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Supplemental Material: Molecules in Environments: Toward Systematic Quantum
Embedding of Electrons and Drude Oscillators

Matej Ditte,!** Matteo Barborini,"» T Leonardo Medrano Sandonas,’ and Alexandre Tkatchenko!:

! Department of Physics and Materials Science, University of Luzembourg, L-1511 Luzembourg City, Luzembourg

Table I. Parametrization of the quantum Drude oscillators
used in this work.

q w 0
Ar [70] 1.3314 0.7272 0.3020
Kr [70] 1.3741 0.6359 0.2796
Xe [70] 1.3570 0.5152 0.2541
H,0% [73] 1.1973 0.6287 0.3656

2 The full water QDO model consists also of two point charges
centered respectively on the hydrogen atoms (with charge
qg =0.605) and on the point M near to the oxygen (with
charge qps =-1.21).

PARAMETRIZATION OF THE QDOS

The parametrization of the QDO models used in this
work are reported in the Tab. I.

In order to avoid numerical instabilities due to the di-
vergence of the potential energy near the cusps, one way
to proceed is to introduce cusp functions in the Jastrow
factor of the trial wave function, forcing the correct can-
cellation of the divergence of the potential through the
kinetic component between QDOs and between QDOs
and electrons. For now we have decided to proceed in
a simpler manner following the work of Martyna and
coworkers [73], in which the divergence of the Coulomb
potentials is avoided through the introduction of a cut-
off function that screens the short-range divergence of the
potential. For both QDO-QDO and EI-QDO interactions
we have used a damping function of the form [73]:

oy 49 Tij
V(rlj) Tij erf (\/iﬂ'ﬁ) 9 (1)

where o;; is specified for all pairs using the combination
rule ;; = /o7 + 0. The single particle damping pa-
rameters o were set to 0.1 for all particles except in the
case of QDO model of water where for the center of the
QDO it is fixed to o = 1.2. [73]

The functional form of the short-range repulsion is
shown in the Eq. 2, where we used N = 2 for both dimers
and both QDO-QDO and EI-QDO system. The fitted
parameters can be found in the Tab. IV.

N
Viep (R) =) _aze™" " (2)
i=1

30 PARAMETRIZATION OF THE EL-FF

s We have used TIP3P model of water with qo = -0.834

2 and qm = 0.417 [123]. For the VAW part we use a
;3 Lennard-Jones type pairwise function, of the form:
A Oy
Evaw (Rij) = Rf_g R (3)
ij ij

where the parmeters are defined through the combination
35 rules Aij = \/AiAj and Cij = \/CiCj, being Ai = 461'0'2-12
% and C; = 4¢;00.

These vdW parameters, originally optimized for ben-
3 zine dimer interacting with water, were taken from the
30 Ref. and can be found in the Tab. II.
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Table II. Parametrization of the pairwise vdW part of the El-
FF used in this work.

€ [kcal/mol] o[A]
Ceortg 0.0700 3.5500
Heot, 0.0300 2.4200
On,o0 0.1521 3.1507
Hu,0 0.0460 0.4000

20 HAMILTONIAN OF TWO DIPOLE COUPLED
a1 QDOS AND ITS EXACT SOLUTION

2 The Hamiltonian of two QDOs with equal parametriza-
s tion {q,w, u} in the dipole approximation has the form

1

+ ydiv (r‘f,rg) , (4

d o)
ri — R;

2
. 1 1
HYP = [—vfd + - puw?
p 2u i 2

with two-body dipole coupling

4

=

ydp (rd rd) = ﬁx
1»*2) — R5

x [R*(r{ -rd) =3 (x{ - R) (x4 -R)], (5)

s where R = RY — RY and R = |R/.

s  This Hamiltonian can be directly diagonalized and its
« ground state wave function has the form of the Ansatz
s Wy from the main text. Here it is important to note
a0 that, despite the same functional from of the wave func-
so tion, when this Ansatz is used for QDOs interacting via
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full Coulomb potential, the final energy contains multi-
polar contributions, beyond the solution of HP_ The
reason is that the elements of the coupling matrix in Wy
are independently optmized, allowing spatial symmetry
breaking that goes behyond the Gaussian exact solution
of the dipole Hamiltonian in eq. 4.

An exact ground state energy of the Hamiltonian Hdip
as a function of the distance between two QDOs R shifted
by the sum of the energies of non-interacting fragments
(Ep) is written as

E¥(R)=E* (R)+ E~ (R) — E, (6)

+ w 'S 2¢*
E (R):2<2\/1:t 2R3+\/1:Fuw233> (7)

and Ey = 2 X %w is the energy of two non-interacting

QDOs.

HAMILTONIAN OF INTERACTING NUCLEI,
ELECTRONS, QDOS AND POINT CHARGES

The total Hamiltonian of interacting system containing
N,, atomic nuclei, N, electrons, Ng QDOs and NN, point
charges, defined by positions, charges and indices of the
corresponding QDO ({R? ,Ql,pl}l *1), has the form

Ifltot _ I:[e +If[d ‘/1(71“&97 (8)
where H¢ is the standard electronic Hamiltonian describ-
ing the interaction between the electrons and the atomic

nuclei, H? is the drudonic Hamiltonian containing also
the interactions between the QDOs and point charges

=1 7>1

Nd,A Ng Ng
3 )+ 3 A
o |

+ZZ QzQJ ZZ qug 4y

7,1]>’L l i=1 j=1 ‘Rio_Ré?

pjFi
with

. 1 1

hd = v i _RO —

¢ (rd) o0, V! + 2,u r!

727;&% —. (10)
iz |1 — Ry

The V;f;e term contains extra interactions between the
electrons/nuclei and the point charges

Ne Na q; q;
‘}d—e — J _ J +
" ;; vf —xf| e RO
n o Ziq;  Zigy
pr ‘R?—RP R} —rf|
N. Np N, Np
ZQ
_ZZ|r ~R’] +ZZ|R" ; (1)
=1 j=1 =1 j5=1

7

» MAPPING OF THE WATER MOLECULES ONTO
7 QDOS

o The QDO model of water, introduced in Ref. 73, is
&1 mapped onto the particular geometries of the molecules
& in the cages. Two point charges are at the positions of
&3 the hydrogen atoms. The third point charge is at the M
& point, which is placed 0.2667 A from the oxygen atom in
s the HOH plane with <HOM = %<IHOH.

ss DETAILS ON THE QUANTUM MONTE CARLO
87 CALCULATIONS

88 Variational Monte Carlo

s  We have generalized the variational Monte Carlo
(VMC) algorithm [63, 65] to integrate a mixed system
o1 of drudons and electrons. In our approach, the two sets
o of particles are diffused particle-by-particle in random
o3 order always starting from all the electrons, followed by
o all the drudons, according to the Metropolis-Hastings al-
s gorithm [85, 86]. Each particle’s trial move is proposed
o according to a 3-dimensional Gaussian transition proba-
o7 bility centered on the initial particle’s position and with
o standard deviation dt. for the electrons and of dty for

©
S

» 9 the drudons. The two standard deviations are optimized

100 separately for the two particle types by automatically

(9 converging the acceptance probability of the moves to

12 the value of 50%, which is the classical rule of thumb
103 that has the purpose of lowering the correlation between
14 configurations. This procedure is repeated until A/ con-
105 figurations are sampled.

ws  Within this VMC scheme, it is also possible to opti-
w7 mize the trial wave function through energy (or variance)
108 minimization. In this work, the set of parameters is opti-
10 mized through the Stochastic Reconfiguration procedure
uo described in Refs. , with the use of the Correlated
w sampling technique [87] in order to increase sensitivity
12 within the range of the rather small energy differences
u3 that are usually involved in dispersion interactions.



114 Trial wave function and variational parameters

s As discussed in the main text the total variational wave
ue function of the mixed system of electrons and drudons is

u7 factorized in three parts:
Wior = We(T)Wa(t)) T a(F, 1), (12)

us that are respectively the pure electronic U,(7¢), pure
1o drudonic W4(¥?) and the interaction Jy_.(r¢, t¢) parts.
In this work the pure electronic wave function

W (r°) = det[S(r®)]Te—e(T°)

(13)

is constructed as a Slater determinant det[S(¥¢)] times
a Jastrow factor J,_.(r¢) that describes the many-body
interactions between electron and nuclei. The molecu-
lar orbitals that define the elements of the Slater matrix
S(r¢) are written as linear combinations

12

=

12

[N

12

@

12

i

125

Q
pr(r) =D chdy(r) (14)

of @ contracted Gaussian type orbitals ¢,(r) centered
only on the nuclei of the electronic system and not on the
oscillators’ centers. The form of the electronic Jastrow
factor is similar to the one described by Marchi et al. in
Ref. 88, 89, and is written as the exponential of a sum of
two terms

126

12

=

12

13

12

©

130

131

je—e(f'e) _ eJ(F) _ 6‘72(f)+‘73/4(i)~ (15)
that are respectively a pure homogeneous two-body
J2(T) term and a three/four-body inhomogeneous term
J3/4(F).

The homogeneous two-body Jastrow describes the par-
ing of electronic coordinates

13

he]

133

134

135

13

=3

Ne
Jo(r) = Z fee(ris),

j>i=1

(16)

137 where the f.. function is defined as the sum of a cusp

138 function and a linear combination of Gaussian functions

1 N chr; ;
4by (14bgrij) + 2 bue 2] undist. .
dist.

+ 3y beet T
(17)

130 The j3/4 term in the Jastrow factor is derived from
10 the construction of the geminal function of electron cou-

fee(rij) - {

1
T 262 (1+b3ri5)

11 ples ngzl YapXq(Ti)Xp(r;), as introduced by Sandro
12 Sorella f ]
Ne Q
T34 = Z Z YapXq(Ti)Xp(T;5)- (18)
j>i=1g¢,p=1

us The 7,4, parameters define the coupling of non-
s normalized atomic orbitals x,(r) that can be centered on

1s the same atom (defining three-body terms) or on differ-
ent atoms (four body terms). These terms are necessary
to recover the dynamical correlation between electronic
pairs, suppressing nonphysical charge fluctuations [90].
Here we do not recall the pure drudonic wave func-
tion and the electron-drudon Jastrow correlation func-
tion that are described in the main text. We just want to
specify that in our optimizations the wave function’s pa-
rameters that are optimized are namely: all the Jastrow
parameters for the electronic part of the wave function,
while for the drudonic wave function and the coupling
Jastrow between the electronic and drudonic system we
optimize all the coefficients of the matrices A and B.

146
147
148
149
150
151
152
153
154
155
156

157

Diffusion Monte Carlo

In order to generalize the diffusion Monte Carlo [91, 92]
(DMC) algorithm to integrate both particle types at the
same time, the main change consists on a modification of
the Langevin dynamics of the particles, to include also
the different masses.

Thus, during the drift/diffusion process we update
the particles’ positions with a particle-by-particle scheme
such that from time step m to m + 1 we will have

m m) 0T _ _ )
(™) = )+ivi(r(m))+1/%n7 (19)

where 7 is a 3-dimensional vector of random variables
extracted with a Gaussian distribution with zero mean
value and unitary variance, and v;(t(") is the drift ve-
locity rescaled according to the procedure introduced by
Umrigar et al. [93] to avoid divergences near the nodal
surface.

For the systems described at the electronic level, we
substitute the core electrons with the ccECP pseudopo-
tentials | ] , which are integrated with the Deter-
minant Locality approximation (DLA) [98] in which the
non-local operator is projected only on the Slater deter-
minant part of the many-body wave function and not on
the Jastrow factor. For the electronic systems and the
mixed system, we also introduce an energy cut-off using
Zen’s correction [99] with a parameter set to o = 0.2.
For pure QDO systems, no cut-off has been used since
the systems don’t include nodes.
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COMPUTATIONAL DETAILS

184

To construct the wave functions of the electronic sys-
tems we employ ccECP effective core potentials [94-97]
with the corresponding (aug)-cc-pVDZ Gaussian basis
sets for the Ar and water dimers and cc-pVTZ for every-
thing else. The molecular orbitals are obtained from DFT
calculations using the PBEO functional [122] in GAMESS
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Table III. Number of walkers and the total number of steps
per walker used for the DMC calculations. The settings for
the EI-FF approach are identical to those used for the El-
QDO one.

# of walkers # of steps
QDO-QDO
Ary 25600 100000
(H20)2 25600 200000
El-QDO
Ary 153600 200000
(H,0), 102400 40000
Orthobenzyne
Mol. in vacuum 13440 800000
Mol. in 4 waters cage 13440 550000
Mol. in 4 waters QDO cage 15360 800000
Mol. in 30 waters QDO cage 13440 800000
QDO cages 10080 320000
Benzene dimer (50 waters cage)
Monomers 15360 320000
Dimer 15360 320000
QDO cage 15360 320000
Monomers in QDO cage 15360 320000
Dimer in QDO cage 15360 320000

v (2016 R1) [100] and Orca 5.0 [101] codes. The dynam-
102 ical Jastrow factor is built from 3s2pld uncontracted
103 Gaussian-type orbitals (GTOs) for all the heavy atoms
and from 2s1p GTOs for the Hydrogen atoms.

The DMC calculations have been carried out with a
fixed time step of 47 = 0.005 a.u. for all systems, which
17 was chosen after careful convergence tests. The statis-
108 tics used for all DMC calculations in this paper can
199 be found in the Tab. ITI. The reference PBEO+TS and
200 PBEO+MBD calculations on the large water cluster have
20 been done with the FHI-aims package [102] using the
201 tight basis set.

194
195

196

WATER CAGES

204

25 The geometry of the T-shaped benzene dimer in the
200 50W cage is taken from Ref. and the cage has been
207 expanded by 1.5 A from the center, with preserved ori-
28 entations. A picture of the final cage is shown in the
209 Fig. 1.

4W and 30W cages used for the orthobenzyne were
obtained by scanning over a large number of randomly
generated geometries with oxygens randomly placed on
a sphere of radius 6 A centered at the center of the or-
a1e thobenzyne. The minimal distance between oxygens was
25 set to 3 A. The OH distances and HOH angles were fixed
26 t0 0.958 A and 104.4°respectively and the orientation of
217 the HOH plane was generated randomly. The final cages
a8 were the ones maximizing the change of the singlet-triplet
219 gap compared to the gap in vacuum. Pictures of the final
20 cages with 4 and 30 water are shown in Fig. 2 and Fig. 3.

210

211

212

213

Figure 1. T-shaped benzene dimer in a cage of 50 water
molecules [121] with the 1.5 A shift. The minimal distance
between the cage and the benzene dimer is 3.4 A. The same
cage has been used for both monomers.

5

®
“ ‘®
o t
Le" cp

Figure 2. Orthobenzyne (singlet) [120] in an artificial cage
composed of 4 water molecules. The minimal distance be-
tween the cage and the orthobenzyne is 3.61 A. The same
cage has been used for the triplet state.
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Figure 3. Orthobenzyne (singlet) [120] in an artificial cage
composed of 30 water molecules. The minimal distance be-
tween the cage and the orthobenzyne is 2.99 A. The same
cage has been used for the triplet state.

ADDITIONAL RESULTS

221

Dispersion and polarization contributions in the
ElI-QDO and QDO-QDO approaches.

222
223

In order to better understand the results, we present
25 in Figs 4, 5, 6 and 7, the dissociation curves of Ars, Kry,
26 Xeg and water dimers, uncorrected for the short-range re-

224
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Figure 4. Interaction energies as a function of the atom-atom
distance of the argon dimer obtained using the QDO-QDO
model and the electrons-QDO (El-QDO) embedding approach
with VMC and DMC. The results are compared to the ex-
act solution of dipole coupled QDOs (QDO-QDO dip), pure
dispersion interaction (Dsp), and with the full interaction en-
ergy minus the exchange contribution (F-Ex) obtained from
the Coupled Cluster based symmetry adapted perturbation
theory (SAPT-CCSD) [116]. The straight vertical line repre-
sents the equilibrium geometry of the dimer.

CCSD-SAPT(Dsp) ——
CCSD-SAPT(F-Ex)
QDO-QDO dip ——
QDO-QDO VMC +—&—
QDO-QDO DMC +—=—i
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EI-QDO DMC
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T
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6.2

Figure 5. Interaction energies as a function of the atom-atom
distance of the Krypton dimer obtained using the QDO-QDO
model and the electrons-QDO (EI-QDO) embedding approach
with VMC and DMC. The results are compared to the ex-
act solution of dipole coupled QDOs (QDO-QDO dip), pure
dispersion interaction (Dsp), and with the full interaction en-
ergy minus the exchange contribution (F-Ex) obtained from
the Coupled Cluster based symmetry adapted perturbation
theory (SAPT-CCSD) [116]. The straight vertical line repre-
sents the equilibrium geometry of the dimer.

pulsion potential. The QDO-QDO and EI-QDO models
at VMC and DMC levels are compared to the energy con-
tributions obtained from the energy decomposition of the
symmetry adapted perturbation theory (SAPT), namely:
pure dispersion (Dsp) and the full interaction energy mi-
nus the exchange contribution (F-Ex); and to the exact
solution of the dipole coupled QDOs in the case of noble
gas dimers. For Ars and Kro we notice the ability of the
QDO-QDO model at the DMC level to exactly reproduce
the dispersion curve. Unfortunately for Xes we couldn’t
find reference values in the literature. On the other hand,
the EI-QDO model includes some short-range polariza-
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QDO-QDO dip ——
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EI-QDO VMC +—e—i
EI-QDO DMC
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-250 T T T
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52 56 60 6.4

Figure 6. Interaction energies as a function of the atom-atom
distance of the Xenon dimer obtained using the QDO-QDO
model and the electrons-QDO (El-QDO) embedding approach
with VMC and DMC. The results are compared to the exact
solution of dipole-coupled QDOs (QDO-QDO dip).
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Figure 7. Interaction energies as a function of the oxygen-
oxygen distance of the water dimer in the equilibrium ge-
ometry [114] obtained using the QDO-QDO model and the
electrons-QDO (El-QDO) embedding approach (with QDO
approximating the donor) with VMC and DMC. The results
are compared to the pure dispersion interaction (Dsp) and
with the full interaction energy minus the exchange contribu-
tion (F-Ex) obtained from the DFT-based symmetry adapted
perturbation theory (SAPT-DFT) [117]. The straight verti-
cal line represents the equilibrium geometry of the dimer.

tion effects that are neglected in the case of pure QDOs.
The differences between the exact solution of the dipole
coupled QDOs (QDO-QDO dip) and VMC results with
the full Coulomb potential show the presence of multipo-
lar contributions in the case of the full Coulomb, which
diminish for large separations between the QDOs/atoms.
In the water dimer, the QDO-QDO model does not cor-
respond to the pure dispersion from SAPT due to the
presence of the point charges in the model. The differ-
ence between the QDO representing the donor and ac-
ceptor in the EI-QDO model is shown in the Fig. 8. The
two curves are not identical in the short-range region due
to the different charge transfer effects that take place in
the dimer, depending on which water molecule is repre-
sented by the QDO, if the donor one (the molecule that
offers the H atom) or the acceptor one (the molecule that
contains with the lone pair electrons on the oxygen atom
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Figure 8. Comparison of EI-QDO DMC interaction energies
of water dimer in the equilibrium geometry without the short-
range repulsion with QDO representing the donor (QDO=D)
and acceptor (QDO=A).

that contribute directly to the bond). Biswas et al. [103]
pointed out that for standard QM /MM methods, the QM
should describe the acceptor water molecule, in order to
enable the charge transfer of the two lone pair electrons
on the oxygen atom towards the Hydrogen of the donor
molecule. In our EI-QDO model a partial charge transfer
is also possible in the case in which the acceptor molecule
is replaced by the QDO, since the drudon is able to drift
towards the donor. For this reason the differences in the
energies of the two curves in Fig. 8 are relatively small
at the equilibrium distance of the dimer, and the total
binding curve with the fit of the short-range repulsion is
indistinguishable from the one in the main text.

Clearly, the VMC results underestimate the binding
energies in all cases due to the limits of the variational
Ansatz. The general conclusion from both results is that
QDO-QDO, EI-QDO, and F-Ex curves overlap in the
long-range region, and this demonstrates that our embed-
ding approach is able to recover the important quantum
effects at this scale.

Modelling short-range repulsion QDO-QDO and
EI-QDO

In order to show the general applicability of the QDO
model in Figs. 9 and 10 the QDO-QDO and EI-QDO
DMC dissociation curves are also shown respectively for
the Kryton and Xenon dimers with the addition of the
interpolated short-range repulsion (see Table IV for the
parameters), and compared to the CCSD(T) references.

The comparison of the short-range repulsions of the
Ars and the water dimer are shown in Figs. 11 and 12.
Here we compare our interpolated potentials obtained
from the QDO-QDO and EI-QDO models with the pure
exchange contribution from SAPT (Ex pure), the sum
of all SAPT terms containing exchange (Ex all in the
figures includes pure exchange, pol-ex, and disp-ex). It
is interesting to notice that for Ar, in which the inter-
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RIA]

Figure 9. Binding energy curve for the Kr dimer obtained
using the QDO-QDO model and electrons-QDO (EI-QDO)
embedding approach at the DMC level of theory, with the
exponential fit of the short-range repulsion. The results are
compared to the CCSD(T) [104] reference curve.
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Figure 10. Binding energy curve for the Xe dimers obtained
using the QDO-QDO model and electrons-QDO (EI-QDO)
embedding approach at the DMC level of theory, with the
exponential fit of the short-range repulsion. The results are
compared to the CCSD(T) [105] reference curve.

203 action is purely dispersive, the repulsion of interpolated
200 for the QDO-QDO interaction corresponds to the pure
205 exchange contribution coming from SAPT. On the other
26 hand for the EI-QDO model the interpolated repulsion
207 is more similar to the full exchange contributions from
208 SAPT, meaning that in the EI-QDO model the attrac-
200 tive potential energy curve is more compatible with the
a0 sum of terms interaction terms arising from electrostat-
sn ics, polarization and dispersion (see also Fig. 4).

s The analysis for the water dimer is more complex due
303 to the Hydrogen bond and to the presence of additional
s point charges in the QDO model, which provide addi-
a0s tional electrostatic contributions. The repulsion obtained
306 for the QDO-QDO model differs from the SAPT compo-
sr nents, while the EI-QDO interpolated repulsion on the
ss other hand is similar to the pure exchange contribution
300 from SAPT.
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Table IV. Parameters of the short-range repulsive potentials
in atomic units obtained by interpolating the DMC calcula-
tions of the QDO-QDO and EI-QDO systems to match the
reference potentials.

ay [mHa] a2 [mHa] by [agl] b2 [agl]

QDO-QDO
Ar 4.030-10° 5.925-1072 1.891  33.38
Kr 4.867 -10° 3.376 -10° 1.753  5.957
Xe 5.049 -10° 3.466 -10° 1.567  5.020
H»O (C1) 1.851 -10° 1.491 -10> 1.927 5.176
H,0 (C2) 1.573 -10° 1.496 -10° 1.956  5.064
E-QDO

Ar 3.112 -10° 3.462 -10° 2.129  5.140
Kr 5.788 -10° 3.436 -10° 2.034 4.714
Xe 2.041 -107 3.652 -10° 1.932  4.073
H,O (C1, QDO=D) 9.074 -10° 1.503 -10> 2.042 52.388
H,0 (C2, QDO=D) 1.153 -10° 1.503 -10® 2.080  3.858
H,0 (C1, QDO=A) 1.198 -10° 1.492 -10®> 2.136 5.163
H,0 (C2, QDO=A) 5.887 -10°> 1.501 -10®> 2.091  4.909

CCSD-SAPT(Ex pure)

CCSD-SAPT(Ex all)

QDO-QDO DMC rep

EI-QDO DMC rep
48 52 56 6.0

RIA]

Figure 11. Short range repulsion contribution from the E;,: of
Ary. We compare pure exchange from SAPT (Ex pure), and
the sum of all mixed terms from SAPT containing exchange
(Ex all), with the interpolated repulsion for QDO-QDO DMC
and EL-QDO DMC.

Total energy comparisons

In tabs. V and VI we report the total energies of the
various systems, used to compute the energy differences
reported in the manuscript.

In addition, in Tab. VII we report the binding energies
of the benzene dimer in vacuum and in the water cage
of 50 water molecules. Furthermore, Tab. VIII contains
the analysis of the EI-FF DMC calculations, separating
the contributions coming from the electrostatics of the
TIP3P model [123] from the ones corresponding to the
additional vdW potentials [124].

Runtimes and computational efficiency

In Tabs. IX and X we compare the runtimes of the
standard VMC and DMC calculations compared to the
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Figure 12. Short range repulsion contribution from the Ein:
of water dimer. We compare pure exchange from SAPT (Ex
pure), and the sum of all mixed terms from SAPT containing
exchange (Ex all), with the interpolated repulsion for QDO-
QDO DMC and EL-QDO DMC.

Table V. The total energies (in Hartree) of the benzene dimer
in 50 water molecules used for the Tab. I of the main article.

PBEO PBEO+TS PBE0O+MBD EI-QDO DMC

Cage -3823.95689 -3823.99421 -3824.00394 -4.5656(1)
In Vacuum
M1 -232.21019 -232.21243  -232.21701 -37.6457(1)
M2 -232.21016 -232.21241  -232.21698 -37.6428(1)
D -464.42066 -464.42964  -464.43843 -75.2931(1)
In Water Cage
M1 -4056.16938 -4056.21324 -4056.22697 -42.2176(1)
M2 -4056.17241 -4056.21712 -4056.23057 -42.2186(1)
D -4288.38541 -4288.44122 -4288.45825 -79.8752(2)

EI-QDO method. Tab. XI shows the cost of the optimiza-
tion of the wave functions and Tab. XII contains the root
mean square deviation o of wave functions of orthoben-
zyne embedded in 30 QDOs after optimizing different
sets of parameters. Fig. 13 shows the energy during the
optimization for the same system.

Pseudopotential error

The 2.85 kcal/mol ECP error at UPBEO level with
aug-cc-pVTZ Gaussian basis set is shown in the Tab. XIII
and the uncorrected DMC / EI-QDO DMC S-T gaps in
the Tab. XIV.
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Table VI. The total energies (in Hartree) of the orthobenzyne calculations from the main article.

PBEO PBEO+TS PBEO+MBD DMC El-QDO DMC
4W Cage -305.891122 -305.891138 -305.891976 -0.3302304(6)
30W Cage -2294.198539 -2294.223299 -2294.227611 e -2.55168(2)
S (V) -230.873629 -230.875158 -230.879244 -36.30409(6) -36.30409(6)
T (V) -230.828648 -230.830168 -230.834204 -36.24930(6) -36.24930(6)
S (4W) -536.766354 -536.768679 -536.773502 -105.2887(1) -36.63654(6)
T (4W) -536.720994 -536.723287 -536.728066 -105.2333(1) -36.58132(5)
S (30W) -2525.076666 -2525.109265 -2525.116585 e -38.86565(9)
T (30W) -2525.030960 -2525.063680 -2525.070911 -38.81012(9)

Table VII. The binding energies (in kcal/mol) of the benzene
dimer in vacuum (dE,) and in the 50 water molecules (dE.).

Table IX. Relative runtimes of EI-QDO DMC method with
respect to vacuum and electronic cage DMC. Test calculations
have been done on 56 CPUs using 12 walkers per CPU and

PBEO PBEO+TS PBEO+MBD EI-QDO DMC 20 bins with 100 steps per block. The time per block is an
dE, -0.2 -3.0 -2.8 -2.9(1) average over all 20 blocks. Relative runtime is calculated as
dE. -0.3 -3.2 -2.9 -2.8(2) the ratio of time per block times the square of the ratio of the
diff -0.1 -0.2 -0.1 0.1(2) root mean square deviation o.

time per block o runtime relative
[s] [Hal to vacuum
Table VIII. Decomposition of the QM/MM total energies T (V) Orthogzlézyne (blnglgg) -
and energy differences into electrons - point charges contri- El (4W) 25' 10 1’ 40 11' 99
bution (EI-TIP3P [123]) and pairwise van der Waals contri- ’ ' :
butions [124] (vdW). Full interactions are defined as EI-FF EL-QDO (4W) 6.45 0.80 Loz
: : ElI-QDO (30W) 6.78 0.87 1.25
ELl-TIP3P vdW EL-FF benzene (monomer; )
Total energies (in Hartree) El (V) 7.15 0.80 1.00
M1 -7.01122(6) -0.00390 -7.01512(6) El-QDO (50W) 8.34 0.89 1.47
M2 -7.01075(7) -0.00424 -7.01499(7) benzene dimer
D -44.6632(2) -0.00814 -44.6713(2) El (V) 30.95 1.31 1.00
50W cage 30.63610 . e El-QDO (50W) 32.90 1.57 1.27
S (4W) -33.82662(5)  -0.00069  -33.82731(5)
T (4W) 33.77152(5) -0.00067 -33.77219(5) ) ) )
S (3ow) -17.72151(6) -0.00541 -17.72692(6) Table X. Relative runtimes of EI-QDO VMC method with
T (3ow) —17.66595(6) -0.00546 —17.67141(6) respect to vacuum and electronic cage VMC. Test calculations
4W cage 2. 47887 have been done on 56 CPUs using 1 walker per CPU and
30W cage 18.58584 20 bins with 100 steps per block. The time per block is an
Solvation energies (in kcal/mol) average over all 20 blocks. Relative runtime is calculated as
M1 ~1.04(6) 245 ~3.48(6) the ratio of time per block times the square of the ratio of the
M2 -2.52(6) 292.66 -5.18(6) root mean square deviation o.
D -3.8(1) -5.11 -8.9(1) time per block o runtime relative
S (4W) -0.87(5) -0.43 -1.30(5) [s] [Ha] to vacuum
T (4W) -0.69(5) -0.42 1.11(5) orthobenzyne (singlet)
S-T gaps (in keal /mol) EL-QDO (4W) 1.29 0.82 1.05
S-T (4W) 34.57(5) 0.01 34.58(5) EL-QDO (30W) 1.45 0.88 1.36
S-T (30W) 34.86(5) -0.03 34.83(5)
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Table XI. Total runtimes of EI-QDO optimization of or-
thobenzyne in the singlet state. Test calculations have been
done on 56 CPUs using 1 walker per CPU, 200 bins with 2
steps per block, and 10 optimization steps without stochastic

reconfiguration.
# of runtime
parameters [s]
El (V) 376 56.00
El (4W) 692 198.21
El-QDO (4W) 490 58.04
El-QDO (30W) 4741 72.65

Table XII. The root mean square deviation o [Ha] of orthoben-
zyne wave function in singlet state in vacuum and in a water
cage composed of 30 molecules using EI-QDO embedding af-
ter each of 5 blocks of optimization: vacuum - W¥. optimized
in vacuum, QDO - optimization of V4, El- optimization of
V., EI-QDO - optimization of J._4 and all - optimization of
all parts together. The initial guess of ¥, was set to non-
interacting oscillators and the coupling matrix in Je_q was
filled with zeroes. Decrease of the energy during the opti-
mization is shown in the Fig. 13.

Optimization block o [Ha]
vacuum 0.80
unopt QDO 0.91
QDO 0.86
El 0.86
El-QDO 0.86
all 0.85
-38.70 L L L L
opt —+—
3871 % -
E3
—-38724 = apo El EI-QDO all -
z %
W ag7a
-38.74 |
-38.75

o

opt step

Figure 13. Energy optimization of orthobenzyne (S) in a cage
of 30 water molecules using El-QDO embedding. The elec-
tronic part was preoptimized in vacuum followed by 4 blocks
of optimization: QDO - optimization of ¥4, El- optimization
of ¥, EI-QDO - optimization of J._4 and all - optimization
of all parts together. The initial guess of ¥4 was set to non-
interacting oscillators and the coupling matrix in Je_q was
filled with zeroes. The decrease of the root mean square de-
viation ¢ during the optimization is shown in the Tab. XII.
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