traction simulations show a good agreement between the computed responses with an

error of 0.99% with respect to the 3D homogeneous and 0.38% compared to 2D homogeneous

simulation, what is indeed close to the error reported from the bending simulations. Therefore,

the error is consistent when regarding different effective moduli involved in each elementary

loading. The computer errors are very small as expected, and the horizontal displacement appears

as in the above case to be almost superposed when comparing the three cases.
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Figure 6.13: Observed responses of the cube’s middle line: Displacement vs. horizontal coordi-
nate x1
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Thermoelastic response:

This is the case of an evaluation of the response in function to a variation of temperature.

The thermal expansion moduli for the matrix and composite are presented in the Table. 6.1,

recalling from Section 6.1.2 that when porosities are considered as inclusions, the effective thermal

expansion behavior remains the same as the matrix-material of the porous mesoscale. The

considered temperature variation is set to T = 200◦C.Results are reported in Fig. 6.13c. From

this figure, one can note the good agreement between the computed responses, with maximum

L2 relative error norm of 4.61% reported for the 3D case, which confirms the reliability of the

homogenization approach on the computation of the volume variations due to a variation in

temperature. Indeed, one can note from the graph that the greater gaps are presented between

the two simulation scenarios (3D vs. 2D) rather than between homogenized vs. heterogeneous, in

which, such comparison between the two 2D models give a relative error of 1.4%. In conclusion,

this result allows then to sustain and give a favorable conclusion about the accuracy on the

estimation of the macroscopic response.

6.2.4 Non-periodic mesostructures

This study considers the case in which a loss of periodicity is observed. This corresponds to the

case of printing a thin plate or an arrangement of “bi-layers” in which the printing trajectories

are constant every two layers. As can be inferred, the periodicity in the vertical direction (e2)

is no longer hold. However, the effective properties considered for comparisons against full

heterogeneous bodies are the same of the precedent 2D periodic examples, the only change is

made on the magnitude of the uniform distributed pressure, here ∥−→P ∥ = 1 Pa. Therefore, the

main goal is to validate the reliability of those estimations in the present case.

Thin plate

This is the case of a printed thin plate with dimensions 100× 100× 2 mm as it is shown in Fig.

6.15, that can be interpreted as a printed part obtained by superposition of four layers with the

same printing trajectories. Due to the separation of scales between the magnitudes in e1 and e2,

the periodicity in e2 is lost. The simulation scenarios considered in this section are the same of

the precedent cases; the distributed bending and traction, and the thermoelastic case.
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Distributed bending:

The computed vertical displacements u2 for the different simulation approaches are presented in

Fig. 6.14a. From this figure, one can note the marked gap between the reference (heterogeneous)

and homogenized displacement fields. The homogeneous simulations seem to almost overlap for

both 2D and 3D simulations. Concerning the heterogeneous models, the gap between them is

smaller, suggesting a good validation of the 2D simplifications. The error of the 3D simulation

is 3.31%, The error of the 2D shell simulation is 2.73% and for the plane strain simulation, an

error of 2.71%.

Distributed traction:

The computed displacements u1 are reported in Fig. 6.14b. Again, The homogeneous simulations

seem to almost overlap for both 2D and 3D simulations, as well as the heterogeneous fields. The

computed results for the homogeneous simulation show a good agreement. The error of the

3D simulation is 1.84%, The error of the 2D shell simulation is 1.87% and for the plane strain

simulation, an error of 2%. The errors in this case are still in an order of magnitude that makes

the approach a good candidate for a simplification, considering the computational cost of the full

heterogeneous examples in which the quotient between the times of simulation is on the order of

103.

Thermoelastic response:

The observed fields are presented in Fig. 6.14c. The compared responses are still in a good

agreement with the greater error of 3.97% from the shell model, an error of 9.13 · 10−2% for

the 3D homogeneous simulation, and an error of 3.59 · 10−3 % in the case of 2D homogeneous

simulation. In contrast to the pure mechanical cases, the computed heterogeneous responses do

not seem to overlap, showing an error of 4.09% for the 2D generalized plane strain heterogeneous

simulation.

Laminates arrangements

This section considers different arrangement of oriented orthotropic layers, this is, a laminate

with dimensions 100 × 100 × 4 mm. First, let’s admit that a “layer” in the present context

implies the printing of two “sublayers” with the same uniaxial printing direction (which preserves
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Figure 6.14: Mechanical response of the unidirectional laminate’s middle line: Displacement vs.
horizontal coordinate x1

the geometry of the REV). The combinations of tested layers are among, which in laminates

theory is called symmetric and non-symmetric arrangements. Results and conclusions will be

presented for each combination considered. In contrast with the precedent simulations, here only

the thermoelastic load case will be considered as is the one giving the higher error magnitudes,

allowing to observe the computed responses in the more critical scenario while the numerical cost

is reduced. Indeed, the fact that now the laminate has doubled its thickness and considering

the necessary fine meshes around the heterogeneity, the computation time of reference solutions

becomes too important. Anyway, for the sake of comparisons and validations the thermoelastic

case is enough to appropriate analyze the pertinence of the proposed estimation in such cases.
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Results are presented in two forms: the concerned fields for comparisons are plotted for

each arrangement considered in two different locations at the sides of the middle plane of the

laminate located at the vertical coordinate x2 = 2 mm. The “front side” locate at the coordinate

x1 = 100mm relatively placed in the opposite side of the clamped side. And the lateral side,

one of the free sides and located at the coordinate x3 = 100 mm. The results presented in this

section correspond to two cases of volume fraction, the limits of the interval given in the Section.

6.1.1.

The results for the case of vf = 0.05 are presented in the Fig. 6.19 for the symmetric arrange-

ment [0, 90, 90, 0] (see Fig. 6.16), and Figs 6.20 - 6.21 for the non-symmetric cases [0, 90, 0, 90]

(see Fig. 6.17) and [0, 0, 90, 90] (see Fig. 6.18) respectively. Furthermore, in Table. 6.3 an

accumulated of L2 relative errors in percentage form is presented.

When observing the plotted fields in conjunction with the errors table, one can note the good

agreement in most of the computed fields. The non-symmetric arrangements exhibit an almost

superposition of the displacement when regarding the lateral side (x3 = 100) with a maximum

error of 3.05% reported by the case [0, 90, 0, 90]. Similar behavior is observed in the displacement

u3 of the front side, where the maximum error of 1.32% for the [0, 90, 0, 90] case. The displacement

fields u1 and u2 exhibit notable differences when regarding the plots, anyway this observed

differences are low considering the scaling of the vertical axis in the plots, this is confirmed when

the errors are computed which its maximum is 0.83% reported by the laminate [0, 90, 0, 90].

Considering the comparisons between the Laminate simulation (2D) and the homogeneous 3D

simulation, in most of the cases the computed responses are almost superposed, nevertheless,

2D simulations are always closer to the referent solutions suggesting an underestimation of some

effective orthotropic coefficients.

Concerning the symmetric arrangement, as in the cases of the non-symmetric laminates most

of the computed fields show a good agreement, the zero vertical displacement fields u2 in both

lateral and front sides in both, 3D and 2D simulations is a consequence of such arrangements

that prevents the vertical deflection of the laminate during the thermal treatment. For the rest of

the fields, the errors reported are similar to those of the non-symmetric cases, with a maximum

error of 1.69% in the u1 field located in the lateral side.

For the case of volume fraction vf = 0.15, the upper bound of the interval, all cases exhibit

a similar agreement in comparison to the lower bound (i.e., vf = 0.05). In most of the cases,
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Cases Displacement error [%]

Laminates Location u1 u2 u3

2D 3D 2D 3D 2D 3D

Symmetric [0,90,90,0] x1=100 0.20 0.22 - - 1.30 1.33

x3=100 1.38 1.69 - - 0.43 1.13

Non-Symmetric
[0,90,0,90] x1=100 0.22 0.08 0.23 3.05 1.32 1.30

x3=100 0.50 0.11 0.69 3.05 0.20 0.17

[0,0,90,90] x1=100 0.17 0.06 0.20 1.22 1.20 1.20

x3=100 0.52 0.08 0.83 1.20 0.35 0.10

Table 6.3: L2-relative norm of error for observed fields in laminates arrangements with volume
fraction vf = 0.05.

the error reported in the upper bound is greater, suggesting a decrease of the reliability of

the periodic approximation as the porosity characteristic size increases. Fig. 6.22 presents the

computed fields for the symmetric arrangement, and Figs. 6.23 - 6.24 for the non-symmetric

cases. Equivalently Table. 6.4 presents a compilation of the errors obtained from the comparison

between the approximations and the reference solutions.

As pointed out before, when observing the vertical displacement fields u2(x) for the symmetric

arrangements, the approximation shows the nullity of it, a consequence of the disposition of layers

(Fig. 6.22a and Fig. 6.22d) a suitable combination in laminates manufacturing preventing the

residual vertical deformation in the plate, the warping. The rest of the fields in all cases show

a good agreement for both, the 2D and 3D cases. However, as can be inferred considering the

later comment, the higher magnitudes of the L2-relative norm of error are presented always

in the vertical displacement u2 with the highest values in the non-symmetrical arrangement

[0, 90, 0, 90] of the intercalated layers with a maximum error of 11.8% as can be corroborated in

Table. 6.4. Concerning the relative position of 2D and 3D simulations in the plotted figures,

the same situations are hold; in most of the cases, the 2D simulations are closer to the reference

solutions and still suggesting an underestimation of some orthotropic coefficients.

One can note that the approximations obtained by means of the periodic homogenization

framework causes a loss of accuracy as the volume fraction increases. Indeed, if the volume

fraction tends to zero (i.e., approaching to a homogeneous solid) the solution will converge to the
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exact solution. In contrast, as the volume fraction of voids increases the heterogeneous nature

of the solid increases and then, the method is less reliable in predictions. However, regarding

the interval of interest, the relative error computed from the output fields can be considered as

a good approximation of the actual behavior for engineering applications. This conclusion will

be faced against experiments in further sections.

Cases Displacement error [%]

Laminates Location u1 u2 u3

2D 3D 2D 3D 2D 3D

Symmetric [0,90,90,0] x1=100 1.38 1.25 - - 1.53 1.49

x3=100 1.26 1.36 - - 1.15 0.85

Non-Symmetric
[0,90,0,90] x1=100 0.98 1.22 8.06 11.80 1.91 1.87

x3=100 1.00 1.26 7.13 10.81 1.53 1.62

[0,0,90,90] x1=100 0.43 0.55 1.79 3.25 1.37 1.38

x3=100 0.34 0.57 1.13 2.58 1.19 0.92

Table 6.4: L2-relative norm of error for observed fields in laminates arrangements with volume
fraction vf = 0.15.

Figure 6.15: Thin plate Abaqus geometry vf = 0.05.
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Figure 6.16: Plate [0, 90, 90, 0] Abaqus geometry vf = 0.05.

Figure 6.17: Plate [0, 90, 0, 90] Abaqus geometry vf = 0.05.

Figure 6.18: Plate [0, 0, 90, 90] Abaqus geometry vf = 0.05.
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Figure 6.19: displacement fields, symmetric laminate [0, 90, 90, 0], vf = 0.05.
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Figure 6.20: displacement fields, non-symmetric laminate [0, 90, 0, 90], vf = 0.05.
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Figure 6.21: displacement fields, non-symmetric laminate [0, 0, 90, 90], vf = 0.05.
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Figure 6.22: displacement fields, symmetric laminate [0, 90, 90, 0], vf = 0.15.
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Figure 6.23: displacement fields, non-symmetric laminate [0, 90, 0, 90], vf = 0.15.
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Figure 6.24: displacement fields, non-symmetric laminate [0, 0, 90, 90], vf = 0.15.
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6.3 Thermo-viscoelastic macroscopic response

This section presents an application case considering the full thermo-viscoelastic behavior. The

computational model considers layer-oriented mesostructure. First, a numerical exploration is

envisaged.

6.3.1 Numerical settings

This section considers the cooling of a 3D printed plate under controlled variation of temperature

inside the printing chamber. The printing temperature of the reference material, the commer-

cial high performance thermoplastic Ultem®1010, is around 355◦C. As this primal experience

is purely numerical, the starting temperature of the simulations is set to T (0) = 250◦C that

corresponds to Tg + 30◦C, 30◦C above the glass transition temperature Tg. The study of this

interval is still representative of the cooling, as we already have shown in [4]. For the sake of

simplicity, only one quart of the plates will be studied traduced by symmetry conditions on the

symmetry surfaces with normal vectors on the plane of the printing bed. In terms of boundary

conditions the started point consider a plate that is completely relaxed over the surface of the

printing bed, traduced by a zero displacement in the direction of the outed normal of the printing

bed, further time steps allows the displacement in every direction while holding the zero vertical

displacement in one of the edges of the bottom plane of the thin plate, allowing to capture the

deflection of the plate until it reaches room temperature.

A first virtual experiment: two computational domains

In this section, a first source of validation is given. This will consider the simulation of an idealized

heterogeneous domain as a reference solution. As the head of the section specifies, here the actual

behavior of the printed part is considered for simulation, in other words the thermo-viscoelastic

case. the microscale properties taken are representative of a real material, yet they’re artificial,

and these properties are indeed characterized by the fitted thermoviscoelastic laws presented in

Fig. 6.4. The pores volume fraction is set to 5%. The thin plate cooling considers the plate as a

unique domain of simulation, the presence of other elements in the real context is represented on

the boundary conditions presented above. The total variation of temperature is maintained too,

and the evolution from the start to the ending temperature is defined as linear, with cooling rate
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of 2.25◦C/s. As can be inferred, this experience allows evaluating the validity of the meso-macro

scale transition on the predictions of the target phenomena.

In Figs. 6.25-6.26 we can observe the distributions of the vertical displacement (i.e., deflec-

tion) in both, the heterogeneous, being the reference solution, and the homogenized model in

which we use the output from Section 6.1.3. Both distributions look very similar, with marked

differences close to the place in which we impose the boundary conditions (close to the bottom

edge is easily observed). The distributions shown below are those of the final step of the 100

seconds simulations of the cooling of the part.

(a) Heterogeneous model. (b) Homogenized model.

Figure 6.25: Vertical displacement distribution u2, isometric view.

(a) Heterogeneous model. (b) Homogenized model.

Figure 6.26: Vertical displacement distribution u2, front view.

In Fig. 6.27 we can observe the differences between the vertical displacement of the middle

line on the front plane of the plate, which is indeed representative of the whole interval of the

vertical displacement. The curves are very close with a L2 error of 4.29% and a maximum gap of

0.21 mm at the center of the middle line, recalling that this gap is a consequence of the mechanical

estimation of the macroscopic behavior as the thermal dilatation behavior is preserved in the

meso-macro transition due to the presence of the porous phase at the mesoscale (see Section
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6.1.2). These observations validate the pertinence of such simulations on homogenized models

instead of the full heterogeneous, considering that the separation of scales in the size of the

porosity compared to the length of the edge of the plate (approx. 1/100) imposes a high number of

elements for the discretization task, affecting the total time of the simulation. The heterogeneous

domain with around 3× 106 elements and an execution time of 76 hrs, computations performed

on HPC services on 2 nodes with a total RAM of 256 GB and 100 cores. while the homogeneous

domain with 5× 103 elements and an execution time of 41 mins, computation of a local machine

with 128 GB of RAM and 16 cores. We can see the drastic decrease on time of computation of

the homogeneous computations that is about 111 times lower with a compromise of 4.29% on the

accuracy. We then can conclude that this virtual experiment successfully show the advantage of

the homogenization process and considering that we have started from a homogeneous matrix at

the mesoscale, indeed the computation of the full multiscale plate would be much more expensive.
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Figure 6.27: Comparison vertical displacement u2, middle line of the front plane.
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6.3.2 Experimental validation

This final section is in fact our first trial testing the methodology presented in the previous

content in a real but controlled scenario. In summary, we will attempt to predict the deflection

of a 3D printed thin plate made of glass fiber reinforced PEI Ultem 1010 with matrix properties

identified in Chapter 2. The argument behind the thin plate verification test is that the hypoth-

esis of uniform temperature distribution during the printing program is still admissible, which

simplifies the need to calculate the temperature field for each material point during the printing

simulations restricting the computation of the residual stress to the solution of the thermome-

chanical boundary value problem. The reader is maybe concern about how this assumption will

at some point obscure the objective analysis of the approximation given by our methodology,

since the errors will contain information not only about the deviation of the estimated behavior

with respect to actual observations, but also about the deviation caused by this physical as-

sumption. We recognize this concern and we in fact feel the same; but as we were limited by the

experimental facilities and the experimental data, there was indeed not other choice to achieve

such a first attempt, arguing that this is one of the most exciting parts of this kind of activities,

when we can confront our predictions with nature.

Materials and Methods

As we have just said before, the material used in the experiments is the PEI Ultem 1010 from

Sabic®, and we have devoted an entire chapter, Chapter 2, to the experimental identification

of the target properties needed to describe the thermo-viscoelastic behavior of an amorphous

polymer that follows the mathematical structure presented in Chapter 1. For now, the only

information concerning the microstructure description of the reinforced filament is the volume

fraction given by the supplier, which is 30% of short glass fibers. The glass fibers properties

are extracted from literature and data sheets as its properties remain constant in the range of

temperatures at which the polymer matrix is functional for engineering applications, this can be

confirmed by considering that the glass transition temperature is close to 1000 ◦C compared to

216 ◦C of the polymer matrix.

About the 3D printer that we use to obtain the thin plate, the machine is a high temperature
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3D printer from QUALUP SAS, the Qu3 HT1 (see Fig. 6.28), from the vendors we know that this

machine is specially designed to print parts with high performance polymers, the PEI included.

a picture of the printer is shown below.

Figure 6.28: Picture of 3D printer used to obtain the thin. On the left side (a) the closed view,
and (b) the open view showing the indoor retractable printing chamber in red.

This specialized 3D printer is able to print up to 500 ◦C, has a chamber temperature able to

hold up to 270 ◦C and a printing bed holding up to 250 ◦C. Other special features include a drying

chamber controlling the amount of water in the air surrounding the filament and offering a drying

program to be set before printing to prevent hygroscopic strains during the printing and high

resolution. If the reader is interested in more information about the hardware of this machine,

the Qualup website presents an interactive environment that allows a virtual observation of the

components in detail.

As we have been discussing throughout the present work, the nature of the constitutive mate-

rial of the printed part being the composite filament, and due to the manufacturing process itself,

the printed part exhibits multiple scales of heterogeneity (see Fig. 2). Regarding the prediction

of residual stresses, if we aim to solve such multiscale problem numerically, the computation

cost of such operation is too important and grows exponentially with the volume of the printed

part. We then use the fact that in an engineering context, at the macroscopic scale at which we

measure events, the local fluctuations of the fields are mostly negligible compared to the mean
1https://qualup.com
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macroscopic observable behavior, suggesting the pertinence of continuum approximations of such

material fields supporting the idea of implementing a homogenization procedure to find an ap-

propriate continuum substitute of the actual material that exhibits an equivalent macroscopic

response. Recalling this, we then need to compute this homogeneous equivalent material, and

this is what we have done in the previous chapters, represented by a two-step homogenization

methodology. Here we follow Chapter 4 for the estimation of the effective behavior of the com-

posite filament (the microscale) and the previous content of the present chapter dedicated to the

estimation of the effective behavior of the mesoscale using as input the homogenized version of

the reinforced thermoplastic filament.

The effective behavior of the reinforced filament

The first step of the homogenization procedure is to give an appropriate mathematical descrip-

tion of the microstructural parameters, according to Chapter 4 this is done by estimating the

distributions of the orientations and lengths of the glass fibers. To do this, we need to zoom

in on the filament samples and map the state of each fiber in the sample. as can be inferred,

we can not perform these observations with common tools, we then use 3D reconstruction of

CT-scans acquisitions performed on the fiber reinforced filament with a voxel size of 2.67 µm.

The imager has a resolution of 1920 × 1536 pixels. The device used is the EasyTom XL Ultra

150/160 (µCT) manufactured by RX Solutions2. This is in fact the same scanner that we used

in Chapter 4, in earlier observations of the filaments. These specifications show that this device

is sufficient to map the heterogeneities in the filament, as the size of a single fiber with respect

to the short axis is about 10µm.

At this point we should discuss an important fact: if we consider that the target material is

that of a 3D printed part, with this logic, a 3D printed part is not made of raw filaments but

printed filaments. Our previous observations were focused on raw filaments, which opens the

possibility that perhaps the analytical distributions previously chosen in Chapter 4 are no longer

suitable to describe the new distribution of microstructural parameters in the printed filament

and, first, to verify that there is indeed an actual important variation in such distributions. let’s

take a look at how these two filaments look like. The figure below is an example of a sectional

view of a 3D reconstruction of a couple of filaments samples before and after passing through
2https://www.rx-solutions.com
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the printing nozzle.

Figure 6.29: Sectional views of the 3D reconstruction of filament samples.

There are several things that we can say from Fig. 6.29: i) There is a non-negligible reduction

in the diameter of the filament (≈1.75 mm), in fact the nozzle diameter is about 2.5 times smaller

compared to the raw filament’s diameter. ii) On the left side, looking at the raw filament, we

can clearly see that the axial direction of the filament is indeed the predominant direction that

the fibers follow, in the transverse view (on top) we see the fibers almost as points ergo in the

axial view (bottom) they appear almost aligned with the long axis. This is no longer the case

when we look at the image of the right side, in the transverse view we no longer see points, but
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short lines, suggesting a higher level of disorder, which is confirmed in the axial view, where

the population of “aligned” fibers decreases. iii) A third phase appears, this is that of porosity.

In fact the observation of the presence of porosity has been observed in the previous scans,

but in a first time this was addressed as a purely technological problem in the context of the

present project expecting to improve the filament fabrication avoiding the presence of porosity

in the filament as it causes loss of rigidity (“what we earn with fibers is lost in porosity”). In

the end this difficulty has not been overcome, then we are forced to consider this phase at this

scale. It should be noted that the presence of the porous phase is also true for non-reinforced

filaments, of course the presence of the fibers has an influence on the porosity volume fraction

and distribution, unfortunately these observations were not made during this project and our

observation were restricted to only two samples. In the following table, we present the volume

fraction data extracted from the post-processing of the scans.

Raw filament Extruded Filament

Glass fibers 0.28 0.25

Porosity 0.07 0.09

Table 6.5: Computed phase’s volume fraction of the reinforced filament 3DXTECH PEI Ul-
tem1010 30% GF

In the Table 6.5, we observe a decrease in the concentration of the fibers and an increase of

the porosity. We could explain this by the fact that there is this important reduction of diameter

during the extrusion of the filament. In fact, as the filament is pushed out of the nozzle at some

given printing velocity, that consequence of the pressure exerted on the filament by the printer

head, the trajectory of the filaments can be modified, in any case, since this fused filament holds

a non-negligible viscosity at the printing temperature this variation should not be important,

the most important variation in the trajectory of the fibers is indeed the geometry of the nozzle

itself, which will force the fibers to move from the nice initial filament aligned direction. This

change in trajectories will also affect the porosities, which will easily flow inside the filament

forming clusters, giving in consequence bigger porosities in the printed filament compared to the

group of porosities of the raw filament which max diameter is close to the fibers short axis (see

Fig. 6.29). Let’s now take a look at the distribution of the lengths. In the same fashion of

Chapter 4 the length distribution is analyzed through the aspect ratio w = l/d, with l being the
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length of the fiber and d its diameter. The distributions are presented in the form of probability

density (or relative frequency) histograms PDF, and the cumulative frequency plots or CDF.

(a) Raw filament. (b) Extruded filament.

Figure 6.30: Aspect ratio distributions.

From Fig. 6.30 we can see how the population of intermediate values of w decreases from

left to right, the maximum relative frequency (PDF histograms) is now located in the lower

interval. In addition, we observe how the population of high aspect ratio is drastically reduced

in the extruded filament, represented by a jump in the relative frequency on the right side of

the histogram; in fact, the population of aspect ratios greater than 30 completely disappears,

this can be directly observed in the cumulative plots (in orange) looking at the maximum of

the curves. We could think about a possible breaking event of some fibers while crossing the

nozzle length, that could be generated by the intersection of fibers close to the outside due to

the reduction of diameter, which at some point will block their displacement, forcing them to

break as a consequence of the pressure applied by the extruder. What we can say that is similar

in the two graphs is that the majority of fibers are located in the interval with a maximum value

of w = 20. The other microstructural parameter, completing the microstructure description of

the glass fibers.

In Fig. 6.31 above, we confirm the observations in the Fig. 6.29, the peak of the relative

frequencies are around θ = 0◦, ϕ = 0◦ which reflects that the majority of fibers are aligned with

the long axis of the filament. If we now look at the figure on the right side, the distribution of

orientations of the extruded filament appears to have a significant deviation with respect to the
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(a) Raw filament. (b) Extruded filament.

Figure 6.31: PDF for orientation distributions.

altitude angle ϕ, and a slight deviation for the azimuth angle θ, then for the extruded filaments

we see a population with fibers preserving a single degree of alignment with respect to the long

axis of the filaments reflecting that during the printing process the fibers locally rotate in planes

that are parallel to the median plane of the filament.

With this, we close the microstructural description of the fibers. The reader is maybe won-

dering about the identification of the appropriate candidate for the analytical representation of

the above presented distributions; in fact, since the data we have analyzed was obtained from

a single observation there is no statistical meaning of such distributions as it lacks of trial re-

dundancy. In any case, as we aim to present an example of an approach to a real case, the

pertinence of such tests remains in force. Then, instead of fitting an analytical distribution, we

will perform numerical integration for the computation of the distribution averaged localization

tensor A∗(f)
⋆ from Chapter 4, necessary for the computation of the effective fourth order relax-

ation tensor L̃∗, and the effective second order tensor of thermal creep functions α̃∗, by means

of a mean-field homogenization procedure recalling that this is performed in the context of the

extension of the correspondence principle to continuous variations of temperature presented in

the aforementioned chapter and published in [4].
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Considering that Chapter 4 contains enough information for the homogenization procedure

of the reinforced filament and considering the microstructural description presented before, we

will not make any more comments on this part, and we will directly present the predictions of

the effective behavior obtained using for the material properties of the matrix those identified in

chapter 2.

Experimental protocol

In this part, we address the comparison of the proposed methodology in actual 3D printed

parts using a standard printing velocity of 60 mm/min with a nozzle temperature of 350◦C.

As we have pointed out above, the target scenario considers thin plates. The printed chamber

allows controlling the cooling of the part, this experience considered three different linear cooling

programs (from 220◦C to 25◦C) for three different plates, the first case considers a rapid cooling,

the second a medium cooling of 4 hours and the last one a very slow cooling of 3 days expected to

be the one exhibiting the lower deflection. The dimensions of the printed plates are 200×200×1.6

mm. The plates’ printing directions are equivalent to those presented in the previous virtual

experiments, i.e., the non-symmetric [0, 0, 90, 90] plate. The experimental measurement was

conducted using the Aramis 3D-DIC facility to determine the deflection of the middle line of

the front plane of the plate. In Fig. 6.32 we can observe the good agreement of the simulations

compared to the experimental observations with a maximum error of 12.8%, 7.86% and 13.5%

for the three cases.

Figure 6.32: Comparison vertical displacement u2, middle line of the front plane.
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Conclusion

In general, at the end of each chapter we have presented a set of local conclusions, considering

this, we will address the last comments regarding the last chapter in conjunction with the previous

ones as this last section include an experimental validation of the entire methodology, that is

indeed the one giving the first information about the actual applicability of the proposed workflow

for the estimation of the residual stress distribution in a 3D printed composite part.

To be able to compute the effective behavior at the macroscale we need to be able to describe

mathematically each target property. Since the heterogeneous medium is characterized by three

phases: a polymer matrix, short glass fibers and voids, the only non-trivial behavior to describe

was the matrix material, considered as thermo-viscoelastic. In chapter 2 we have presented the

outputs from the experimental identification of such properties.

Most observations happened to be in coherence with industrial datasheets and experimental

observations conducted by external sources. Despite this apparent coherence, we observe some

difficulties during confined compression tests and dilatation tests, first trials were performed by

external contractors who failed to perform such measurement on injection molded plates. These

measurements are not overcame challenges and were limited by budget and the lack of expertise

available to perform it. We therefore conclude that it is pertinent to design an appropriate

standard procedure to measure such properties in the context of FDM 3D printing, in addition

properties as shear and tensile time-temperature dependent behavior should be considered as

being affected by the manufacturing process used to obtain the samples and the direct application

must be judged considering its influence.

Chapter 4, and chapter 5 presents the methodology to derive the effective properties of the

microscale, i.e., the scale of the composite filament reinforced with elastic fibers for both, a ther-

morheologically simple and a thermorheologically complex polymer, showing a good agreement
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with respect to the proposed reference solutions, and a clear advantage in terms on computation

cost. In terms of contextualization of the application envisaged here, chapter 4 considers short

fibers properties distributions fed from micro-CT scans, which allows ensuring a high fidelity

description of the fibers phase since the target material for validation experiments is a ther-

morheologically simple polymer (PEI Ultem 1010). In this chapter we have done a couple of

observations that deserve to be mention:

First, when considering SPC or single polymer composites in which the other phases exhibit

invariance of properties in the range of temperature of the study, the time temperature super-

position principle (represented by the shift factor aT ) for the composite will remain the same

as the matrix, this is currently validated by experimental campaign that we are preparing for

publication.

Second, in chapter 2 we have chosen a non-trivial representation of the isotropic thermal

dilatation coefficient of the polymer matrix, this representation can be observed as an analogy

of a compliance coefficient, this representation is more appropriate as it describes better the real

behavior of the polymer. Considering the homogenization procedure followed, it turns out that

despite the choice made for the dilatation coefficient (elastic or viscoelastic-like) the behavior

of the effective dilatation coefficients of the transverse isotropic thermo-viscoelastic medium

will always match the mathematical structure chosen in this work, this validates partially the

pertinence of such choice on the identification of properties for the experiments.

Finally, in chapter 6 we perform the second upscaling. We must mention that, this step of the

upscaling could become really difficult to handle in function of the printing program in terms

of the distribution of plane trajectories serving to obtain the 3D volume of the printed part.

In the present thesis, we have chosen a simplified scenario that allows us to conduct validation

experiments of the proposed method, we then consider unidirectional plane trajectories allowed

to change each layer. Moreover, we chose some combinations of this plane trajectories lying in

variations of 90° with respect to the first deposed layer. This allowed us to study the 3D printing

part, as we used to do in the case of stratified materials in the classic thermoset plies. Numerical

comparisons shown the good agreement of the homogenized behavior when comparing against

heterogeneous computational domains.
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Furthermore, experiments shown an additional argument to the pertinence of these approxima-

tions. The computed values happened to be very close to its real counterparts. This primal

observation encourages the justification of the extension of the present study, trying to describe

better the physical parameters to obtain better approximations, since these results suggests that

the mathematical structure of the thermo-viscoelasticity theory in conjunction with the homoge-

nization theory by means of the correspondance principle is a suitable description for predicting

deformation and stresses in 3D printed parts in the context of mechanical engineering.

Extension to arbitrary plane directions is the next step for improving the upscaling procedure. In

general, the methodology introduced here represents a clear advantage for the virtual prototyping

of 3D printed parts in mechanical design, presenting a reasonable simulation scenario for parts

that gives the possibility of optimization of parts without implying the waste of materials and

production time.



176

Appendix A

Mathematical tools

A.1 Convolution Product

The convolution product is a mathematical operation that combines two functions into a single

function, often used in the context of signal processing, system response analysis, and probability

theory. Given two functions f(t) and g(t), their convolution, denoted by (f ∗ g)(t), is defined as

follows:

[f ∗ g](t) =
∫ ∞

−∞
f(τ)g(t− τ) dτ (A.1)

The variable τ is a dummy variable of integration. The convolution operation possesses several

important mathematical properties, including:

1. Commutativity:

[f ∗ g](t) = [g ∗ f ](t) (A.2)

2. Associativity:

[(f ∗ g) ∗ h](t) = [f ∗ (g ∗ h)](t) (A.3)

3. Distributivity:

[f ∗ (g + h)](t) = [f ∗ g](t) + [f ∗ h](t) (A.4)
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4. Scalar Multiplication:

[c(f ∗ g)](t) = [cf ∗ g](t) = [f ∗ cg](t) (A.5)

A.2 Stieltjes Convolution Product

Stieltjes convolution is a mathematical concept related to functional analysis and probability

theory. The Stieltjes convolution arises from the combination of a non-decreasing function, typ-

ically a distribution function of a probability measure, and another function. The concept is

named after the Dutch mathematician Thomas Joannes Stieltjes, who made significant contri-

butions to various fields of mathematics in the late 19th century. The Stieltjes convolution of

a non-decreasing function F (usually a cumulative distribution function) and a function g is

defined as:

[f ⊛ g](t) =

∫ ∞

−∞
f(τ)dg(t− τ) (A.6)

Stieltjes convolution is often encountered in probability theory, where F represents the cu-

mulative distribution function of a probability measure, and g represents a function related to

the problem at hand. In such cases, the Stieltjes convolution is used to analyze the sum of

independent random variables or the behavior of certain stochastic processes. If we consider for

instance the Stieltjes convolution product as the derivative of the conventional convolution, we

can write:

[f ⊛ g](t) =
d

dt

∫ ∞

−∞
f(τ)g(t− τ)dτ =

∫ ∞

−∞
f(τ)

dg(t− τ)

dt
dτ =

∫ ∞

−∞
f(τ)dg(t− τ) (A.7)

by means of the commutativity property of the convolution product this definition is sufficient

proof to transfer the rest of the properties of the classic convolution product to the Stieltjes

convolution product these are:

1. Commutativity:

[f ⊛ g](t) = [g ⊛ f ](t) (A.8)
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2. Associativity:

[(f ⊛ g)⊛ h](t) = [f ⊛ (g ⊛ h)](t) (A.9)

3. Distributivity:

[f ⊛ (g + h)](t) = [f ⊛ g](t) + [f ⊛ h](t) (A.10)

4. Scalar Multiplication:

[c(f ⊛ g)](t) = [cf ⊛ g](t) = [f ⊛ cg](t) (A.11)

where c is a constant scalar.

A.2.1 Derivative Properties of Stieltjes Convolution

Differentiation under the integral sign

When dealing with the derivatives of Stieltjes convolution, it is essential to consider differentiating

under the integral sign. Suppose f and g differentiable functions, and its partial derivative with

respect to t exists and is continuous. Then, using Leibniz’s rule for differentiation under the

integral sign, we can differentiate the Stieltjes convolution with respect to t:

d[f ⊛ g](t)

dt
=

∫ ∞

−∞
f(τ)

d2g(t− τ)

dt2
dτ =

∫ ∞

−∞

df(t− τ)

dt

dgτ

dτ
dτ (A.12)

General properties of the derivative of Stieltjes convolution

Some general properties of the derivative of Stieltjes convolution. If f , g , and h are continuous

differentiable functions, then:

1. Linearity:

d

dt
[(f + h)⊛ h] (t) =

d[f ⊛ g](t)

dt
+

d[g ⊛ h](t)

dt
(A.13)
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2. Commutativity:

d[f ⊛ h](t)

dt
=

d[h⊛ f ](t)

dt
(A.14)

3. Chain rule:

d[f ⊛ (g ⊛ h)](t)

dt
= [f ⊛

d(g ⊛ h](t)

dt
) (A.15)

These properties can be helpful in simplifying expressions and solving problems involving the

derivatives of Stieltjes convolutions. The Stieltjes convolution operation can be also interpreted

as a measure of the interaction or overlap between the two functions f(t) and g(t). In the

context of probability theory, the Stieltjes convolution of two cumulative distribution functions

represents the cumulative distribution function of the sum of two independent random variables.

The properties of the Stieltjes convolution mentioned above also hold for the discrete case, with

the integral replaced by a summation:

(f ⊛ g)(n) =
n∑

m=0

f(m)∆g(n−m) (A.16)

where ∆g(n−m) = g(n−m)− g(n−m− 1).

A.3 Laplace-Carson Transform

A.3.1 Introduction

The Laplace-Carson transform is an extension of the classic Laplace transform. It is widely used

in the analysis of linear time-invariant systems and the solving of ordinary and partial differential

equations.

A.3.2 Classic Laplace Transform

The classic Laplace transform is defined as:

L{f(t)}(p) =
∫ ∞

0
e−ptf(t)dt (A.17)
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where f(t) is a given function of time t, and p is a complex variable.

A.3.3 Laplace-Carson Transform

The Laplace-Carson transform is defined as:

LC{f(t)}(p) = p

∫ ∞

0
e−ptf(t)dt (A.18)

A.3.4 Connection to the Classic Laplace Transform

LC{f(t)}(p) = pL{gf(t)}(p) (A.19)

A.3.5 Properties of the Laplace-Carson Transform

1. Linearity: The Laplace-Carson transform is a linear operation. If f(t) and g(t) are functions

with Laplace-Carson transforms F (p) and G(p), respectively, and a and b are constants, then:

LC{af(t) + bg(t)}(s) = aF (p) + bG(p) (A.20)

2. Time scaling: If a is a positive constant, then:

LC{f(at)}(p) = 1

a
F
(p
a

)
(A.21)

3. Frequency scaling: If a is a positive constant, then:

LC{eatf(t)}(p) = F (p− a) (A.22)

4. Time shifting: If t0 is a constant, then:

LC{f(t− t0)}(s) = e−pt0F (p) (A.23)

5. Differentiation in the time domain: If f ′(t) is the derivative of f(t) with respect to time

t, then:

LC{f ′(t)}(p) = pF (p)− f(0−) (A.24)
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6. Integration in the time domain: If F (p) is the Laplace-Carson transform of f(t), then the

Laplace-Carson transform of the integral of f(t) is given by:

LC
{∫ t

−∞
f(τ)dτ

}
(p) =

F (p)

p
(A.25)

7. Convolution theorem: If f(t) and g(t) are functions with Laplace-Carson transforms F (p)

and G(p), respectively, then the Laplace-Carson transform of their Stieltjes convolution is given

by:

LC{[f ⊛ g](t)}(p) = F (p)G(p) (A.26)

These properties of the Laplace-Carson transform can be helpful in simplifying expressions

and solving problems in various fields, such as control theory, signal processing, and differential

equations.

A.4 Decomposition of Fourth-Order Tensors Using Orthogonal

Fourth-Order Projectors

In the context of continuum mechanics and material science, fourth-order tensors are often used

to describe the elastic properties of materials. To simplify the analysis and computation involving

fourth-order tensors, it’s helpful to decompose them using orthogonal fourth-order projectors. In

this appendix, we will discuss the decomposition of a fourth-order tensor Aijkl into its isotropic

and deviatoric parts using the fourth-order identity tensor Iijkl and orthogonal projectors Jijkl

and Kijkl. First, let’s define the fourth-order identity tensor Iijkl as follows:

Iijkl =
1

2
(δikδjl + δilδjk) (A.27)

where δij is the Kronecker delta. Now, let’s define the orthogonal projectors Jijkl and Kijkl:

Jijkl =
1

3
δijδkl, (A.28)

Kijkl = Iijkl − Jijkl. (A.29)
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The projector Jijkl projects the tensor onto its hydrostatic part, while the projector Kijkl projects

it onto its deviatoric part. Using these projectors, we can decompose the fourth-order tensor

Aijkl into its hydrostatic and deviatoric parts:

Aijkl = ahJijkl + adKijkl. (A.30)

Here, ah and ad are scalar coefficients representing the hydrostatic and deviatoric contributions

of the tensor Aijkl. They can be computed as follows:

ah =
1

9
Aijij , (A.31)

ad = Aijkl − ahJijkl. (A.32)

In summary, the decomposition of a fourth-order tensor using orthogonal projectors allows us to

separate the isotropic and deviatoric parts, simplifying the analysis and computation involving

these tensors.

A.5 Transversely isotropic elasticity tensors and matrix repre-

sentation

The explicit form of the Hill basis tensors for a given symmetry axis orientation (n) is presented

below.

N = n⊗ n, Θ = I −N ,

H(1)(n) =
1

2
Θ⊗Θ, H(2)(n) = Θ⊗N , H(3)(n) = N ⊗Θ, H(4)(n) = N ⊗N ,

H(5)(n) =
1

2
(ΘikΘlj +ΘilΘkj −ΘijΘkl) ,

H(6)(n) =
1

2
(ΘikNlj +ΘilNkj +ΘjkNli +ΘjlNki) .

(A.33)

With ⊗ representing the tensor product.

Transversely isotropic elasticity tensors are written in Hill basis as:

L = 2KH1 + ℓ(H2 +H3) + nH4 + 2mH5 + 2µH6 =
6∑

b=1

l(b)H(b), (A.34)
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where:

• K is the plane strain bulk modulus.

• m is the transverse shear modulus: (m = G23 if n = e1).

• µ is the longitudinal shear modulus: (µ = G12 = G13 if n = e1).

• ℓ and n can be linked to the “engineering” constants, e.g if n = e1:

ℓ/2K = ν12, n− ℓ2/K = E1. (A.35)

In 6× 6 matrix representation (Voigt notations), taking n = e1, one has [165]

LVoigt =




L11 L12 L12 0 0 0

L12 L22 L23 0 0 0

L12 L23 L22 0 0 0

0 0 0 (L22 − L23)/2 0 0

0 0 0 0 L55

0 0 0 0 0 L55




=




n ℓ ℓ 0 0 0

ℓ K +m K −m 0 0 0

ℓ K −m K +m 0 0 0

0 0 0 m 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ




.

(A.36)

Using “engineering” coefficients (e.g. (E1, E2, ν12, G12, G23)) the associated compliance matrix

is:

SVoigt =




1
E1

−ν12
E2

−ν12
E2

0 0 0

−ν21
E1

1
E2

−ν32
E2

0 0 0

−ν21
E1

−ν32
E2

1
E2

0 0 0

0 0 0 1
G23

0 0

0 0 0 0 1
G12

0

0 0 0 0 0 1
G12




, (A.37)

where ν21 is determined by the symmetry requirement ν21/E1 = ν12/E2.
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For completely isotropic materials, one has:

LVoigt =




λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ




, so that





K = λ+ µ = κ+
1

3
µ

ℓ = λ = κ− 2

3
µ

n = λ+ 2µ = κ+
4

3
µ

m = µ

(A.38)

where we used λ = κ− 2µ/3.

A.5.1 Products of tensors in Hill basis

Double product “:” N Θ

H(1) 0 Θ

H(2) Θ 0

H(3) 0 2N
H(4) N 0

H(5) 0 0

H(6) 0 0

Table A.1: Product between fourth-order Hill basis tensor and second-order tensor of the natural
basis of transverse isotropic tensors.

By Table. A.1, the product between fourth- and second-order transverse isotropic tensors is:

T : t = (T4t1 + 2T3t2)N + (T2t1 + T1t2)Θ. (A.39)

A.5.2 Orientation averaged Hill basis

By Eq. (A.33) it is noted that the orientation averaging of the Hill basis is reduced to the

computation of the second and fourth order orientation tensors, interpreted as the second and

fourth order moments of the orientation distribution respectively [110]. the expressions of the

orientation tensors are presented below.

η2 =

∫

S
fn(n)(n⊗ n)dS, η4 =

∫

S
fn(n)(n⊗ n⊗ n⊗ n)dS. (A.40)
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The explicit forms of the orientation averaged Hill basis reads

H(1)
⋆ =

1

2
[I2 ⊗ I2 − I2 ⊗ η2 − η2 ⊗ I2 + η4] , H(2)

⋆ = I2 ⊗ η2 − η4, H(3)
⋆ = η2 ⊗ I2 − η4

H(4)
⋆ = η4, H(5)

⋆ =
1

2
[2I4 − λ− I2 ⊗ η2 + I2 ⊗ η2 + η2 ⊗ I2 + η4] , H(6)

⋆ =
1

2
λ− 2η4

λijkl = (I2)ik(η2)jl + (η2)ik(I2)jl + (I2)il(η2)jk + (η2)il(I2)jk.

(A.41)

A.6 Orientation tensors for Advani-Tucker law

By Eq.A.40, the orientation tensors in matrix notation corresponding to the Advani-Tucker law

for the axisymmetric distribution, can be computed as follows:

η2 =
1

mAT + 3




mAT + 1 0 0

0 1 0

0 0 1




η4 =
1

(mAT + 3)(mAT + 5)




(mAT + 1)(mAT + 3) (mAT + 1) (mAT + 1) 0 0 0

(mAT + 1) 3 1 0 0 0

(mAT + 1) 1 3 0 0 0

0 0 0 1 0 0

0 0 0 0 (mAT + 1) 0

0 0 0 0 0 (mAT + 1)




(A.42)
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A.7 Parameters identification

The Laplace-Carson transform of a relaxation moduli tensor L∗, gives the steady-state response

to a harmonic loading by considering the change of variable p = jω, with ω being the circular

velocity of the harmonic loading [45, 122]. This is why identification methods developed for

this kind of harmonic loading (e.g. DMA tests) are implemented to estimate the coefficients

of an equivalent Prony-series representing the effective thermo-viscoelastic behavior from the

generated data.

Let m(t) be a given relaxation modulus (an element of L(t)), and m∗(p) its correspon-

dent Laplace-Carson transform. The identification of the coefficients of m(t) begins with the

approximation of the discrete characteristic time distribution. This is achieved by using the

Krein-Nudelman method [7]. After this, the associated coefficients are computed from a classic

mean-squares procedure. The methodology to approximate Prony-series is presented as follows:

Given the frequency data: {ωi, m̂i}, with m∗
i = m′

i + jm′′
i , and its conjugate form m̂i, with

i ∈ [1, I]. Find an approximation for τn, Nτ and mn, that are the discrete time distribution and

its size, and the coefficients associated to each characteristic time, respectively:

• Build the following square matrices:

M1
kl = j

m̂k −m∗
l

ωk + ωl
, M2

kl =

m̂k
ωk

+
m∗

l
ωl

ωk + ωl
. (C.1)

• Compute the eigenvectors λ1 and λ2 associated to the null space of M1 and M2, then

compute the following two functions:

f1(s) =
I∑

i=1

λ1
i

s+ jωi
, f2(s) =

I∑

i=1

λ2
i

s+ jωi
. (C.2)

• Discretize f1 and f2 considering s as a frequency variable lying in the same range of {ωi/2π}.

Then, find numerically the common real positive zeros (sn) corresponding to the discrete

characteristic times of the relaxation modulus m(t):

τn = (sn)
−1, n ∈ [1, Nτ ] (C.3)
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• Build the following rectangular matrices:

A1
in =

(ωiτn)
2

1 + (ωiτn)2
, A2

in =
ωiτn

1 + (ωiτn)2
(C.4)

• The associated moduli are computed by solving the following minimization problem:

{mn} = argmin
(
||A1.{mn} − {m′

i}||+ ||A2.{mn} − {m′′
i }||
)

(C.5)

(a) On-plane shear relaxation modulus. (b) On-plane compressibility relaxation modulus.

(c) relaxation modulus related with the axial be-
havior n. (d) On-plane thermal creep function.

Figure A.1: Identification examples using Krein-Nudelman method.
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Appendix B

Formulations

B.1 State equations

The following derivations of a linear theory of thermo-viscoeslasticity are obtained from Suquet

2003 [65] and Christensen 1982 [43] expressed locally for a given point of the continuous medium.

Let’s start by introducing the first principle of thermodynamics for continuum mechanics, ex-

pressed locally and called the local balance of energy equation with time derivatives in Newton’s

notation:

ρė = σ · ε̇−∇ · qth + r, (C.1)

with e the internal energy, σ is the second order stress tensor, the heat flux vector qth and

an external heat source r, and ∇ the nabla differential operator. Now we write the entropy

inequality from the second principle of thermodynamics :

ρT ṡ+∇ · qth − qth
∇T

T
− r ≥ 0, (C.2)

with s the entropy, and T > 0 the positive temperature. Finally, we rewrite this equation by

introducing the Helmholtz free energy w = e− Ts and Eq.C.1:

σ · ε̇− ρ(ẇ + Ṫ s)− qth
∇T

T
≥ 0. (C.3)
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As the free energy is not only a functional of the strain history, but the temperature history too,

then it can not be considered as a linear functional. For a suitable form of the free energy for

a thermo-viscoelastic transformation, we use the form proposed by Christensen. For continuous

smooth real functions ε(t) and T (t), with asymptotic values defined as ε(t) → 0 and T (t) → T0

as t → −∞. Applying the Stone-Weierstrass theorem, a real functional w(t) of ε(τ) and T (τ)

∈ −∞ < τ ≤ t, may be uniformly approximated by a polynomial in a set of real linear continuous

functionals. Finally, by means of the Riesz representation theory, the linear functionals are

expressed in terms of Stieltjes integrals with bounded integrating functions. Similarly to [5]

these functionals are built as it is done in the case of the stress functionals in the isothermal

viscoelastic case. Introducing θ(t) as the instantaneous variation of temperature with respect

to a reference state T0, and assuming infinitesimal variations of ε(τ) and θ(t)
T0

, the polynomial

expansion to the second order, presented similarly in [166] give the following form with all

material properties being causal functions:

ρw = ρw0 + σ0 · ε− ρs0θ +
1

2
L⊛ ε⊛ ε− L⊛α⊛ ε⊛ θ − 1

2
m⊛ θ ⊛ θ, (C.4)

with w0 the mean free energy, σ0 the initial stress, s0 the initial entropy, L the fourth order re-

laxation tensor, α the second order thermal expansion coefficient tensor and m the heat capacity.

By using Eq.C.4 in Eq.C.3, and noting θ̇(t) = Ṫ (t), the entropy inequality becomes:

(σ − σ0 + L⊛ ε+ L⊛α⊛ θ) · ε̇+(ρs− ρs0 + L⊛α⊛ ε+m⊛ θ) θ̇+ϕ−qth
∇T

T
≥ 0. (C.5)

With ϕ being the dissipation potential. As the above inequality must hold for arbitrary values

of ε̇ and θ̇, the terms associated to them in Eq.C.5 must vanish and the inequality takes the

following form:

ϕ− qth
∇T

T
≥ 0, (C.6)

with the explicit form of the dissipation potential :

ϕ = −1

2
L̇⊛ ε⊛ ε+ ˙L⊛α⊛ ε⊛ θ +

1

2
ṁ⊛ θ ⊛ θ. (C.7)
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Now, we introduce a suitable constitutive law for the heat flux qth using the Fourier law of

heat conduction in a hereditary form without doing any prior assumption about the form of the

second order conductivity tensor λ:

qth = −λ⊛∇θ. (C.8)

The constitutive equations of stress and entropy become:

σ = σ0 + L⊛ ε− L⊛α⊛ θ (C.9)

ρs = ρs0 + L⊛α⊛ ε+m⊛ θ. (C.10)

Considering the last expressions we can rewrite C.1, the balance of energy equation in a suitable

form to be integrated in a code, noting that as it is indicated in the linear theory the second

order terms are neglected (i.e., the dissipation ϕ takes no role in the balance of energy equation),

this expression reads:

ρr − T0
∂

∂t
[L⊛α⊛ ε+m⊛ θ] +∇ · (λ⊛∇T ) = 0. (C.11)

B.2 Mean-field models

Here, the explicit forms of the localization tensors A∗(r) used in the computation of its distribution

averaged form A∗(f)
⋆ after Eqs. (4.10)-(4.13), are presented. Recalling the explicit form of the

latter:

A∗(f)
⋆ =

∫

S

∫ wmax

wmin

fw(w)fn(n)A(r)(w,n)dwdS (C.12)

Localization tensors for the implemented mean-field schemes:

All mean-fields approximations are based on Eshelby’s equivalent inclusion method, whose results

and notations are summarized. Consider an ellipsoidal domain Ω(r) embedded in an infinite

matrix with elastic tensor L(m), supporting a constant internal stress (or polarization) τ so that
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the total stress is σ(r) = L(m) : ε(r) + τ , where ε(r) is the total strain inside the inclusion. Then

this strain is found to be constant and equal to:

ε(r) = −P(r)
0 : τ (C.13)

where P(r)
0 is Hill’s tensor, and depends on the matrix moduli and the inclusion’s shape. Now

consider that the domain Ω(r) supports an inhomogeneity characterized by the elastic tensor L(r),

and is submitted to a strain field ε0 uniform at infinity. Then, writing σ(r) = L(r) : ε(r) = L(m) :

ε(r) + (L(r) − L(m)) : ε(r), i.e. introducing the polarization τ = (L(r) − L(m)) : ε(r), applying the

previous formula (C.13) one obtains by superposition

ε(r) = ε0 − P(r)
0 : (L(r) − L(m)) : ε(r) (C.14)

and finally,

ε(r) = A(r)
0 : ε0, A(r)

0 =
[
I+ P(r)

0 : (L(r) − L(m))
]−1

. (C.15)

where A(r)
0 is the localization tensor of the inclusion Ω(r) embedded in the matrix L0. Both

Hill and localization tensors’ expressions are given in [46] for a wide variety of inclusion shapes.

The localization tensor A(r)
0 is used in the dilute approximation, or Eshelby’s model, valid only

for very low volume fractions of inclusions where interactions between inclusions are negligible.

For higher volume fractions, these interactions must be accounted for, as proposed by various

authors.

Mori–Tanaka (MT) model: As reformulated by [116], in this model the mean inclusion

strain is linked to the mean matrix strain (rather than the total mean strain) through Eshelby’s

method. This results in the following localization tensor:

A(r)
MT = A(r)

0 :

[
(1−

R∑

r=2

c(r))I+
R∑

r=2

c(r)A(r)
0

]−1

, (C.16)

where c(r) is the inclusion’s volume fraction.
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Lielens’ model: This model, introduced in [117], results from an interpolation between two

bounds of the effective properties: (i) the lower Hashin and Shtrikman bound (corresponding to

the MT model), and (ii) an upper bound, obtained by inverting the properties and geometries

of matrix and fibers. The resulting localization tensor is:

A(r)
Lie = A(r)

:
[
(1−

R∑

r=2

c(r))I+
R∑

r=2

c(r)A(r)
]−1

, where A(r)
=

[
(1− ηL)

[
A(r)
0

]−1
+ ηL

[
A(r)

inv

]−1
]−1

,

(C.17)

where A(r)
inv is the tensor given by Eq. (C.15) by inverting the matrix’ and inclusion properties,

and ηL being the interpolation factor depending on the volume fraction. Lielens proposes to use:

ηL =
1

2
c(r)(1 + c(r)), (C.18)

a choice that was validated by subsequent studies.

Interaction direct derivative (IDD) model: This model, introduced by [119, 118], comes

from a double inclusion approach whereas a micromechanical analysis is performed by considering

a matrix cell Ω(r)
D of ellipsoidal geometry surrounding each inclusion Ω(r), itself surrounded by the

effective medium. After some simplifications, the resulting concentration tensor for an inclusion

is:

A(r)
IDD = A(r)

0 :

[
I−

R∑

r=2

c(r)P(D,r)
0 : (L(r) − L(m)) : A(r)

0

]−1

, (C.19)

As pointed out by [119] and recently recalled by [109], the IDD model is in fact a general

formulation that embeds (i) the MT model when each cell has the same geometry as its related

inclusion (i.e. P(D,r)
0 = P(r)

0 ), and (ii) the Ponte-Castañeda and Willis (PCW) model from [167]

when all cells are identical and their shape characterizes the distribution of inclusions’ centers

(i.e. P(D,r)
0 = P(D)

0 ).
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Appendix C

Material properties

C.1 Coefficients Prony series PEI

Shear asymptotic modulus: µ∞ = 2.15144E− 3[GPa]

τ (s)[s] µ(s)[GPa] τ (s)[s] µ(s)[GPa]

1.86106E− 16 5.50504E− 3 1.60598E− 5 1.09662E− 2

2.65620E− 15 2.72850E− 2 3.22285E− 5 6.54471E− 2

2.70558E− 14 2.18342E− 2 6.85867E− 5 1.62457E− 3

1.42154E− 13 1.73939E− 2 2.17260E− 4 3.02228E− 2

8.59014E− 13 2.06096E− 2 5.43851E− 4 8.85832E− 2

5.18800E− 12 1.99604E− 2 1.15473E− 3 6.12456E− 3

1.28381E− 11 7.59394E− 2 3.27703E− 3 1.33240E− 2

3.85035E− 11 1.91562E− 3 6.64477E− 3 1.22330E− 2

1.20921E− 10 1.32797E− 2 2.99903E− 2 1.57701E− 1

3.73680E− 10 2.20416E− 2 7.03850E− 2 1.00220E− 1

9.81748E− 10 9.86862E− 2 1.41247E− 1 1.39123E− 1

2.08930E− 9 2.42285E− 3 2.98868E− 1 5.97401E− 2

4.81393E− 9 1.17004E− 2 5.89495E− 1 2.14813E− 1

1.28086E− 8 2.62035E− 2 2.75728E + 0 7.07200E− 2

5.93937E− 8 2.80566E− 2 3.76461E + 1 4.31203E− 3

2.55706E− 7 2.05670E− 2 4.58902E + 2 1.67077E− 3

1.01681E− 6 1.67201E− 2 4.40271E + 3 1.09030E− 3

4.51066E− 6 1.51982E− 2 1.62263E + 4 3.35492E− 4
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Tensile asymptotic modulus: E∞ = 5.47523E− 5[GPa]

τ (s)[s] E(s)[GPa] τ (s)[s] E(s)[GPa]

1.33536E− 7 6.96934E− 1 1.46363E− 1 2.19751E− 1

2.74057E− 6 2.54842E− 1 3.93581E− 1 2.46437E− 1

1.89461E− 5 3.30656E− 1 6.60085E− 1 1.27470E− 1

5.32907E− 5 1.69354E− 1 2.43162E + 0 5.43388E− 2

1.46561E− 4 2.84952E− 1 2.03044E + 1 1.36716E− 2

3.50631E− 4 1.54908E− 1 1.24321E + 2 2.86498E− 3

9.42875E− 4 4.23297E− 1 2.68082E + 3 2.59890E− 3

2.65207E− 3 1.88516E− 1 2.00954E + 4 2.22848E− 3

6.78747E− 3 4.00527E− 1 1.25839E + 5 1.89358E− 3

1.74495E− 2 2.77064E− 1 6.61267E + 5 3.93338E− 4

4.95245E− 2 3.98659E− 1 4.35087E + 6 3.08895E− 5
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C.2 Material properties: Study of the effective properties of the

microscale

Fibers’ mechanical properties are assumed to be constant: κ = 39.733[GPa], µ = 29.05[GPa]

and

α = 2.21E − 5[1/◦C].

Matrix coefficients for the reference master-curves are presented below:

Glassy moduli: κg = 4.23879[GPa], µg = 1.23968[GPa]

τ (u)[s] κ(u)[GPa] µ(u)[GPa]

1.4211E− 11 0.0284181 0.0284181

7.2697E− 11 0.0341941 0.0273223

3.7188E− 10 0.0920182 0.0255737

1.9024E− 9 0.172648 0.0237469

9.7315E− 9 0.268286 0.0222851

4.9782E− 8 0.366893 0.0214578

2.5466E− 7 0.452075 0.0214489

1.3027E− 6 0.505714 0.0224768

6.6640E− 6 0.514237 0.0249357

3.4089E− 5 0.47587 0.0296341

1.7439E− 4 0.402704 0.0383457

8.9208E− 4 0.314523 0.055318

4.5634E− 3 0.229389 0.0917189

0.0233442 0.158053 0.174055

0.119418 0.103904 0.274284

0.610883 0.0656627 0.187685

3.12498 0.040106 0.0904041

15.9858 0.0237646 0.0485919

81.7757 0.0136966 0.0302413

Glassy modulus: αg = 5.98536E− 5[1/◦C]
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τ (s)[s] α(s)[1/◦C] τ (s)[s] α(s)[1/◦C]

1.09402E− 16 6.43788E− 7 1.48477E− 3 1.63691E− 6

4.96202E− 16 6.54383E− 7 6.73427E− 3 1.62182E− 6

2.25056E− 15 6.74554E− 7 3.05438E− 2 1.59023E− 6

1.02075E− 14 7.03568E− 7 1.38533E− 1 1.54303E− 6

4.62970E− 14 7.40899E− 7 6.28327E− 1 1.48174E− 6

2.09983E− 13 7.86106E− 7 2.84982 1.40840E− 6

9.52393E− 13 8.38741E− 7 12.9255 1.32544E− 6

4.31964E− 12 8.98259E− 7 58.6247 1.23550E− 6

1.95920E− 11 9.63950E− 7 265.896 1.14129E− 6

8.88601E− 11 1.03487E− 6 1205.99 1.04541E− 6

4.03035E− 10 1.10980E− 6 5469.85 9.50225E− 7

1.82799E− 9 1.18721E− 6 24808.9 8.57797E− 7

8.29098E− 9 1.26525E− 6 112522 7.69789E− 7

3.76043E− 8 1.34181E− 6 510353 6.87463E− 7

1.70557E− 7 1.41451E− 6 2.31474E + 6 6.11684E− 7

7.73572E− 7 1.48087E− 6 1.04987E + 7 5.42952E− 7

3.50859E− 6 1.53837E− 6 4.76174E + 7 4.81461E− 7

1.59134E− 5 1.58461E− 6 2.15972E + 8 4.27147E− 7

7.21765E− 5 1.61749E− 6 9.79554E + 8 3.79766E− 7

3.27361E− 4 1.63530E− 6 4.44283E + 9 3.38943E− 7
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Appendix D

Scripts

D.1 MFTVEH_Pkg : Mathematica package for mean-field Ho-

mogenization of thermo-viscoelastic SPC composites

D.2 Linear Thermo-viscoelasticity: Abaqus subroutines

https://github.com/cas91010491/MFTVEH_Pkg_V2.git
https://github.com/cas91010491/Thermo-viscoelastic_ABAQUS.git
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