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Color’s contribution to rapid categorization of natural
images is debated. We examine its effect on high-level
face categorization responses using fast periodic visual
stimulation (Rossion et al., 2015). A high-density
electroencephalogram (EEG) was recorded during
presentation of sequences of natural object images
every 83 ms (i.e., at F ¼ 12.0 Hz). Natural face images
were embedded in the sequence at a fixed interval of F/
9 (1.33 Hz). There were four conditions: (a) full-color
images; (b) grayscale images; and (c) and (d) phase-
scrambled images from Conditions 1 and 2, respectively,
making faces and objects unrecognizable. Observers’
task was to respond to color changes of the fixation
cross (Experiment 1). We found face-categorization
responses at 1.33 Hz and its harmonics (2.67 Hz, etc.)
over occipitotemporal areas, with right-hemisphere
dominance; responses to color images were not
significantly different from those to grayscale images.
Behavioral analysis revealed longer response times when
images contained color, despite nearly-all-correct
performance in all conditions, suggesting that color
change in the task might detract from color’s
contribution to face categorization. We subsequently
changed the task to responding to fixation shape
changes so that such response-time differences were
eliminated (Experiment 2). The aggregate face-
categorization response became 21.6% stronger to color
than to grayscale images. This color advantage occurred
late, at 290–415 ms after stimulus onset. Our results

suggest that the color advantage for face categorization
interacts with behavior, and that color only has a
moderate and relatively late contribution to rapid face
categorization in natural images.

Introduction

The ability to rapidly categorize a visual stimulus as
a face is important for social interaction. Face
categorization in natural scenes involves segmentation
of faces from the background and discrimination of
faces from other nonface objects in the environment
(e.g., birds, cars, houses, etc.). Face categorization also
implies generalization across superficial differences in
visual appearance of faces due to variations in both
their intrinsic qualities (e.g., identity, sex, race) and
extrinsic environmental factors (e.g., differences in
viewpoint, lighting, scale; Rossion, Torfs, Jacques, &
Liu-Shuang, 2015). Here, we ask what effect color may
have on this face categorization process.

Color is a candidate for contributing to human face
categorization at all levels. That is, color may facilitate
the segmentation of faces from the background, assist
in the discrimination of faces from nonface objects,
and/or contribute to the generalization of variant face
exemplars, perhaps in conjunction with shape infor-
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mation. Importantly, faces share a range of diagnostic
color information: under natural lighting conditions,
face skin colors vary mainly in intensity but differ little
in chromaticity, even across human ‘‘races’’ (Yang &
Waibel, 1996); for example, faces never appear green or
blue. Indeed, the evolution of human color perception
may have been influenced by the use of color to
categorize conspecifics (as well as for foraging, etc.) in
old world monkeys, who share in human trichromacy
(Mollon, 1989). In the present day, the potential
diagnosticity of facial color information has inspired
computer scientists to use face skin colors for machine
face detection (Graf, Chen, Petajan, & Cosatto, 1995;
Graf, Cosatto, Gibbon, Kocheisen, & Petajan, 1996;
Wu, Chen, & Yachida, 1999; Yang & Waibel, 1996),
resulting in superior detection speed compared to other
methods (De Dios, 2007).

Previous studies have suggested that diagnostic color
plays a role in behavioral tasks measuring some aspects
of face categorization, despite disagreements across
studies on the precise nature of color’s role. For
example, Lewis and Edmonds (2003, 2005) found that,
in manual response tasks, the time to detect a face in a
scrambled natural scene was shorter with diagnostic
color in the scene than with a grayscale, or hue-
reversed, display, although diagnostic color informa-
tion was not necessary to make a face pop out. In a
saccadic choice task, Boucart et al. (2016) found that
colored faces presented in the visual periphery were
categorized more accurately, but not significantly
faster, than grayscale faces. In a visual search task for
faces in natural scenes (using manual responses),
Bindemann and Burton (2009) suggested that a color
advantage was restricted to the presence of diagnostic
color in the entire face image, as they found that
performance (both response time and accuracy) was
worse when detecting faces of which only half (either
left or right) was in color and the other half in
grayscale, than when detecting full-color faces. Bind-
emann and Burton concluded that simply presenting
color on half of the face could not improve face
detection, while color information was only useful
when tied to the general shape of the face, suggesting
combined color and shape processing during face
detection.

At the level of face categorization, comparison with
other nonface objects might alter color’s role, as color’s
potential influence on generalization across face color
variations (e.g., in skin color) might interact with color
as a diagnostic cue to discriminate between the
segmented objects. The potential contribution of color
to discriminating faces from nonface objects, as well as
generalizing across variable face exemplars, has not
been explicitly tested to our knowledge. However, some
insights can be brought from behavioral studies on
rapid object and scene categorization more generally.

Many studies have disputed whether color information
is an important cue for the rapid differentiation
between briefly presented natural images. In particular,
Delorme, Richard, and Fabre-Thorpe (2000) suggested
that the presence of color cues had only weak effects of
higher accuracy for categorizing animals and shorter
response times for categorizing food in natural scenes
in manual tasks. However, the contribution of color
has been advocated for by Oliva and Schyns (2000; see
also Goffaux et al., 2005), who found better perfor-
mance (both response time and accuracy) from verbal
or manual responses in naming and verification tasks
for natural scenes in their natural color (e.g., desert,
forest, coastline) than grayscale scenes. Castelhano and
Henderson (2008) also found that color produced an
advantage for manual behavioral responses in deter-
mining whether embedded objects were consistent with
the natural scenes, though the majority of these were
man-made (e.g., city landscapes). Yao and Einhäuser
(2008) reported higher accuracy for cross-species
animal categorization when images were presented in
color. Overall, however, the uncertainty of color’s role
in categorization suggests that color’s contribution is
limited—for example, only when the attention demand
of the task is high (Yao & Einhäuser, 2008, though see
Otsuka & Kawaguchi, 2009).

One way to identify the nature of the contribution of
color to face categorization is to investigate categori-
zation responses at a neural level. To our knowledge,
no studies have compared neural face categorization
responses to color and grayscale images. In a previ-
ously mentioned study on scene categorization, Gof-
faux et al. (2005) reported larger and earlier event-
related potentials (ERPs), starting from approximately
150 ms poststimulus onset over frontal channels, for
naturally colored scenes. Zhu, Drewes, and Gegen-
furtner (2013) also reported larger ERP amplitudes and
shorter latencies in P1 and N1 responses, peaking over
frontal channels, for color than grayscale images. These
results have been interpreted in light of color playing a
role in the categorization and memory of images
(Goffaux et al., 2005), or as a result of color bringing
enhanced attention to the images (Zhu et al., 2013,
though note that color brought a behavioral advantage
in accuracy but disadvantage in response times in that
study, with task-dependent effects).

Thus, at this state of our knowledge, an objective
identification and quantification of the contribution of
color information to human face categorization (i.e., to
specific responses to faces) is still lacking. Here, we
attempt to answer whether, and if so, how much, color
confers an advantage for rapid (i.e., at a single glance)
visual categorization of stimuli as faces in natural
images. To this extent, we employ fast periodic visual
stimulation (FPVS) coupled with a scalp electroenceph-
alogram (EEG), an approach that provides an objective,
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direct, and robust signature of automatic natural-image
face categorization (Rossion et al., 2015). By presenting
faces at a fixed rate among nonface objects in rapid
succession (Figure 1), a periodic electrophysiological
response associated with the specific periodic face
presentations necessarily reflects both direct discrimina-
tion of faces from many nonface objects (rather than
measuring responses to different types of stimuli
separately) and a generalized response across a wide
range of face stimuli differing in lighting, viewpoint, face
race, expressions, and so on. This paradigm has been
validated in previous studies (e.g., De Heering &
Rossion, 2015; Jacques, Retter, & Rossion, 2016; Jonas
et al., 2016; Retter & Rossion, 2016; Rossion et al.,
2015). Such a periodic response is best captured by
characteristic, narrow peaks at the frequency of periodic
face presentations and its harmonics in a spectral
analysis of the EEG signals. Note that a significant
periodic response emerges only from a response to

repeated face stimuli, in direct comparison with a
differential response to other nonface stimuli in the
sequence, while potentially confounding low-level visual
cues are controlled by variability in the images (Rossion
et al., 2015; see also Rossion, Jacques, & Jonas, 2018 for
further review). Among these FPVS–EEG studies, part
of them presented images in full color only, while the
rest of them presented images in grayscale only. Thus,
no prior FPVS–EEG study directly compared the face-
selective responses to a full-color image sequence and to
a grayscale image sequence in a single experimental
design.

In order to directly examine the effect of color on
face categorization, we presented the natural image
sequences in two separate conditions (Figure 1), the
first of which contained full color information across all
images, and the other consisted of images all in
grayscale. This would allow direct comparisons of the
resulting FPVS–EEG data from the two conditions, in

Figure 1. Procedure in Experiment 1. (A) In each condition, a stimulation sequence started with a brief fixation period followed by 648

images containing a random face (F) presented periodically after every presentation of eight nonface random objects (O) (i.e., one

face every nine stimuli). In the scrambled image conditions, the fixed periodicity of face presentation remained but faces and nonface

objects were replaced by their scrambled versions respectively. The participant’s task was to press a key when the fixation cross

changed color (blue to red for 300 ms; note that the color changes did not coincide with the onsets and offsets of images). Here, the

figure shows the first 19 images identical across conditions for illustration purposes only. In actual experiments, each sequence

contained a random array of images and random timings of fixation color change uncorrelated across conditions and observers, and

included fade-in and fade-out periods (2 s each) not illustrated here (see text). (B) Each periodic stimulus (duration: 83.3 ms, i.e., 12.0

Hz frequency) was presented through a gradual increase and decrease of contrast over 10 frames (8.33 ms/frame at 120 Hz screen

refresh rate; orange dot: onset time of a frame), following a sinusoidal contrast modulation (left: example stimuli at 0%, 36%, 65%,

and 100% contrasts, bottom to top). The red boxes represent periodic presentations of face or scrambled face stimuli at 1.33 Hz. The

face images shown here are for illustrations only and were not used in actual experiments.
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terms of the amplitudes of the peaks in the frequency
domain. Additionally, through a time-domain analysis
of the EEG signal obtained during FPVS (Retter &
Rossion, 2016), we explored whether the effect of color
is early (i.e., more likely to affect segmentation and
discrimination of faces) and/or later (i.e., more likely to
affect later stages of face perception; see Gegenfurtner
& Rieger, 2000; Yao & Einhäuser, 2008).

We also designed two extra conditions where phase-
scrambled versions of the stimuli, in color in one
condition and in grayscale in another condition, were
rapidly displayed in the same settings as in the natural
image conditions (i.e., one scrambled face every nine
scrambled stimuli; Figure 1). Phase scrambling is a
manipulation that preserves Fourier amplitude infor-
mation carrying global low-level statistical properties
of images, but removes the shape and structure in the
stimuli (Sadr & Sinha, 2004). It has been typically used
as a control for the contribution of low-level properties
to object categorization, and face categorization in
particular (e.g., Rossion et al., 2015; Torralba & Oliva,
2003; VanRullen, 2006), with studies showing that the
earliest saccades toward natural images of faces in
binary decision tasks can be significantly affected after
controlling for the amplitude spectrum (Crouzet &
Thorpe, 2011). Here, these additional conditions
allowed investigation of potential low-level color
contribution to face categorization.

Experiment 1

Methods

Participants

A total of 20 observers (10 females, mean age¼ 22.7
6 3.2 years, age range: 19–36 years) participated in the
experiment. All participants had normal or corrected-
to-normal visual acuity. They were all right-handed
according to an adapted Edinburgh Handedness
Inventory measurement (Oldfield, 1971). None report-
ed any history of psychiatric or neurological disorders.
They were naive to the purpose of study, and were not
aware that faces were presented at a fixed rate of one
out of nine stimuli and that scrambled stimuli were
generated from objects and faces. All participants
provided written informed consent and received hon-
oraria for their participation, as approved by the
Biomedical Ethical Committee of the University of
Louvain and the 2013 WMA Declaration of Helsinki.

Stimulus display

The stimuli were generated by a Dell XPS Desktop
computer installed with the Psychtoolbox 3.0.8 in

MATLAB R2009a for Windows (MathWorks, Natick,
MA) using previously validated scripts (e.g., Rossion &
Boremanse, 2011), passed to a GeForce GTX 560 Ti
graphics card, and were displayed on a linearly gamma-
corrected BenQ XL2420T monitor at a refresh rate of
120 Hz, with a screen resolution of 1920 3 1080 pixels
placed at a viewing distance of 80 cm (pixel size:
0.01948) in a dimly lit and sound-attenuated room. The
mean luminance after gamma correction was 75.0 cd/
m2.

Stimuli

Four types of images, detailed as follows, were
generated for four corresponding conditions used in
both experiments.
Natural color images: Color photographs of 46 faces
and 247 nonface objects (animals, plants, man-made
objects, houses, etc.; examples in Figure 1A) were
obtained from the Internet (stimuli available here:
http://face-categorization-lab.webnode.com/
resources/natural-face-stimuli/). All faces (width ¼
1.98–4.18, height ¼ 2.88–5.08) and objects, variable in
size, lighting condition, and background, were located
at the center of the square image stimuli (size: 5.18 3
5.18) and embedded in their original natural scenes
(i.e., unsegmented) after rescaling and cropping the
source images. Each stimulus was coded and displayed
in the RGB mode at a color depth of 24 bits/pixel (8
bits/channel, with pixel values of 0–255 representing
luminance). The average luminance of each stimulus
was equalized to the screen’s mean luminance (75.0 cd/
m2). Such luminance normalization was performed
independently for each color channel, so that the
average R, G, and B pixel values across the entire
image were all normalized to 127.5 (mean pixel value).
Note that variations in local color, luminance, and
contrast within each image (i.e., appearances of the
actual faces and objects) remained and the relative
color and contrast variations across images were
broadly maintained (Figure 1A). The luminance-
normalized natural color images served as the basis
for the generation of natural grayscale images and
scrambled images.
Natural grayscale images: The luminance-normalized
color images were each converted to grayscale using the
formula:

I ¼ 0:2126Rþ 0:7152Gþ 0:0722B; ð1Þ
where I is the pixel value representing luminance, and
R, G, and B represent the original red, green, and blue
values respectively. The weights in Equation 1 are
standard for a gamma-corrected monitor (with color
space following Rec. 709 primaries). Each stimulus
was subsequently coded and displayed at a grayscale
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resolution of 8 bits/pixel, of which the average
luminance stayed unchanged at 75.0 cd/m2.
Scrambled color images: To remove the shape infor-
mation, we scrambled the images by randomizing the
phase spectrum in the Fourier domain (Sadr & Sinha,
2004). A two-dimensional fast Fourier transform
(FFT) converted each color image into a complex
representation consisting of magnitude and phase
components. The phase values were then replaced by
those from an FFT of a randomly generated white-
noise image of the same size. An inverse FFT was
subsequently applied to the resulting map consisting of
unchanged magnitudes and random phases in order to
generate a phase-scrambled version of the image. The
resulting scrambled image effectively became unrecog-
nizable but kept the same frequency spectrum and
average luminance value as the original natural image
(Figure 1A).
Scrambled grayscale images: All scrambled color
images were converted to 8-bit grayscale using Equa-
tion (1), maintaining the same average luminance
values.

Procedure

Each experiment was a 2 3 2 factorial design
studying the effects of color and scrambledness of the
image stimulations. Thus, there were four conditions
(Figure 1), each using a specific type of image
described in Stimuli (i.e., natural color images, natural
grayscale images, scrambled color images, and
scrambled grayscale images). In each condition, the
stimulation sequence was presented through sinusoi-
dal contrast modulation (Figure 1B; e.g., Jacques et
al., 2016; Retter & Rossion, 2016; Rossion et al., 2015)
of successive images at a rate of 12.0 Hz (image
stimulation frequency). Each 83.3-ms (1000 ms / 12.0,
10 frames/image) stimulation cycle started with a
uniform gray background from which an image
appeared as its contrast increased in a sinusoidal
fashion from 0%, reaching 100% (full contrast) at 41.7
ms, and then decreased at the same rate. In the natural
image conditions, the periodic sequence comprised
eight objects (O) followed by a face (F), all randomly
selected from their corresponding categories. Similar-
ly, in the scrambled image conditions, the periodic
sequence consisted of eight scrambled objects followed
by a scrambled face. Faces (or, scrambled faces) were
thus presented at a frequency of 12.0 Hz / 9¼ 1.33 Hz
(face stimulation frequency). Images could be repeated
one to three times randomly (but not consecutively)
within a stimulation sequence.

A stimulation sequence started with a fixation cross
(in blue, 0.318 3 0.318) centered on a uniform gray
background for 2–5 s (duration randomly determined

across sequences) to facilitate stable fixation of the
participant. The stimulation sequence, consisting of
648 images, was subsequently presented centrally on
the screen for 54.0 s, including a 2-s fade-in period at
the beginning of image presentation and a 2-s fade-out
period at the end (with uninterrupted central display
of the fixation cross superimposed on the images). The
contrast modulation depth of the periodic stimulation
gradually increased from 0% to 100% during the fade-
in period, and reduced in the opposite direction from
100% to 0% during the fade-out period (keeping the
sinusoidal contrast modulation). These fading periods
were intended to minimize blinks and abrupt eye
movements due to an otherwise sudden appearance or
disappearance of the flickering stimuli. Responses
during the fading periods would not be used in the
data analyses, as detailed later.

Each participant performed 12 sequences (three per
condition), each of which contained an independently
randomized image sequence. The order of presentation
of the 12 presentation sequences was randomized.
During the EEG recording, the participant was
instructed to maintain central fixation throughout the
entire stimulation sequence while continuously moni-
toring the flickering stimuli. As in previous studies with
this paradigm (e.g., Rossion et al., 2015), the partici-
pants’ task was to detect brief color changes of the
fixation cross (blue cross to red cross for 300 ms; i.e., 36
frames). Such color changes occurred 10 times ran-
domly throughout each sequence, and were not
correlated with the onsets and offsets of images. The
accuracy (hit rate: percentage that the observer
correctly pressed the key within 1500 ms after the onset
of the color change) and response times for accurate
key presses were analyzed.

EEG acquisition

The EEG was acquired using a 128-channel Biosemi
Active 2 system (BioSemi, Amsterdam, The Nether-
lands), with electrodes including standard 10–20
system locations as well as additional intermediate
positions (http://www.biosemi.com/headcap.htm, re-
labeled to more conventional labels of the 10–5
system; see supplementary figure S1 in Rossion et al.,
2015). The EEG was sampled at 512 Hz. Electrode
offset was reduced to under 620 mV for each
individual electrode by softly abrading the scalp
underneath with a blunt plastic needle and injecting
the electrode with saline gel. Eye movements were
monitored by four additional electrodes placed at the
outer canthi of the two eyes, and above and below the
right orbit. During the experiment, triggers were sent
via parallel port from the stimulation computer to the
EEG recording computer at the beginning and the end
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of each stimulation sequence, and at the minima (0%
contrast) of all 12.0-Hz stimulation cycles (i.e., onsets/
offsets of images), using custom scripts borrowing
from the Cogent 2000 MATLAB Toolbox (validated
in previous studies, e.g., Rossion & Boremanse, 2011).
The temporal synchrony between the trigger and the
stimulus onset was verified by a photodiode prior to
the experiment. Recordings were manually initiated by
the experimenter when participants showed artefact-
free EEG signals.

EEG analysis

Preprocessing

All EEG data were analyzed using Letswave 5
(http://nocions.webnode.com/letswave) running on
MATLAB. The signals were first detrended by
subtracting the best-fit line (using the least-squares
method) from the data, and then passed to a fourth-
order low-pass Butterworth filter (Butterworth, 1930)
with a cutoff frequency of 120 Hz. The data were then
passed to an FFT multinotch filter (width¼ 0.5 Hz) to
remove electrical noise at 50 Hz (oscillation frequency
of the alternating current) and its second harmonic (100
Hz). Subsequently, the filtered signals were segmented
into 58-s segments, keeping 2 s each before and after a
sequence (i.e., –2 s through 56 s). The DC component
in each data segment was separately identified and then
subtracted from the signal.

Artefacts in the signals were removed in two steps.
Blink artefacts were removed only when a participant’s
blink rate exceeded 0.2 blink/s (Retter & Rossion,
2016), resulting in only one participant meeting this
criterion. An independent component analysis (Jung et
al., 2000) using the square mixing matrix method was
subsequently applied on this participant’s signals and
only one single component connected to the blink
patterns was removed, chosen based on visual inspec-
tion of the waveform and its topography. Then, noisy
and artefact-ridden channels (fewer than 5% of 128
channels; i.e., a maximum of six channels) containing
deflections larger than 100 lV in multiple presentation
sequences were rebuilt using linear interpolations from
immediately adjacent noise-free channels. Finally, all
channels (except the ocular ones) were referenced to a
common average.

Frequency-domain analysis

The preprocessed data segment of each sequence was
cropped again to keep only signals from exactly 2 s
after stimulus onset (the end of the fade-in period) to
51.5 s after stimulus onset. The end time (51.5 s) was
chosen such that it was the longest possible time point
before the start of stimulus fade-out (at 52 s), for

capturing an integer number of 1.33-Hz cycles (i.e., 1.33
Hz3 49.5 s¼ 66 cycles, which contains N¼ 25,348 time
bins). The integer number of cycles ensured no spectral
leakage of the frequencies of interest—that is, har-
monics of both the face stimulation frequency (1.33 Hz)
and the image stimulation frequency (12.0 Hz). The
sequences were then averaged separately for each
condition and for each observer. An FFT was applied
to the sequence-averaged data segments, and an
amplitude spectrum (normalized by N/2, in lV) was
extracted in the frequency domain (ranging from 0 to
256 Hz) for each channel. Each spectrum had a high
frequency resolution (i.e., distance between two adja-
cent frequency components) of 0.0202 Hz, which is the
inverse of the segment duration (49.5 s). This aided
unambiguous identification of the frequencies of
interest (1.33 Hz and harmonics).

To consider the variations of noise across the
amplitude spectrum, a baseline subtraction was applied
to each frequency component by subtracting the
average amplitude of 20 surrounding frequency com-
ponents (10 on each side, excluding the immediately
adjacent bins and the local minimum and maximum
bins; see, for example, Dzhelyova & Rossion, 2014;
Mouraux et al., 2011) from the amplitude of the
frequency component of interest. In addition, the
signal-to-noise ratio (SNR) was also calculated by
considering the same 20 surrounding frequency com-
ponents (e.g., Rossion, Alonso Pireto, Boremanse,
Kuefner, & Van Belle, 2012). For group analysis,
individual baseline-subtracted amplitude (or SNR)
spectra were averaged across observers for each
condition, resulting in the grand-averaged spectrum.
Selecting the range of significant harmonic responses (z-
score analyses): To analyze the responses at the image
stimulation and face stimulation frequencies (and their
harmonics), we first determined a continuous range of
significant harmonic responses for each frequency to
include in the analysis. Individual amplitude spectra
were first averaged across observers, and then across
the 128 channels (excluding the four ocular channels)
for each condition. A z-score was calculated for each
frequency component of this averaged spectrum by
using the mean amplitude and standard deviation of 20
surrounding frequency components (10 on each side,
excluding the immediately adjacent bins; see Rossion et
al., 2012) from the amplitude of the frequency
component of interest. For face stimulation responses,
the harmonics to be included in the analysis ranged
from 1.33 Hz through a cutoff frequency determined by
the last significant harmonic that yielded a z-score
larger than 2.33 (i.e., beyond the 99.0 percentile of the
SNR distribution; Retter & Rossion, 2016) in the two
natural image conditions, as no significant face
stimulation responses were expected for scrambled
image conditions (Rossion et al., 2015). Similarly for
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image stimulation responses, the included harmonics
(from 12.0 Hz) were determined by the same z-score
criterion but considering all four conditions. The
significant harmonic responses were summed, sepa-
rately for each frequency type, in order to quantify and
compare the comprehensive response amplitudes and
scalp topographies across conditions (Retter & Ros-
sion, 2016).
Statistical comparisons across conditions: A 2 (Natural
vs. Scrambled) 3 2 (Color vs. Grayscale) repeated-
measures analysis of variance (ANOVA) was per-
formed on baseline-subtracted amplitudes (summed
over significant harmonics) averaged over all 128
channels for each of the 20 observers. We also defined
regions of interest (ROIs) over occipitotemporal and
occipitoparietal channels that showed the largest
responses, and analyzed these responses in additional
ANOVAs in order to localize the potential color
advantage in the brain.

Time-domain analysis

The periodic responses were additionally examined
in the time domain (e.g., Dzhelyova & Rossion, 2014;
Jacques et al., 2016; Retter & Rossion, 2016; Rossion
et al., 2015). The preprocessed data segments were
each passed to a fourth-order bandpass Butterworth
filter with a bandwidth of 0.1–30 Hz. The choice of
cutoff at 30 Hz was based on previous studies (e.g.,
Jacques et al., 2016; Retter & Rossion, 2016) and
standard procedures for ERP analyses that investi-
gated face-selective responses (e.g., Rossion & Ca-
harel, 2011; Rousselet, Husk, Bennett, & Sekuler,
2007; see the review of Rossion & Jacques, 2008),
which covered and went beyond the entire range of
significant harmonics (up to 16.0 Hz) of face
categorization responses in the current study (see EEG
data: Frequency-domain analysis). The filtered data
segment was further cropped to keep only signals from
stimulus onset (0 s) to 51.9 s after. The end time (51.9
s) was chosen such that it was the nearest time point to
the start of stimulus fade-out (at 52 s) for capturing an
integer number of 12.0-Hz cycles (i.e., 12.0 Hz3 51.9 s
¼ 623 cycles, which contains N¼ 26,586 time bins). An
FFT multinotch filter (width ¼ 0.5 Hz) was subse-
quently applied to the cropped signals to selectively
remove 12.0 Hz and its first three harmonics,
corresponding to the contribution of the base stimu-
lation to the time-domain waveforms. The filtered
signals were then cropped into smaller epochs of 1417
ms (17 3 83.3-ms base stimulation cycles), each
including responses to a sequence of eight object
stimuli, one face stimulus, and another eight object
stimuli (OOOOOOOOFOOOOOOOO). Thus, each
epoch contains responses for exactly one face stimu-
lus. The cropping began at 2.25 s after stimulus onset,

which was the earliest time point possible after the 2-s
fade-in period. It should be noted that the first eight
object stimuli of each epoch correspond to the last
eight object stimuli of its immediately preceding
epoch. After averaging all epochs per observer for
each condition, the data were baseline-corrected by
subtracting the mean response amplitude across 167
ms (corresponding to the presentation of two object
stimuli) preceding presentation of the face stimulus in
the epoch sequence. For each condition, the baseline-
corrected responses for all 20 participants were
subjected to a two-tailed t test at each time point. A
face-selective component was defined by a time
window where significant nonzero responses (p ,
0.05) were found across 12 or more consecutive time
points (i.e., � 21.5 ms; see, e.g., Jacques et al., 2016;
Laganaro, 2014). Similar statistical treatment was
applied to the within-subjects difference of individual
baseline-corrected responses between natural color
image and natural grayscale image conditions in order
to evaluate any potential color advantage in face
categorization in the time domain.

Results

Behavioral data

Observers’ accuracy (hit rates) and response times
for accurate key presses over 30 color changes (10
changes 3 3 sequences per condition) were analyzed.
The mean hit rates were close to ceiling in all conditions
(all over 95% correct: natural color: 95.6% 6 1.6%,
natural grayscale: 97.6% 6 1.1%, scrambled color:
98.4% 6 0.6%, scrambled grayscale: 97.5% 6 0.7%; all
in M 6 1 SEM). The response times were rapid (, 500
ms for all conditions) but varied slightly across
conditions (natural color: 464 ms 6 11 ms, natural
grayscale: 445 ms 6 11 ms, scrambled color: 441 ms 6
11 ms, scrambled grayscale: 433 ms 6 11 ms; all in M
6 1 SEM). A 2 3 2 repeated-measures ANOVA on
response times showed significant differences for both
main effects (color . grayscale, 3% effect: F(1, 19) ¼
6.86, p¼ 0.02; natural . scrambled, 4% effect: F(1, 19)
¼ 22.4, p , 0.001) but no significant interaction effect,
F(1, 19) ¼ 3.12, p ¼ 0.09.

EEG data

Frequency-domain analysis

Here, we report responses to the frequency rates that
represent, respectively, face stimulation (1.33 Hz and
harmonics) and image stimulation (12.0 Hz and
harmonics).
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Face stimulation frequency (1.33 Hz)

Average across all channels: Figure 2A shows the
frequency spectra (in form of SNRs) for mean
responses over all 128 channels and all 20 observers.
Robust responses were observed at face stimulation
frequency (1.33 Hz) and its harmonics only for the

natural image conditions (blue lines), representing the

brain’s discrimination of faces from other objects (i.e.,

face-selective responses) only when the shape informa-

tion was intact. A z-score analysis (see Methods) was

performed on the averaged spectra for the natural

image conditions in order to determine the range of

Figure 2. Experiment 1: Frequency-domain responses. (A) For each of the four conditions, the frequency spectrum plots the SNR

averaged over all observers and all 128 channels as a function of frequency. Black lines: image stimulation responses (12 Hz and

harmonics). Blue lines: face stimulation responses (1.33 Hz and harmonics). (B) Responses to face stimulation, focusing on the two

natural image conditions. Each frequency spectrum shows the SNR averaged over observers and lOT/rOT channels as a function of

frequency. For each condition, the scalp topography (back of the head) shows the sum of observer-averaged, baseline-subtracted

amplitudes over significant face stimulation harmonics (1.33–16 Hz, except 12 Hz). The bar graph shows the harmonic sums of

baseline-subtracted amplitudes averaged over all 128 channels (Chanavg), lOT and rOT channels separately for all conditions. Each bar

represents the mean over 20 observers (error bar¼ 1 SEM). (C) Responses to image stimulation. Each scalp topography shows the

sum of observer-averaged, baseline-subtracted amplitudes across significant image stimulation harmonics (12–60 Hz). (D)

Corresponding channel locations that define the lOT, rOT, and mOP1 ROIs.
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relevant harmonics. The highest significant harmonics
(i.e., z score . 2.33) were both 16.0 Hz (12th
harmonic). (Note: Over the same range, only one
harmonic was significant in each of the scrambled
image conditions.) The baseline-subtracted amplitudes
for each observer and condition were subsequently
summed across these significant harmonics (i.e., over
the range of 1.33, 2.67, 4.00 Hz, and so on until 16.0
Hz, excluding 12.0 Hz, which coincides with the image
stimulation frequency; see grand-averaged scalp to-
pographies in Figure 2B) for the following analyses.

To compare the responses across conditions, the
individual harmonic-summed, baseline-subtracted am-
plitudes, further averaged over all 128 channels (Bar
graph in Figure 2B: Chanavg), were subjected to a 232
repeated-measures ANOVA. A significant main effect
was found for natural versus scrambled conditions, F(1,
19)¼ 76.0, p , 0.001. Precisely, responses to scrambled
images were only 4.03% of those to natural images on
average. Importantly, however, no significant main
effect was found for color versus grayscale conditions,
F(1, 19) ¼ 0.23, p ¼ 0.64, nor a significant interaction,
F(1, 19)¼ 0.18, p¼ 0.67. Thus, when considering a data
average over all channels, we did not find that color’s
presence enhanced the face categorization response.
Occipitotemporal regions: To understand the spatial
distribution of the face stimulation responses across the
scalp, the harmonic-summed, baseline-subtracted am-
plitudes were averaged across observers for each
condition. The observer-averaged scalp topographies
(Figure 2B) revealed the largest responses to natural
faces (in both color and grayscale) over the occipito-
temporal regions, lateralized to the right hemisphere. As
in previous studies with this approach, significant face-
selective responses were found in every single participant
and every condition with natural shapes, and individual
scalp topographies (Figure 3) also suggest mainly
occipitotemporal responses. To define the ROIs, we
ranked the channels according to their mean responses

over the two natural image conditions. We then defined
the right occipitotemporal ROI (rOT) by the top five
channels over this area (i.e., P10, PO10, PO12, PO8, and
P8; Figure 2D). (These top channels were identical when
considering the two conditions separately.) The left
occipitotemporal ROI (lOT) was defined as the sym-
metrical channels in the left hemisphere (i.e., P9, PO9,
PO11, PO7, and P7; Figure 2D). To compare the
responses across conditions (bar graph in Figure 2B), a 2
(Color vs. Grayscale) 3 2 (Natural vs. Scrambled) 3 2
(lOT vs. rOT) repeated-measures ANOVA was per-
formed on the individual harmonic-summed, baseline-
subtracted amplitudes averaged over corresponding ROI
channels. Similar to results for 128-channel averages, the
main effect of natural versus scrambled conditions (NS)
was significant, F(1, 19)¼ 93.0, p , 0.001, where the
average responses to scrambled images were only 1.13%
of those to natural images. However, the main effect of
color versus grayscale conditions (CG) was not signif-
icant, F(1, 19)¼ 0.42, p¼ 0.52. The main effect of ROI
was almost significant, F(1, 19)¼ 4.22, p¼ 0.054. No
interaction terms were significant, CG 3 NS: F(1, 19)¼
0.37, p¼ 0.55, CG3ROI: F(1, 19)¼ 0.05, p¼ 0.83, CG
3 NS 3 ROI: F(1, 19)¼ 0.03, p¼ 0.86, except for the
significant interaction of NS3ROI, F(1, 19)¼ 5.14, p¼
0.04. We subsequently conducted post hoc pairwise
comparisons (a) between responses to natural and
scrambled images, and (b) between the two ROIs. Not
surprisingly, all pairwise comparisons showed signifi-
cantly larger responses to natural images than scrambled
images. Interestingly, responses were significantly right
lateralized only for the natural image conditions (rOT .

lOT by 46% and 49% for the color and grayscale
conditions, p¼ 0.047 and p¼ 0.041, respectively) but not
for the scrambled image conditions (p¼ 0.11 and p¼
0.38 for the color and grayscale conditions, respectively).
Overall, the results suggested a high-level, right-lateral-
ized occipitotemporal response for face categorization,

Figure 3. Experiment 1: Individual frequency-domain scalp topographies for the two natural image conditions. A back-of-the-head

topography shows the sums of baseline-subtracted amplitudes across significant face stimulation harmonics (1.33–16.0 Hz, except 12

Hz) for each of the 20 participants. The color scale is identical across conditions within each participant, but the maximum amplitude

(on top of each topography) varies across participants.
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but failed to show significantly larger responses when the
natural images contained color.

Image stimulation frequency (12.0 Hz)

Average across all channels: A response at the image
stimulation frequency (12.0 Hz) and its harmonics was
found for all four conditions (black bars in Figure 2A).
This response merely represents the brain’s sensitivity
to the rate of image stimulations regardless of object
image type and is not the focus of the study.
Nevertheless, to evaluate the image stimulation re-
sponses across conditions, we conducted a z-score
analysis on the averaged spectra (see Methods) in order

to determine the range of relevant harmonics to be
considered. The analysis revealed that the first five
harmonics (12.0, 24.0, 36.0, 48.0, and 60.0) were
significant (i.e., z score . 2.33) in the natural grayscale
image condition, while the first four harmonics were
significant in all other conditions. Thus, for each
observer and condition, we decided to compute the sum
of baseline-subtracted amplitudes across the first five
harmonics (see scalp topographies in Figure 2C) in the
following analyses. It should be noted that amplitudes
at nonsignificant harmonics were close to zero, and
adding these values would not change the result of the
study.

In order to compare the responses across conditions,
the individual harmonic-summed, baseline-subtracted

Figure 4. Experiment 1: Time-domain responses to face stimulation in the two natural image conditions. Periodic data were

segmented relative to the onset of face stimulation (0 s), notch-filtered at 12 Hz and harmonics, averaged across data segments and

observers, and baseline-corrected in order to reveal waveforms associated with face stimulation (see text). (A) Waveforms for all 128

channels. The two-dimensional head map (viewed from top of the head) represents the color codes for the channels. (B) Waveforms

averaged by ROI (see definitions in Figure 2D). Shaded areas represent 61 SEM across observers. For each ROI, the bottom

horizontal lines represent significantly nonzero responses over 12 consecutive time points (i.e., p , 0.05 for 21.5 ms), respectively, to

natural color images (red), natural grayscale images (blue), and the difference between the two conditions (green). At the midpoint of

each green bar, the scalp topographies (back of the head) reveal superior face stimulation responses when the images contained

color. The color scales are identical across all scalp topographies.
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amplitudes were first averaged over all 128 channels,
and then subjected to a 2 3 2 repeated-measures
ANOVA. A significant main effect was found for
natural versus scrambled conditions, F(1, 19)¼ 5.14, p
¼ 0.04, where responses to scrambled images were on
average 13.8% larger than responses to natural images.
However, we found no significant main effect for color
versus grayscale conditions, F(1, 19) ¼ 0.034, p¼ 0.86,
and also no significant interaction, F(1, 19)¼ 2.12, p¼
0.16.
Medial occipitoparietal area: To spatially localize the
responses, the harmonic-summed, baseline-subtracted
amplitudes were averaged across observers for each
condition (Figure 2C). An obvious observation is that
responses peaked over the medial occipitoparietal area
consistently across the four conditions, though with
apparently varying magnitudes. To evaluate such
responses, we defined the medial occipitoparietal ROI
(mOP1) by first ranking the channels according to their
responses averaged over the four conditions, and then
selecting the five channels that scored the highest (i.e.,
Oz, POO6, Oiz, POO5, and POOz; Figure 2D). As an
additional note, these five channels were among the top
eight consistently in the four separate conditions. The
individual harmonic-summed, baseline-subtracted am-
plitudes averaged over the five channels were subjected
to a 2 3 2 repeated-measures ANOVA. Similar to the
results for averaging over all channels, responses to
scrambled images were significantly larger than those to
natural images by 16.1% (natural versus scrambled
conditions: F(1, 19) ¼ 6.93, p ¼ 0.02). No significant
main effect for color versus grayscale conditions was
observed, F(1, 19)¼ 0.26, p¼ 0.62, nor was there a
significant interaction, F(1, 19)¼ 3.76, p¼ 0.07. These
results suggest that variations in image stimulation
responses were largely driven by activities over mOP1.

Time-domain analysis

Figure 4A shows the time-domain responses, in
terms of baseline-corrected amplitudes averaged across
all epochs and observers for all 128 channels in the two
natural image conditions after selectively notch-filter-
ing out the image-stimulation rate response (see
Methods; further details in Retter & Rossion, 2016).
Differential waveforms were time-locked to the peri-
odic face stimuli (onset: 0 s) reflecting a face-selective
process, regardless of the presence of color in the
images. Qualitatively, we observed at least three
distinctive components underlying the face-selective
responses over time: P1-face, N1-face, and P2/P3-face.
The timings of these components were generally
consistent across the two natural image conditions, and
agreed with previous findings (e.g., Retter & Rossion,
2016). For responses averaged over rOT channels
(Figure 4B), in particular, we defined at least three

components (red and blue horizontal lines near the
bottom of the plot) by significant nonzero responses (p
, 0.05) over 12 consecutive time points (i.e., 21.5 ms).
In the natural color image condition, we observed a
small P1-face component at 126–159 ms after stimulus
onset, then an N1-face component at 177–234 ms,
followed by a large P2/P3-face component starting
from 247 ms that remained positive until 562 ms (and
finally, a small positive component at 597–622 ms). The
timings of components in the natural grayscale image
condition were similar––P1-face: 124–156 ms, N1-face:
171–234 ms, P2/P3-face: 247–542 ms. Responses over
the lOT were similar, except that the P1-face was not
significant––Color: N1-face: 171–228 ms, P2/P3-face:
247–558 ms (and a small positive component at 595–
620 ms similar to that over the rOT), grayscale: N1-
face: 165–232 ms, P2/P3-face: 249–495 ms.

To examine any potential effect of adding color in
the natural images, we subtracted individual ROI-
averaged response waveforms between the natural
grayscale image and the natural color image conditions
(significant differences over 12 consecutive time points,
or 21.5 ms, in green lines in Figure 4B, p , 0.05, two-
tailed t test). A significantly larger response to color
than to grayscale images was found at relatively late
latencies, far beyond the onset of P2/P3-face compo-
nent. For the rOT, a significant color advantage was
found only between 376 and 407 ms after stimulus
onset. For the lOT, a significant color advantage
occurred even later but in two small, separate time
intervals: 413–441 ms and 532–560 ms. Thus, the time-
domain analysis revealed a small, late, but significant
advantage in the presence of color.

Discussion

In this experiment, as in previous studies with this
paradigm (e.g., Retter & Rossion, 2016; Rossion et al.,
2015), we obtained robust (i.e., significant for all
participants) face categorization EEG responses to
natural images, with the largest response found over
the right occipitotemporal cortex. Strikingly, we found
no significant global advantage in the frequency
domain for color images over grayscale images.
However, the time-domain analysis revealed a small,
late, and sustained color advantage. A potential caveat
is that the presence of color in the stimuli slightly (i.e.,
3%), but significantly slowed down observers’ responses
to a task that is intended to be orthogonal to face
categorization: detecting the color changes in the
fixation cross. One possibility is that the task itself,
which involved a response regarding color, might have
interacted with the perception of color in the stimuli
(see also Zhu et al., 2008). This might have subse-
quently reduced (and delayed) a potential color
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advantage in face categorization. To test this, we
designed an additional experiment by replacing the
previous task with detection of shape changes of the
fixation cross.

Experiment 2

Methods

A new group of 20 observers (10 females) who were
not involved in Experiment 1 participated in this
experiment. They were chosen based on the same
criteria as before. All experimental conditions were
identical to Experiment 1, except that observers were
instructed to press a key when the blue fixation cross
briefly changed shape to a square outline (without any
color change). Blink artefacts were removed only in one
participant’s data (blink rate . 0.2 blink/s) using the
same procedure as in Experiment 1.

Results

Behavioral data

As in Experiment 1, observers’ accuracy (hit rates)
and response times for accurate key presses over 30
shape changes (10 changes3 3 sequences per condition)
were analyzed. The average hit rates were again higher
than 95% in all conditions, indicating a ceiling effect
(natural color: 95.3% 6 1.4%, natural grayscale: 96.5%
6 0.9%, scrambled color: 97.1% 6 1.0%, scrambled
grayscale: 97.7% 6 0.7%). The response times were also
less than 500 ms for all conditions (natural color: 476 ms
6 8 ms, natural grayscale: 480 ms 6 10 ms, scrambled
color: 439 ms 6 9 ms, scrambled grayscale: 431 ms 6 8
ms). A 2 3 2 repeated-measures ANOVA showed no
significant differences in response time between the color
and grayscale conditions, F(1, 19)¼ 0.22, p¼ 0.65, but
significantly shorter response times towards scrambled
images than natural images, 10% effect, F(1, 19)¼ 44.8,
p , 0.001. The interaction effect was not significant, F(1,
19)¼ 0.78, p¼ 0.39. Compared to the interference of
detecting fixation color changes in Experiment 1, the
presence of color in the images did not significantly
affect the detection of the shape changes of the fixation
cross. Thus, the shape task was orthogonal to the
investigation of a potential color advantage in face
categorization and was a more appropriate task for the
research question. Interestingly, the shape contained in
the natural stimuli slowed down the detection of fixation
shape changes (10% effect for natural vs. scrambled)
more than the detection of fixation color changes (4%
effect in Experiment 1), possibly due to a stronger

interaction between the task and the stimuli both
involving shape perception.

EEG data

Frequency-domain analysis
Face stimulation frequency (1.33 Hz)

Average across all channels: Figure 5A (blue lines)
shows robust responses at face stimulation harmonics
only for the natural image conditions. A z-score
analysis revealed that the first 10 harmonics were
significant for the natural grayscale image condition,
and the first 12 harmonics were significant for the
natural color image condition. Thus, the baseline-
subtracted amplitudes were summed over the range of
the first 12 harmonics (i.e., 1.33–16.0 Hz, except 12.0
Hz), consistent with the corresponding harmonic range
in Experiment 1.

A 2 3 2 repeated-measures ANOVA on channel-
averaged, harmonic-summed, baseline-subtracted am-
plitudes (bar graph in Figure 5B: Chanavg) showed
significance for both main effects and the interaction
effect, color vs. grayscale: F(1, 19) ¼ 5.68, p ¼ 0.03;
natural vs. scrambled: F(1, 19)¼ 68.6, p , 0.001;
interaction: F(1, 19)¼ 5.11, p¼ 0.04. Post hoc pairwise
comparisons revealed that the natural color image
condition scored a significantly larger response by
21.6% (p , 0.02) than the natural grayscale image
condition, but no significant differences were found
between the two scrambled image conditions (p¼ 0.79).
On the other hand, as expected, the natural image
conditions scored significantly larger responses than
their corresponding scrambled image conditions (p ,
0.001 in both comparisons; average response to
scrambled images 6.1% of that to natural images).
Overall, the results here suggested that, different from
frequency-domain results in Experiment 1, the presence
of image color showed a significant advantage for face
categorization.
Occipitotemporal regions: As in Experiment 1, the
observer-averaged topographies (Figure 5B) also re-
vealed peak face categorization responses over the
occipitotemporal areas, as evident for most individual
observers (Figure 6). Ranking responses (averaged over
the two natural image conditions) by channel showed
that PO10, P10, PO12, P8, and PO8 scored the largest
responses, and together defined the rOT ROI (Figure
5D), encompassing exactly the same channels as in
Experiment 1. The ranking of the channels were indeed
highly consistent between the two conditions, with the
same four channels (i.e., P10, PO10, PO12, and PO8) at
the top in both cases (P8 ranked 7th in the color
condition, just behind PO9 and PO11; in the grayscale
condition, P8 ranked 13th). The symmetric lOT was, as
in Experiment 1, defined to encompass P9, PO9, PO11,
PO7, and P7 (Figure 5D). A 2 (Color vs. Grayscale)32
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(Natural vs. Scrambled) 3 2 (lOT vs. rOT) repeated-

measures ANOVA revealed that all three main effects

were significant, color . grayscale: F(1, 19)¼ 10.5, p¼
0.005; natural . scrambled: F(1, 19)¼ 58.4, p , 0.001;

rOT . lOT: F(1, 19) ¼ 7.69, p ¼ 0.013. All interaction

terms were significant, CG 3 NS: F(1, 19)¼ 6.45, p¼

0.02; NS 3 ROI, F(1, 19)¼ 8.35, p¼ 0.01; CG 3 NS 3

ROI: F(1, 19)¼ 7.38, p¼ 0.014, except for the

nonsignificant interaction of CG 3 ROI: F(1, 19)¼
0.34, p ¼ 0.57. We subsequently conducted post hoc

pairwise comparisons for all three parameters. Impor-

tantly, natural color images resulted in significantly

Figure 5. Experiment 2: Frequency-domain responses. (A) Each frequency spectrum plots the SNR averaged over all observers and all

128 channels as a function of frequency. Black lines: image stimulation responses (12 Hz and harmonics). Blue lines: face stimulation

responses (1.33 Hz and harmonics). (B) Responses to face stimulation in the two natural image conditions. Each frequency spectrum

shows the SNR averaged over observers and lOT/rOT channels as a function of frequency. The scalp topographies (back of the head)

show the sums of observer-averaged, baseline-subtracted amplitudes over significant face stimulation harmonics (1.33–16.0 Hz)

respectively for the natural image conditions (left two topographies), and their difference (rightmost topography). The bar graph

shows the harmonic sums of baseline-subtracted amplitudes averaged over all 128 channels (Chanavg), lOT and rOT channels

respectively, showing a significant colour advantage. Each bar represents the mean over 20 observers (error bar ¼ 1 SEM). (C)

Responses to image stimulation. Each scalp topography shows the sum of observer-averaged, baseline-subtracted amplitudes across

image stimulation harmonics (12–60 Hz). (D) Corresponding channel locations that define the lOT, rOT, and mOP2 ROIs. Note the

difference of mOP2 from mOP1 (Figure 2D).
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larger responses than natural grayscale images over
bilateral occipitotemporal ROIs (lOT: 16.2% advan-
tage, p¼ 0.03, rOT: 19% advantage, p¼ 0.009; see bar
graph in Figure 5B), but no significant differences (p .

0.11) were found to support any color advantage in
scrambled images. This suggests a mainly high-level
color advantage for categorizing natural images, which
was not found in the frequency-domain data in
Experiment 1. For comparisons between natural and
scrambled image conditions, all natural image condi-
tions scored significantly larger responses than their
corresponding scrambled image conditions regardless
of ROI or the presence of color (p , 0.001; average
response to scrambled images 2.8% of that to natural
images), indicating a predominantly high-level response
to physical structures in face categorization. For
comparisons across ROIs, responses over rOT were
significantly larger than those over lOT with natural
images only (natural color: 21.9% advantage, p¼ 0.005,
natural grayscale: 19% advantage, p ¼ 0.04), but not
with scrambled images (p . 0.07). Together, these data
suggested a high-level, right-lateralized face categori-
zation response that was enhanced in the presence of
color when an orthogonal shape task was implemented.

Image stimulation frequency (12.0 Hz)

Average across all channels: Image stimulation re-
sponses were again found in all conditions (black lines

in Figure 5A). A z-score analysis showed that the first
four harmonics (12–48 Hz) were significant (i.e., z score
. 2.33) in all conditions. For consistency with
Experiment 1, we decided to include also the fifth
harmonic (60 Hz) when computing the harmonic-sum
of baseline-subtracted amplitude for each observer and
condition. It should be noted that including the fifth
harmonic in subsequent analyses did not change the
general results of the experiment, as the value of the
nonsignificant baseline-subtracted amplitude was ef-
fectively close to zero.

Analyses similar to those in Experiment 1 were
conducted here. A 2 3 2 repeated-measures ANOVA
on channel-averaged, harmonic-summed, baseline-
subtracted amplitudes showed significantly larger
responses to scrambled images than to natural images
by 16%, F(1, 19) ¼ 7.04, p ¼ 0.02. No significant
differences were found between color and grayscale
conditions, F(1, 19)¼ 0.06, p¼ 0.81, nor the interaction
term, F(1, 19)¼ 0.04, p¼ 0.85. These results were
consistent with those in Experiment 1.
Medial occipitoparietal area: The topographies (Figure
5C) again showed peak responses over the medial
occipitoparietal area in all conditions. We defined a
separate mOP2 ROI based only on mean Experiment 2
data, which turned out to encompass channels Oz, Oiz,
O2, POO6, and O1 (Figure 5D). This ROI overlapped
partly with the mOP1 ROI defined using Experiment 1
data (Figure 2D), though mOP2 was shifted to a more
inferior region. A 23 2 repeated-measures ANOVA on

Figure 6. Experiment 2: Individual frequency-domain scalp topographies for the two natural image conditions and their differences. A

back-of-the-head topography shows the sums of baseline-subtracted amplitudes across significant face stimulation harmonics (1.33–

16.0 Hz, except 12 Hz) for each observer, none of whom participated in Experiment 1. To ease comparisons, the color scales are set to

be the same across the two conditions within each observer, while the maximum amplitude (on top of each topography) varies across

observers. For the difference topographies (natural color – natural grayscale), the color scales are also adapted to individual observers

but the range was made symmetric around zero (i.e., –jmaximum amplitudej toþjmaximum amplitudej, e.g., –1.25 toþ1.25 lV for

S01).
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individual data averaged over the mOP2 channels
revealed similar pattern of results as the channel
averages: scrambled . natural, 12% advantage, F(1,
19)¼ 5.02, p¼ 0.04; not significant for color vs.
grayscale, F(1, 19)¼ 0.85, p¼ 0.37; also not significant
for the interaction term, F(1, 19)¼ 0.003, p¼ 0.95. This
again suggests a major contribution of the medial
occipitoparietal region towards variations in image
stimulation responses.

Time-domain analysis

Figure 7 shows the time-domain responses (after
notch-filtering the image-stimulation rate response) for
all 128 channels, and in particular, the two occipito-

temporal ROIs for the two natural image conditions.
Similar to results in Experiment 1, we observed at least
three distinctive components (P1-face, N1-face, P2/P3-
face) time-locked to the periodic face stimuli, reflecting
a face-selective process. All three face-selective com-
ponents were significant (p , 0.05 over 21.5 ms) over
both lOT and rOT regardless of the presence of image
color (red and blue horizontal lines in Figure 7B). The
time spans of the components (in the order of P1-face,
N1-face, and P2/P3-face) were: lOT: color: 111–159 ms,
179–238 ms, and 259–548 ms; grayscale: 128–154 ms,
175–240 ms, and 259–560 ms; rOT: color: 122–165 ms,
183–240 ms, and 257–575 ms; and grayscale: 132–161
ms, 181–241 ms, and 257–574 ms. Pairwise t tests
comparing ROI-averaged waveforms for natural color
image and natural grayscale image conditions showed

Figure 7. Experiment 2: Time-domain responses (following notch-filtering of 12 Hz and harmonics) to face stimulation in the natural

image conditions (0 s: onset of face stimulation). (A) Waveforms for all 128 channels. The two-dimensional head map (viewed from

top of the head) represents the color codes for the channels. (B) Waveforms averaged by ROI (see definitions in Figure 5D). Shaded

areas represent 61 SEM across observers. For each ROI, the bottom horizontal bars represent significantly nonzero responses (p ,

0.05), respectively, to natural color images (red), natural grayscale images (blue), and the difference between the two conditions

(green) over 12 consecutive time points (i.e., 21.5 ms). At the midpoint of each green bar, the scalp topographies (back of the head)

reveal superior face stimulation responses when the images contained color. The color scales are identical across all scalp

topographies.
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an earlier, more pronounced (i.e., larger amplitude
difference), and more sustained color advantage (green
lines in Figure 7B) than in Experiment 1. In particular,
significantly larger responses (p , 0.05 over 21.5 ms) to
color images were found at 290–331 ms and 374–406
ms over lOT, and 304–327 ms and 345–415 ms over
rOT. Note that the color advantage started from the
peak of the P2/P3-face component, still a rather late
latency relative to the onset of face stimulation (0 s).

General discussion

The current study evaluated the potential contribu-
tion of color to automatic face categorization in rapidly
presented natural images by examining the responses to
periodic face stimulation (1.33 Hz) against general
object stimulation (12 Hz). In both experiments, as in
previous studies with this paradigm (e.g., Retter &
Rossion, 2016; Rossion et al., 2015), we obtained
robust (i.e., significant for all participants) face
categorization EEG responses to natural images, with
the largest response found over the right occipito-
temporal cortex. In addition, by comparing responses
to natural images and those to their phase-scrambled,
shape-deprived versions, we confirmed that processing
associated to face categorization is mainly high level
over the occipitotemporal areas, with right lateraliza-
tion typically attributed to face-specific processing (e.g.,
Hécaen & Angelergues, 1962; Sergent, Ohta, &
MacDonald, 1992; see Jonas et al., 2016 for intracere-
bral evidence with this paradigm). Importantly, the
high-level characteristic face-selective responses ob-
tained in this paradigm have been shown to differ
quantitatively (i.e., much larger for faces) and qualita-
tively (i.e., in terms of spatiotemporal aspects) from
other category-selective responses, such as those to
body parts and houses (Jacques et al., 2016). Moreover,
the periodic response is immune to potential temporal
predictability arising from the periodicity of face
presentations, as both temporally unpredictable ap-
pearances of faces and omissions of otherwise predict-
able face occurrences show comparable responses to
temporally predictable faces (Quek & Rossion, 2017).

Here, while a minimal color advantage in face
categorization found in Experiment 1 might be affected
by an interaction with the task (detection of fixation-
cross color change), modification to a more orthogonal
task (Experiment 2: detection of fixation-cross shape
change) led to a more pronounced, and more sustained
color advantage, which we believe better reflects color’s
actual role in face categorization. In particular, we
could not find evidence for image color to enhance
neural face categorization responses until as late as 290
ms after onset of face stimulation, which coincides with

the beginning of the third face component (P2/P3-face).
However, this color advantage extends to a little
beyond 400 ms latency over the rOT region, save for a
brief, intermittent break. The implications of such a
late, but persistent enhancement are discussed as
follows.

The late color advantage we found could be
explained in terms of how much color contributes to
face categorization relative to shape information. There
is a view in object recognition research that, especially
for objects with lower color diagnosticity, color’s
contribution steps up only when shape information
becomes less diagnostic, for example, to categorization
of animals that are structurally similar (Bramão,
Faı́sca, Petersson, & Reis, 2012; Price & Humphreys,
1989; Tanaka & Presnell, 1999; Wurm, Legge, Isenberg,
& Luebker, 1993). In the current experiments, faces
were presented for 83 s (with sinusoidal contrast
modulation), which, although brief, was demonstrably
sufficient for consistent face detection in previous
studies, even for grayscale images (see also Bacon-
Macé, Macé, Fabre-Thorpe, & Thorpe, 2005; Gegen-
furtner & Rieger, 2000). Thus, participants’ discrimi-
nation of faces from other objects may have already
reached ceiling for grayscale images, masking potential
early advantages of color during more challenging
conditions, for instance, with shorter presentation
durations, increased eccentricity, and added noise (e.g.,
Gegenfurtner & Rieger, 2000). That is, it could be
argued that in the current experiments, the broadly
similar three-dimensional physical structures across
faces were sufficient to discriminate faces from other
random objects that varied greatly in shape, diminish-
ing a potential early contribution of color information.
It is also worth noting that in our experiments, colored
faces were contrasted with colored objects, which could
also explain the lack of an early effect of color as
sometimes reported in previous ERP studies, where
effects of color could represent general enhanced
activation, not specific to categorization per se (e.g.,
Zhu et al., 2013).

However, our results suggest that, at least for face
categorization, color still contributes at a later stage.
This is in fact consistent with reports of late, enhanced
representation for nonface images presented in color
(Gegenfurtner & Rieger, 2000; see also Yao &
Einhäuser, 2008, reporting a color advantage for
above-chance level categorization of animals from
different-species, but not same-species, distractors
during rapid serial visual presentation sequences). It is
also consistent with previous findings that color
information improves naming accuracy and shortens
response time even during recognition of objects with
lower color diagnosticity (Rossion & Pourtois, 2004),
that image segmentation is performed better when
color and texture cues are congruent rather than

Journal of Vision (2019) 19(5):20, 1–20 Or, Retter, & Rossion 16

Downloaded from jov.arvojournals.org on 05/27/2019



conflicting (Saarela & Landy, 2012; though see Cant,
Large, McCall, & Goodale, 2008), and that memory for
shape can bias color perception in grayscale images
(Hansen, Olkkonen, Walter, & Gegenfurtner, 2006).

Our results thus generally agree with the ‘‘Shapeþ
Surface’’ model of object recognition (Tanaka, Weis-
kopf, & Williams, 2001), where color plays a support-
ing role, with small but significant improvement, to
primarily shape-driven face categorization (at least
when stimuli are presented at 12 Hz), which is evident
from the minimized responses to scrambled, shapeless
images. The late emergence of the color advantage
(beyond 290 ms after stimulus onset) is broadly
consistent with the hypothesis that object shape and
colour are processed in parallel and later combined
(Tanaka et al., 2001). Indeed, a late color effect (N400
component) was also found for nonface object naming
tasks when the objects are considered color diagnostic
(Bramão, Francisco, et al., 2012). The hypothesis is
also supported by a recent neuroimaging study showing
that color-biased regions are segregated from face-
selective regions along the ventral visual pathway in
both humans and monkeys, but anterior color and
shape areas show convergence (Laffer-Sousa, Conway,
& Kanwisher, 2016). It is possible that color informa-
tion facilitates the triggering of memory and knowledge
of face and nonface objects for enhancing face
categorization (Bramão, Francisco, et al., 2012). Such
object color knowledge may even modulate color
perception of the stimuli in low-level processing in early
visual areas like V3 and V4 (Vandenbroucke, Fahren-
fort, Meuwese, Scholte, & Lamme, 2016), though it
should be noted that an early color effect (neither in P1-
face nor N1-face) typically associated to image
segmentation (e.g., Rossion et al., 2000) was not found
in our study, again perhaps due to lack of face
categorization difficulty for grayscale images as pre-
sented here.

We confirmed that processing associated to face
categorization is mainly high level over the occipito-
temporal areas, with right lateralization typically
attributed to face-specific processing. This finding is
also consistent with the aforementioned hypothesis that
shape and color are processed in parallel and later
combined, mainly during high-level face processing.
Our data show that with these variable stimuli, the low-
level contribution plays only a minor role in face
categorization, as the average responses to phase-
scrambled images (peaked over the low-level medial
occipitoparietal area) account for only 4%–6% of those
to natural stimuli in both experiments. This small
contribution might be due to an undisturbed power
spectrum after phase scrambling (Torralba & Oliva,
2003). Importantly also, we did not find color to have
any modulating effect in the scrambled image condi-
tions (Experiment 2), consistent with the hypothesis

that color facilitates later processing of face categori-
zation.

Note that colored images necessarily contain addi-
tional chromatic contrasts (absent in grayscale images)
that could potentially provide additional sensory
inputs, resulting in a higher image stimulation response
at 12 Hz and harmonics. However, we could not find
such response difference between our natural color and
grayscale conditions. One possibility is that any
potentially added color inputs might be modulated by
inhibitory effects from opponent chromatic contrasts
between rapid successions of colored images. It is also
possible that 12 Hz may not be an optimal stimulation
frequency for capturing chromatic responses (Regan &
Tyler, 1971).

Additionally, comparisons of the results from the
two experiments allowed us to evaluate the influence of
a distracting task on the potential effect of image
colour to face categorization. We found a color
advantage in the face stimulation responses to natural
images in the frequency domain (1.33 Hz and
harmonics) only in Experiment 2, where fixation shape
change did not bias performance in the two natural
image conditions. While this color advantage was
absent in frequency-domain data in Experiment 1,
probably due to distraction from fixation color
changes, the time-domain analysis showed color
advantage over the high-level, bilateral occipitotempo-
ral regions at late onset latencies (beyond 376 ms), thus
still showing some effect due to the presence of color.
Using the shape task in Experiment 2, the time course
showing the color advantage became more persistent
between 290–415 ms and predominantly high level over
the occipitotemporal regions. These results suggest that
the contribution of color has a relatively late onset and
is prone to be reduced by distractions. It is possible that
the task demand reduces the effective use of color in
face categorization (see also Zhu et al., 2013). This has
practical implications on experimental designs on
finding a small, but significant, effect like color in the
current study.

Keywords: face categorization, color vision, natural
scene, electroencephalography (EEG)
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