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Abstract
Aim: Wild bees still face striking shortfalls in knowledge of biodiversity in key regions 
of the world. This includes Europe, where despite a long tradition of data gathering, 
the continental scale distribution patterns of wild bees have not been systematically 
analysed to date. This study aims to characterise large-scale biodiversity patterns 
to: (i) understand spatial–temporal heterogeneity in large-scale databases, (ii) locate 
genuine diversity hotspots and their relationship with biogeographical patterns or 
habitats of interests and (iii) identify understudied species and areas to further design 
conservation actions for most at risk species in key regions.
Location: Europe.
Taxon: Bees.
Methods: We present a continental and standardised study of bee taxonomic and 
phylogenetic diversity patterns in Europe, using a large compilation of occurrence 
records of nearly three million validated occurrence records for 1515 wild bee species.
Results: Southern and eastern Europe suffer from the largest gaps in data availabil-
ity while northern and western regions benefit from better historical coverage. Our 
models show that higher wild bee diversity in Europe is hosted in xeric, warm areas, 
as highlighted by a clear latitudinal gradient. However, phylogenetic diversity is pre-
dicted to be more homogenous across Europe than taxonomic diversity, suggesting 
that policies and strategies targeted to protect species richness may differ from those 
targeting greater phylogenetic diversity.

www.wileyonlinelibrary.com/journal/jbi
mailto:
https://orcid.org/0000-0002-3317-6622
mailto:nicolas.leclercq@ulb.be
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fjbi.14614&domain=pdf&date_stamp=2023-03-31


2  |    LECLERCQ et al.

1  |  INTRODUC TION

Wild bees provide important ecosystem services along with playing 
a key role as pollinators to both wild plants and crops, yet they are 
currently facing multiple anthropogenic threats worldwide (Klein 
et al., 2018; Potts et al., 2016; Wagner, 2020). A key challenge for 
their conservation lies in assessing how individual bee species and 
communities as a whole respond to increasing and interacting driv-
ers of decline. The availability of reliable and robust data is an essen-
tial prerequisite to ensure high quality research and evidence-based 
conservation actions (IPBES,  2016), yet wild bee occurrence data 
are typically characterised by significant taxonomic and geograph-
ical biases (Hortal et al., 2015; Orr et al., 2021; Wetzel et al., 2018). 
This phenomenon occurs at continental scales and below, owing to 
the sheer species diversity of this pollinator group, contrasting with 
the general lack of resources, experts, digitisation efforts in histori-
cal collections and financial support to facilitate their identification 
down to the species-level and databasing. As a result, the biodiver-
sity patterns of only a limited number of popular and/or well-defined 
taxonomic species groups have been investigated so far (e.g. bum-
blebees, Rasmont et al., 2015), which hinders a deeper understand-
ing of bee diversity sensu lato and at large spatial scales (see Ascher 
et al., 2020).

Although Europe is arguably one of the most intensively surveyed 
regions in the world in terms of wild bee diversity, more than 55% 
of all its known species of bees were described as ‘Data Deficient’ 
in the first IUCN Red List (Nieto et al., 2014). This first large-scale 
evaluation of the conservation status of European bees called for 
an urgent need to fill all major data gaps through coordinated long-
term monitoring programmes involving both expert researchers and 
citizen scientists, along with gaining a better understanding and 
characterisation of the community structure and population trends, 
species ecological requirements, and modelling of wild bee species 
distribution (Nieto et al., 2014; Potts et al., 2020).

Statistical models can be used in conjunction with monitoring to 
estimate knowledge gaps, to highlight priority conservation areas 
(e.g. hotspots of diversity) and under-sampled regions, as well as to 
investigate the major drivers of large-scale diversity patterns (Hortal 

et al.,  2015; Proença et al.,  2017). Recently, Orr et al.  (2021) pro-
duced the first-ever model of global bee species relative richness 
highlighting a bimodal latitudinal gradient followed by bee diversity 
and driven primarily by xeric, warm-temperate-climate with high 
solar radiation (Bystriakova et al., 2018; Michener, 1979; Petanidou 
et al., 1995; Wcislo, 1987). Likewise, taxonomic bee diversity at the 
European scale is expected to increase with decreasing latitude, 
with species richness reaching its peak in the Mediterranean region 
(Michener, 1979). Yet, the study by Orr et al. (2021) was performed 
using only publicly available records and checklists, and produced 
patterns of bee richness that were not always consistent with known 
patterns for many regions (they built their European model based 
on New World's model), suggesting that enhanced and improved 
datasets are still required to address the role of multiple drivers in 
structuring the diversity of wild bees at continental scales such as in 
Europe. Further, the distribution of phylogenetic diversity for bees 
remains vastly understudied, despite its importance as an alterna-
tive diversity facet (De Palma et al., 2017; Vereecken et al., 2021).

In the present study, we aim to fill some of the gaps mentioned 
above by investigating the distribution patterns of both taxonomic 
and phylogenetic diversities of 1515 wild bee species in Europe 
and by making available a new dataset consisting of a compila-
tion of 1,520,434 published plus 1,584,917 restricted access (i.e. 
unpublished regional/national/international sources) occurrence 
records. Specifically, we first aim to describe patterns governing 
the diversity of wild bees and to characterise hotspots of bee tax-
onomic and phylogenetic diversities through distribution models. 
We then test the long-standing hypothesis that bee diversity var-
ies across European biogeographical regions, with some regions 
such as the Mediterranean standing out as hotspots of diversity 
(Michener, 1979; Orr et al., 2021). We then highlight regions within 
Europe currently characterised by significant levels of deficits in 
data availability, based on known and predicted diversity, and that 
should be targeted by ongoing and future Europe-wide pollinator 
monitoring schemes. Finally, we quantify, compare and contrast 
published and access restricted databases in terms of taxonomic and 
geographic information to assess the inherent quality of these data-
sets and their suitability for large-scale biodiversity assessments.

Main conclusions: This study represents a significant advance in the characterisation 
of wild bee distribution patterns across Europe and is an important stepping stone 
towards the design of more targeted survey efforts and conservation actions of this 
key group of pollinators. This, in turn, will provide the data necessary to improve the 
spatiotemporal coverage in a context of ongoing and future Europe-wide monitoring 
schemes, to ultimately develop cost-effective, coordinated and evidence-based con-
servation actions and tailored habitat management actions that can be implemented 
on a smaller scale.

K E Y W O R D S
drivers of biodiversity change, GBIF, Hymenoptera, latitudinal gradient
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2  |  MATERIAL S AND METHODS

2.1  |  Dataset compilation, curation and verification

We compiled bee occurrence records for Europe from both pub-
lic and restricted sources. First, the restricted dataset (hereafter 
referred to as STEP+) included occurrence records from five pro-
jects/experts: (i) the ‘Status and Trends of European Pollinators’ 
project (STEP, www.STEP-proje​ct.net, representing 57.3% of the 
STEP+ dataset) for which the data are hosted at the University 
of Mons (Belgium) and served as the backbone of the European 
Red List of Bees (Nieto et al.,  2014; Potts et al.,  2011); (ii) the 
‘Bees, Wasps & Ants Recording Society’ programme for the 
United Kingdom data (BWARS, www.bwars.com, 36.0%); (iii) the 
‘National Biodiversity Data Centre’ programme for Ireland data 
(NBDC, www.biodi​versi​tyire​land.ie, 4.4%); (iv) H. Dathe's data-
base for Hylaeus spp. (1.9%); and (v) M. Kuhlmann's database for 
Colletes spp. (0.4%).

Second, the public dataset (hereafter referred to as GBIF) was 
downloaded from Global Biodiversity Information Facility (GBIF) 
(https://doi.org/10.15468/​dl.ssbtj7). The STEP+ and GBIF datasets 
were then combined into one unique dataset (hereafter referred 
to as All records), following curation steps and the suppression of 
overlapping records (Table 1). Overlap was considered for duplicated 
occurrences with the same geographic coordinates (rounded to four 
decimal degrees) and collected within the same year.

For each of the two datasets (GBIF and STEP+), only records 
with both coordinates and year of collection were kept. Records not 
identified down to the species level were removed (subspecies and 
variety were reduced to species level) (Table 1). Each species name 
was checked for validity, and eventually corrected for spelling mis-
takes and synonyms using (i) Michener (2007), (ii) the IUCN Red List 
checklist (Nieto et al., 2014) and its addition (Rasmont et al., 2017), 
(iii) the DiscoverLife's checklist (Ascher & Pickering, 2022), (iv) the 
Atlas Hymenoptera website (Atlas Hymenoptera,  2021), (v) the 
‘Palearctic Osmiine bees’ checklist (Müller, 2019), (vi) the ‘Integrated 
Taxonomic Information System’ (ITIS, 2022) and the most up-to-date 
publications (e.g. Aubert, 2020; Bossert et al., 2019, 2022; Schwarz 
et al., 2019; Schwarz & Smit, 2020). The list of all species, their phy-
logenetic classification, their synonym(s) and their number of re-
cords in the ‘All records’ dataset is given in Table S1. The presence in 
Europe of species not recorded in the IUCN checklist and its update 
were verified and either kept or removed when recorded outside the 
study area (extinct species were also removed) (Nieto et al., 2014; 
Rasmont et al., 2017). We compiled a European checklist (Table S1) 
using these publications and compared it with our occurrence re-
cords to classify ‘missing species’, those without distribution data.

Europe was defined as all countries within the geographical 
bounds of the European Union due to data availability which 
consisted of European Union member countries plus Albania, 
Bosnia and Herzegovina, Kosovo, Macedonia, Montenegro, 
Norway, Serbia, Switzerland and the UK (Cyprus and Malta were 

Type of modification/selection GBIF STEP+ All records

Number of species names modifications

Spelling 0 23 /

Synonyms 96 149 /

Number of grid cells, total in Europe = 8983 (100)

Cells with data 6016 (67.0) 8755 (97.5) 8809 (98.1)

Selection based on standard error 
(Figures 1a–c, 2a and 3)

5870 (65.3) 8510 (94.7) 8571 (95.4)

Well-sampled grid cells (WSGC) 
(Figures 1d–f and 2b)

2048 (22.8) 2964 (33.0) 3847 (42.8)

Number of records

Original dataset 1,520,434 (100) 1,584,917 (100) 2,974,081 
(100)

Records with year 1,502,491 (98.8) 1,584,902 (100) /

Records of species within the 
boundaries of the mask of 
Europe

1,501,924 (98.8) 1,545,921 (97.5) /

Records after SE selection 1,497,741 (98.5) 1,536,362 (96.9) 2,965,504 
(99.7)

Records in WSGC 1,457,655 (95.9) 1,313,665 (82.9) 2,782,173 
(93.5)

Number of species

Species richness 1049 (100) 1478 (100) 1515 (100)

Species richness after SE selection 1028 (98.0) 1455 (98.4) 1492 (98.5)

Species richness in WSGC 909 (86.7) 1363 (92.2) 1415 (93.4)

TA B L E  1  Data filtering and number of 
modifications made, number of grid cells, 
records or species at different selection 
steps for each dataset of European wild 
bee occurrences. The numbers in brackets 
are the proportion (%) of the number in 
question after selection compared to 
the original number. Species richness is 
the number of species after all steps of 
data filtering for each dataset. Spatial 
distribution of selected cells based on 
standard error and well-sampled grid cells 
are shown in Figure 1.
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not included). We created a new grid of 25 km x 25 km squares 
using the extent of Europe to overcome two problems: some co-
ordinates were in fact (i) the centroid of previously gridded data 
(maximum gridded data of ±18 km) or (ii) the coordinates of the 
nearest city/town from the actual sampling location. This resulted 
in a geographical mask covering Europe, with 8983 grid cells of 
25 km × 25 km (Figure S1).

2.2  |  Models of taxonomic and 
phylogenetic diversity

2.2.1  |  Well-sampled grid cells and measures of 
corrected diversity

To deal with unequal sampling intensity between grid cells, we de-
fined a set of cells for which we know the input information is very 
robust. For each dataset, our ‘well-sampled’ grid cells (WSGC) are 
defined as cells: (i) with a ratio of records/number of species of at 
least 2, (ii) with 10 or more species and (iii) that had been sampled 
in at least three different years. We performed a sensitivity analysis 
using different thresholds, which is presented in Figure S2. These 
selections of WSGC and their associated diversity indices were used 
as the response variables of the linear mixed effects models outline 
below (other cells were not included in the models). The final number 
of WSGC and the associated final species richness are described in 
Table 1 for each dataset.

As proxies for taxonomic diversity (TD) and phylogenetic 
diversity (PD), we estimated taxonomic and phylogenetic Hill 
Shannon diversity corrected for sampling completeness (i.e. cov-
erage, total probability of occurrence of species observed in the 
cell, see Roswell et al.,  2021) for all WSGC (Chao et al.,  2014). 
Correction by coverage was chosen over size-based correction 
following Chao and Jost  (2012). Hill diversity numbers describe 
species diversity by taking into account the relative abundance 
of species within cells (Hill,  1973). Each taxonomic Hill diversity 
number could be interpreted as species counts but Hill Shannon 
diversity (q = 1) will have lower values than species richness (SR, 
i.e. species counts, q = 0) when species within a community (i.e. 
grid cells) will have uneven distribution of abundances, which is 
the case for our data (Chao et al.,  2014). Hill Shannon diversity 
emphasises neither rare nor common species (unlike SR, which is 
more sensitive to rare species) and represents a suitable choice 
when characterising ecological gradients (Roswell et al.,  2021). 
To correct for coverage, we rarefied/extrapolated diversity at 
the midpoint coverage of WSGC ranges using bootstrapping (50 
replications). The midpoint target was 79.76% for GBIF, 79.81% 
for STEP+ and 80.18% for the ‘All records’ dataset. We computed 
the corrected taxonomic and phylogenetic Hill Shannon diversity 
by midpoint coverage using the estimate3D function of the ‘iN-
EXT.3D’ package (version 0.0.1) (Chao et al., 2021). We visualised 
the relationship between TD and PD for the selection of WSGC to 
understand how these two metrics co-vary.

For PD, we started by computing a phylogenetic tree based on 
the hierarchical Linnean taxonomic classification (superfamily/po-
sition/family/tribe/genus/subgenus/species) (Table  S1) (Danforth 
et al.,  2006) using the ‘ape’ package (version 5.3) (Paradis & 
Schliep, 2018). Taxonomic classifications were derived and checked 
from a number of sources (Ascher & Pickering, 2022; Aubert, 2020; 
Bossert et al.,  2019, 2022; Michener,  2007; Müller,  2019; Nieto 
et al., 2014; Rasmont et al., 2017). This tree has then been used along 
with the community matrix as an input in the estimate3D function to 
compute PD.

To characterise the gaps in occurrence records (see Section 2.3), 
it was important to compute corrected diversities for all cells with 
records. However, without any selection steps, some cells, when 
corrected, would result in large overestimations. Therefore, we only 
characterised gaps on selected cells that had a standard error (SE) 
lower than the maximum standard error from the set of WSGC. 
To have a baseline measure of diversity for this larger set of cells 
(greater than WSGC), we then computed diversity corrected at the 
same coverage (midpoint).

2.2.2  |  Explanatory variables and diversity 
patterns analyses

To predict the patterns of bee diversity for each dataset, 48 relevant 
variables were selected as potential drivers of bee diversity. It com-
prised 36 climatic and geographic variables, latitude and longitude 
of the centroids of each cell, nine land cover (LC) variables (propor-
tion of each land cover category in grid cells) and the sampling effort 
(total number of records in each cell). For all 36 environmental vari-
ables, the mean (ME) and standard deviation (SD) were calculated for 
each grid cell, resulting in 72 environmental variables for a total of 
84 explanatory variables (see Supplementary Notes and Table S2 for 
rationale for selection).

For each diversity metric (taxonomic and phylogenetic diver-
sity) computed for the WSGC (other cells were not included in 
the response variable), we fitted a generalised linear model (GLM), 
using a gamma distribution with scaled explanatory variables (see 
Supplementary Notes for model selection). For each final model 
of diversity, we used the predict function of the ‘stats’ package 
(version 3.6.1) (R Core Team, 2022) to predict the values of the di-
versity metrics for all grid cells in Europe (8983 cells in total). The 
predictive power of the models was estimated with the Cragg-Uhler 
pseudo R2 that ranges from 0 to 1 (Nakagawa & Schielzeth, 2013). 
Estimates, 95% confidence intervals, and pseudo R2 were extracted 
using the export_summs function of the ‘jtools’ package (version 
2.1.4) (Long, 2020). To measure the performance of the final model, 
we performed five-fold cross-validations. We created five spatial 
groups of WSGC (‘kmeans’ separation based on decimal degrees 
coordinates) (Figure S3), used it each time as the testing data (esti-
mating the prediction error) and all other cells (four other groups) as 
the training set (used to train and build the model). We analysed the 
difference between predicted and observed values for each testing 
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    |  5LECLERCQ et al.

set by computing the root mean squared error (RMSE) and the mean 
absolute error (MAE) and using the ‘caret’ package (version 6.0-92) 
(Kuhn, 2022).

2.3  |  Predicting priority needs for under-
sampled areas

To identify the European regions with low sampling effort using the 
‘All records’ dataset, we used the observed taxonomic diversity for 
cells with records which were selected based on their standard error 
(8571 cells, see Section 2.2.1 and Table 1) and the predicted taxo-
nomic diversity for the same cells. We calculated the proportion of 
observed diversity given the predicted diversity. This allowed us to 
characterise differences between these two metrics and was used 
as a proxy for the sampling completeness of every grid cell. Indeed, 
when the predicted diversity was higher than the raw diversity for 
the same cell (proportion < 100%), we could expect this cell to re-
quire a more thorough sampling/research focus, with parts of that 
diversity still to be described. On the other hand, when the raw di-
versity was higher than the prediction (proportion > 100%), it could 
mean that the cell had already been thoroughly sampled. To discuss 
the patterns of these results on a larger scale than the cell level, we 
eventually averaged the explained proportions at the country level. 
For visual clarity and to facilitate discussion of the results, we di-
vided these proportions into six categories: (i) highly under-sampled 
(0%–33%), (ii) under-sampled (34%–66%), (iii) moderately under-
sampled (67%–99%), (iv) moderately well-sampled (100%–133%), (v) 
well-sampled (134%–166%) and (vi) very well-sampled (>166%).

2.4  |  Patterns of diversity within 
biogeographical regions

To explore if wild bee diversity in Europe is explained by variation in 
biogeographical regions, we considered here (i) the observed diver-
sity as the diversity values computed for the selection of WSGC for 
the ‘All Records’ dataset (3847 cells) and (ii) the predicted diversity 
as the predicted values for all cells (8983 cells) resulting from the 
model (‘All records’). We first intersected each cell with the bioge-
ographical regions layer of Europe (EEA,  2016) (Figure  S1). When 
cells were overlapping multiple regions, the one with the largest area 
covering the cell was retained. We then performed four pairwise 
non-parametric Wilcoxon tests with adjusted p-values using the 
Benjamini & Hochberg method of the ‘stats’ package (version 3.6.1) 
(R Core Team,  2022) to test if biogeographical regions presented 
significant difference in terms of observed or predicted diversities 
(two tests for each type of diversity: the taxonomic and phyloge-
netic diversity).

To explore the extent to which biogeographical regions host 
dissimilar assemblages of wild bees, we performed beta-diversity 
analyses within each biogeographical region using the presence/ab-
sence community matrix for all cells with records (8809 cells). For 

this, we computed beta-diversity (Sørensen dissimilarity index, βsør) 
values for each pair of cells using the ‘betapart’ package (version 
1.5.1) (Baselga et al., 2018). We analysed the variation of the total 
dissimilarity (βsør) within each biogeographical region and its two 
components, that is, the turnover (βsim) and the nestedness (βsne). 
The aim was to characterise if a specific region was facing more dis-
similarity within its ‘own’ cells than another region within ‘theirs’, and 
if this dissimilarity was more driven either by the turnover (species 
replacement) or by the nestedness (loss/gain of species) component 
(Baselga, 2010).

All statistical analyses were performed in RStudio (RStudio 
Team, 2022) for R version 4.1.3 for Windows (R Core Team, 2022).

3  |  RESULTS

3.1  |  European bee diversity

3.1.1  |  Model of taxonomic bee diversity

The published (GBIF) and restricted access (STEP+) datasets and 
models showed large differences (Figure  1), and their comparison 
is described in the Supplementary Notes. In brief, The STEP+ data-
set covered significantly more of Europe than the GBIF dataset at 
the levels of cells with data (97.5% vs. 67.0%), of WSGC (33.0% vs. 
22.8%), and had also an important higher number of species (1478 
vs. 1049) (Table 1). As expected, the lower quality data of GBIF re-
sulted in an over-prediction of presences for a small subset of grid 
cells, for example, in Spain and Switzerland (Figure 1g) and did not 
result in a clear gradient of diversity for cells further north, as they 
presented similar ranges of predicted values. The STEP+ model 
presented more convincing patterns (Figure  1h). A low number of 
cells presented suspected over-predictions as well, especially in 
Switzerland, but more restricted than for GBIF.

The combination of these two datasets resulted in the ‘All re-
cords’ dataset with 2,974,081 records. It corresponded to 1515 
species with records, 1012 being shared between GBIF and STEP+, 
466 species only detected in STEP+ and 37 species only in GBIF 
(Table 1, Table S1 and Figures S4 and S5). Before any selection of 
well-sampled grid cells (WSGC), 403 species were already missing 
in the dataset, having no occurrence records, as our mask of Europe 
has 1918 species according to the checklists (Table S1; Figures S4 
and S5). Besides the fact that some species are completely miss-
ing from the dataset, there were also 659 species with less than 50 
occurrences, a remarkably low abundance for a dataset of this size 
(Table S1).

The ‘All records’ dataset covered 98.1% of all cells in Europe 
before any selection of cells (Table  1; Figure  S6). However, the 
raw values of taxonomic diversity (after selection based on stan-
dard error) indicated massive unequal samplings with some cells 
showing high diversity values and most of the cells with extremely 
low values driven by low number of records and species collected 
(mean = 27.85 ± 23.85, min = 1.00, max = 190.09) (Figure  1c). The 
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selection of WSGC resulted in 3847 cells (42.8% of all cells), with 
most records (93.5%, 2,782,173 records; mean = 723.21 ± 2415.38 
records, min = 20, max = 43,056 records) and number of species 
(93.4%, 1415 species; mean = 65.93 ± 57.40 species, min = 10, 

max = 504 species) being kept during this process (Table 1; Figure 1f; 
Figure  S6). It meant that the ‘All records’ dataset also presented 
massive gaps of WSGC in Europe, but it covered better than GBIF 
or STEP+ (Table 1; Table S3; Figure 1d–f). These selected cells tend 

F I G U R E  1  Raw and predicted values of European wild bee taxonomic diversity for GBIF, STEP+ and ‘All records’ datasets: (i) the 
distribution of raw values of taxonomic diversity (after selection based on the standard error) for (a) GBIF, (d) STEP+ and (g) ‘All records’ 
datasets; (ii) the selection of the well-sampled grid cells (WSGC) for (b) GBIF, (e) STEP+ and (h) ‘All records’ datasets; and (iii) the predicted 
values for all cells (8983 cells) of taxonomic diversity for (c) GBIF, (f) STEP+ and (i) ‘All records’ datasets. For each dataset, the displayed 
gradient of taxonomic diversity is based on the range of the predicted values (minimum and maximum values). Cells with no records are 
shown in grey. Number of cells and number of species are displayed for the raw diversities. European map projection: EPSG:3035, ETRS89-
extended/LAEA Europe.
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to better cover northern regions (mean latitude = 52.85 and mean 
longitude = 9.97), compared to southern and eastern countries (with 
less than 20% of cover for most concerned countries) (Table S3). The 
selection of WSGC allowed for the removal of highly under-sampled 
cells (mean = 32.88 ± 24.98, min = 1.03, max = 190.09) (Figure  1f; 
Figure S6).

The resulting model of taxonomic bee diversity predicted the 
most convincing patterns among the three datasets with less out-
liers and smoother gradients (pseudo-R2 = 0.42) (predicted taxo-
nomic diversity: mean = 40.01 ± 19.34, min = 6.28, max = 118.87) 
(Figure  1i). The five-fold cross validations showed that our model 
was performant to predict on the testing set (mean MAE = 17.60 
and max observed TD = 190.09, resulting in an error of 9.26%). The 
two most diverse groups (groups 4 and 5) showed the highest er-
rors between predicted and observed values (Figure  S3). Overall, 
taxonomic bee diversity showed a noticeable latitudinal gradient 
with higher diversity expected in southern Europe (see Table  S3). 
Indeed, the southern countries had the highest mean predicted di-
versities, but overall, there was much lower disparity between the 
countries than for the other datasets. For instance, Macedonia, 
the country with the highest average predicted diversity per cell 
(mean = 67.54 ± 10.28, min = 48.07, max = 90.87), was less than five 
times higher than the country with lowest predicted diversity, that 
is Norway (mean = 13.41 ± 5.27, min = 6.34, max = 33.32) (Table S3). 
Outliers were again observed in the Alpine region near Switzerland 
(mean = 53.22 ± 14.44, min = 35.46, max = 112.37).

The taxonomic model using the ‘All records’ dataset included 11 
covariates and six quadratic terms (pseudo-R2 = 0.42) (Table S4). All 
estimates and confidence intervals are shown in Table S4. Of the set 
of selected variables used in this model, solar radiation (Srad_ME, 
estimate = 0.36, CI = [0.31, 0.40], p < 0.001) and then the aridity 

(AI_ME, −0.30, [−0.35, −0.25], p < 0.001) showed the highest esti-
mates to predict taxonomic bee diversity (Table S4). Therefore, high 
solar radiation (available energy) (maximum at 17,900 kJ m−2 day−1) 
and more arid climates resulted in high taxonomic bee diversity.

3.1.2  |  Model of phylogenetic bee diversity

Using again the ‘All records’ dataset, we computed the phylogenetic 
diversity for all selected cells based on standard error (Table  1). 
Overall, those cells presented moderate and homogeneous values of 
phylogenetic diversity (mean = 2.73 ± 1.12, min = 1.00, max = 5.89), 
except for some areas that showed low diversities mainly in the 
Atlantic and Alpine parts of Scandinavia, in the North of the British 
Isles or in parts of eastern Europe (Figure 2a).

The same set of WSGC as the one used for the taxonomic model 
was used here (3487 WSGC). The selection improved the mean raw 
diversity (mean = 3.02 ± 1.11, min = 1.00, max = 5.89) (Figure 2b). In 
WSGC, the taxonomic and phylogenetic diversities were strongly 
correlated. However, PD tended to quickly increase even for low TD 
while, at the opposite edge of the spectrum, PD reached a plateau at 
the highest TD values (Figure S7).

The resulting phylogenetic model (pseudo-R2 = 0.34) and its pre-
dicted values presented fewer clear patterns than the taxonomic 
diversity, with lower impact of the latitudinal gradient due to these 
homogenous values (mean = 3.16 ± 0.77, min = 0.78, max = 7.07) 
(Figure  2c). At the country level, all countries presented homoge-
neous mean predicted diversity with low disparity even between the 
country with the highest mean predicted diversity, that is Macedonia 
(4.01 ± 0.31, min = 3.43, max = 4.50), and the country with the low-
est, that is Norway (1.73 ± 0.55, min = 0.78, max = 3.47). Overall, the 

F I G U R E  2  Raw and predicted values of phylogenetic European wild bee diversity for the ‘All records’ dataset: (a) the distribution of raw 
values of phylogenetic diversity (after selection based on the standard error), (b) the selection of well-sampled grid cells (WSGC) and (c) the 
predicted values for all cells (8983 cells) of phylogenetic diversity. The displayed gradient of phylogenetic diversity is based on the range of 
the predicted values. Cells with no records are shown in grey. Number of cells and number of species are displayed for the raw diversities. 
European map projection: EPSG:3035, ETRS89-extended/LAEA Europe.
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8  |    LECLERCQ et al.

southern countries showed the highest mean predicted phyloge-
netic diversity (Table S3).

The phylogenetic model included 11 covariates and five qua-
dratic terms (pseudo-R2 = 0.34). Overall, variables presented similar 
estimates to predict phylogenetic diversity, but the maximum tem-
perature of warmest month (Bio5_ME, estimate = 0.12, CI = [0.10, 
0.14], p < 0.001) had the highest estimate (Table S4).

3.2  |  Predicting priority needs for  
under-sampled areas

In this section, we used the set of 8571 cells that were selected 
based on their standard error and for which we have computed 
raw taxonomic diversities that we compared with predicted values. 
Overall, the results showed that 72.3% of Europe lacked occurrence 
records (see Hortal et al., 2015; Wetzel et al., 2018), as 25.7% of the 
cells were considered as ‘highly under-sampled’ (proportion of ob-
served diversity given the predicted diversity between 0% and 33%), 
28.0% as ‘under-sampled’ (34%–66%), and 18.6% as ‘moderately 
under-sampled’ (67%–99%) (Figure 3). At the country level, eastern 

countries, then southern countries showed the lowest mean pro-
portions (Table S3). On the other hand, four countries showed the 
highest mean proportions which were considered as ‘well-sampled’ 
and ‘very well-sampled’ (>133%, Belgium, the Czech Republic, 
Luxembourg and Switzerland) (Table S3).

3.3  |  Patterns of diversity within 
biogeographical regions

Here, we checked for the variation of observed diversity values 
in the 3847 WSGC and predicted diversity values (8983 cells) for 
taxonomic and phylogenetic diversity within each biogeographical 
region. The observed values of both taxonomic and phylogenetic 
diversities presented higher overlaps between biogeographical re-
gions than the predicted diversity (Figure  4; Table  S5). Indeed, at 
the taxonomic level, all pairs of regions were significantly different 
from each other in their predicted diversity except for the pair Black 
Sea-Steppe (Table S5; Figure 4a). For the phylogenetic diversity, all 
pairs were significantly different in their predicted phylogenetic di-
versity (Table S5; Figure 4b). Overall, the Steppe (mean of predicted 
taxonomic diversity = 77.99 ± 6.32, min = 69.87, max = 95.91; and 
mean of predicted phylogenetic diversity = 4.12 ± 0.47, min = 3.27, 
max = 6.39), the Black Sea (77.20 ± 9.74, min = 56.14, max = 93.18; 
4.33 ± 0.45, min = 3.82, max = 6.03) and the Mediterranean 
(59.70 ± 12.15, min = 24.08, max = 118.87; 3.90 ± 0.49, min = 2.23, 
max = 7.07) regions, followed by the Pannonian region (58.58 ± 5.16, 
min = 46.23, max = 77.04; 3.56 ± 0.22, min = 3.09, max = 4.71), were 
predicted as hotspots of bee diversity, with significant differ-
ences compared to the other regions (Table  S5; Figure  4a,b). The 
Mediterranean region presented the highest predicted value for a 
cell but a high variability due to its large size (1902 cells for predicted 
diversity, 366 WSGC) in comparison with the restricted ranges for 
the Steppe (59 cells, 1 WSGC) and the Black Sea (25 cells, 4 WSGC) 
regions (Table S5). Moreover, two groups of values are distinguish-
able in the predicted diversity of the Alpine region (Figure 4a,b). The 
group with the lowest values corresponds to the Alpine region lo-
cated in Scandinavia that receive low solar radiation compared to the 
other group located at lower latitudes (Figure 4c).

Using the ‘All records’ dataset and its presence/absence com-
munity matrix for all cells with records (8809 cells), we tested how 
varied the dissimilarity in species composition within each region. 
In Figure  4d, we presented the variability of the total dissim-
ilarity (βsør) and its two components, that is, turnover (βsim) and 
nestedness (βsne), within each region. Overall, the dissimilarity of 
each region was driven by turnover rather than nestedness (means 
and standard deviations for each region and for each component 
are displayed in Table  S5). This was particularly evident for the 
Mediterranean region, which presented the highest total dissimi-
larity (mean βsør = 0.89 ± 0.10), mainly explained by the large spe-
cies turnover (mean βsim = 0.77 ± 0.21) between the Mediterranean 
cells. On the other hand, the dissimilarities within the three other 
regions predicted as the most diverse, that is the Black Sea (mean 

F I G U R E  3  Proportion of observed wild bee taxonomic diversity 
(after selection based on the standard error) given the predicted 
taxonomic diversity for 8571 cells using the ‘All records’ dataset. 
For visual clarity, six categories were created. Proportions were 
categorised such as: (i) highly under-sampled (0%–33%), (ii) under-
sampled (34%–66%), (iii) moderately under-sampled (67%–99%), 
(iv) moderately well-sampled (100%–133%), (v) well-sampled 
(134%–166%) and (vi) very well-sampled (>166%). Above 100% 
proportions imply that the observed diversity was higher than 
the predicted diversity. It means that it was comparatively more 
well-sampled than cells with similar conditions. European map 
projection: EPSG:3035, ETRS89-extended/LAEA Europe.
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βsør = 0.70 ± 0.16), Steppe (0.72 ± 0.19) and Pannonian (0.60 ± 0.15) 
regions, were comparatively lower (Table S5).

4  |  DISCUSSION

Our study provides a comprehensive modelling of European biodi-
versity patterns for all bees using occurrence records sourced from 
both public and restricted datasets. Here, we show that higher wild 
bee diversity in Europe is hosted in (semi-)arid and warm regions 
that receive high solar radiation. Even though our models highlight 
an absence of high-quality data in many regions, they confirm the 
relevance of widespread occurrence data to determine hotspots of 
diversity, and call for increased attention, monitoring, and conserva-
tion efforts in understudied regions.

We show that any attempt to model the diversity of bees in 
Europe with publicly available data only (GBIF) is largely irrele-
vant to understand biogeographic patterns (see Boyd et al., 2022; 
Orr et al.,  2021). By contrast, the larger, private dataset (STEP+) 
is much more informative in terms of species richness and spatial 

coverage. However, these data are from different large-scale scien-
tific projects, combining data from standardised sampling projects 
or museum data, and access to those depends on the goodwill of 
the data owners. Here, we make this aggregated data available to 
unlock the possibility to reproduce our analyses with further im-
proved data. Indeed, even though the ‘All records’ dataset that we 
used in this study is the most complete database of cleaned and 
verified biological records to date, there is still a wealth of existing 
but unpublished data relevant to Europe within the scientific com-
munity and networks of naturalists, both within and outside Europe 
(Wetzel et al., 2018). Therefore, we stress the importance of estab-
lishing practical tools to structure and standardise data sharing (EU 
Pollinators Initiative, 2021; IPBES, 2016; Potts et al., 2011) and toen-
sure the consistency of records including validated species names; 
information on the sex of individuals whenever possible; accurate 
and detailed geolocation of specimens; date of collection; collection 
method used; and specimen identification information (including 
name of the person in charge of the identification).

Furthermore, we show that we mainly lack data from south-
ern and eastern Europe (Wetzel et al., 2018). Indeed, northern and 

F I G U R E  4  Patterns for the ‘All records’ dataset of observed European wild bee diversity in well-sampled grid cells (WSGC) and predicted 
diversity (8983 cells) for both (a) taxonomic diversity and (b) phylogenetic diversity and (d) dissimilarity within each biogeographical region 
(c). (a and b) The dots indicate values of either the observed diversities (blue) or the predicted diversities (orange). Boxes indicate the 
inter-quartile ranges (IQR), that is, Q3–Q1, where Q1 and Q3 are the first and third quartiles, respectively, and the vertical lines indicate 
the medians (Q2). Potential outliers are dots that are outside the range of [Q1 − 1.5 × IQR, Q3 + 1.5 × IQR], that is, outside the range of 
the horizontal lines. Coloured letters indicate significant different groups of regions using the pairwise non-parametric Wilcoxon test for 
both observed and predicted set of values (Table S5). (d) Mean and standard deviation of total dissimilarity (βsør) and its two components: 
turnover (βsim) and nestedness (βnes) for each biogeographical region. European map projection: EPSG:3035, ETRS89-extended/LAEA 
Europe.
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10  |    LECLERCQ et al.

western regions are historically well studied, because of a long his-
tory of amateur naturalists and more recently well-funded scientific 
projects compared to the rest of Europe (Nieto et al., 2014; Wetzel 
et al., 2018). A global effort from the scientific community and natu-
ralists to focus on under-sampled regions is necessary for conserva-
tion at the continental scale. For example, ongoing projects in Spain 
and Portugal are addressing this (Sánchez-Fernández et al.,  2022; 
Wood, 2022; Wood et al., 2021, 2022). Our study helps to inform 
further survey schemes that are being implemented by the European 
Pollinator Monitoring Scheme (EU PoMS) in several countries. More 
specifically, we provided evidence for the need of improving the 
schemes and policy actions by integrating targeted surveys and con-
servation efforts in these key regions (Potts et al., 2020).

In this study, we provide a checklist for all European species up to 
2020 following most recent publications (Ascher & Pickering, 2022; 
Atlas Hymenoptera, 2021; Aubert, 2020; Bossert et al., 2019, 2022; 
ITIS, 2022; Michener, 2007; Müller, 2019; Nieto et al., 2014; Rasmont 
et al., 2017; Schwarz et al., 2019; Schwarz & Smit, 2020). This list 
highlights a range of understudied species that the scientific com-
munity should prioritise in future sampling programmes. Long-term 
conservation of wild bee diversity in Europe requires knowledge of 
the present distribution and an understanding of temporal dynamics 
in the face of increasing anthropogenic factors.

Our results focused on taxonomic and phylogenetic diversity; the 
next logical step will be to model the functional diversity. Previous 
studies have explored, at relatively large-scale and for subsets of 
well-studied species, the relations between functional diversity and 
landscape/land-use gradients or habitats and have highlighted the 
importance of using alternative diversity indices (Carrié et al., 2017; 
De Palma et al.,  2015, 2017; Normandin et al.,  2017). However, 
broad patterns of the diversity of functional traits at the European 
scale are not known and many gaps remain to cover all species in 
Europe with every trait described. We need a compilation of all 
these traits into a single and publicly available database. This is the 
aim of the work of Roberts, S.P.M., with the help of several organi-
sations to build an open access European wild bee trait dataset. This 
database was created and updated as part of the ALARM and STEP 
projects and will be used within the framework of the ORBIT project 
(ORBIT, 2022; Potts et al., 2011; Settele et al., 2005). We hope it will 
unlock the possibility of exploring the evolutionary structure and 
functioning of biodiversity. Integrating functional perspectives may 
offer another framework for predicting the species responses to cli-
mate change and increasing anthropogenetic pressures, and charac-
terising functional diversity as a proxy for pollination services which 
would be a determinant indicator for policy (De Palma et al., 2017; 
Potts et al., 2020; Vereecken et al., 2021).

Our standardised data cleaning and filtering processes enabled 
the characterisation of European diversity patterns using existing oc-
currence data while previous measures were either based on coun-
tries checklists, performed at regional levels or for some bee groups 
(Bystriakova et al.,  2018; Michener,  1979; Petanidou et al.,  1995; 
Wcislo, 1987). We see these models and this study as an important 
first step towards the prediction of European bee diversity. However, 

we showed that strong data improvements are needed, especially 
in Southern and Eastern Europe, to improve drastically the perfor-
mance of such models, species distribution modelling being one of 
the major objectives in order to characterise diversity hotspots and 
conservation areas. Predicted latitudinal gradient demonstrates 
that the Black Sea, Mediterranean, Pannonian and Steppe biogeo-
graphical regions are home to a unique and high wild bee diversity in 
Europe. They are indeed unique regions characterised by their own 
distinctive weather and plant communities (Médail, 2008; Rundel & 
Cowling, 2013) that may coincide with the ecological optima of many 
wild bees. Furthermore, the Mediterranean region is comparatively 
much larger than the Steppe or Black Sea regions, and it definitely 
drives the fact that it arrives only third in most predicted diverse re-
gions due to a higher variability of predicted diversity. Additionally, 
the Mediterranean region was the region with the highest absolute 
predicted diversity for a cell and the highest within dissimilarity, 
driven by a remarkably high turnover of species in comparison with 
other regions. We argue that more abundant quality data are needed 
in these regions to refine these results.

Of the variables considered in this study, climatic variables 
were the most important to predict bee diversity (Bystriakova 
et al., 2018; Kammerer et al., 2021; Michener, 1979; Orr et al., 2021; 
Petanidou et al.,  1995; Wcislo,  1987), although it is important to 
note that climatic variables were predominant in our variable list. 
Taxonomic diversity was driven by high solar radiation (energy) in 
xeric areas (aridity). Phylogenetic diversity was also found optimal 
in arid climates with high temperatures during the warmest month. 
These results all confirmed and provided quantified evidence for 
Michener's  (1979) pioneering description of bee biogeography and 
supported Orr et al.'s (2021) findings, namely that European diver-
sity reflects a latitudinal gradient and bee diversity is higher in xeric 
and warm temperate regions of the world.

Phylogenetic diversity showed more homogeneity in ob-
served and predicted values across regions than taxonomic diver-
sity, reinforcing the importance of alternative diversity metrics, 
as they may capture distinct perspectives of diversity (De Palma 
et al.,  2017; Vereecken et al.,  2021). The relationship between 
both metrics is the main reason behind this result, i.e. PD tended 
to increase rapidly even for low TD and a plateau was reached at 
the highest TD values. This might be explained by the redundancy 
among species' contributions to the phylogenetic diversity as 
opposed to taxonomic diversity and by the evolutionary conver-
gence among phylogenetically distant species. Moreover, we can 
hypothesise that phylogenetic diversity is more affected by local 
factors than by large-scale factors, such as the variability of flora 
and nesting opportunities (Carvalheiro et al., 2021), the surround-
ing landscape (Kammerer et al., 2016; Le Féon et al., 2010), the 
local intensification (Deguines et al., 2014), the local climate condi-
tions or the abundance of managed species (Weekers et al., 2022). 
To confirm that different scales might highlight different drivers 
(Hurlbert & Jetz, 2007; Rahbek, 2004; Willig et al., 2003), it would 
be interesting to compare the dependence of each diversity met-
ric on variables ranging from local to large geographic scale. Apart 
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from the scale aspect, the choice of different resolutions might 
also be of importance and should be tested in further studies. 
Recent studies also suggest that drivers such as air ozone pol-
lution, pests and diseases, pesticides, extreme weather events, 
soil type, competition, plants and pollinators networks may be 
valuable to include in future exercises (Phillips et al., 2018; Rollin 
et al., 2022; Settele et al., 2016), but are currently unavailable for 
large-scale analyses.

Present wild bee distributions depend on intercontinental and 
other natural barriers, both historical and present climatic and 
vegetational conditions, and the dispersal ability of each species 
to reach suitable habitats (Michener, 2007). To disentangle these 
factors and to characterise wild bee distribution patterns at spe-
cies level, it is imperative to fill the data gaps highlighted in the 
present study. We argue that wild bee knowledge is hindered by a 
historical bias towards well-studied regions with a long tradition of 
natural history collecting. Our study highlights under-studied spe-
cies and regions and can be used to select areas for monitoring. 
Our standardised method with data cleaning, filtering, and mod-
elling can be replicated in different regions, at different scales or 
resolutions, and can easily be updated and maintained alongside 
future data improvements from key regions and species. Our study 
helps to inform further research and monitoring schemes and pol-
icy actions that need to be integrated through the EU PoMS (Potts 
et al., 2020). Moreover, our call for improved data on key species in 
key regions is an important deliverable for initiatives such as the EU 
Pollinators Initiative (EPI) that aims to address wild pollinators de-
clines and inform an updated European Red List (Nieto et al., 2014; 
Potts et al., 2020).
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