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Abstract
Urban density is central to urban research and planning and can be defined in numer-
ous ways. Most measures of urban density however are biased by arbitrary chosen 
spatial units at their denominator and ignore the relative location of elementary 
urban objects within those units. We solve these two problems by proposing a new 
graph-based density index which we apply to the case of buildings in Belgium. The 
method includes two main steps. First, a graph-based spatial descending hierarchical 
clustering (SDHC) delineates clusters of buildings with homogeneous inter-building 
distances. A Moran scatterplot and a maximum Cook’s distance are used to prune 
the minimum spanning tree at each iteration of the SDHC. Second, within each clus-
ter, the ratio of the number of buildings to the sum of inter-building distances is cal-
culated. This density of buildings is thus defined independently of the definition of 
any basic spatial unit and preserves the built-up topology, i.e. the relative position of 
buildings. The method is parsimonious in parameters and can easily be transferred 
to other punctual objects or extended to account for additional attributes.
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1  Introduction

Density is the ratio of a mass—typically a number of individuals, jobs, or build-
ings—to a given two-dimensional reference, i.e. an area. In urban and planning 
practices, different density metrics are used (Churchman 1999; Longley and 
Mesev 2002; Angel et al. 2021) to represent the functioning of a city and, more 
particularly, to hint at the sustainability or liveability of urban forms (Pauleit and 
Duhme 2000; Boyko and Cooper 2011; Ewing et al. 2018; Rinkinen et al. 2021; 
Martino et al. 2021). Density metrics, however, are subject to two major issues: 
they use a reference area which is not necessarily related to research goals, and 
they ignore the relative locations of spatial elements within that reference area, 
thus aggregate without making sure of the internal homogeneity of the area. 
These problems were already stressed within the axiomatic approach to geo-
graphical space of Beguin and Thisse (1979) who showed that the elementary 
area considered to measure a density cannot be separated from the metric of the 
relative location of places, namely the topology.

We draw from this inherent property of geographic space and from more recent 
work by Caruso et al. (2017) to propose a method that computes a topology-based 
density index. The idea is to compute the index without using a reference surface 
but a graph that connects spatial objects (points) via edges. By weighting the edges 
of the graph with the distance between points, we can obtain a graph that preserves 
the relative position of the points with respect to each other. One can then cut the 
graph in order to obtain groups of points whose relative distances are homogeneous, 
thus having a homogeneous base (topology) for computing an aggregate index such 
as density. We suggest a novel spatial descending hierarchical clustering (SDHC) 
method to cut the graph, where the most locally dissimilar edges are removed itera-
tively. Rather than an exogeneous cutoff, we use the Cooks statistics on Moran scat-
terplot’s regressions, thus directly using local topological information at each stage.

We focus here on the case where points are buildings. Buildings, together with 
plots and streets, are the elementary constituents of an urban space (Moudon 
1997). We illustrate our method by proposing a buildings’ density index, which 
is a key index in urban planning. Hence, we move the measurement of the build-
ings’ density from an area-based problem to a graph-based problem. Our density 
metric preserves the relative location, i.e. the topology of the buildings.

We can see this research as a contribution to a strand of the urban literature 
where density is complemented by morphological indices (e.g. Galster et al. 2001; 
Berghauser Pont and Haupt 2005; Sémécurbe et al. 2019; Fleischmann 2019, 2021). 
Contrary to existing work in this domain, we emancipate from the definition of a ref-
erence spatial unit. We can also see our work as extending another line of research 
where topological graphs are used to capture the local spatial organisation of build-
ings (e.g. Caruso et al. 2017; Wu et al. 2018, for recent examples). Compared to this 
second strand, we move a step forward by proposing to use Moran’s scatterplots not 
only for describing but also for cutting the graph, and by adding a density measure.
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In the next section, we position our work within broader urban morphology 
research and with regards to recent methods applied to graphs of buildings. We 
then present data inputs and the different steps of our methodology in (Sect. 3), 
then the results of an application to all buildings located in Belgium (Sect. 4). We 
discuss our findings in Sect. 5 and conclude in Sect. 6.

2 � Background

2.1 � Density metrics and the urban space

The interplay between forms, structures and processes is central to urban science 
and for understanding how cities are made up: from form we infer processes that 
create the structures we see in cities, thus enabling us to build models of these pro-
cesses, that in turn will simulate forms (Batty 2013,  p. 79). The physical part of 
the city, essentially buildings, roads and plots, reveals the presence of inhabitants, 
activities and hence movements (flows), which themselves relate to planning and 
normative issues, such as what is the ”good” city form (Lynch 1984) according to 
its given environmental context and use? How to create a sustainable city? How to 
transform a city to a more sustainable one? For a while, the idea was to reduce dis-
tances and increase density to save energy and space (Williams et al. 2000). Today, 
many studies and authors (see for example Berghauser Pont et al. 2021, for a review 
of the impacts of densification) bring nuance to this statement by showing that city-
compaction and densification is not always the way to more sustainability. However, 
metrics of “densities” remain central in debates on how to deliver “better” cities at 
least in policy arena.

Two main approaches are used to study urban forms: the discrete object approach 
in discrete areas and the network approach (Berghauser Pont 2021). In the first 
approach, researchers measure morphometric characters such as size, shape, and 
intensity. (see Fleischmann et  al. 2021, for a review) of discrete elements such as 
buildings, streets and plots in more or less complex discrete areas (see for example 
Berghauser Pont and Haupt 2005; de Bellefon et al. 2019; Arribas-Bel et al. 2019; 
Godoy-Shimizu et al. 2021; Fleischmann et al. 2021). The morphometric characters 
are then often further associated with the evaluation of the urban form in terms, for 
example, of liveability (Martino et al. 2021), waste production, traffic volume, water 
and energy consumption (Pauleit and Duhme 2000), heat island and the flow of air 
(Boyko and Cooper 2011), the urban vitality (Bobkova et  al. 2017), etc. It is not 
merely the density of these structures that matters, however, but also their geom-
etry at specific scales (Schirmer and Axhausen 2015). Batty (2013), p. 180 suggests 
that spatial interactions and the functioning of connections within cities “need to 
be physically rooted in the detailed geometry of buildings”. Similarly for (Gehl 
(1987),  p. 83), building density “says nothing conclusive about whether human 
activities are adequately concentrated. The design of buildings in relation to relevant 
human dimensions is crucial”.

The network approach does not focus on discrete objects but on systems of 
objects. Researchers study particularly the street network which implies the study 
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of network structure, connectivity, centrality, hierarchy, etc. (Marshall et al. 2018). 
The Space Syntax movement, initiated by Hillier’s seminal work (Hillier 1996), is 
one of the precursors of this approach with attention given to the relative position 
of lines, while more recent publications rather focus on ubiquity across cities and 
the massive use of data (see particularly Boeing 2017). The study of the spatial con-
figuration of street elements allows the measure of the urban form and its impacts. 
For example, Berghauser Pont et al. (2019) study the centrality of the road network 
and its impact on pedestrian movement in three cities. The studies of street networks 
predominantly use methods based on graph (Marshall et al. 2018). In the studies of 
networks, the graph can be a primal graph (for example streets intersections are the 
nodes of the graph and streets are the edges) or, as it is the case for Space Syntax, 
it can be a dual graph (streets becomes nodes and streets intersections are edges) 
(Porta et al. 2006).

In the same line of research than Space Syntax, the present study work with 
dual connectivity graphs. As inspired by Caruso et al. (2017), Euclidean segments 
between buildings are computed as the edges of a primal graph. The idea is then to 
characterise those edges according to their connectivity. A dual connectivity graph 
is then computed with the Euclidean segments as nodes. The connectivity between 
the nodes, expressed by the edges, is function of the presence of nodes (buildings) in 
the primal graph.

Leaving aside the problem of flows (e.g. Andrienko et  al. 2010; Hurvitz et  al. 
2014), switching from physical structures to functions often leads researchers and 
planners to switch to areal objects, and count population or activities over a given 
surface (buildings, parcels, grid cells, etc.). An a priori selected reference (basic) 
spatial unit (BSU) is often used to measure a density index or a more complex met-
ric. A good example is the set of urban metrics proposed by Galster et al. (2001) to 
outcompete density while measuring sprawl. Each of their eight indices, not just the 
average density, requires a count of population or land use category over a set of 
exogenous grid cells, before being further aggregated over an urban region. While 
structures and arrangements of population and land uses are definitely picked up 
at the scale of an entire city or neighbourhood, there is still an aggregation process 
beforehand, and hence information loss, depending on the resolution and placement 
of the grid or depending on the original recording units (e.g. census tracts). These 
zonal and scale effects, known as Modifiable Areal Unit Problem (MAUP) (Open-
shaw 1983), inevitably bias the measures of urban form such as density (Zhang 
and Kukadia 2005). In order to avoid the biases due to the use of surfaces, we here 
computed metrics associated to networks, following earlier works of Flahaut et al. 
(2003) or Okabe et al. (2009).

Overall, the density of buildings is a major indicator for urban planning, but can 
only properly be used when two conditions are met: (i) density is complemented 
with indicators describing the relative spatial organisation of buildings and (ii) 
measurement biases due to the use of basic spatial units (BSU) are overcome.
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2.2 � Methodological advances

Regarding the first of the two conditions above, progress has been made since 
Galster et  al. (2001) especially towards deriving composite multi-factorial indi-
cators. The use of multiple attributes can depict how urban densities are experi-
enced by inhabitants and users (Teller 2021). Caruso et al. (2017) reviewed some 
of these multi-indicator contributions, mostly directed to capturing sprawl. They 
usually consider urban land pixels, not buildings (e.g. Teller (2021); Godoy-
Shimizu et  al. (2021); Berghauser Pont and Haupt (2005); Araldi and Fusco 
(2019)) and are examples of multi-factorial methods applied to building’ distri-
bution in relation to density. However, these indicators are defined from discrete 
zone (BSU) and therefore do not meet the second condition.

Regarding the second condition, i.e. avoiding the bias of a basic spatial unit 
(BSU), two strategies have been adopted so far: (i) spatial or statistical smoothing 
across the BSUs and (ii) clustering individual data with standard (k-means, etc.) 
or more complex classification methods (artificial neuronal networks methods, 
etc.). de Bellefon et al. (2019) is a recent example of smoothing. The authors use 
a kernel function applied on a very fine grid resolution to avoid losing informa-
tion about the internal spatial organisation while aggregating. In essence, how-
ever, kernels still depend on an a priori defined surface (bandwidth), even if it is 
often optimised for each case study (similarly to geographically weighted regres-
sion approaches with optimum bandwidth (Brunsdon et  al. 1996)). Although 
exceptions exist such as Araldi and Fusco (2019) (among others) in many cases, 
smoothing methods are applied uniformly across space and may not fit the local 
composition everywhere. Let us take Fig.  1a as an example of a spatial pattern 
of buildings. If we compute density using a smoothing grid (kernel) (Fig.  1b), 
we can see that the topology is lost and that the grid prevents from detecting 
groups of buildings with a similar topology. Referring to (ii), a recent example of 
density-based spatial clustering is the A-DBSCAN (Approximate–Density-Based 
Spatial Clustering of Applications with Noise) by Arribas-Bel et al. (2019), build-
ing on earlier work by Ester et al. (1996). Buildings are grouped according to a 
density criterion in order to draw city boundaries. Similar to other density-based 
methods, A-DBSCAN is not parameter-free (minimal number of buildings and 
maximal distance between them in a cluster), and results can thus greatly vary 
from one user to another. Furthermore, these two criteria are applied uniformly 
over the study area, which therefore prevents the detection of locally specific pat-
terns. If we now apply A-DBSCAN (Fig. 1c) to our example, we see that build-
ings with different visual topologies are clustered into one large group (blue). 
Hence, with this method we can see that the topology is partly lost.

To avoid the vanishing of topologies due to spatial aggregation, Zhang and Kuka-
dia (2005) suggest creating BSUs that make sense with regards to the initial spa-
tial organisation of the disaggregated data. This goal is pursued by density-based 
or graph-based clustering methods (Wu et al. 2018; Deng et al. 2011). This is done 
by Fleischmann et  al. (2020) or by Schirmer and Axhausen (2015) who perform 
clustering, local spatial statistics, and spatial smoothing within the topological con-
straints of building-based tessellation adjacencies or street network topology. In both 
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publications, BSUs are adapted in size and shape to the urban intensity. We pursue 
the same objective in this paper by presenting a method that is able to provide BSUs 
that make spatial sense in terms of distribution of buildings (i.e. topology) using a 
graph-based clustering method.

Fig. 1   Different methods to calculate the density of buildings or to perform a spatial clustering of a built-
up pattern
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In graph-based methods, the nodes are typically the buildings (primal graph) and 
the edges the inter-building segments computed from their centroid or from their 
edge. The advantage is to conserve information about the absolute location of build-
ings as well as their relative location (Anders et  al. 2001; Assunção et  al. 2006; 
Caruso et al. 2017; Wu et al. 2018). Most graph-based methods start with a Mini-
mum Spanning Tree (MST), which is easily partitioned into subgraphs, i.e. clusters. 
Each time one edge is removed, two distinctive subgraphs are created. If n edges are 
removed from the initial MST, n + 1 clusters of buildings appear. Different strategies 
are available to determine which edges should be removed to perform the spatial 
clustering. Caruso et al. (2017) remove all edges larger than an a priori threshold 
fixed at 200 metres. But this unique threshold cannot fit the local spatial organisation 
of buildings everywhere (Fig. 1d). Zahn (1971); Yu et al. (2014), based on Gestalt 
theory, remove the edges that are the most different in the set of their contiguous 
edges according to three parameters determined a priori ( p

1
 the number of contigu-

ous neighbours; p
2
 a ratio between the length of an edge and the average length 

of its neighbours; p
3
 a ratio based on the difference between the length of an edge 

and the average length of its neighbours to their standard deviation). Results will 
depend upon these thresholds. While Fig. 1e shows interesting results overall, it can 
be seen that the pattern of buildings to the north-east of the area is very poorly cap-
tured by the method. Assunção et al. (2006) use a Spatial ‘K’luster Analysis by Tree 
Edge Removal (SKATER) where they iteratively suppress the edge which, once sup-
pressed, minimises the sum of the intra-cluster variances. In this case, the number of 
final clusters has to be fixed a priori.

Following the axiomatic of Beguin and Thisse (1979), we know that the denomi-
nator of our density metric must preserve the relative positions of buildings every-
where in space. We thus follow graph-based approaches where inter-building dis-
tances are used to build and then to prune the MST. We propose a new segmenting 
(clustering) algorithm that does not require an exogeneous threshold to be applied 
uniformly across the area, nor a number of clusters to be defined beforehand. Our 
strategy, inspired by the LISA approach of Caruso et  al. (2017), is to compute a 
Moran scatterplot of inter-building distances for each graph (subgraph) and remove 
the main outlier for segmenting, rather than applying a distance threshold. As 
a result, the segmentation can be different across the area and catch distinct local 
topologies. Density is then computed, based on these topologically homogeneous 
clusters. The reader can already see that other morphometric indices than density 
could be calculated on these clusters.

3 � Materials and methods

3.1 � Data input and study area

Our method is applied to all buildings located in Belgium. Data are provided by 
the Land Registry Administration of Belgium ( © 2018 Administration Générale 
de la Documentation Patrimoniale). All buildings are used regardless of their 
function: each house (detached or semi-detached), office building, shop, garage, 
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church or factory is kept in the database. In order to avoid the noise generated by 
very small buildings such as garden sheds, all built polygons smaller than 12m2 
were removed from the database as was done by Montero et al. (2021). The data-
base includes 5,726,804 buildings, which further leads us to chunk the data for 
computation (see “Appendix 1”). Figure  2 shows the study area and a zoomed 
map of the buildings’ footprint.

3.2 � Methods

Our objective is to create a topology-based density index that preserves the local 
spatial organisation of the buildings. Hence, after pre-processing, our method 
comprises two main steps: a clustering method (step I) leading to topology con-
sistent groups and a density computation (step II). The process and the outcome 
of each step are summarised in Fig. 3 for a toy example (Fig. 3a).

3.2.1 � Step 0: pre‑processing

The input data consists of polygons. Although the size and shape of the polygons 
can be heterogeneous across space and further impact the distribution of inter-
building distances, we ignore those shapes by retrieving centroids (step 0, see 
Fig.  3b). The distance between buildings is here the distance between the cen-
troids of the buildings. We could have followed Yu et al. (2014), who measure the 
actual distance between buildings but this would not be appropriate in our case. 
Indeed, we want to measure the density of buildings per km of graph. By using 
distance between centroids, the user of the metric can then say “When I walk 1 km  
along the graph, I encounter x buildings”. With the actual distance between build-
ings, this interpretation of the metric would no longer hold. Rather, the user 

Fig. 2   Study area (left) and an example of the footprint of buildings (right)
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should imagine teleporting him/her self from one end of the buildings to the other 
as he/she travels along the graph. Moreover, the real distance between two build-
ings may be zero (e.g. terraced house) which leads to an indeterminacy (denomi-
nator is null).

Step 0.Pre-processing

(a) Pattern of buildings (b) Centroids of the buildings (vertices)

Step I. Spatial descending hierarchical clustering

(c) Graph G: Minimum Spanning Tree weigthed by the
distance between the centroids of the buildings

(d) Moran scatterplot of the edges of G

(e) Tests on variances (f) Subgraphs SG1 and SG2 following the removal of
the outlier

Step II. Computation of the density of buildings

(g) Total length of the subgraphs (h) Built density

Fig. 3   Application of the method on a simple spatial toy structure of buildings
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3.2.2 � Step I: spatial descending hierarchical clustering (SDHC)

This step starts with a minimum spanning tree (MST) where the nodes are the 
centroids of the buildings, and the edges are the inter-building segments. Euclid-
ean distances are used as weights (Fig.  3c) while computing the MST graph, 
which we denote by G. A descending hierarchical classification (SDHC) is then 
applied on G to iteratively define subgraphs SG by removing an edge out of each 
parent graph. The SDHC process is explained below and flowcharted in Fig. 4. It 
is carried out on graphs of at least 30 vertices in order to avoid statistical prob-
lems due to small numbers.

A Moran scatterplot (Anselin 1995) and a maximum Cook’s distance are used 
to identify the edge that should be removed at each iteration of the SDHC. The 
Moran scatterplot (Fig. 3d) shows how the edges are spatially associated locally. 
One point represents one edge of the MST. On the x-axis is the length of an edge, 
i.e. the distance between two connected buildings, and on the y-axis, its spatial 
lag, i.e. the weighted average distance of its contiguous edges. We voluntarily 
restrict the computation of the spatial lag of an edge to its contiguous neighbours 

MST (G) (Fig. 3c)

n(G) < 30
Stop - vertices are removed
& not considered in step II

Outlier in Moran scatterplot
(Fig. 3d) to split G in
SG1 & SG2 (Fig. 3f)

(1) len(G) > 10, 000m.

(2) n(SG1) ≤ 1
or n(SG2) ≤ 1

(3) Test: var(G) �= var(SG1)
or var(G) �= var(SG2)

(Fig. 3e)

Remove the outlier -
separate run on SG1 & SG2

Stop - vertices are re-
moved & considered
as a cluster in step II

yes

no

no

no

no

yes

yes

yes

Legend:
n : number of vertices
len : total length

Fig. 4   Step I: Flowchart
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of order 1 because we want to detect break between direct neighbours. A topo-
logical depth greater than 1 would lead to a smoothing of the spatial lag of each 
edge. Details about the spatial lag computation can be found in “Appendix 2”.

A linear model (OLS) is then estimated on the scatterplot, the slope of which 
indicates the global spatial autocorrelation level (Moran’s I, see Anselin (1995)). 
In most cases, we expect a positive slope, meaning that a long (short) separa-
tion between two buildings is found in neighbourhoods where distances between 
buildings are long (short) on average, i.e. in topologically homogeneous cases. 
The slope will be insignificant in cases where the relative distance between build-
ings and thus the topology are more heterogeneous. As pointed out by Anse-
lin (1996), points in the scatterplot that are extreme with respect to the central 
tendency reflected by the regression slope may be outliers in the sense that they 
do not follow the same process of spatial dependence as the bulk of the other 
observations.. We build on this property and use the maximum Cook’s distance 
to identify the most extreme point (outlier) of each graph G, which is actually the 
edge to be removed to obtain two subgraphs (SG1 & SG2) (Fig. 3f) featuring two 
topologically distinct clusters of buildings.

In order to determine whether the removal of the outlier leads to the creation of 
more homogeneous subgraphs, tests of variance (Brown and Forsythe 1974) between 
the parent graph (G) and each of the child subgraphs (SG1 & SG2) are performed 
(Fig. 3e). These tests measure whether the variance of the length of the edges in at 
least one of the two subgraphs is statistically different from that of the parent graph. 
If the null hypothesis (equality of variances) is rejected, the edge is removed, and 
the algorithm is re-run separately on each of the subgraphs. If the null hypothesis is 
not rejected, the edge is not removed, and the algorithm stops. Technically, in order 
to perform a relevant variance test, one needs first to make sure the parent graph is 
not very large (thus bearing a lot of heterogeneity) and that each child graph is at 
least made of more than one point. Hence, the following three conditions are used to 
determine whether the observed outlier is removed or not (Fig. 4):

•	 The total length of the MST is higher than 10,000 metres (see “Appendix 3” for 
details) (1).

•	 One of the subgraphs is made of a single vertex (2).
•	 The variance of the length of the edges in at least one of the two subgraphs is 

statistically different from that of the graph before edge suppression (3).

Step I is completed when no more edge can be removed (no significant outlier) 
from any of the subgraphs. Each subgraph is thus a topologically homogeneous 
cluster of buildings.

3.2.3 � Step II: the topology‑based density index

Let i be a cluster of buildings resulting from the SDHC above. D∗
i
 , the topology-

based density of the cluster i, is then defined as the ratio of Ni , the number of build-
ings and Li (Fig. 3g) the total length of the edges of the MST of i:
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D∗
i
 is then a linear density (buildings per linear distance). It would be possible to 

use the square of Li to obtain a surface version of the density. However, this trans-
formation brings new biases (due to the different lengths of Li ) without bringing any 
new information.

D∗
i
 can then be mapped onto each building of the corresponding graph (see 

Fig. 3h). Unlike common practice, the denominator is no longer an a priori chosen 
surface but the length of the shortest line connecting all buildings in a cluster. Con-
trary to grid based approaches, it is not constant over space in order to match the 
local spatial structure.

4 � Results

4.1 � The minimum spanning tree

The minimum spanning tree computed on all buildings located in Belgium describes 
the global topological structure of the built-up Belgian reality. As expected by the 
level of urbanisation of the country, the lengths between buildings in the MST are 
shorter than 50 m for a very large majority (95%) (see Table  1). The histogram 
(Fig. 5) is right-skewed and has a bimodal distribution with a very strong peak around 
six metres, and a secondary peak around 20 metres. The left part of the histogram 
shows short edges which correspond to attached or very close buildings of small 

(1)D∗
i =

Ni

Li

Table 1   Descriptive statistics: 
length of the edges of the 
minimum spanning tree

Mode q0.25 Median Mean q0.75 q0.95 Max

6.00 8.20 15.24 20.85 23.54 49.29 4378.99

Fig. 5   Distribution of the 95% smallest edges of the minimum spanning tree
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size. Note that the very small peak around three metres corresponds mostly to sets of 
contiguous building extensions. In the database, each extension is a small polygon 
(although larger than 12 m2 ). A set of small extensions joined together then leads to 
the creation of small edges in the MST. The right part corresponds to edges between 
15 and 50 m characterizing more detached buildings. Edges longer than 50 m  
(not illustrated in the histogram) are typical of more isolated buildings. The pres-
ence of a large peak at short distances combined with a second peak at medium dis-
tances and the absence of a peak at longer distances fully reflects Belgian urbanisa-
tion. This urbanisation is indeed characterised by numerous centres (towns, villages) 
connected with a strong level of suburbanisation and sprawl (Vanneste et al. 2008; 
Vandermotten et al. 2008; Vanderstraeten and Van Hecke 2019). One would expect 
a much smaller second peak and a rural peak (long distance) for a less continuous 
urbanisation, as is the case for example in the Netherlands.

4.2 � Moran scatterplots and their outliers

Out of the 260,359 Moran scatterplot regressions performed during the whole 
process, 93% show a positive and significant slope (Moran’s I). This demonstrates 
a high degree of homogeneity in the spatial distribution of buildings within the 
Belgian landscape. Indeed, at each iteration of the method, and therefore at all 
scales, there would be very few abrupt discontinuities in the spatial distribution 
of the buildings. This confirms the observations made earlier. Furthermore, the 
high level of significance of the OLS confirms the relevance of using Moran scat-
terplot to identify outliers.

We observe two types of outliers within the scatterplots: first, those corre-
sponding to an edge surrounded by edges longer than expected by the global spa-
tial autocorrelation (Fig.  6a), and second, those corresponding to an edge sur-
rounded by edges much smaller than expected (Fig.  6b). An outlier separates 
two distinct topological forms (Fig.  7a) but in some cases it can simply isolate 
some remote buildings from the rest (Fig.  7b). An outlier therefore separates 

(a) Outlier is an edge surrounded by edges
longer than expected by the OLS

(b) Outlier is an edge surrounded by edges
smaller than expected by the OLS

Fig. 6   Two examples of typical Moran scatterplot (outlier in green) (colour figure online)
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settlements, towns, city districts, villages, etc., or separates isolated and hetero-
geneous housing from a homogeneous structure of buildings (a farm on the out-
skirts of a village, a church in a city centre, etc.).

75% of the removed edges have a length between 30 and 80 m, while the 
median length takes the value of 44 metres (Table 2). The large observed range 
of removed edges shows that the iterative process implemented in the method 
allows the identification of clusters of different patterns at different scales and for 

(a) Outlier separates two distinct
morphological spaces

(b) Outlier isolates some remote
vertices from the rest

Fig. 7   Two examples of graphs and related sub-graphs according to the outlier (in green) (colour figure 
online)

Table 2   Descriptive statistics: 
length (in meters) of the 
removed edges

Min. q0.25 Median Mean q0.75 Max.

0.71 30.66 43.91 78.09 80.95 4378.99

Fig. 8   Histogram of the coefficients of variation of the edge lengths for all 26,462 subgraphs



1 3

A partition‑free spatial clustering that preserves topology:…

different realities. Indeed, from the first removed edge up to the last one, the itera-
tive process progressively splits the initial graph (all of Belgium) into a series 
of smaller graphs that outline nested clusters, each with its specific character-
istics. The use of the Moran scatterplot allows the selection of the edge to be 
deleted taking into account these specificities. The method identifies the removed 
edge at each step. It is therefore possible to go back up the clustering tree to 
observe these different clusters at different scales. This would not have been pos-
sible when using a method based on an a priori defined threshold (Zahn 1971; Yu 
et al. 2014; Caruso et al. 2017). Moreover, the median value (43 m.) shows that 
the discontinuity in buildings is in the majority of cases much lower than the one 
generally used by those studies (between 100 and 200 m).

Fig. 9   Example 1: Built-up footprints (left) and detected clusters (right) of a Belgian village (Ochamps)

Fig. 10   Example 2: Built-up footprints (left) and detected clusters (right) of a suburban settlement 
(Ophain-Bois-Seigneur-Isaac)
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4.3 � Clusters of buildings

At the end of step I, the method discriminates 26,462 subgraphs (see Fig.  19 in 
“Appendix 4”). Over 95% of the subgraphs have a coefficient of variation of the 
length of the edges smaller than 1, which means that within a subgraph, the lengths 
of the edges are homogeneous (Fig. 8). Each subgraph can thus be considered as a 
topologically homogeneous cluster of buildings.

Within each cluster, the variance of the inter-building distances is small, which 
results in the detection of built-up footprints characterised by a regular pattern 
of buildings (homogeneous topology). Let us now consider a first example illus-
trated in Fig. 9. It includes two regular neighbourhoods (A and B). A is a compact 
village with a radial morphological structure; B is made up of a regular align-
ment of buildings that forms a linear ribbon development. A second example 
is reported in Fig. 10 already used in Sect. 2.2, south of Brussels, composed of 
eight homogeneous neighbourhoods (A:H). Each neighbourhood corresponds to 
a particular pattern of buildings, with a historical centre around the church (A), 
classical planned housing estates (B:F), and two more linear developments (G:H). 
Isolated buildings or heterogeneous groups of less than 30 buildings are left out 
(mainly isolated farms typical of the area).

Fig. 11   Case of Seneffe
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Our 26,462 clusters can now be considered to be topologically relevant Basic 
Spatial Units (BSU). Since each BSU are internally homogeneous in terms of 
distance between centroids, we can confidently use those units to compute index 
such as density, which characterises the spatial distribution of buildings centroids 
within each cluster.

4.4 � Density of buildings

The topology-based density is now computed for each cluster. Each group of build-
ings with a homogeneous topology has a specific density value. To explain this spec-
ificity of our method, we have compared our results with those obtained by a simple 
grid-based density smoothed by a kernel function with two examples (Figs. 11, 12).

With our method, only one density value is computed by cluster when several 
values are needed with a grid. For example, in the case of Seneffe (Fig. 11), we 
identify seven clusters, with seven density values ranging from 19 to 86 buildings 
per km (Fig. 11b). The smoothed grid approach covers the area and compute den-
sity ranging from zero to 31 buildings per hectare (Fig. 11c). While our method 
detects seven homogeneous buildings patterns with precise contours, the grid 
method suggests two or three main centres surrounded by less dense periphery  
located in the east and some shadows in the west. Similarly in the case of Genappe 
(Fig. 12), our method detects three distinct homogeneous buildings patterns (53, 
58 and 100 b/km), while the grid method delivers different density values rang-
ing from zero to 57 b/ha) and showing a large centre in the west surrounded by a 
periphery that develops in a ribbon towards the east.

Fig. 12   Case of Genappe
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In each example, the different density values, associated with the different 
clusters, allow the identification of particular urban structures. In the case of Sen-
effe (Fig. 11b), the two clusters with a density of 73 b/km and 74 b/km include 
the buildings of the centre, consisting mainly of semi-detached buildings along a 
main axis from north to south. In the periphery of the centre, the cluster with a 
density of 60 b/km is formed of detached buildings while the cluster of 86 b/km  
includes much more attached buildings (public housing). The clusters around 
30–50 b/km are associated with housing estates well-separated from the centre 
with exclusively detached buildings. Large inter-building distances character-
ise the cluster with the lowest density (19 b/km) (industrial zone). In the case of 
Genappe (Fig.  12b), the cluster with a density of 100 b/km includes the build-
ings of the centre. In an extension of the centre, two clusters are identified with 
a density about 50–60 b/km consisting of well-separated buildings. One of these 
clusters is a ribbons extension along a road from the centre (53 b/km), and the 
other is a more widely spread cluster assimilated to a district in the periphery of 
the centre (58 b/km).

Given the definition of the topology-based density (the number of buildings 
divided by the length of the MST), there is a direct relation between the density 
value and the average length within a cluster ( li ). In fact, inverting Eq. 1,

and because in a MST the number of edges is always equal to the number of points 
( Ni ) minus 1,

Then, D∗
i
 becomes:

with � ≈ −1 when Ni is large ( Ni ≈ (Ni − 1) ). For all 26,462 clusters obtained in 
Belgium, the value of � can be estimated (OLS after logging both sides of Eq. 4). 
We obtain a value of � equal to −0.996 . This is indeed very close to 1 but shows a 
slight under(over) estimation for graphs of longer (smaller) average length. In the 
words of Beguin and Thisse (1979), we show that density ( D∗

i
 ) (of buildings in this 

case) cannot be separated from the metric of the relative location of places ( li ) and 
that this relationship follows a simple power law.

According to Eq.  4, the topology-based density only depends on the inter-
building distances unlike a surface-based approach where the density can vary 
according to the area of the BSU without considering the distance between build-
ings. This might sound like a trivial result, but the use of surface-based densi-
ties cannot differentiate between two BSUs where the same number of buildings 
are located but where once is concentrated and once is dispersed. While others 

(2)D∗
i
=

(

Li

Ni

)−1

(3)li =
Li

Ni − 1
≈

Li

Ni

(4)D∗
i
= li

�
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researchers would add additional metrics to capture this (e.g. Galster et al. 2001; 
Berghauser Pont and Haupt 2005), our density measure suffices.

Practically, if we know the value of the topology-based density, we can work 
out the relative spatial organisation of the buildings. Figure  13 illustrates four 
such cases. (a) A built density value higher than 100 b/km is computed on adjoin-
ing buildings or very close to each other (mean distances of less than 10 metres) 
as is the case in city centres (Fig. 13a). (b) A value between 50 and 100 b/km is 
related to a topology of buildings relatively close to each other (mean distances 
between 10 and 20 m) as may be the case, for example, in the periphery of cities 
or in smaller centres (Fig. 13b). (c) Relatively well-separated buildings such as 
in a peri-urban housing estate (mean distances between 20 and 50 m) have densi-
ties in a range between 20 and 50 b/km (Fig. 13c). Last but not least, (d) densities 
lower than 20 b/km reflect clusters of buildings with average distances greater 
than 50 m (Fig. 13d).

At the scale of the entire country, the newly computed topology-based density 
(see Fig. 20 in “Appendix 5”) shows a spatial structure that expresses urbanisation in 
Belgium (see Sect. 4.1).

Fig. 13   Typical cases of topology-based density according to inter-building distances
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5 � Discussion

5.1 � Thematic contribution

We have proposed a spatial descending hierarchical clustering method that delin-
eates clusters of buildings with homogeneous inter-building distances. Based on 
these clusters, we compute a topology-based density index where the denomina-
tor preserve the relative positions of buildings. We show (Sect. 4.4) that the index 
eventually only depends on the average distance between buildings in each cluster. 
It is a strong advantage compared to standard surface-based densities where density 
depends on the delineation and definition of a reference area (BSU).

The numerator considered here is simply the number of buildings. Depending 
on the final objective of the measure, other numerators could equally be used such 
as the surface of buildings, their volume or height (see e.g. Yu et al. 2010). In our 
case, we could imagine using the surface area of the buildings in each cluster or 
the total surface area of their floors as the numerator. These indices would remain 
topology-based as the denominator does not change. The diversity of indices is 
therefore a function of the diversity of possible numerators. As shown by Wu 
et al. (2018), a large number of characteristics (distance, orientation, height, size, 
etc.) of buildings can easily be integrated into a graph. It is up to the planners to 
develop and use them according to their needs. In the same way, other parameters 
can be used as a basis for the SDHC. The association of a Cooks distance with a 
Moran Scatterplot can be used to distinguish the most different object in a cluster. 
Rather than having clusters with identical patterns in terms of distance between 
buildings, some could, for example, look at groups with similar building heights.

The only data input used here are the buildings. This can appear counter-
productive since streets, squares, parks, and gardens are traditionally identified 
as important places in built-up realities (Gehl 1987). However, as expressed in 
Sect. 2, it is possible to link a large number of urban issues to the structure/prox-
imity of buildings (energy consumption (Rinkinen et  al. 2021), mental health 
(Sullivan and Chang 2011), population estimates (Tomás et al. 2016), etc. This is 
why we believe that focusing on the density of buildings can be relevant for urban 
space issues.

We are aware that the use of our graph-based index may appear difficult for urban 
policy makers as they are often used to work on a externally determined surface 
basis. However, we believe that it is sometimes necessary to change the approach 
because of biases and errors in measurement and interpretation induced by these 
surfaces. Moreover, measuring the density along a topological network (as pro-
posed here) has also two practical advantages compared to a more classical surface 
approach. First, it is a more operational way to study the relationships/interactions 
between buildings and linear infrastructures. Linear infrastructures (electricity, 
gas, water) do not always follow roads and their planning could also benefit from 
our measure. Our method enables to determine which buildings are spatially con-
nected and at which specific distance. Second, by using a distance-weighted graph, 
we find that our measure is more likely to lead to the study of the relationships and 
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interactions that can exist between points (buildings). Indeed, the network approach 
allows us to distinguish points that are connected to each other while measuring 
the characteristics of each group. A parallel can be drawn with ecological research 
where graphs are used. For example, in the same way that Foltête and Vuidel (2017) 
delineates functional ecological zones with by means of landscape graphs, we 
should be able to better measure and therefore better understand the relationships 
between people living in different spaces of a city, or to understand how these differ-
ent spaces are organized.

Our topology-based index is a contribution to increase the quality of the meas-
urement and understanding of the morphology of the built space. We know that the 
topology of the buildings is only one aspect of the complexity of such space. Taking 
a multi-factorial approach, it would certainly be possible to develop and combine 
other indices with the topology-based density index as presented here. We already 
mentioned the addition of the third dimension (height of the buildings). But it is 
certainly also possible to adapt other indicators. The concentration index developed 
by Galster et  al. (2001) could for example be adapted to measure whether or not, 
within a cluster, the buildings are rather aligned or form a block. Complementing 
the topology-based density with other indices could be the next step in this research.

5.2 � Methodological limits

A first methodological limit is the use of the centroid of each building instead of the 
building footprint in the creation of the graph. We have seen that in our case, it is the 
distance between building centroids that must be considered in order to obtain a cal-
culable and more easily interpretable measure. We note, however, that in some cases 
the interpretation of the measurement may lead to a poorer perception of the built 
environment. For example, a given spatial organization of centroids may reflect the 
location of small buildings that are far apart (i.e. isolated farms) or very large build-
ings that almost join (i.e. industrial zoning).

The use of a Cook’s distance for identifying the outlier in the Moran scatterplot 
can also be discussed. There are many alternative graphical (scatterplot, boxplot, 
etc.) or analytical (standardised residuals, hat matrix, etc.) methods of detection of 
outliers in regression (Ampanthong and Suwattee 2009). Analytical methods have 
the advantage that they do not require human visual interpretation. Cook’s distance 
is pointed out by Ampanthong and Suwattee (2009) as one of the best indices for 
the detection of outliers in multiple regression. In our paper, we find it interesting 
because it combines both residual information (is a point far from the line?) and 
information on the influence of each point in the regression. It should be noted that 
the method identifies a single outlier (the observation for which the Cook’s distance 
is maximum). If the outlier is clearly identifiable, the different indices will converge. 
If several outliers are present and if they are not clearly identifiable, results might 
not converge. However, we did not encounter this figure in our empirical analyses, 
but are aware that it could happen. Another limitation that should be investigated in 
the future with the help of statisticians concerns the use of outliers in a regression 
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whose slope is not significant. This happens very little in our case (5%) but could 
happen in a more important way if someone wants to work on a less homogeneous 
variable than the distance between centroid buildings.

Another methodological limit concerns the use of the 10,000 metres threshold 
as a constraint on the removal of an outlier. On the one hand, the objective of the 
method is not impacted by the value of the threshold. Whatever the threshold, the 
method always creates clusters whose topologies tend to be more and more homo-
geneous during the iterations. On the other hand, the threshold can modify the scale 
at which the method will stop. A high value will lead to the creation of large clusters 
(large length of graph), whereas a small value leads to the creation of very fine scale 
clusters. The threshold of 10,000 seems to be the most relevant for density measure-
ments in Belgium but remains debatable.

Last but not least, the choice of variance test can also be a source of discussion. 
Indeed, it is important a priori to control the distribution of the populations tested when 
carrying out a test of variance (Box 1953). We do not carry out this control systemati-
cally. However, we have noticed in a large majority of cases that the distribution of the 
length of the edges in the (sub)graphs was heavy-tailed (as shown in Fig. 5). Therefore, 
we opted for the Brown and Forsythe variance test. This test is the most appropriate for 
this type of distribution (it does not consider the most extreme 10% of the distribution) 
(Brown and Forsythe 1974). In comparison with other tests, the Brown and Forsythe 
test gave the most visually appropriate results. One way to further improve the method 
may be to systematically assess the shape of the distributions to be tested and the appli-
cation of the most appropriate test to each case.

6 � Conclusion

Following Caruso et  al. (2017) who sought to identify urban form patterns using 
methods based on graphs, and following (e.g. Berghauser Pont and Haupt (2005)) 
who sought to measure buildings’ density with distinct indices depending on spatial 
units, we develop here a method to obtain a built density index that preserves the 
topology of buildings. This means that we can now identify clusters of buildings 
with homogeneous inter-building distances, and we can further measure, for each 
cluster, the density of buildings while preserving information about their relative 
positions.

Our method works in two steps. After retrieving the centroids of the buildings, 
the first step in the method consists in a spatial descending hierarchical clustering 
(iterative approach). Based on a minimum spanning tree weighted by inter-building 
distances, a Moran scatterplot combined with a maximum Cook’s distance are used 
to identify the edge of the MST that diverges most from its neighbours (outlier). 
This edge is removed if it meets several criteria; one of these is the inequality of the 
variances of the lengths of the edges with and without outlier. At the end of step I, 
clusters of buildings with homogeneous inter-building distances are delineated. In 
the second step, the topology-based density is computed by dividing the number of 
buildings in a cluster by the total length of the MST connecting all buildings in that 
cluster.
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The method is applied to all buildings located in Belgium. Clusters with homo-
geneous inter-building distances are clearly identified. For example, some clusters 
refer to the organization in a compact village, others to a linear development along a 
road, or to a housing estate organization, etc. For each cluster, the value of the newly 
developed density index reflects the topology, i.e. the relative position of buildings. 
A high (low) density will be measured when the distance between buildings is small 
(large). The topology-based density index is then only influenced by the relative 
position of the buildings (average inter-building distance). This is not the case for 
standard density measures, using an a priori fixed surface. Topology-based density 
is therefore a quite useful index for measuring and understanding built-up patterns.

Appendix 1: Chunking of the database

To limit computation time, the database is divided into different chunks spatially adja-
cent to each other. However, this chunking produces border effects that might bias the 
results. Indeed, two buildings belonging potentially to the same morphological struc-
ture can be separated if they belong to two different chunks. To avoid these border 
effects, a second chunking process is applied to the same dataset (Fig. 14). The method 
runs for each chunk separately. The results of the chunks from the chunking 1 are then 
combined but the subgraphs close (1,000 metres) to the chunks border are replaced by 
subgraphs from chunking 2 to give the buildings’ density of Belgium (Sect. 4).

The final results of the method are not dependent on the initial chunking. Indeed, if 
each building is assigned the density value of the subgraph to which it belongs, then 
more than 92% of the buildings have exactly the same density with chunking 1 and 
chunking 2. If buildings within 1,000 metres of the chunking boundaries are not taken 
into account (boundary effect), the percentage of identical density between the two 
chunkings increases even more to 97%.

Fig. 14   Two chunkings
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Fig. 15   Calculation of the spatial lag on a simple spatial toy structure of buildings

Fig. 16   Comparing different thresholds in condition (1) on a given pattern of buildings (a)

Appendix 2: Calculation of the spatial lag

The spatial lag is the product of the row standardised matrix of adjacency with the 
standardised vector of distance between the centroids of the buildings. The adja-
cency matrix (diagonal equal to zero) is obtained by the product of the incidence 
matrix with its transpose (Fig. 15).
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Appendix 3: Sensitivity to condition (1)

Condition (1) expresses the fact that if the total length of the graph is higher than 
10,000 metres, the outlier is removed. With this condition, we ensure that the 
method detects fine-scale morphological features. We assume that a graph longer 
than 10,000 m is too heterogeneous with regard to its inter-building distances. It is 
therefore necessary to remove the outlier detected in the Moran scatterplot to allow 
the method to search for more homogeneous topological clusters as it does in condi-
tion (3). Note that the 10,000 m threshold was not selected at random: several values 
were tested (see examples in Figs. 16, 17 and 18). With values larger than 10,000, 
the algorithm cannot distinguish different topological patterns, especially in the 
countryside. Conversely, with values lower than 10,000 the algorithm detects small 
local topological differences that are not relevant in terms of density measure.

Fig. 17   Test of different value to condition (1) on a pattern of buildings
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Fig. 18   Test of different value to condition (1) on a pattern of buildings
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Appendix 4: The 26,462 clusters for Belgium according to the SDHC

See Fig. 19.

Fig. 19   26,462 clusters following spatial clustering
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Appendix 5: The topology‑based built density index computed 
for Belgium

See Fig. 20.
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