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A B S T R A C T   

Labelled point clouds are crucial to train supervised Deep Learning (DL) methods used for semantic segmenta
tion. The objective of this research is to quantify discordances between the labels made by different people in 
order to assess whether such discordances can influence the success rates of a DL based semantic segmentation 
algorithm. An urban point cloud of 30 m road length in Santiago de Compostela (Spain) was labelled two times 
by ten persons. Discordances and its significance in manual labelling between individuals and rounds were 
calculated. In addition, a ratio test to signify discordance and concordance was proposed. Results show that most 
of the points were labelled accordingly with the same class by all the people. However, there were many points 
that were labelled with two or more classes. Class curb presented 5.9% of discordant points and 3.2 discordances 
for each point with concordance by all people. In addition, the percentage of significative labelling differences of 
the class curb was 86.7% comparing all the people in the same round and 100% comparing rounds of each 
person. Analysing the semantic segmentation results with a DL based algorithm, PointNet++, the percentage of 
concordance points are related with F-score value in R2 = 0.765, posing that manual labelling has significant 
impact on results of DL-based semantic segmentation methods.   

1. Introduction 

Deep Learning (DL) approaches have recognized as the state-of-the- 
art-in 3D point cloud classification and semantic segmentation (Zhang 
et al., 2019). The quality and accuracy of results of the supervised DL 
approaches are highly dependent on the training data. Although DL 
approaches do not yet achieve perfect segmentation results for complete 
scenarios, they have already achieved very high success rates on many 
tasks. For example, building floors were segmented with 98.5%, 98.2%, 
and 98.1% of IoU (Intersection over Union) using PointWeb (Zhao et al., 
2019), LLGF-Net (Zhang et al., 2022), and HybridCR (M. Li et al., 2022) 
methods, respectively. Roads were segmented with 98.5% of IoU using 
CGA-Net (Lu et al., 2021), vegetation were segmented with 97.3% of IoU 
using MinkowskiNet (Choy et al., 2019), and buildings were segmented 
with 97.5% of F1-Score using ResNet18 algorithms. 

Usually, and for a reasonable comparison, methods are tested on 
public datasets. There are numerous point cloud datasets covering a 
wide variety of scenarios, outdoor including urban (Ros et al., 2016) and 
road (Behley et al., 2019), and indoors (Armeni et al., 2017). Most of this 

data is acquired with mobile mapping systems on account of its good 
relationship between acquisition time and accuracy (Ma et al., 2018). 
These datasets are composed of two main pieces of information. They 
can be categorized as labelled and unlabelled data. The raw data rep
resenting the 3D environment, usually unlabelled, which can be ac
quired by laser scanners or are generated synthetically (Deschaud et al., 
2021). For the labelled data, the labels associated to each point provide 
corresponding object class that can serve as the ground truth for 
training, validation and testing (Xie et al., 2020) purposes in supervised 
machine learning and deep learning methods. The data labelling is 
mainly done manually, so labelling is a subjective task and may contain 
human errors. Visualization of point clouds is difficult, mainly because 
of irregular point density, (Richter & Döllner, 2014), seeing through the 
surface effect (Virtanen et al., 2020), complex 3D shapes (Uchida et al., 
2020) and sometimes, absence of true colour (González et al., 2022). 

The objective of this study is to quantify discordances between the 
labels made by different people in order to assess whether such discor
dances can influence the success rates of a DL based semantic segmen
tation algorithm. The study used an urban point cloud covering 30 m of 
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area, since urban areas present high complexity and overlapping of 
objects. Besides urban areas are one of the main scenarios of application 
of LiDAR technology. From a set of instructions, ten researchers famil
iarized with point clouds performed their corresponding labelling with 
two repetitions. Based on the results and considering the discordances, a 
ground truth can be obtained based on a voting system. 

The reminder of this paper is structured as follows. In Section 2, 
semantic segmentation works are briefly reviewed. The proposed 
method is explained in Section 3. Section 4 presents and analyse the 
results. The discussion is in Section 5, and Section 6 concludes this 
paper. 

2. Related work 

Deep Learning methods are widely used in several areas, such as 
health care, visual recognition, self-driving cars, classification of the 
terrain. Abdelaziz Ismael et al., (2020) presented a method for classi
fying brain tumour types based on Magnetic Resonance Images. 
Hyperspectral images are also used in deep learning methods, (Hong 
et al., 2022). They proposed a novel backbone network called Spec
tralFormer, to extract and represent the attributes of spectral signatures 
with more accuracy. In (S. Li et al., 2019) the authors presented a review 
of deep learning based Hyperspectral image classification, comparing 
several strategies of this topic. However, most of the deep learning 
techniques are designed and applied for a single modality. Hong et al., 
(2021) proposed a method to identify the materials lying over or 
beneath the Earth’s surface, developing a multimodal deep learning 
(MDL) framework. Deep learning methods are also used to classify point 
clouds. Labelled point clouds are widely applied to train and test DL 
methods, both in indoor and outdoor environments. Some researchers 
process point clouds through a rasterization (Guiotte et al., 2020; Lê 
et al., 2022; Paz Mouriño et al., 2021) and voxelization (Tchapmi et al., 
2017; Xu et al., 2021). In this way, advantages from well-studied Con
volutional Neural Networks (CNNs) can be applied to point cloud 
structures. Today, most DL based studies for semantic segmentation in 
point clouds are based on point Neural Networks, such as PointNet 
(Charles et al., 2017), PointNet++ (Qi et al., 2017a) or their variants 
(Boulch, 2020; Hu et al., 2019; Nurunnabi, Teferle, Li, Lindenbergh, & 
Hunegnaw, 2021; Thomas et al., 2019). 

Point cloud semantic segmentation is frequently applied for intelli
gent city modelling, autonomous driving and urban planning. Nur
unnabi, Teferle, Li, Lindenbergh, & Parvaz (2021) investigated PointNet 
algorithm and its potential for large-scale outdoor point clouds. The 
authors in Balado et al. (2019) applied PointNet for semantic segmen
tation of road environments in 7 classes. In Liu et al. (2022), the authors 
proposed a novel context-aware network (CAN) that can directly deal 
with large-scale point clouds. They tested this architecture in three 
datasets, Tongji-3D dataset (Chun et al., 2021), Semantic 3D dataset 
(Hackel et al., 2017) and S3DIS dataset (Armeni et al., 2016), obtaining 
a mean Intersection over Union (IoU) value of 83.52%, 74.7% and 
78,97% respectively. A training dataset for sematic segmentation of 
urban point cloud map for intelligent vehicles is presented in Song et al. 
(2022). The urban area was scanned with a mobile mapping system. 
Then, they performed a semi-automatic and manual labelling. To verify 
the training dataset, various state-of-the-art point cloud semantic seg
mentation algorithms were used, obtaining a mean IoU value of 53.7% 
(ConvPoint (Boulch, 2020)), 52.8% (KPConv (Thomas et al., 2019)), 
45.8% (SPG (Landrieu & Simonovsky, 2018)), 46.58% (RandLA-Net (Hu 
et al., 2019)) and 25.5% (PointNet++ (Qi et al., 2017a)). 

Some authors provide large-scale urban Mobile Laser Scanning 
(MLS) datasets, with large number of labelled points. iQumulus dataset 
(Vallet et al., 2015) is one of them composed by 10 km of streets in Paris. 
This data set consists of 300 million points labelled with 11 classes. 
Semantic3D dataset (Hackel et al., 2017) is composed by 4.5 km area, 
having 4,000 million of points with 8 class labels (man-made terrain: 
mostly pavement, natural terrain: mostly grass, high vegetation: trees 

and large bushes, low vegetation: flowers or bushes smaller than 2 m, 
buildings, remaining hard scape, scanning artifacts and cars and trucks). 
In Roynard et al. (2018), authors presented an urban dataset composed 
by several point clouds of outdoor scenes in Paris and Lille of 1.94 km 
length, and 143 million hand labelled points of more than 50 classes (e. 
g., the ground, cars and benches). A large-scale urban outdoor point 
cloud dataset acquired by an MLS system in Toronto is showed in Tan 
et al. (2020). This dataset has 1 km length, 78 million points and 8 
classes. In Zhu et al. (2020), the authors presented a dataset which 
covers an urban area in Munich of approximately 1 km long and include 
more than 40 million labelled points with 8 classes. Generation of 
datasets has reached also case studies with limited data samples. ArCH 
(Arquitectural Cultural Heritage) (Pierdicca et al., 2020) is composed by 
11 labelled point clouds involving both indoor and outdoor scenes have 
points of churches, chapels, cloisters, porticoes and arcades. 

The previous works compare the semantic segmented result with the 
ground truth (i.e. manual labels). However, none of the studies measures 
the discordance in the labelled ground truth, which can influence the 
results of DL methods. The novelty of this research is the measurement of 
discordance in manual labelling in MLS point clouds and the discor
dance influence in DL based semantic segmentation methods. 

3. Materials and methods 

3.1. Input data 

An MLS point cloud used in this study was acquired by Riegl VUX- 
1HA, which is a compact and lightweight laser scanner. The technical 
specifications of the equipment are given in Table 1. The three- 
dimensional (3D) point cloud P(X,Y,Z) of an urban road contains 4 
million points, with a density of 6,000 points/m2 without any attribute. 
It covers 30 m of a street in the city of Santiago de Compostela (Spain). 
The quantity of data was considered representative for an urban scene 
due to the same pattern is repeated along the roads. The point cloud is a 
part of the Santiago Urban Dataset (SUD) dataset (segment H) 
(González-Collazo et al., 2022). This area was selected because it con
tains highly representative characteristics of an urban geometry. It 
composed of a two-line road, one side parking area with few cars, 
sidewalk on both sides, building facades with entrances, trees, street
lights, traffic signs and street furniture. 

3.2. Manual labelling 

The point cloud was labelled manually by 10 persons (i = 1,2,⋯,10)
and in two rounds (r = 1and2), generating each one the corresponding 
array of labels Lr,i. The persons were regular users of point cloud data 
having different levels of expertise (2 PhDs, 4 PhD candidates and 4 
bachelor students) in point cloud processing and visualization. The two 
rounds of labelling were spaced of one month. No pre-classification was 
used for any of the rounds. The labelling was conducted in the envi
ronment of Cloud Compare software with the segmentation tool, leaving 
the display options (pixel size, colour, and use of lighting models) up to 
each person to decide. The points were labelled into nine classes: road, 
sidewalk, curb, building, car, vegetation, pole-like objects (traffic lights, 
signs, and streetlights), furniture, and others. The following criteria 
were established to ensure consistency between labels from different 

Table 1 
Technical specifications of Riegl VUX-1HA scanner.  

Field of view (vertical/horizontal) 360◦ full circle 

Angular resolution (vertical/horizontal) 0.001◦

Range (m) 1.2–420 
Accuracy (mm) 5 
Pts/s Up to 1,000,000 
Wavelength (nm) Near infrared  
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persons:  

• All points behind the facades were considered as building points, 
including floors of entrances and indoor spaces.  

• Only unmoving cars were considered as cars. Motorbikes, large 
trucks, and any other vehicle in motion were defined as others.  

• Traffic lights, sign and streetlight posts were considered as pole-like 
objects. But the bollard points were considered as others.  

• Ramps were classified within sidewalk points.  
• Any other points and that were from unrecognizable objects were 

classified as others. 

To obtain the ground truth, the point cloud was opened with 
CloudCompare, and using the segmentation tool the points of each class 
were obtained. Some visualization tools in CloudCompare software were 
used to segment each class easily. Different views, size of the points or 
colour of the point cloud. Nine point clouds were obtained in the first 
step of the manual labelling process, one for each class, Fig. 1. Then, 
these point clouds were merged, generating a new index. 

The time used for manual labelling of each point cloud was 
approximately 30 min per person and round. One labelled point cloud is 
seen in Fig. 2. Subsequently, label arrays were concatenated to the input 
point cloud P

(
X,Y, Z, L1,1⋯L1,10, L2,1⋯L2,10

)
, being Lr,i the label, where r 

is the number of round (r = 1and2) and i is the person who did the 
labelling (i = 1,2,⋯,10). 

3.3. Discordance 

The issue of discordance measurement between labels can be pre
sented as a classification problem of confusion. However, unlike the 
conventional problem, in this case there was no reference data since the 
ground truth was also subject to interpretation. It was also not a one-to- 
one comparison, since several sets of labels were compared. Therefore, it 
is proposed to use a triangular matrix M(9 × 9) classes whose main di
agonal was composed of the points that had the same label and the other 
positions were discordances. Concordance and discordance were 
defined as follows:  

• Concordance means that the same class assignment to one point by 
all persons in all rounds ∀Ln = Ln+1. In such a case, the point is 
counted on the main diagonal of the corresponding class.  

• Discordance is defined as the existence of different classes assigned 
to the same point ∃Ln ∕= Ln+1. It is counted as discordance between 
the corresponding confusions in the matrix. 

To establish a relation between both, a discordance ratio was defined 
(rdc) that accounts for the discordances with respect to the concordance 
of each point as in Equation (1), where d is discordance and c concor
dance in rdc. 

rdc =
discordances

pointsinconcordance
(1)  

3.4. Significance of test statistic 

The null hypothesis (H0) was defined to test if there are any signif
icant difference of labelling from the same person within two different 
rounds and from 10 different persons within the same class in the same 
round. The well-known Marascuillo proportion test procedure was 
employed to test the H0. It enables to simultaneously test the differences 
of all pairs of proportions when there are several populations under 
investigation (NIST, 2022). The first step of this procedure is to compute 
the proportions per class of each person, pi = lclass/l , being lclass the 
number of points of each class, l the total number of points and (i = 1,2,
⋯, 10). Then, the differences of all pairs of proportions, pm − pn, are 
calculated where m and n represent two different persons who did the 
classification, among all j(j − 1)/2 pairs of proportions, being j = 10. In 
total, there were 45 combinations when considering 10 people. The 
corresponding critical values for the Marascuillo procedure were ob
tained following the Equation (2), where pm is the proportion value of 
one person and pn the proportion value of another person. χ2

1− α,j− 1 is the 
chi-square value and lm and ln the total number of labelled points by the 
corresponding person. 

rmn =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

χ2
1− α,j− 1

√
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

pm(1 − pm)

lm
+

pn(1 − pn)

ln

√

(2) 

The chi-square value was obtained from a table predefined. To 
achieve this value the degrees of freedom (DOF) were calculated, in that 
case j − 1 = 9. Then the significance level α was chosen. Often, re
searchers choose a significant level α equal to 0.01, 0.05 or 0.1 (Berman, 
2022), therefore, significance was calculated with these three α values. 
The last step was to compare the j(j − 1)/2 test statistics against its 
corresponding critical rmn value. Those pairs that had an estimate of the 
test statistic exceeds the critical value were significant at the α (what is 
the value 0.01,0.05 or 0.1) level. 

The computational complexity of the Marascuillo equation (Equation 
(2) depends mainly on the input values, which are the sample sizes, the 
proportions of the groups and the significance level α. The Marascuillo 
equation can be expressed in terms of polynomial time P according to 
the input size. Since the Marascuillo equation involves performing basic 
arithmetic operations (addition, multiplication, division and square 
roots), all these operations can be performed in constant time. In addi
tion, the calculation of the chi-square value can also be performed in 
polynomial time. Therefore, the time complexity of the Marascuillo 
equation can be considered polynomial as a function of the input size, 
which means that the execution time increases polynomially as the data 
size increases. In terms of computational complexity notation, the 
Marascuillo equation has a complexity of O(n^2), where n is the number 
of groups being compared. It is important to note that although the 
Marascuillo equation can be expressed in terms of polynomial time, this 
is only true in terms of time complexity, and does not consider other 
factors that may affect computational performance, such as the amount 
of memory required to store the data or the number of input/output 
operations that must be performed. 

Fig. 1. Preliminary point clouds of manual classification: a) vegetation class, and b) road class.  
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4. Results and analysis 

4.1. Counting and localization of discordances 

Table 2 groups points according to the number of different assigned 
labels they present. The values were calculated by counting the number 
of different classes associated with each point per round (first and sec
ond) as well as together (total), considering in the same calculous the 
labelled point clouds in both rounds. Considering two or more classes 
assigned to the same point, in the first round, 100 thousand discordances 
were counted and in the second round, 75 thousand discordances. From 
the joint analysis it can be deduced that part of the discordances existing 
in the second round already appeared in the first, although new ones 
also appeared. The number of discordances represented 2.6% points in 
the cloud. It is striking how 19 points in the whole process were labelled 
as five different classes (sidewalk, car, vegetation, pole, and others) out of 
nine possible classes. Fig. 3 shows discordances in the labelling for the 
points that are highlighted in red. Discordances were in adjacency zones 
between elements although varying in extension, so that the most 
affected elements are those with larger perimeters, especially in relation 
to the number of points. 

Table 3 shows the points with labelled concordance and discordance 
and the percentage of discordance points (Equation (3). There were few 
differences between rounds in most of classes. Only for the classes curbs, 
furniture and others, a difference of 1% is exceeded between the two 
rounds. In particular, the class others doubled the percentage of discor
dance between both rounds due to only one object. Generally, these 
three classes had the highest percentage of discordance, followed by 
sidewalks and pole-like objects. 

Discordance(%) =
no.pointsindiscordance

no.pointsinconcordance + no.pointsindiscordance
× 100

(3) 

Discordances between classes are compiled in Table 4. Mainly and 
almost exclusively, discordances occurred between adjacent elements. 
However, some noise points were accounted for between non-adjacent 
elements, such as road-buildings, or road-poles. Sidewalks was the class 
that showed discordances to more different classes. Sidewalk discor
dances were produced towards the rest of the classes, since the sidewalks 
were adjacent to all of them, both for limiting the contour of road, curbs 
and buildings, and for being the ground element on which vegetation, 
poles, furniture and other objects are located. In terms of quantity, 
discordances from curbs to sidewalk and road classes were very impor
tant. In both, the number of discordances exceeded the number of 
matching points. Table 5 shows the number of points with labelled 
concordance, associated discordances and rdc. Curb class, with more than 
3 discordances per concordance point, followed by the class other, were 
the elements with the highest rdc. Fig. 4 shows an enlargement of a curb. 
In the upper adjacent sidewalk area, points with discordance in the 
labelling were detected with a width of 19 cm, while the curb size is only 
12 cm. To this must be added the 8 cm wide discordant points with the 
road. In the rest of the classes, rdc was significantly lower. 

4.2. Significance of discordances 

To measure the significance of discordances the Marascuillo pro
portion test procedure was employed to test the H0. The difference of all 
pairs of proportion were calculated and compared with the critical 
value, which was obtained following the Equation (2) and considering 
three different α values (0.01, 0.05 and 0.1). Discordances in classifi
cation were significative if pm − pn > rmn. Table 6 shows the percentage 
significance of the point classification between people in the first round, 
using α = 0.01, 0.05 and 0.1. The values obtained using different α are 
almost the same, just values of sidewalk, curb, building and others classes, 
were slightly different between using α = 0.01 and α = 0.05 or α = 0.1. 
The classes vegetation, pole-like objects and furniture resulted no signifi
cant differences between the discordances from different people in the 
same round. Class vehicle presented a significant percentage of 20%, 
caused only by the significance of one person with respect to the others. 
Road, sidewalk, curb, building and others classes presented higher per
centages of significance. These significances are due to adjacent ele
ments, which were classified with different classes by each person. 
Table 7 exemplifies the significance results (α = 0.05) of road, sidewalk, 
and curb classes, comparing the person I = 1 with the rest of the people. 

Table 8 shows the percentage of significative labelling differences 
between two rounds of classification by the same person, using α =

0.01, α = 0.05 and α = 0.1. Results show that there are no differences 

Fig. 2. Point cloud labelled and coloured by different classes: a) perspective view, and b) top view.  

Table 2 
Points according to the number of classes assigned.   

Round 1 Round 2 Total 

number of classes 1 3,980,139 4,005,400 3,964,981 

2 97,383 68,421 106,346 
3 2,877 6,381 8,793 
4 30 227 290 
5 0 0 19 
6 0 0 0  

S.M. González-Collazo et al.                                                                                                                                                                                                                 



Expert Systems With Applications 230 (2023) 120672

5

using the three values of α in class vehicle, vegetation, pole-like, furniture 
and others. Vegetation and pole-like class do not present significative 
changes which means that people classified these classes nearly the same 
in both rounds. Vehicle and furniture classes present a 10% of signifi
cance, therefore there was a person who made significant changes in the 
classification of these classes between rounds. Significance percentages 
of sidewalk and curb classes are higher. Moreover, class curb presents a 
100% of significance. Table 9 exemplifies the significance results (α =

0.05) of two rounds done by same persons. Regarding the class sidewalk 

more than the half of the people did significative changes between 
rounds, and in the curb class all the people did significative changes 
between rounds. 

5. Discussion 

Point clouds are manually labelled using CloudCompare (Cloud
Compare, 2023), which is a free software for point cloud processing. 
Although, there are more software that can be used to obtain the labelled 

Fig. 3. Point cloud with discordances coloured in red.  

Table 3 
Counting the number of points in labelled concordance and points in labelled discordance.   

First round Second round Total  
Conc. Disc. Disc.(%) Conc. Disc. Disc.(%) Conc. Disc. Disc.(%) 

Road 803,810 485  0.1% 820,226 513  0.1% 803,569 1,440  0.2% 
Sidewalk 562,776 2,698  0.5% 576,278 6,166  1.1% 558,811 8,395  1.5% 
Curb 174,40 551  3.1% 18,627 121  0.6% 15,654 989  5.9% 
Buildings 1,939,196 1,570  0.1% 1,932,733 4,164  0.2% 1,932,328 5,066  0.3% 
Car 157,524 196  0.1% 156,925 623  0.4% 156,809 887  0.6% 
Vegetation 445,097 571  0.1% 445,314 1,484  0.3% 444,813 1,737  0.4% 
Pole-like 38,677 253  0.6% 38,570 293  0.8% 38,325 646  1.7% 
Furniture 5,061 23  0.5% 5,060 268  5.0% 5,014 314  5.9% 
Others 10,558 2,404  18.5% 11,667 6,419  35.5% 9,658 8,160  45.8%  

Table 4 
Confusion matrix of points in two rounds of manual labelling (Side.: Sidewalk, Build.: Building, Veg.: Vegetation, Furn.: Furniture).  

Road Side. Curb Build. Car Veg. Pole Furn. Others  

803,569 4,554 20,231 1 8,934 12 5 0 746 Road  
558,811 29,772 37,071 189 3,939 1,440 576 11,691 Side.   

15,654 2 22 3 97 35 140 Curb    
1,932,328 0 329 368 0 9,081 Build.     

156,809 233 42 0 1,358 Car      
444,813 47 0 1,906 Veg.       

38,325 0 758 Pole        
5,014 1,073 Furn.         

9,658 others  

Table 5 
Manually labelled points of concordance (conc.), discordances (disc.) and rdc (Side.: Sidewalk, Build.: Building, Veg.: Vegetation, Furn.: Furniture).   

First round Second round TOTAL  
Conc. Disc. rdc Conc. Disc. rdc Conc. Disc. rdc 

Road 803,810 30,691  0.038 820,226 13,857  0.017 803,569 34,483  0.043 
Side. 562,776 71,989  0.128 576,278 65,648  0.114 558,811 89,232  0.160 
Curb 17,440 46,936  2.691 18,627 33,674  1.808 15,654 50,302  3.213 
Build 1,939,196 35,923  0.019 1,932,733 31,515  0.016 1,932,328 46,852  0.024 
Car 157,524 8,974  0.057 156,925 3,821  0.024 156,809 10,778  0.069 
Veg. 445,097 4,037  0.009 445,314 4,719  0.011 444,813 6,469  0.015 
Pole 38,677 1,725  0.045 38,570 1,619  0.042 38,325 2,757  0.072 
Furn. 5,061 394  0.078 5,060 1,494  0.295 5,014 1,684  0.336 
Others 10,558 11,719  1.110 11,667 21,505  1.843 9,658 26,753  2.770  
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point clouds. Amazon (AWS, 2023), Matlab (MathWorks, 2023) or Se 
gments.ai (Segments.ai, 2023) offers software to manually label point 
clouds, however they are not free software. The generated data from 
CloudCompare is used to analyse differences between labelling by 
different people and rounds, generating a ground truth. All the points 
classified with the same class by all the people and rounds are consid
ered as ground truth. The points which are labelled with different classes 
by people and rounds are analysed and a voting system is applied to 
obtain the ground truth of that points. 

Ground truth is also obtained manually by other authors. Several 
existing datasets classified point clouds by hand using CloudCompare, 
(Deschaud et al., 2021; Hu et al., 2021; Roynard et al., 2018). However, 
these works do not compare the manual labelling done by several people 
and do not measure the discordances between the different classifica
tions. Given the amount of data of these studies, it is assumed that 
several people could have been involved in the manual labelling process, 
although this information is not mentioned. While the manual labelling 
is done by the same person, in the present work was reflected that the 
same person also obtains discordances in the manual labelling. Table 10 
shows the percentage of discordance points (Equation (3) obtained in 
some classes, performing the manual labelling in two rounds by the 

Fig. 4. Zoom to the curb area (points with labels in discordance highlighted 
in red). 

Table 6 
Percentage of significative labelling differences between people in the same round.  

α Road Sidewalk Curb Building Vehicle Vegetation Pole-like Furniture Others  

0.01  44.4%  48.9%  80.0%  35.6%  20.0%  0.0%  0.0%  0.0%  64.4%  
0.05  44.4%  62.2%  86.7%  48.9%  20.0%  0.0%  0.0%  0.0%  66.7%  
0.1  44.4%  62.2%  88.9%  48.9%  20.0%  0.0%  0.0%  0.0%  66.7%  

Table 7 
Comparison between person i = 1 and remaining people (α = 0.05).  

Road Sidewalk Curb  
pm − pn rmn Significative pm − pn rmn Significative pm − pn rmn Significative 

L1,1-L1,2  0.0019  0.0012 Yes  0.0017  0.001 Yes  0.00033  0.00022 Yes 
L1,1-L1,3  0.0017  0.0012 Yes  0.0011  0.001 Yes  0.00094  0.00023 Yes 
L1,1-L1,4  0.0011  0.0012 No  0.0005  0.001 No  0.0011  0.00023 Yes 
L1,1-L1,5  0.0009  0.0012 No  0.0091  0.001 Yes  0.00771  0.00029 Yes 
L1,1-L1,6  0.0018  0.0012 Yes  0.0014  0.001 Yes  0.00044  0.00023 Yes 
L1,1-L1,7  0.0006  0.0012 No  0.0061  0.001 Yes  0.00737  0.00028 Yes 
L1,1-L1,8  0.0017  0.0012 Yes  0.0002  0.001 No  0.00003  0.00022 No 
L1,1-L1,9  0.0016  0.0012 Yes  0.0013  0.001 Yes  0.00002  0.00022 No 
L1,1-L1,10  0.0016  0.0012 yes  0.0017  0.001 Yes  0.00025  0.00023 Yes  

Table 8 
Percentage of significative labelling differences between rounds of the same people.  

α Road Sidewalk Curb Building Vehicle Vegetation Pole-like Furniture Others  

0.01 20% 50% 90% 20% 10% 0% 0% 10% 40%  
0.05 40% 60% 100% 40% 10% 0% 0% 10% 40%  
0.1 40% 60% 100% 40% 10% 0% 0% 10% 40%  

Table 9 
Comparison between rounds of the same person (α = 0.05).  

Road Sidewalk Curb  
pm − pn rmn Significative pm − pn rmn Significative pm − pn rmn Significative 

L1,1-L2,1  0.00146  0.00116 Yes  0.0021  0.001 Yes  0.0005  0.0002 No 
L1,2-L2,2  0.00017  0.00116 No  0.0003  0.001 No  0.0004  0.0002 Yes 
L1,3-L2,3  0.00066  0.00116 No  0.0014  0.001 Yes  0.0005  0.0002 Yes 
L1,4-L2,4  0.00122  0.00116 Yes  0.0005  0.001 No  0.0008  0.0002 No 
L1,5-L2,5  0.00152  0.00116 Yes  0.0073  0.001 Yes  0.0013  0.0003 Yes 
L1,6-L2,6  0.00033  0.00116 No  0.0005  0.001 No  0.0008  0.0002 No 
L1,7-L2,7  0.0024  0.00116 Yes  0.0074  0.001 Yes  0.0061  0.0003 No 
L1,8-L2,8  0.00067  0.00116 No  0.0013  0.001 Yes  0.0011  0.0002 No 
L1,9-L2,9  0.0001  0.00116 No  0.0014  0.001 Yes  0.0004  0.0002 Yes 
L1,10-L2,10  0.00003  0.00116 No  0.0004  0.001 No  0.0002  0.0002 No  

S.M. González-Collazo et al.                                                                                                                                                                                                                 



Expert Systems With Applications 230 (2023) 120672

7

same person. 
In the present method the discordances are measured considering 

manual labelling of 10 people in two rounds, being the novelty of this 
work. Most of the discordances are produced in the unions between 
road-curb-sidewalk. Also, in the union between sidewalks and buildings, 
and in the areas of the sidewalk and road where there are street furni
ture, vegetation and cars. In these areas discordances are produced in 
the union of these objects with the sidewalk and road in the case of cars. 

The relation between labelled discordances and the balance between 
classes is analysed to explain the results of DL methods. Since Neural 
Networks (NNs) are black boxes, only inputs and outputs can be ana
lysed to find possible improvements in their performance. The mainly 
used inputs to explain the NNs are the number of samples and the bal
ance between classes, but in semantic segmentation, it is very difficult to 
obtain a balanced number of samples because the urban environment 
(and almost in every scene) never contains the same number of points 
per class that defines objects of different sizes. 

Table 11 compiles the number of points used in the training process 
and the results of the PointNet++ (Qi et al., 2017b) application trained 
with those points. More information on the survey, labelling and 
training process can be found in González-Collazo et al. (2022). Table 11 
also compiles the rdc and percentage of points with concordance label
ling per class presented in this paper. Table 12 shows the correlation 
coefficient R2 (Equation (4) calculated to look for relation between the 
number of samples, rdc and percentage of concordance and results from 
PointNet++ predictions in terms of precision, recall, f-score and Inter
section over Union (IoU). The R2 between number of points and results 
was quite low. The rdc proposed in this work improved the correlation 
but the percentage of concordance showed the highest correlation, 
reaching an R2 = 0.765 with the f-score, so it can be deduced that 
concordances and discordances in labelling were conclusive factors in 
the training process. 

R2 =

∑T
t=1(Ât − A)2

∑T
t=1(At − A)2 (4) 

The present method was tested with PointNet++, however, there are 
more convolutional neural networks. KPConv (Thomas et al., 2019) is a 
convolutional neural network for processing 3D point clouds. KPConv is 
based on PointNet++ and uses an adaptative convolution technique to 
capture features at different scales. ShellNet (Zhang et al., 2019) is a 
convolutional neural network used for the classification of objects in 3D 
point clouds. ShellNet uses a similar architecture to PointNet++, but 
also incorporates a shell projection technique to capture features of 
objects. ParNet (Mo et al., 2018), RandLA-Net (Hu et al., 2019) and 
Point ASNL (Yan et al., 2020) are convolutional neural networks used for 

semantic segmentation of 3D point clouds. ParNet is based on the 
PointNet++ architecture and uses hierarchical clustering technique to 
capture features at different scales. RandLA-Net is based on the 
PointNet++ architecture and uses random clustering technique to 
capture local features. PoinASNL is based on the PointNet++ architec
ture and uses a selective clustering technique to capture local features. 
Although there are more current convolutional neural networks, it 
should be noted that many of these neural networks are based on the 
PointNet++ architecture due to its efficiency in 3D point cloud 
processing. 

In the best of the authors knowledge, no DL-based methods were 
found with results per class that reached the percentage of concordant 
points accounted in this work, although some are beginning to come 
close. Good labelling is fundamental for Deep Learning algorithms, but it 
is very difficult to achieve. Errors aside, which were not the object of 
study in this work, the same dataset labelled by one or several people 
presents significant differences between elements and areas, which leads 
to a change in the geometric-topological features extracted by NNs. A 
solution to manual labelling discordances may be the use of simulators 
to generate automatically labelled data, such as CARLA (Dosovitskiy 
et al., 2017) or NVIDIA Omniverse (Hummel & van Kooten, 2019). 
However, it should also be evaluated the realism of such synthetic data 
with respect to the quality of real data or to unforeseen situations in 
complex built environments. 

6. Conclusion 

This research presents the first study of the discordances in manual 
labelling of MLS point clouds. To measure the discordances, an urban 
MLS point cloud of 30 m road-length was labelled twice (2 rounds) by 10 
people. A ratio test was defined to relate discordances and concordance 
in labelling. Discordance and the significance of discordances in manual 
labelling between individuals and rounds were also measured. 

The results showed that, although most of the points were classified 
accordingly as the same class by all the participants, there are several 
points that were classified differently into two (or more) classes. The 
percentage of discordance was lower than 1% in almost all classes, 
however, in classes such as curbs, there were 5.9% of discordant points 
and 3.2 discordances for each point with concordance by all persons. 
The significance of discordance of the labelled data was measured, 
obtaining the higher significant differences between people and rounds 
in classes sidewalk and curb. The high significance and discordances of 
sidewalks are because they are adjacent with almost all other classes 
(roads, curb, building, poles, trees, furniture, and others). Discordances in 

Table 10 
Discordances of the same person between rounds.   

Road Sidewalk Curb Building 

L1,2-L2,2 0,085 0,186 6,604 0,274 
L1,3-L2,3 0,325 0,890 6,580 0,170 
L1,9-L2,9 0,051 0,895 6,688 0,136  

Table 11 
Values per class of number of training/validation points, rdc, percentage of concordance points and PointNet++ outcome metrics (Side.: Sidewalk, Build.: Building, 
Veg.: Vegetation, Furn.: Furniture).   

no. points train rdc % conc. precision recall f-score IoU 

Road 44,698,817  0.043  99.8%  0.844  0.984  0.908  0.832 
Side. 24,129,907  0.160  98.5%  0.726  0.789  0.756  0.608 
Curb 1,813,755  3.213  94.1%  0.576  0.724  0.641  0.472 
Build. 135,957,248  0.024  99.7%  0.996  0.907  0.950  0.904 
Car 7,692,577  0.069  99.4%  0.885  0.784  0.831  0.711 
Veg. 9,454,048  0.015  99.6%  0.702  0.963  0.812  0.683 
Pole 1,068,977  0.072  98.3%  0.466  0.737  0.571  0.400 
Others 4,877,732  2.770  54.2%  0.141  0.662  0.233  0.132  

Table 12 
Correlation coefficient R2 between number of training points, rdc, percentage of 
concordance points and PointNet++ outcome metrics.   

precision recall f-score IoU 

no. points train  0.373  0.245  0.309  0.426 
rdc  0.443  0.429  0.486  0.475 
% conc.  0.672  0.359  0.765  0.624  
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curbs, are due to the length and narrowness, as well as the difficulty in 
delimit a common border. 

In addition, PointNet++ (González-Collazo et al., 2022) based se
mantic segmentation results were analysed, we found a relationship (R2 

= 0.765) between the F-score and the percentage of points labelled in 
concordance, which clearly explains the causes of the misclassification 
than the balanced number of points between the classes. Future work 
will extend the measurements to other types of laser scanning data and 
in different scenarios. Also, the proposed method will be applied to 
others deep learning architectures, to analyse how manual labelling 
affects in their results. 
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González-Collazo, S. M., Balado, J., Garrido, I., Grandío, J., Rashdi, R., Tsiranidou, E., del 
Río-Barral, P., Rúa, E., Puente, I., & Lorenzo, H. (2022). Santiago Urban Dataset Sud: 
Combination of Handled and Mobile Laser Scanning Point Clouds. SSRN. 
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