

1 **Supplemental Material: Molecules in Environments: Toward Systematic Quantum**
 2 **Embedding of Electrons and Drude Oscillators**

3 Matej Ditte,^{1,*} Matteo Barborini,^{1,†} Leonardo Medrano Sandonas,¹ and Alexandre Tkatchenko^{1,‡}

4 ¹*Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg*

Table I. Parametrization of the quantum Drude oscillators used in this work.

	q	ω	μ
Ar [70]	1.3314	0.7272	0.3020
Kr [70]	1.3741	0.6359	0.2796
Xe [70]	1.3570	0.5152	0.2541
H ₂ O ^a [73]	1.1973	0.6287	0.3656

^a The full water QDO model consists also of two point charges centered respectively on the hydrogen atoms (with charge $q_H = 0.605$) and on the point M near to the oxygen (with charge $q_M = -1.21$).

5 **PARAMETRIZATION OF THE QDOS**

6 The parametrization of the QDO models used in this
 7 work are reported in the Tab. I.

8 In order to avoid numerical instabilities due to the di-
 9 vergence of the potential energy near the cusps, one way
 10 to proceed is to introduce cusp functions in the Jastrow
 11 factor of the trial wave function, forcing the correct can-
 12 cellation of the divergence of the potential through the
 13 kinetic component between QDOs and between QDOs
 14 and electrons. For now we have decided to proceed in
 15 a simpler manner following the work of Martyna and
 16 coworkers [73], in which the divergence of the Coulomb
 17 potentials is avoided through the introduction of a cut-
 18 off function that screens the short-range divergence of the
 19 potential. For both QDO-QDO and El-QDO interactions
 20 we have used a damping function of the form [73]:

$$V(r_{ij}) = \frac{q_i q_j}{r_{ij}} \operatorname{erf}\left(\frac{r_{ij}}{\sqrt{2}\sigma_{ij}}\right), \quad (1)$$

21 where σ_{ij} is specified for all pairs using the combination
 22 rule $\sigma_{ij} = \sqrt{\sigma_i^2 + \sigma_j^2}$. The single particle damping pa-
 23 rameters σ were set to 0.1 for all particles except in the
 24 case of QDO model of water where for the center of the
 25 QDO it is fixed to $\sigma = 1.2$. [73]

26 The functional form of the short-range repulsion is
 27 shown in the Eq. 2, where we used $N = 2$ for both dimers
 28 and both QDO-QDO and El-QDO system. The fitted
 29 parameters can be found in the Tab. IV.

$$V_{rep}(R) = \sum_{i=1}^N a_i e^{-b_i R} \quad (2)$$

30 **PARAMETRIZATION OF THE EL-FF**

31 We have used TIP3P model of water with $q_O = -0.834$
 32 and $q_H = 0.417$ [123]. For the VdW part we use a
 33 Lennard-Jones type pairwise function, of the form:

$$EV_{dW}(R_{ij}) = \frac{A_{ij}}{R_{ij}^{12}} - \frac{C_{ij}}{R_{ij}^6}, \quad (3)$$

34 where the parameters are defined through the combination
 35 rules $A_{ij} = \sqrt{A_i A_j}$ and $C_{ij} = \sqrt{C_i C_j}$, being $A_i = 4\epsilon_i \sigma_i^{12}$
 36 and $C_i = 4\epsilon_i \sigma_i^6$.

37 These vdW parameters, originally optimized for ben-
 38 zine dimer interacting with water, were taken from the
 39 Ref. 124 and can be found in the Tab. II.

Table II. Parametrization of the pairwise vdW part of the El-FF used in this work.

	ϵ [kcal/mol]	σ [Å]
C ₆ H ₆	0.0700	3.5500
H ₆ C ₆ H ₆	0.0300	2.4200
O _{H₂O}	0.1521	3.1507
H _{H₂O}	0.0460	0.4000

40 **HAMILTONIAN OF TWO DIPOLE COUPLED
 41 QDOS AND ITS EXACT SOLUTION**

42 The Hamiltonian of two QDOs with equal parametriza-
 43 tion $\{q, \omega, \mu\}$ in the dipole approximation has the form

$$\hat{H}^{dip} = \sum_{i=1}^2 \left[-\frac{1}{2\mu} \nabla_{\mathbf{r}_i^d}^2 + \frac{1}{2} \mu \omega^2 \left| \mathbf{r}_i^d - \mathbf{R}_i^O \right|^2 \right] + V^{dip}(\mathbf{r}_1^d, \mathbf{r}_2^d), \quad (4)$$

44 with two-body dipole coupling

$$V^{dip}(\mathbf{r}_1^d, \mathbf{r}_2^d) = \frac{q^2}{R^5} \times \left[R^2 (\mathbf{r}_1^d \cdot \mathbf{r}_2^d) - 3 (\mathbf{r}_1^d \cdot \mathbf{R}) (\mathbf{r}_2^d \cdot \mathbf{R}) \right], \quad (5)$$

45 where $\mathbf{R} = \mathbf{R}_1^O - \mathbf{R}_2^O$ and $R = |\mathbf{R}|$.

46 This Hamiltonian can be directly diagonalized and its
 47 ground state wave function has the form of the *Ansatz*
 48 Ψ_d from the main text. Here it is important to note
 49 that, despite the same functional form of the wave func-
 50 tion, when this *Ansatz* is used for QDOs interacting via

51 full Coulomb potential, the final energy contains multi-
 52 polar contributions, beyond the solution of \hat{H}^{dip} . The
 53 reason is that the elements of the coupling matrix in Ψ_d
 54 are independently optimized, allowing spatial symmetry
 55 breaking that goes beyond the Gaussian exact solution
 56 of the dipole Hamiltonian in eq. 4.

57 An exact ground state energy of the Hamiltonian \hat{H}^{dip}
 58 as a function of the distance between two QDOs R shifted
 59 by the sum of the energies of non-interacting fragments
 60 (E_0) is written as

$$E^{dip}(R) = E^+(R) + E^-(R) - E_0 \quad (6) \quad 77$$

61 where

$$E^\pm(R) = \frac{\omega}{2} \left(2\sqrt{1 \pm \frac{q^2}{\mu\omega^2 R^3}} + \sqrt{1 \mp \frac{2q^2}{\mu\omega^2 R^3}} \right) \quad (7)$$

62 and $E_0 = 2 \times \frac{3}{2}\omega$ is the energy of two non-interacting
 63 QDOs.

64 HAMILTONIAN OF INTERACTING NUCLEI, 65 ELECTRONS, QDOS AND POINT CHARGES

66 The total Hamiltonian of interacting system containing
 67 N_n atomic nuclei, N_e electrons, N_d QDOs and N_p point
 68 charges, defined by positions, charges and indices of the
 69 corresponding QDO ($\{\mathbf{R}_i^p, Q_i, p_i\}_{i=1}^{N_p}$), has the form

$$\hat{H}^{tot} = \hat{H}^e + \hat{H}^d + \hat{V}_{int}^{d-e}, \quad (8)$$

70 where \hat{H}^e is the standard electronic Hamiltonian describ-
 71 ing the interaction between the electrons and the atomic
 72 nuclei, \hat{H}^d is the drudonic Hamiltonian containing also
 73 the interactions between the QDOs and point charges

$$\begin{aligned} \hat{H}^d = & \sum_{i=1}^{N_d} \hat{h}_i^d(\mathbf{r}_i^d) + \sum_{i=1}^{N_d} \sum_{j>i}^{N_d} \frac{q_i q_j}{|\mathbf{R}_i^O - \mathbf{R}_j^O|} + \\ & + \sum_{i=1}^{N_d} \sum_{j>i}^{N_d} \frac{q_i q_j}{|\mathbf{r}_i^d - \mathbf{r}_j^d|} - \sum_{i=1}^{N_d} \sum_{\substack{j=1 \\ p_j \neq i}}^{N_p} \left(\frac{q_i Q_j}{|\mathbf{r}_i^d - \mathbf{R}_j^p|} - \frac{q_i Q_j}{|\mathbf{R}_i^O - \mathbf{R}_j^p|} \right), \end{aligned} \quad (9)$$

74 with

$$\begin{aligned} \hat{h}_i^d(\mathbf{r}_i^d) = & -\frac{1}{2\mu_i} \nabla_{\mathbf{r}_i^d}^2 + \frac{1}{2} \mu_i \omega_i^2 \left| \mathbf{r}_i^d - \mathbf{R}_i^O \right|^2 - \\ & - \sum_{j \neq i}^{N_d} \frac{q_i q_j}{|\mathbf{r}_i^d - \mathbf{r}_j^d|}. \end{aligned} \quad (10)$$

75 The \hat{V}_{int}^{d-e} term contains extra interactions between the
 76 electrons/nuclei and the point charges

$$\begin{aligned} \hat{V}_{int}^{d-e} = & \sum_{i=1}^{N_e} \sum_{j=1}^{N_d} \left(\frac{q_j}{|\mathbf{r}_i^e - \mathbf{r}_j^d|} - \frac{q_j}{|\mathbf{r}_i^e - \mathbf{R}_j^O|} \right) + \\ & + \sum_{i=1}^{N_n} \sum_{j=1}^{N_d} \left(\frac{Z_i q_j}{|\mathbf{R}_i^n - \mathbf{R}_j^O|} - \frac{Z_i q_j}{|\mathbf{R}_i^n - \mathbf{r}_j^d|} \right) - \\ & - \sum_{i=1}^{N_e} \sum_{j=1}^{N_p} \frac{Q_j}{|\mathbf{r}_i^e - \mathbf{R}_j^p|} + \sum_{i=1}^{N_n} \sum_{j=1}^{N_p} \frac{Z_i Q_j}{|\mathbf{R}_i^n - \mathbf{R}_j^p|}. \end{aligned} \quad (11)$$

78 MAPPING OF THE WATER MOLECULES ONTO 79 QDOS

80 The QDO model of water, introduced in Ref. 73, is
 81 mapped onto the particular geometries of the molecules
 82 in the cages. Two point charges are at the positions of
 83 the hydrogen atoms. The third point charge is at the M
 84 point, which is placed 0.2667 Å from the oxygen atom in
 85 the HOH plane with $\angle \text{HOM} = \frac{1}{2} \angle \text{HOH}$.

86 DETAILS ON THE QUANTUM MONTE CARLO 87 CALCULATIONS

88 Variational Monte Carlo

89 We have generalized the variational Monte Carlo
 90 (VMC) algorithm [63, 65] to integrate a mixed system
 91 of drudons and electrons. In our approach, the two sets
 92 of particles are diffused particle-by-particle in random
 93 order always starting from all the electrons, followed by
 94 all the drudons, according to the Metropolis-Hastings al-
 95 gorithm [85, 86]. Each particle's trial move is proposed
 96 according to a 3-dimensional Gaussian transition proba-
 97 bility centered on the initial particle's position and with
 98 standard deviation dt_e for the electrons and of dt_d for
 99 the drudons. The two standard deviations are optimized
 100 separately for the two particle types by automatically
 101 converging the acceptance probability of the moves to
 102 the value of 50%, which is the classical rule of thumb
 103 that has the purpose of lowering the correlation between
 104 configurations. This procedure is repeated until \mathcal{N} con-
 105 figurations are sampled.

106 Within this VMC scheme, it is also possible to opti-
 107 mize the trial wave function through energy (or variance)
 108 minimization. In this work, the set of parameters is opti-
 109 mized through the Stochastic Reconfiguration procedure
 110 described in Refs. 109, 110 with the use of the Correlated
 111 sampling technique [87] in order to increase sensitivity
 112 within the range of the rather small energy differences
 113 that are usually involved in dispersion interactions.

114 **Trial wave function and variational parameters**

115 As discussed in the main text the total variational wave
 116 function of the mixed system of electrons and drudons is
 117 factorized in three parts:

$$\Psi_{tot} = \Psi_e(\bar{\mathbf{r}}^e) \Psi_d(\bar{\mathbf{r}}^d) \mathcal{J}_{e-d}(\bar{\mathbf{r}}^e, \bar{\mathbf{r}}^d), \quad (12)$$

118 that are respectively the pure electronic $\Psi_e(\bar{\mathbf{r}}^e)$, pure
 119 drudonic $\Psi_d(\bar{\mathbf{r}}^d)$ and the interaction $\mathcal{J}_{e-d}(\bar{\mathbf{r}}^e, \bar{\mathbf{r}}^d)$ parts.

120 In this work the pure electronic wave function

$$\Psi_e(\bar{\mathbf{r}}^e) = \det[\mathbf{S}(\bar{\mathbf{r}}^e)] \mathcal{J}_{e-e}(\bar{\mathbf{r}}^e) \quad (13)$$

121 is constructed as a Slater determinant $\det[\mathbf{S}(\bar{\mathbf{r}}^e)]$ times
 122 a Jastrow factor $\mathcal{J}_{e-e}(\bar{\mathbf{r}}^e)$ that describes the many-body
 123 interactions between electron and nuclei. The molecu-
 124 lar orbitals that define the elements of the Slater matrix
 125 $\mathbf{S}(\bar{\mathbf{r}}^e)$ are written as linear combinations

$$\varphi_k(\mathbf{r}) = \sum_{q=1}^Q c_q^k \phi_q(\mathbf{r}) \quad (14)$$

126 of Q contracted Gaussian type orbitals $\phi_q(\mathbf{r})$ centered
 127 only on the nuclei of the electronic system and not on the
 128 oscillators' centers. The form of the electronic Jastrow
 129 factor is similar to the one described by Marchi *et al.* in
 130 Ref. 88, 89, and is written as the exponential of a sum of
 131 two terms

$$\mathcal{J}_{e-e}(\bar{\mathbf{r}}^e) = e^{\mathcal{J}(\bar{\mathbf{r}})} = e^{\mathcal{J}_2(\bar{\mathbf{r}}) + \mathcal{J}_{3/4}(\bar{\mathbf{r}})}. \quad (15)$$

132 that are respectively a pure homogeneous two-body
 133 $\mathcal{J}_2(\bar{\mathbf{r}})$ term and a three/four-body inhomogeneous term
 134 $\mathcal{J}_{3/4}(\bar{\mathbf{r}})$.

135 The homogeneous two-body Jastrow describes the par-
 136 ing of electronic coordinates

$$\mathcal{J}_2(\bar{\mathbf{r}}) = \sum_{j>i=1}^{N_e} f_{ee}(r_{ij}), \quad (16)$$

137 where the f_{ee} function is defined as the sum of a cusp
 138 function and a linear combination of Gaussian functions

$$f_{ee}(r_{ij}) = \begin{cases} -\frac{1}{4b_0^p(1+b_0^p r_{ij})} + \sum_{n=1}^N b_n^p e^{\zeta_n^p r_{ij}^2} & \text{undist.} \\ -\frac{1}{2b_0^a(1+b_0^a r_{ij})} + \sum_{n=1}^N b_n^a e^{\zeta_n^a r_{ij}^2} & \text{dist.} \end{cases}. \quad (17)$$

139 The $\mathcal{J}_{3/4}$ term in the Jastrow factor is derived from
 140 the construction of the geminal function of electron cou-
 141 ples $\sum_{q,p=1}^Q \gamma_{qp} \chi_q(\mathbf{r}_i) \chi_p(\mathbf{r}_j)$, as introduced by Sandro
 142 Sorella [88]

$$\mathcal{J}_{3/4} = \sum_{j>i=1}^{N_e} \sum_{q,p=1}^Q \gamma_{qp} \chi_q(\mathbf{r}_i) \chi_p(\mathbf{r}_j). \quad (18)$$

143 The γ_{qp} parameters define the coupling of non-
 144 normalized atomic orbitals $\chi_q(\mathbf{r})$ that can be centered on

145 the same atom (defining three-body terms) or on differ-
 146 ent atoms (four body terms). These terms are necessary
 147 to recover the dynamical correlation between electronic
 148 pairs, suppressing nonphysical charge fluctuations [90].

149 Here we do not recall the pure drudonic wave func-
 150 tion and the electron-drudon Jastrow correlation func-
 151 tion that are described in the main text. We just want to
 152 specify that in our optimizations the wave function's pa-
 153 rameters that are optimized are namely: all the Jastrow
 154 parameters for the electronic part of the wave function,
 155 while for the drudonic wave function and the coupling
 156 Jastrow between the electronic and drudonic system we
 157 optimize all the coefficients of the matrices \mathbf{A} and \mathbf{B} .

158 **Diffusion Monte Carlo**

159 In order to generalize the diffusion Monte Carlo [91, 92]
 160 (DMC) algorithm to integrate both particle types at the
 161 same time, the main change consists on a modification of
 162 the Langevin dynamics of the particles, to include also
 163 the different masses.

164 Thus, during the drift/diffusion process we update
 165 the particles' positions with a particle-by-particle scheme
 166 such that from time step m to $m+1$ we will have

$$\mathbf{r}_i^{(m+1)} = \mathbf{r}_i^{(m)} + \frac{\delta\tau}{\mu_i} \tilde{\mathbf{v}}_i(\bar{\mathbf{r}}^{(m)}) + \sqrt{\frac{\delta\tau}{\mu_i}} \boldsymbol{\eta}, \quad (19)$$

167 where $\boldsymbol{\eta}$ is a 3-dimensional vector of random variables
 168 extracted with a Gaussian distribution with zero mean
 169 value and unitary variance, and $\tilde{\mathbf{v}}_i(\bar{\mathbf{r}}^{(m)})$ is the drift ve-
 170 locity rescaled according to the procedure introduced by
 171 Umrigar *et al.* [93] to avoid divergences near the nodal
 172 surface.

173 For the systems described at the electronic level, we
 174 substitute the core electrons with the ccECP pseudopo-
 175 tentials [94–97], which are integrated with the Deter-
 176 minant Locality approximation (DLA) [98] in which the
 177 non-local operator is projected only on the Slater deter-
 178 minant part of the many-body wave function and not on
 179 the Jastrow factor. For the electronic systems and the
 180 mixed system, we also introduce an energy cut-off using
 181 Zen's correction [99] with a parameter set to $\alpha = 0.2$.
 182 For pure QDO systems, no cut-off has been used since
 183 the systems don't include nodes.

184 **COMPUTATIONAL DETAILS**

185 To construct the wave functions of the electronic sys-
 186 tems we employ ccECP effective core potentials [94–97]
 187 with the corresponding (aug)-cc-pVDZ Gaussian basis
 188 sets for the Ar and water dimers and cc-pVTZ for every-
 189 thing else. The molecular orbitals are obtained from DFT
 190 calculations using the PBE0 functional [122] in GAMESS

Table III. Number of walkers and the total number of steps per walker used for the DMC calculations. The settings for the El-FF approach are identical to those used for the El-QDO one.

	# of walkers	# of steps
QDO-QDO		
Ar ₂	25600	100000
(H ₂ O) ₂	25600	200000
El-QDO		
Ar ₂	153600	200000
(H ₂ O) ₂	102400	40000
Orthobenzyne		
Mol. in vacuum	13440	800000
Mol. in 4 waters cage	13440	550000
Mol. in 4 waters QDO cage	15360	800000
Mol. in 30 waters QDO cage	13440	800000
QDO cages	10080	320000
Benzene dimer (50 waters cage)		
Monomers	15360	320000
Dimer	15360	320000
QDO cage	15360	320000
Monomers in QDO cage	15360	320000
Dimer in QDO cage	15360	320000

191 (2016 R1) [100] and Orca 5.0 [101] codes. The dynam-
 192 ical Jastrow factor is built from 3s2p1d uncontracted
 193 Gaussian-type orbitals (GTOs) for all the heavy atoms
 194 and from 2s1p GTOs for the Hydrogen atoms.

195 The DMC calculations have been carried out with a
 196 fixed time step of $\delta\tau = 0.005$ a.u. for all systems, which
 197 was chosen after careful convergence tests. The statis-
 198 tics used for all DMC calculations in this paper can
 199 be found in the Tab. III. The reference PBE0+TS and
 200 PBE0+MBD calculations on the large water cluster have
 201 been done with the FHI-aims package [102] using the
 202 tight basis set.

204

WATER CAGES

205 The geometry of the T-shaped benzene dimer in the
 206 50W cage is taken from Ref. 121 and the cage has been
 207 expanded by 1.5 Å from the center, with preserved ori-
 208 entations. A picture of the final cage is shown in the
 209 Fig. 1.

210 4W and 30W cages used for the orthobenzyne were
 211 obtained by scanning over a large number of randomly
 212 generated geometries with oxygens randomly placed on
 213 a sphere of radius 6 Å centered at the center of the or-
 214 thobenzyne. The minimal distance between oxygens was
 215 set to 3 Å. The OH distances and HOH angles were fixed
 216 to 0.958 Å and 104.4° respectively and the orientation of
 217 the HOH plane was generated randomly. The final cages
 218 were the ones maximizing the change of the singlet-triplet
 219 gap compared to the gap in vacuum. Pictures of the final
 220 cages with 4 and 30 water are shown in Fig. 2 and Fig. 3.

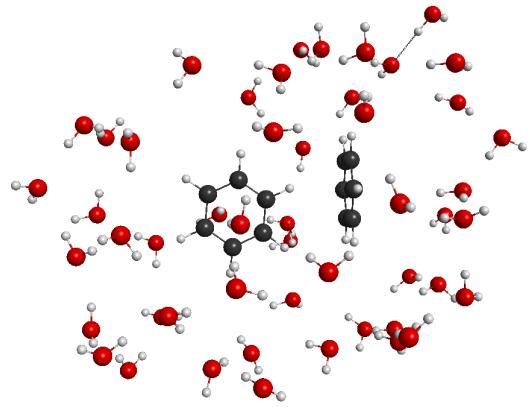


Figure 1. T-shaped benzene dimer in a cage of 50 water molecules [121] with the 1.5 Å shift. The minimal distance between the cage and the benzene dimer is 3.4 Å. The same cage has been used for both monomers.

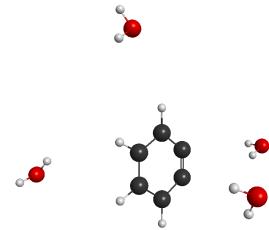


Figure 2. Orthobenzyne (singlet) [120] in an artificial cage composed of 4 water molecules. The minimal distance between the cage and the orthobenzyne is 3.61 Å. The same cage has been used for the triplet state.

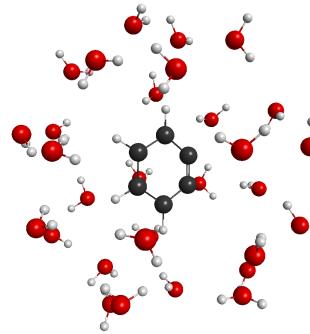


Figure 3. Orthobenzyne (singlet) [120] in an artificial cage composed of 30 water molecules. The minimal distance between the cage and the orthobenzyne is 2.99 Å. The same cage has been used for the triplet state.

ADDITIONAL RESULTS

Dispersion and polarization contributions in the El-QDO and QDO-QDO approaches.

222 In order to better understand the results, we present
 223 in Figs 4, 5, 6 and 7, the dissociation curves of Ar₂, Kr₂,
 224 Xe₂ and water dimers, uncorrected for the short-range re-

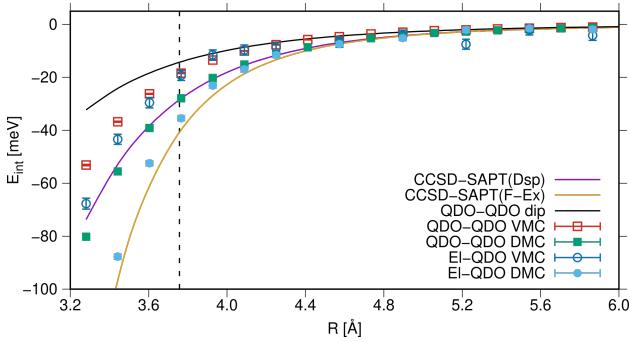


Figure 4. Interaction energies as a function of the atom-atom distance of the argon dimer obtained using the QDO-QDO model and the electrons-QDO (El-QDO) embedding approach with VMC and DMC. The results are compared to the exact solution of dipole coupled QDOs (QDO-QDO dip), pure dispersion interaction (Dsp), and with the full interaction energy minus the exchange contribution (F-Ex) obtained from the Coupled Cluster based symmetry adapted perturbation theory (SAPT-CCSD) [116]. The straight vertical line represents the equilibrium geometry of the dimer.

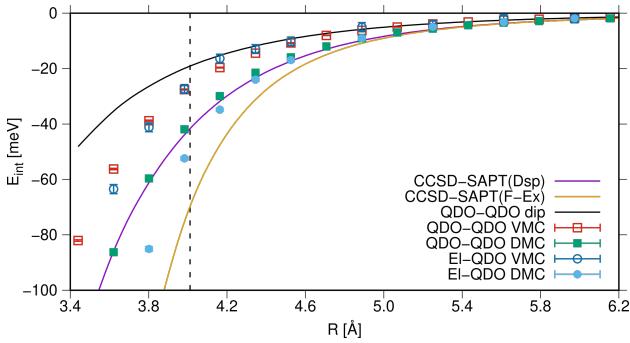


Figure 5. Interaction energies as a function of the atom-atom distance of the Krypton dimer obtained using the QDO-QDO model and the electrons-QDO (El-QDO) embedding approach with VMC and DMC. The results are compared to the exact solution of dipole coupled QDOs (QDO-QDO dip), pure dispersion interaction (Dsp), and with the full interaction energy minus the exchange contribution (F-Ex) obtained from the Coupled Cluster based symmetry adapted perturbation theory (SAPT-CCSD) [116]. The straight vertical line represents the equilibrium geometry of the dimer.

pulsion potential. The QDO-QDO and El-QDO models at VMC and DMC levels are compared to the energy contributions obtained from the energy decomposition of the symmetry adapted perturbation theory (SAPT), namely: pure dispersion (Dsp) and the full interaction energy minus the exchange contribution (F-Ex); and to the exact solution of the dipole coupled QDOs in the case of noble gas dimers. For Ar_2 and Kr_2 we notice the ability of the QDO-QDO model at the DMC level to exactly reproduce the dispersion curve. Unfortunately for Xe_2 we couldn't find reference values in the literature. On the other hand, the El-QDO model includes some short-range polariza-

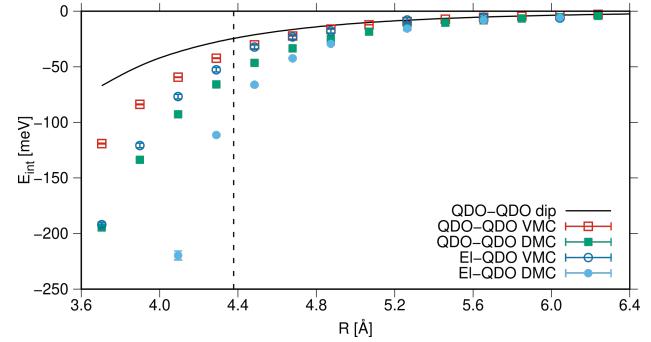


Figure 6. Interaction energies as a function of the atom-atom distance of the Xenon dimer obtained using the QDO-QDO model and the electrons-QDO (El-QDO) embedding approach with VMC and DMC. The results are compared to the exact solution of dipole-coupled QDOs (QDO-QDO dip).

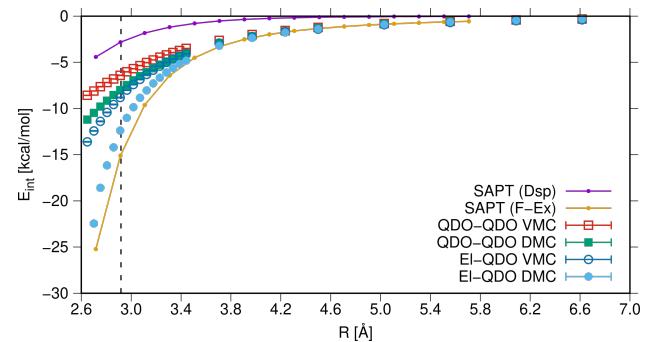


Figure 7. Interaction energies as a function of the oxygen-oxygen distance of the water dimer in the equilibrium geometry [114] obtained using the QDO-QDO model and the electrons-QDO (El-QDO) embedding approach (with QDO approximating the donor) with VMC and DMC. The results are compared to the pure dispersion interaction (Dsp) and with the full interaction energy minus the exchange contribution (F-Ex) obtained from the DFT-based symmetry adapted perturbation theory (SAPT-DFT) [117]. The straight vertical line represents the equilibrium geometry of the dimer.

tion effects that are neglected in the case of pure QDOs. The differences between the exact solution of the dipole coupled QDOs (QDO-QDO dip) and VMC results with the full Coulomb potential show the presence of multipolar contributions in the case of the full Coulomb, which diminish for large separations between the QDOs/atoms. In the water dimer, the QDO-QDO model does not correspond to the pure dispersion from SAPT due to the presence of the point charges in the model. The difference between the QDO representing the donor and acceptor in the El-QDO model is shown in the Fig. 8. The two curves are not identical in the short-range region due to the different charge transfer effects that take place in the dimer, depending on which water molecule is represented by the QDO, if the donor one (the molecule that offers the H atom) or the acceptor one (the molecule that contains with the lone pair electrons on the oxygen atom

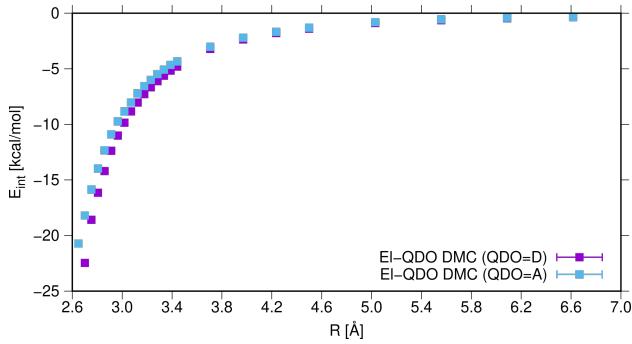


Figure 8. Comparison of El-QDO DMC interaction energies of water dimer in the equilibrium geometry without the short-range repulsion with QDO representing the donor (QDO=D) and acceptor (QDO=A).

257 that contribute directly to the bond). Biswas et al. [103]
 258 pointed out that for standard QM/MM methods, the QM
 259 should describe the acceptor water molecule, in order to
 260 enable the charge transfer of the two lone pair electrons
 261 on the oxygen atom towards the Hydrogen of the donor
 262 molecule. In our El-QDO model a partial charge transfer
 263 is also possible in the case in which the acceptor molecule
 264 is replaced by the QDO, since the drudon is able to drift
 265 towards the donor. For this reason the differences in the
 266 energies of the two curves in Fig. 8 are relatively small
 267 at the equilibrium distance of the dimer, and the total
 268 binding curve with the fit of the short-range repulsion is
 269 indistinguishable from the one in the main text.

270 Clearly, the VMC results underestimate the binding
 271 energies in all cases due to the limits of the variational
 272 *Ansatz*. The general conclusion from both results is that
 273 QDO-QDO, El-QDO, and F-Ex curves overlap in the
 274 long-range region, and this demonstrates that our embed-
 275 ding approach is able to recover the important quantum
 276 effects at this scale.

277 Modelling short-range repulsion QDO-QDO and 278 El-QDO

279 In order to show the general applicability of the QDO
 280 model in Figs. 9 and 10 the QDO-QDO and El-QDO
 281 DMC dissociation curves are also shown respectively for
 282 the Kryton and Xenon dimers with the addition of the
 283 interpolated short-range repulsion (see Table IV for the
 284 parameters), and compared to the CCSD(T) references.

285 The comparison of the short-range repulsions of the
 286 Ar_2 and the water dimer are shown in Figs. 11 and 12.
 287 Here we compare our interpolated potentials obtained
 288 from the QDO-QDO and El-QDO models with the pure
 289 exchange contribution from SAPT (Ex pure), the sum
 290 of all SAPT terms containing exchange (Ex all in the
 291 figures includes pure exchange, pol-ex, and disp-ex). It
 292 is interesting to notice that for Ar_2 in which the inter-

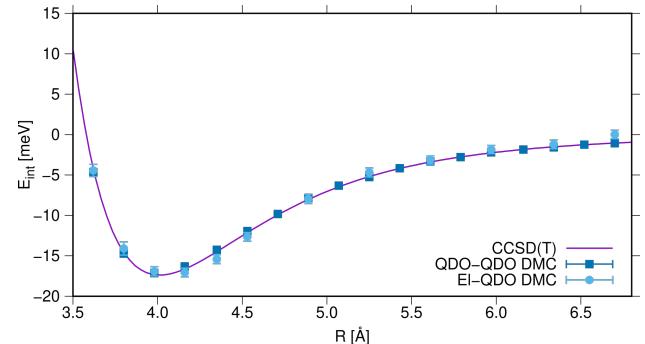


Figure 9. Binding energy curve for the Kr dimer obtained using the QDO-QDO model and electrons-QDO (El-QDO) embedding approach at the DMC level of theory, with the exponential fit of the short-range repulsion. The results are compared to the CCSD(T) [104] reference curve.

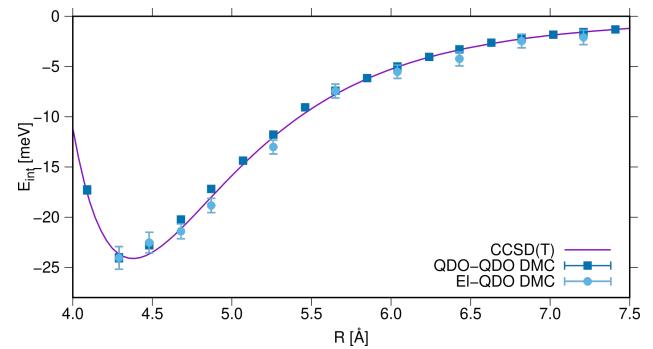


Figure 10. Binding energy curve for the Xe dimers obtained using the QDO-QDO model and electrons-QDO (El-QDO) embedding approach at the DMC level of theory, with the exponential fit of the short-range repulsion. The results are compared to the CCSD(T) [105] reference curve.

293 action is purely dispersive, the repulsion of interpolated
 294 for the QDO-QDO interaction corresponds to the pure
 295 exchange contribution coming from SAPT. On the other
 296 hand for the El-QDO model the interpolated repulsion
 297 is more similar to the full exchange contributions from
 298 SAPT, meaning that in the El-QDO model the attrac-
 299 tive potential energy curve is more compatible with the
 300 sum of terms interaction terms arising from electrostat-
 301 ics, polarization and dispersion (see also Fig. 4).

302 The analysis for the water dimer is more complex due
 303 to the Hydrogen bond and to the presence of additional
 304 point charges in the QDO model, which provide addi-
 305 tional electrostatic contributions. The repulsion obtained
 306 for the QDO-QDO model differs from the SAPT compo-
 307 nents, while the El-QDO interpolated repulsion on the
 308 other hand is similar to the pure exchange contribution
 309 from SAPT.

Table IV. Parameters of the short-range repulsive potentials in atomic units obtained by interpolating the DMC calculations of the QDO-QDO and El-QDO systems to match the reference potentials.

	a_1 [mHa]	a_2 [mHa]	b_1 [a_0^{-1}]	b_2 [a_0^{-1}]
QDO-QDO				
Ar	$4.030 \cdot 10^5$	$5.925 \cdot 10^{-2}$	1.891	33.38
Kr	$4.867 \cdot 10^5$	$3.376 \cdot 10^0$	1.753	5.957
Xe	$5.049 \cdot 10^5$	$3.466 \cdot 10^0$	1.567	5.020
H_2O (C1)	$1.851 \cdot 10^5$	$1.491 \cdot 10^2$	1.927	5.176
H_2O (C2)	$1.573 \cdot 10^5$	$1.496 \cdot 10^2$	1.956	5.064
El-QDO				
Ar	$3.112 \cdot 10^6$	$3.462 \cdot 10^0$	2.129	5.140
Kr	$5.788 \cdot 10^6$	$3.436 \cdot 10^0$	2.034	4.714
Xe	$2.041 \cdot 10^7$	$3.652 \cdot 10^0$	1.932	4.073
H_2O (C1, QDO=D)	$9.074 \cdot 10^5$	$1.503 \cdot 10^2$	2.042	52.388
H_2O (C2, QDO=D)	$1.153 \cdot 10^6$	$1.503 \cdot 10^8$	2.080	3.858
H_2O (C1, QDO=A)	$1.198 \cdot 10^6$	$1.492 \cdot 10^2$	2.136	5.163
H_2O (C2, QDO=A)	$5.887 \cdot 10^5$	$1.501 \cdot 10^2$	2.091	4.909

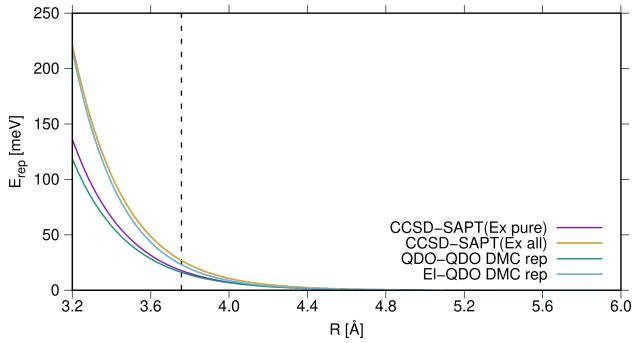


Figure 11. Short range repulsion contribution from the E_{int} of Ar_2 . We compare pure exchange from SAPT (Ex pure), and the sum of all mixed terms from SAPT containing exchange (Ex all), with the interpolated repulsion for QDO-QDO DMC and EL-QDO DMC.

310

Total energy comparisons

311 In tabs. V and VI we report the total energies of the
 312 various systems, used to compute the energy differences
 313 reported in the manuscript.

314 In addition, in Tab. VII we report the binding energies
 315 of the benzene dimer in vacuum and in the water cage
 316 of 50 water molecules. Furthermore, Tab. VIII contains
 317 the analysis of the El-FF DMC calculations, separating
 318 the contributions coming from the electrostatics of the
 319 TIP3P model [123] from the ones corresponding to the
 320 additional vdW potentials [124].

321 **Runtimes and computational efficiency**

322 In Tabs. IX and X we compare the runtimes of the
 323 standard VMC and DMC calculations compared to the

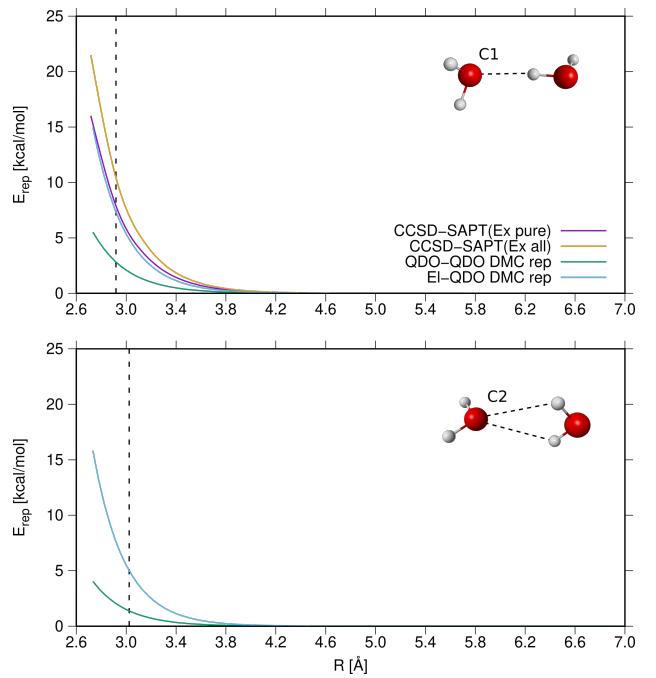


Figure 12. Short range repulsion contribution from the E_{int} of water dimer. We compare pure exchange from SAPT (Ex pure), and the sum of all mixed terms from SAPT containing exchange (Ex all), with the interpolated repulsion for QDO-QDO DMC and EL-QDO DMC.

Table V. The total energies (in Hartree) of the benzene dimer in 50 water molecules used for the Tab. I of the main article.

	PBE0	PBE0+TS	PBE0+MBD	El-QDO DMC
Cage	-3823.95689	-3823.99421	-3824.00394	-4.5656(1)
In Vacuum				
M1	-232.21019	-232.21243	-232.21701	-37.6457(1)
M2	-232.21016	-232.21241	-232.21698	-37.6428(1)
D	-464.42066	-464.42964	-464.43843	-75.2931(1)
In Water Cage				
M1	-4056.16938	-4056.21324	-4056.22697	-42.2176(1)
M2	-4056.17241	-4056.21712	-4056.23057	-42.2186(1)
D	-4288.38541	-4288.44122	-4288.45825	-79.8752(2)

324 El-QDO method. Tab. XI shows the cost of the optimization
 325 of the wave functions and Tab. XII contains the root
 326 mean square deviation σ of wave functions of orthoben-
 327 zyne embedded in 30 QDOs after optimizing different
 328 sets of parameters. Fig. 13 shows the energy during the
 329 optimization for the same system.

330 **Pseudopotential error**

331 The 2.85 kcal/mol ECP error at UPBE0 level with
 332 aug-cc-pVTZ Gaussian basis set is shown in the Tab. XIII
 333 and the uncorrected DMC / El-QDO DMC S-T gaps in
 334 the Tab. XIV.

Table VI. The total energies (in Hartree) of the orthobenzene calculations from the main article.

	PBE0	PBE0+TS	PBE0+MBD	DMC	El-QDO DMC
4W Cage	-305.891122	-305.891138	-305.891976	...	-0.3302304(6)
30W Cage	-2294.198539	-2294.223299	-2294.227611	...	-2.55168(2)
S (V)	-230.873629	-230.875158	-230.879244	-36.30409(6)	-36.30409(6)
T (V)	-230.828648	-230.830168	-230.834204	-36.24930(6)	-36.24930(6)
S (4W)	-536.766354	-536.768679	-536.773502	-105.2887(1)	-36.63654(6)
T (4W)	-536.720994	-536.723287	-536.728066	-105.2333(1)	-36.58132(5)
S (30W)	-2525.076666	-2525.109265	-2525.116585	...	-38.86565(9)
T (30W)	-2525.030960	-2525.063680	-2525.070911	...	-38.81012(9)

Table VII. The binding energies (in kcal/mol) of the benzene dimer in vacuum (dE_v) and in the 50 water molecules (dE_c).

	PBE0	PBE0+TS	PBE0+MBD	El-QDO DMC
dE_v	-0.2	-3.0	-2.8	-2.9(1)
dE_c	-0.3	-3.2	-2.9	-2.8(2)
diff	-0.1	-0.2	-0.1	0.1(2)

Table VIII. Decomposition of the QM/MM total energies and energy differences into electrons - point charges contribution (El-TIP3P [123]) and pairwise van der Waals contributions [124] (vdW). Full interactions are defined as El-FF.

	El-TIP3P	vdW	El-FF
Total energies (in Hartree)			
M1	-7.01122(6)	-0.00390	-7.01512(6)
M2	-7.01075(7)	-0.00424	-7.01499(7)
D	-44.6632(2)	-0.00814	-44.6713(2)
50W cage	30.63610
S (4W)	-33.82662(5)	-0.00069	-33.82731(5)
T (4W)	33.77152(5)	-0.00067	-33.77219(5)
S (30W)	-17.72151(6)	-0.00541	-17.72692(6)
T (30W)	-17.66595(6)	-0.00546	-17.67141(6)
4W cage	2.47887
30W cage	18.58584
Solvation energies (in kcal/mol)			
M1	-1.04(6)	-2.45	-3.48(6)
M2	-2.52(6)	-2.66	-5.18(6)
D	-3.8(1)	-5.11	-8.9(1)
S (4W)	-0.87(5)	-0.43	-1.30(5)
T (4W)	-0.69(5)	-0.42	-1.11(5)
S (30W)	-2.04(5)	-3.40	-5.44(5)
T (30W)	-1.56(5)	-3.43	-4.99(5)
S-T gaps (in kcal/mol)			
S-T (4W)	34.57(5)	0.01	34.58(5)
S-T (30W)	34.86(5)	-0.03	34.83(5)

Table IX. Relative runtimes of El-QDO DMC method with respect to vacuum and electronic cage DMC. Test calculations have been done on 56 CPUs using 12 walkers per CPU and 20 bins with 100 steps per block. The time per block is an average over all 20 blocks. Relative runtime is calculated as the ratio of time per block times the square of the ratio of the root mean square deviation σ .

	time per block [s]	σ [Ha]	runtime relative to vacuum
orthobenzene (singlet)			
El (V)	6.36	0.80	1.00
El (4W)	25.10	1.40	11.99
El-QDO (4W)	6.45	0.80	1.02
El-QDO (30W)	6.78	0.87	1.25
benzene (monomer ₁)			
El (V)	7.15	0.80	1.00
El-QDO (50W)	8.34	0.89	1.47
benzene dimer			
El (V)	30.95	1.31	1.00
El-QDO (50W)	32.90	1.57	1.27

Table X. Relative runtimes of El-QDO VMC method with respect to vacuum and electronic cage VMC. Test calculations have been done on 56 CPUs using 1 walker per CPU and 20 bins with 100 steps per block. The time per block is an average over all 20 blocks. Relative runtime is calculated as the ratio of time per block times the square of the ratio of the root mean square deviation σ .

	time per block [s]	σ [Ha]	runtime relative to vacuum
orthobenzene (singlet)			
El (V)	1.26	0.80	1.00
El (4W)	4.63	1.42	11.47
El-QDO (4W)	1.29	0.82	1.05
El-QDO (30W)	1.45	0.88	1.36

335 * matej.ditte@uni.lu

336 † matteo.barborini@gmail.com

337 ‡ Corresponding author: alexandre.tkatchenko@uni.lu

338 [63] W. M. C. Foulkes, L. Mitas, R. J. Needs, and G. Ra-
339 jagopal, Rev. Mod. Phys. 73, 33 (2001).340 [65] F. Becca and S. Sorella, *Quantum Monte Carlo Ap-
341 proaches for Correlated Systems* (Cambridge University
342 Press, Cambridge, England, 2017).343 [70] A. P. Jones, J. Crain, V. P. Sokhan, T. W. Whitfield,
344 and G. J. Martyna, Phys. Rev. B **87**, 144103 (2013).345 [73] F. S. Cipcigan, J. Crain, V. P. Sokhan, and G. J. Mar-
346 tyna, Rev. Mod. Phys. **91**, 025003 (2019).347 [85] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A.
348 H. Teller, and E. Teller, J. Chem. Phys. **21**, 1087 (1953).

Table XI. Total runtimes of El-QDO optimization of orthobenzene in the singlet state. Test calculations have been done on 56 CPUs using 1 walker per CPU, 200 bins with 2 steps per block, and 10 optimization steps without stochastic reconfiguration.

	# of parameters	runtime [s]
El (V)	376	56.00
El (4W)	692	198.21
El-QDO (4W)	490	58.04
El-QDO (30W)	4741	72.65

Table XII. The root mean square deviation σ [Ha] of orthobenzene wave function in singlet state in vacuum and in a water cage composed of 30 molecules using El-QDO embedding after each of 5 blocks of optimization: vacuum - Ψ_e optimized in vacuum, QDO - optimization of Ψ_d , El- optimization of Ψ_e , El-QDO - optimization of \mathcal{J}_{e-d} and all - optimization of all parts together. The initial guess of Ψ_d was set to non-interacting oscillators and the coupling matrix in \mathcal{J}_{e-d} was filled with zeroes. Decrease of the energy during the optimization is shown in the Fig. 13.

Optimization block	σ [Ha]
vacuum	0.80
unopt QDO	0.91
QDO	0.86
El	0.86
El-QDO	0.86
all	0.85

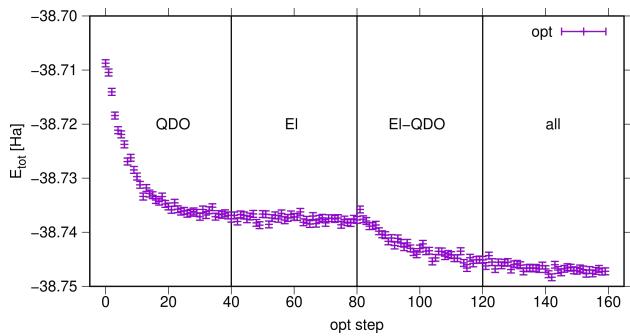


Figure 13. Energy optimization of orthobenzene (S) in a cage of 30 water molecules using El-QDO embedding. The electronic part was preoptimized in vacuum followed by 4 blocks of optimization: QDO - optimization of Ψ_d , El- optimization of Ψ_e , El-QDO - optimization of \mathcal{J}_{e-d} and all - optimization of all parts together. The initial guess of Ψ_d was set to non-interacting oscillators and the coupling matrix in \mathcal{J}_{e-d} was filled with zeroes. The decrease of the root mean square deviation σ during the optimization is shown in the Tab. XII.

[86] W. K. Hastings, Biometrika **57**, 97 (1970).
 [87] C. Filippi and C. J. Umrigar, Phys. Rev. B **61**, R16291 (2000).
 [88] M. Casula, C. Attaccalite, and S. Sorella, J. Chem. Phys. **121**, 7110 (2004).

Table XIII. All electrons vs ECP calculations of orthobenzene with aug-cc-pVTZ basis set at UPBE0 level.

	singlet [Ha]	triplet [Ha]	gap [kcal/mol]
all electrons			
vacuum	-230.705646	-230.660829	28.12
4w cage	-536.226991	-536.181805	28.35
ECP			
vacuum	-36.326242	-36.285998	25.25
4w cage	-105.292890	-105.252275	25.49

Table XIV. Uncorrected S-T excitation energies (in kcal/mol) of the orthobenzene in vacuum (V), 4-water cage (4W) and 30-water cage (30W).

	DMC	El-FF DMC	El-QDO DMC
S-T (V)	34.38(5)
S-T (4W)	34.8(1)	34.58(5)	34.65(5)
S-T (30W)	...	34.83(5)	34.85(8)

[354] M. Marchi, S. Azadi, C. Casula, and S. Sorella, J. Chem. Phys. **131**, 154116 (2009).
 [355] F. Sterpone, L. Spanu, L. Ferraro, S. Sorella, and L. Guidoni, J. Chem. Theory Comput. **4**, 1428 (2008).
 [356] I. Kosztin, B. Faber, and K. Schulten, Am. J. Phys. **64**, 633 (1996).
 [357] L. Mitas, in *Quantum Monte Carlo Methods in Physics and Chemistry*, NATO ASI Series, Series C, Math. & Phys. Sciences, Vol. C-525, edited by M. P. Nightingale and C. J. Umrigar (Kluwer Academic Publishers, Boston, 1999).
 [358] C. J. Umrigar, M. P. Nightingale, and K. J. Runge, J. Chem. Phys. **99**, 2865 (1993).
 [359] G. Wang, A. Annaberdiyev, C. A. Melton, M. C. Bennett, L. Shulenburger, and L. Mitas, J. Chem. Phys. **151**, 144110 (2019).
 [360] M. C. Bennett, G. Wang, A. Annaberdiyev, C. A. Melton, L. Shulenburger, and L. Mitas, J. Chem. Phys. **149**, 104108 (2018).
 [361] A. Annaberdiyev, G. Wang, C. A. Melton, M. C. Bennett, L. Shulenburger, and L. Mitas, J. Chem. Phys. **149**, 134108 (2018).
 [362] M. C. Bennett, C. A. Melton, A. Annaberdiyev, G. Wang, L. Shulenburger, and L. Mitas, J. Chem. Phys. **147**, 224106 (2017).
 [363] A. Zen, J. G. Brandenburg, A. Michaelides, and D. Alfè, J. Chem. Phys. **151**, 134105 (2019).
 [364] A. Zen, S. Sorella, M. J. Gillan, A. Michaelides, and D. Alfè, Phys. Rev. B **93**, 241118(R) (2016).
 [365] G. M. J. Barca *et al.*, J. Chem. Phys. **152**, 154102 (2020).
 [366] F. Neese, F. Wennmohs, U. Becker, and C. Riplinger, J. Chem. Phys. **152**, 224108 (2020).
 [367] V. Blum, R. Gehrke, F. Hanke, P. Havu, V. Havu, X. Ren, K. Reuter, and M. Scheffler, Comput. Phys. Commun. **180**, 2175 (2009).
 [368] P. K. Biswas and V. Gogonea, J. Chem. Phys. **123**, 164114 (2005).
 [369] J. M. Waldrop, B. Song, K. Patkowski, and X. Wang, J. Chem. Phys. **142**, 204307 (2015).

394 [105] R. Hellmann, B. Jäger, and E. Bich, *J. Chem. Phys.* 405 [120] J. Shee, E. J. Arthur, S. Zhang, D. R. Reichman, and R.
395 **147**, 034304 (2017). 406 A. Friesner, *J. Chem. Theory Comput.* **15**, 4924 (2019).

396 [109] S. Sorella, *Phys. Rev. B* **64**, 024512 (2001). 407 [121] D. A. Sirianni, X. Zhu, D. F. Sitkoff, D. L. Cheney, and
397 [110] S. Sorella, *Phys. Rev. B* **71**, 241103(R) (2005). 408 C. D. Sherrill, *J. Chem. Phys.* **156**, 194306 (2022).

398 [114] M. P. Metz, K. Szalewicz, J. Sarka, R. Tóbiás, A. G. 409 [122] C. Adamo and V. Barone, *J. Chem. Phys.* **110**, 6158
399 Császár, and E. Mátyus, *Phys. Chem. Chem. Phys.* **21**, 410 (1999).

400 13504 (2019). 411 [123] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R.
401 [116] L. Shirkov and V. Sladek, *J. Chem. Phys.* **147**, 174103 412 W. Impey, and M. L. Klein, *J. Chem. Phys.* **79**, 926
402 (2017). 413 (1983)

403 [117] A. Altun, F. Neese, and G. Bistoni, *Beilstein J. Org.* 414 [124] W. L. Jorgensen and D. L. Severance, *J. Am. Chem.
404 Chem.* **14**, 919 (2018). 415 Soc. **112**, 4768 (1990)