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The contribution of color information to rapid face
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Color’s contribution to rapid categorization of natural
images is debated. We examine its effect on high-level
face categorization responses using fast periodic visual
stimulation (Rossion et al., 2015). A high-density
electroencephalogram (EEG) was recorded during
presentation of sequences of natural object images
every 83 ms (i.e., at F = 12.0 Hz). Natural face images
were embedded in the sequence at a fixed interval of F/
9 (1.33 Hz). There were four conditions: (a) full-color
images; (b) grayscale images; and (c) and (d) phase-
scrambled images from Conditions 1 and 2, respectively,
making faces and objects unrecognizable. Observers’
task was to respond to color changes of the fixation
cross (Experiment 1). We found face-categorization
responses at 1.33 Hz and its harmonics (2.67 Hz, etc.)
over occipitotemporal areas, with right-hemisphere
dominance; responses to color images were not
significantly different from those to grayscale images.
Behavioral analysis revealed longer response times when
images contained color, despite nearly-all-correct
performance in all conditions, suggesting that color
change in the task might detract from color’s
contribution to face categorization. We subsequently
changed the task to responding to fixation shape
changes so that such response-time differences were
eliminated (Experiment 2). The aggregate face-
categorization response became 21.6% stronger to color
than to grayscale images. This color advantage occurred
late, at 290-415 ms after stimulus onset. Our results
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suggest that the color advantage for face categorization
interacts with behavior, and that color only has a
moderate and relatively late contribution to rapid face
categorization in natural images.
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The ability to rapidly categorize a visual stimulus as
a face is important for social interaction. Face
categorization in natural scenes involves segmentation
of faces from the background and discrimination of
faces from other nonface objects in the environment
(e.g., birds, cars, houses, etc.). Face categorization also
implies generalization across superficial differences in
visual appearance of faces due to variations in both
their intrinsic qualities (e.g., identity, sex, race) and
extrinsic environmental factors (e.g., differences in
viewpoint, lighting, scale; Rossion, Torfs, Jacques, &
Liu-Shuang, 2015). Here, we ask what effect color may
have on this face categorization process.

Color is a candidate for contributing to human face
categorization at all levels. That is, color may facilitate
the segmentation of faces from the background, assist
in the discrimination of faces from nonface objects,
and/or contribute to the generalization of variant face
exemplars, perhaps in conjunction with shape infor-
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mation. Importantly, faces share a range of diagnostic
color information: under natural lighting conditions,
face skin colors vary mainly in intensity but differ little
in chromaticity, even across human “races” (Yang &
Waibel, 1996); for example, faces never appear green or
blue. Indeed, the evolution of human color perception
may have been influenced by the use of color to
categorize conspecifics (as well as for foraging, etc.) in
old world monkeys, who share in human trichromacy
(Mollon, 1989). In the present day, the potential
diagnosticity of facial color information has inspired
computer scientists to use face skin colors for machine
face detection (Graf, Chen, Petajan, & Cosatto, 1995;
Graf, Cosatto, Gibbon, Kocheisen, & Petajan, 1996;
Wu, Chen, & Yachida, 1999; Yang & Waibel, 1996),
resulting in superior detection speed compared to other
methods (De Dios, 2007).

Previous studies have suggested that diagnostic color
plays a role in behavioral tasks measuring some aspects
of face categorization, despite disagreements across
studies on the precise nature of color’s role. For
example, Lewis and Edmonds (2003, 2005) found that,
in manual response tasks, the time to detect a face in a
scrambled natural scene was shorter with diagnostic
color in the scene than with a grayscale, or hue-
reversed, display, although diagnostic color informa-
tion was not necessary to make a face pop out. In a
saccadic choice task, Boucart et al. (2016) found that
colored faces presented in the visual periphery were
categorized more accurately, but not significantly
faster, than grayscale faces. In a visual search task for
faces in natural scenes (using manual responses),
Bindemann and Burton (2009) suggested that a color
advantage was restricted to the presence of diagnostic
color in the entire face image, as they found that
performance (both response time and accuracy) was
worse when detecting faces of which only half (either
left or right) was in color and the other half in
grayscale, than when detecting full-color faces. Bind-
emann and Burton concluded that simply presenting
color on half of the face could not improve face
detection, while color information was only useful
when tied to the general shape of the face, suggesting
combined color and shape processing during face
detection.

At the level of face categorization, comparison with
other nonface objects might alter color’s role, as color’s
potential influence on generalization across face color
variations (e.g., in skin color) might interact with color
as a diagnostic cue to discriminate between the
segmented objects. The potential contribution of color
to discriminating faces from nonface objects, as well as
generalizing across variable face exemplars, has not
been explicitly tested to our knowledge. However, some
insights can be brought from behavioral studies on
rapid object and scene categorization more generally.
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Many studies have disputed whether color information
is an important cue for the rapid differentiation
between briefly presented natural images. In particular,
Delorme, Richard, and Fabre-Thorpe (2000) suggested
that the presence of color cues had only weak effects of
higher accuracy for categorizing animals and shorter
response times for categorizing food in natural scenes
in manual tasks. However, the contribution of color
has been advocated for by Oliva and Schyns (2000; see
also Goffaux et al., 2005), who found better perfor-
mance (both response time and accuracy) from verbal
or manual responses in naming and verification tasks
for natural scenes in their natural color (e.g., desert,
forest, coastline) than grayscale scenes. Castelhano and
Henderson (2008) also found that color produced an
advantage for manual behavioral responses in deter-
mining whether embedded objects were consistent with
the natural scenes, though the majority of these were
man-made (e.g., city landscapes). Yao and Einhduser
(2008) reported higher accuracy for cross-species
animal categorization when images were presented in
color. Overall, however, the uncertainty of color’s role
in categorization suggests that color’s contribution is
limited—for example, only when the attention demand
of the task is high (Yao & Einhiduser, 2008, though see
Otsuka & Kawaguchi, 2009).

One way to identify the nature of the contribution of
color to face categorization is to investigate categori-
zation responses at a neural level. To our knowledge,
no studies have compared neural face categorization
responses to color and grayscale images. In a previ-
ously mentioned study on scene categorization, Gof-
faux et al. (2005) reported larger and earlier event-
related potentials (ERPs), starting from approximately
150 ms poststimulus onset over frontal channels, for
naturally colored scenes. Zhu, Drewes, and Gegen-
furtner (2013) also reported larger ERP amplitudes and
shorter latencies in P1 and N1 responses, peaking over
frontal channels, for color than grayscale images. These
results have been interpreted in light of color playing a
role in the categorization and memory of images
(Goffaux et al., 2005), or as a result of color bringing
enhanced attention to the images (Zhu et al., 2013,
though note that color brought a behavioral advantage
in accuracy but disadvantage in response times in that
study, with task-dependent effects).

Thus, at this state of our knowledge, an objective
identification and quantification of the contribution of
color information to human face categorization (i.e., to
specific responses to faces) is still lacking. Here, we
attempt to answer whether, and if so, how much, color
confers an advantage for rapid (i.e., at a single glance)
visual categorization of stimuli as faces in natural
images. To this extent, we employ fast periodic visual
stimulation (FPVS) coupled with a scalp electroenceph-
alogram (EEG), an approach that provides an objective,
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Figure 1. Procedure in Experiment 1. (A) In each condition, a stimulation sequence started with a brief fixation period followed by 648
images containing a random face (F) presented periodically after every presentation of eight nonface random objects (O) (i.e., one
face every nine stimuli). In the scrambled image conditions, the fixed periodicity of face presentation remained but faces and nonface
objects were replaced by their scrambled versions respectively. The participant’s task was to press a key when the fixation cross
changed color (blue to red for 300 ms; note that the color changes did not coincide with the onsets and offsets of images). Here, the
figure shows the first 19 images identical across conditions for illustration purposes only. In actual experiments, each sequence
contained a random array of images and random timings of fixation color change uncorrelated across conditions and observers, and
included fade-in and fade-out periods (2 s each) not illustrated here (see text). (B) Each periodic stimulus (duration: 83.3 ms, i.e., 12.0
Hz frequency) was presented through a gradual increase and decrease of contrast over 10 frames (8.33 ms/frame at 120 Hz screen
refresh rate; orange dot: onset time of a frame), following a sinusoidal contrast modulation (left: example stimuli at 0%, 36%, 65%,
and 100% contrasts, bottom to top). The red boxes represent periodic presentations of face or scrambled face stimuli at 1.33 Hz. The
face images shown here are for illustrations only and were not used in actual experiments.

direct, and robust signature of automatic natural-image
face categorization (Rossion et al., 2015). By presenting
faces at a fixed rate among nonface objects in rapid
succession (Figure 1), a periodic electrophysiological
response associated with the specific periodic face
presentations necessarily reflects both direct discrimina-
tion of faces from many nonface objects (rather than
measuring responses to different types of stimuli
separately) and a generalized response across a wide
range of face stimuli differing in lighting, viewpoint, face
race, expressions, and so on. This paradigm has been
validated in previous studies (e.g., De Heering &
Rossion, 2015; Jacques, Retter, & Rossion, 2016; Jonas
et al., 2016; Retter & Rossion, 2016; Rossion et al.,
2015). Such a periodic response is best captured by
characteristic, narrow peaks at the frequency of periodic
face presentations and its harmonics in a spectral
analysis of the EEG signals. Note that a significant
periodic response emerges only from a response to
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repeated face stimuli, in direct comparison with a
differential response to other nonface stimuli in the
sequence, while potentially confounding low-level visual
cues are controlled by variability in the images (Rossion
et al., 2015; see also Rossion, Jacques, & Jonas, 2018 for
further review). Among these FPVS-EEG studies, part
of them presented images in full color only, while the
rest of them presented images in grayscale only. Thus,
no prior FPVS-EEG study directly compared the face-
selective responses to a full-color image sequence and to
a grayscale image sequence in a single experimental
design.

In order to directly examine the effect of color on
face categorization, we presented the natural image
sequences in two separate conditions (Figure 1), the
first of which contained full color information across all
images, and the other consisted of images all in
grayscale. This would allow direct comparisons of the
resulting FPVS-EEG data from the two conditions, in
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terms of the amplitudes of the peaks in the frequency
domain. Additionally, through a time-domain analysis
of the EEG signal obtained during FPVS (Retter &
Rossion, 2016), we explored whether the effect of color
is early (i.e., more likely to affect segmentation and
discrimination of faces) and/or later (i.e., more likely to
affect later stages of face perception; see Gegenfurtner
& Rieger, 2000; Yao & Einhduser, 2008).

We also designed two extra conditions where phase-
scrambled versions of the stimuli, in color in one
condition and in grayscale in another condition, were
rapidly displayed in the same settings as in the natural
image conditions (i.e., one scrambled face every nine
scrambled stimuli; Figure 1). Phase scrambling is a
manipulation that preserves Fourier amplitude infor-
mation carrying global low-level statistical properties
of images, but removes the shape and structure in the
stimuli (Sadr & Sinha, 2004). It has been typically used
as a control for the contribution of low-level properties
to object categorization, and face categorization in
particular (e.g., Rossion et al., 2015; Torralba & Oliva,
2003; VanRullen, 2006), with studies showing that the
earliest saccades toward natural images of faces in
binary decision tasks can be significantly affected after
controlling for the amplitude spectrum (Crouzet &
Thorpe, 2011). Here, these additional conditions
allowed investigation of potential low-level color
contribution to face categorization.

Methods
Participants

A total of 20 observers (10 females, mean age =22.7
+ 3.2 years, age range: 19-36 years) participated in the
experiment. All participants had normal or corrected-
to-normal visual acuity. They were all right-handed
according to an adapted Edinburgh Handedness
Inventory measurement (Oldfield, 1971). None report-
ed any history of psychiatric or neurological disorders.
They were naive to the purpose of study, and were not
aware that faces were presented at a fixed rate of one
out of nine stimuli and that scrambled stimuli were
generated from objects and faces. All participants
provided written informed consent and received hon-
oraria for their participation, as approved by the
Biomedical Ethical Committee of the University of
Louvain and the 2013 WMA Declaration of Helsinki.

Stimulus display

The stimuli were generated by a Dell XPS Desktop
computer installed with the Psychtoolbox 3.0.8 in
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MATLAB R2009a for Windows (MathWorks, Natick,
MA) using previously validated scripts (e.g., Rossion &
Boremanse, 2011), passed to a GeForce GTX 560 Ti
graphics card, and were displayed on a linearly gamma-
corrected BenQ XL2420T monitor at a refresh rate of
120 Hz, with a screen resolution of 1920 X 1080 pixels
placed at a viewing distance of 80 cm (pixel size:
0.0194°) in a dimly lit and sound-attenuated room. The
mgan luminance after gamma correction was 75.0 cd/
m-.

Stimuli

Four types of images, detailed as follows, were
generated for four corresponding conditions used in
both experiments.

Natural color images: Color photographs of 46 faces
and 247 nonface objects (animals, plants, man-made
objects, houses, etc.; examples in Figure 1A) were
obtained from the Internet (stimuli available here:
http://face-categorization-lab.webnode.com/
resources/natural-face-stimuli/). All faces (width =
1.9°-4.1°, height = 2.8°-5.0°) and objects, variable in
size, lighting condition, and background, were located
at the center of the square image stimuli (size: 5.1° X
5.1°) and embedded in their original natural scenes
(i.e., unsegmented) after rescaling and cropping the
source images. Each stimulus was coded and displayed
in the RGB mode at a color depth of 24 bits/pixel (8
bits/channel, with pixel values of 0—255 representing
luminance). The average luminance of each stimulus
was equalized to the screen’s mean luminance (75.0 cd/
m?). Such luminance normalization was performed
independently for each color channel, so that the
average R, G, and B pixel values across the entire
image were all normalized to 127.5 (mean pixel value).
Note that variations in local color, luminance, and
contrast within each image (i.e., appearances of the
actual faces and objects) remained and the relative
color and contrast variations across images were
broadly maintained (Figure 1A). The luminance-
normalized natural color images served as the basis
for the generation of natural grayscale images and
scrambled images.

Natural grayscale images: The luminance-normalized
color images were each converted to grayscale using the
formula:

I=0.2126R 4 0.7152G + 0.0722B, (1)

where [ is the pixel value representing luminance, and
R, G, and B represent the original red, green, and blue
values respectively. The weights in Equation 1 are
standard for a gamma-corrected monitor (with color
space following Rec. 709 primaries). Each stimulus
was subsequently coded and displayed at a grayscale
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resolution of § bits/pixel, of which the average
luminance stayed unchanged at 75.0 c¢d/m”.
Scrambled color images: To remove the shape infor-
mation, we scrambled the images by randomizing the
phase spectrum in the Fourier domain (Sadr & Sinha,
2004). A two-dimensional fast Fourier transform
(FFT) converted each color image into a complex
representation consisting of magnitude and phase
components. The phase values were then replaced by
those from an FFT of a randomly generated white-
noise image of the same size. An inverse FFT was
subsequently applied to the resulting map consisting of
unchanged magnitudes and random phases in order to
generate a phase-scrambled version of the image. The
resulting scrambled image effectively became unrecog-
nizable but kept the same frequency spectrum and
average luminance value as the original natural image
(Figure 1A).

Scrambled grayscale images: All scrambled color
images were converted to 8-bit grayscale using Equa-
tion (1), maintaining the same average luminance
values.

Procedure

Each experiment was a 2 X 2 factorial design
studying the effects of color and scrambledness of the
image stimulations. Thus, there were four conditions
(Figure 1), each using a specific type of image
described in Stimuli (i.e., natural color images, natural
grayscale images, scrambled color images, and
scrambled grayscale images). In each condition, the
stimulation sequence was presented through sinusoi-
dal contrast modulation (Figure 1B; e.g., Jacques et
al., 2016; Retter & Rossion, 2016; Rossion et al., 2015)
of successive images at a rate of 12.0 Hz (image
stimulation frequency). Each 83.3-ms (1000 ms / 12.0,
10 frames/image) stimulation cycle started with a
uniform gray background from which an image
appeared as its contrast increased in a sinusoidal
fashion from 0%, reaching 100% (full contrast) at 41.7
ms, and then decreased at the same rate. In the natural
image conditions, the periodic sequence comprised
eight objects (O) followed by a face (F), all randomly
selected from their corresponding categories. Similar-
ly, in the scrambled image conditions, the periodic
sequence consisted of eight scrambled objects followed
by a scrambled face. Faces (or, scrambled faces) were
thus presented at a frequency of 12.0 Hz / 9=1.33 Hz
(face stimulation frequency). Images could be repeated
one to three times randomly (but not consecutively)
within a stimulation sequence.

A stimulation sequence started with a fixation cross
(in blue, 0.31° X 0.31°) centered on a uniform gray
background for 2-5 s (duration randomly determined
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across sequences) to facilitate stable fixation of the
participant. The stimulation sequence, consisting of
648 images, was subsequently presented centrally on
the screen for 54.0 s, including a 2-s fade-in period at
the beginning of image presentation and a 2-s fade-out
period at the end (with uninterrupted central display
of the fixation cross superimposed on the images). The
contrast modulation depth of the periodic stimulation
gradually increased from 0% to 100% during the fade-
in period, and reduced in the opposite direction from
100% to 0% during the fade-out period (keeping the
sinusoidal contrast modulation). These fading periods
were intended to minimize blinks and abrupt eye
movements due to an otherwise sudden appearance or
disappearance of the flickering stimuli. Responses
during the fading periods would not be used in the
data analyses, as detailed later.

Each participant performed 12 sequences (three per
condition), each of which contained an independently
randomized image sequence. The order of presentation
of the 12 presentation sequences was randomized.
During the EEG recording, the participant was
instructed to maintain central fixation throughout the
entire stimulation sequence while continuously moni-
toring the flickering stimuli. As in previous studies with
this paradigm (e.g., Rossion et al., 2015), the partici-
pants’ task was to detect brief color changes of the
fixation cross (blue cross to red cross for 300 ms; i.e., 36
frames). Such color changes occurred 10 times ran-
domly throughout each sequence, and were not
correlated with the onsets and offsets of images. The
accuracy (hit rate: percentage that the observer
correctly pressed the key within 1500 ms after the onset
of the color change) and response times for accurate
key presses were analyzed.

EEG acquisition

The EEG was acquired using a 128-channel Biosemi
Active 2 system (BioSemi, Amsterdam, The Nether-
lands), with electrodes including standard 10-20
system locations as well as additional intermediate
positions (http://www.biosemi.com/headcap.htm, re-
labeled to more conventional labels of the 10-5
system; see supplementary figure S1 in Rossion et al.,
2015). The EEG was sampled at 512 Hz. Electrode
offset was reduced to under £20 mV for each
individual electrode by softly abrading the scalp
underneath with a blunt plastic needle and injecting
the electrode with saline gel. Eye movements were
monitored by four additional electrodes placed at the
outer canthi of the two eyes, and above and below the
right orbit. During the experiment, triggers were sent
via parallel port from the stimulation computer to the
EEG recording computer at the beginning and the end
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of each stimulation sequence, and at the minima (0%
contrast) of all 12.0-Hz stimulation cycles (i.e., onsets/
offsets of images), using custom scripts borrowing
from the Cogent 2000 MATLAB Toolbox (validated
in previous studies, e.g., Rossion & Boremanse, 2011).
The temporal synchrony between the trigger and the
stimulus onset was verified by a photodiode prior to
the experiment. Recordings were manually initiated by
the experimenter when participants showed artefact-
free EEG signals.

EEG analysis
Preprocessing

All EEG data were analyzed using Letswave 5
(http://nocions.webnode.com/letswave) running on
MATLAB. The signals were first detrended by
subtracting the best-fit line (using the least-squares
method) from the data, and then passed to a fourth-
order low-pass Butterworth filter (Butterworth, 1930)
with a cutoff frequency of 120 Hz. The data were then
passed to an FFT multinotch filter (width =0.5 Hz) to
remove electrical noise at 50 Hz (oscillation frequency
of the alternating current) and its second harmonic (100
Hz). Subsequently, the filtered signals were segmented
into 58-s segments, keeping 2 s each before and after a
sequence (i.e., —2 s through 56 s). The DC component
in each data segment was separately identified and then
subtracted from the signal.

Artefacts in the signals were removed in two steps.
Blink artefacts were removed only when a participant’s
blink rate exceeded 0.2 blink/s (Retter & Rossion,
2016), resulting in only one participant meeting this
criterion. An independent component analysis (Jung et
al., 2000) using the square mixing matrix method was
subsequently applied on this participant’s signals and
only one single component connected to the blink
patterns was removed, chosen based on visual inspec-
tion of the waveform and its topography. Then, noisy
and artefact-ridden channels (fewer than 5% of 128
channels; i.e., a maximum of six channels) containing
deflections larger than 100 pV in multiple presentation
sequences were rebuilt using linear interpolations from
immediately adjacent noise-free channels. Finally, all
channels (except the ocular ones) were referenced to a
common average.

Frequency-domain analysis

The preprocessed data segment of each sequence was
cropped again to keep only signals from exactly 2 s
after stimulus onset (the end of the fade-in period) to
51.5 s after stimulus onset. The end time (51.5 s) was
chosen such that it was the longest possible time point
before the start of stimulus fade-out (at 52 s), for
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capturing an integer number of 1.33-Hz cycles (i.e., 1.33
Hz X 49.5 s =66 cycles, which contains N = 25,348 time
bins). The integer number of cycles ensured no spectral
leakage of the frequencies of interest—that is, har-
monics of both the face stimulation frequency (1.33 Hz)
and the image stimulation frequency (12.0 Hz). The
sequences were then averaged separately for each
condition and for each observer. An FFT was applied
to the sequence-averaged data segments, and an
amplitude spectrum (normalized by N/2, in uV) was
extracted in the frequency domain (ranging from 0 to
256 Hz) for each channel. Each spectrum had a high
frequency resolution (i.e., distance between two adja-
cent frequency components) of 0.0202 Hz, which is the
inverse of the segment duration (49.5 s). This aided
unambiguous identification of the frequencies of
interest (1.33 Hz and harmonics).

To consider the variations of noise across the
amplitude spectrum, a baseline subtraction was applied
to each frequency component by subtracting the
average amplitude of 20 surrounding frequency com-
ponents (10 on each side, excluding the immediately
adjacent bins and the local minimum and maximum
bins; see, for example, Dzhelyova & Rossion, 2014;
Mouraux et al., 2011) from the amplitude of the
frequency component of interest. In addition, the
signal-to-noise ratio (SNR) was also calculated by
considering the same 20 surrounding frequency com-
ponents (e.g., Rossion, Alonso Pireto, Boremanse,
Kuefner, & Van Belle, 2012). For group analysis,
individual baseline-subtracted amplitude (or SNR)
spectra were averaged across observers for each
condition, resulting in the grand-averaged spectrum.
Selecting the range of significant harmonic responses (z-
score analyses): To analyze the responses at the image
stimulation and face stimulation frequencies (and their
harmonics), we first determined a continuous range of
significant harmonic responses for each frequency to
include in the analysis. Individual amplitude spectra
were first averaged across observers, and then across
the 128 channels (excluding the four ocular channels)
for each condition. A z-score was calculated for each
frequency component of this averaged spectrum by
using the mean amplitude and standard deviation of 20
surrounding frequency components (10 on each side,
excluding the immediately adjacent bins; see Rossion et
al., 2012) from the amplitude of the frequency
component of interest. For face stimulation responses,
the harmonics to be included in the analysis ranged
from 1.33 Hz through a cutoff frequency determined by
the last significant harmonic that yielded a z-score
larger than 2.33 (i.e., beyond the 99.0 percentile of the
SNR distribution; Retter & Rossion, 2016) in the two
natural image conditions, as no significant face
stimulation responses were expected for scrambled
image conditions (Rossion et al., 2015). Similarly for
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image stimulation responses, the included harmonics
(from 12.0 Hz) were determined by the same z-score
criterion but considering all four conditions. The
significant harmonic responses were summed, sepa-
rately for each frequency type, in order to quantify and
compare the comprehensive response amplitudes and
scalp topographies across conditions (Retter & Ros-
sion, 2016).

Statistical comparisons across conditions: A 2 (Natural
vs. Scrambled) X 2 (Color vs. Grayscale) repeated-
measures analysis of variance (ANOVA) was per-
formed on baseline-subtracted amplitudes (summed
over significant harmonics) averaged over all 128
channels for each of the 20 observers. We also defined
regions of interest (ROIs) over occipitotemporal and
occipitoparietal channels that showed the largest
responses, and analyzed these responses in additional
ANOVAs in order to localize the potential color
advantage in the brain.

Time-domain analysis

The periodic responses were additionally examined
in the time domain (e.g., Dzhelyova & Rossion, 2014;
Jacques et al., 2016; Retter & Rossion, 2016; Rossion
et al., 2015). The preprocessed data segments were
each passed to a fourth-order bandpass Butterworth
filter with a bandwidth of 0.1-30 Hz. The choice of
cutoff at 30 Hz was based on previous studies (e.g.,
Jacques et al., 2016; Retter & Rossion, 2016) and
standard procedures for ERP analyses that investi-
gated face-selective responses (e.g., Rossion & Ca-
harel, 2011; Rousselet, Husk, Bennett, & Sekuler,
2007; see the review of Rossion & Jacques, 2008),
which covered and went beyond the entire range of
significant harmonics (up to 16.0 Hz) of face
categorization responses in the current study (see EEG
data: Frequency-domain analysis). The filtered data
segment was further cropped to keep only signals from
stimulus onset (0 s) to 51.9 s after. The end time (51.9
s) was chosen such that it was the nearest time point to
the start of stimulus fade-out (at 52 s) for capturing an
integer number of 12.0-Hz cycles (i.e., 12.0 Hz X 51.9 s
=623 cycles, which contains N =26,586 time bins). An
FFT multinotch filter (width = 0.5 Hz) was subse-
quently applied to the cropped signals to selectively
remove 12.0 Hz and its first three harmonics,
corresponding to the contribution of the base stimu-
lation to the time-domain waveforms. The filtered
signals were then cropped into smaller epochs of 1417
ms (17 X 83.3-ms base stimulation cycles), each
including responses to a sequence of eight object
stimuli, one face stimulus, and another eight object
stimuli (OOOOOOOOFOO0O0000O0). Thus, each
epoch contains responses for exactly one face stimu-
lus. The cropping began at 2.25 s after stimulus onset,
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which was the earliest time point possible after the 2-s
fade-in period. It should be noted that the first eight
object stimuli of each epoch correspond to the last
eight object stimuli of its immediately preceding
epoch. After averaging all epochs per observer for
each condition, the data were baseline-corrected by
subtracting the mean response amplitude across 167
ms (corresponding to the presentation of two object
stimuli) preceding presentation of the face stimulus in
the epoch sequence. For each condition, the baseline-
corrected responses for all 20 participants were
subjected to a two-tailed ¢ test at each time point. A
face-selective component was defined by a time
window where significant nonzero responses (p <
0.05) were found across 12 or more consecutive time
points (i.e., > 21.5 ms; see, e.g., Jacques et al., 2016;
Laganaro, 2014). Similar statistical treatment was
applied to the within-subjects difference of individual
baseline-corrected responses between natural color
image and natural grayscale image conditions in order
to evaluate any potential color advantage in face
categorization in the time domain.

Behavioral data

Observers’ accuracy (hit rates) and response times
for accurate key presses over 30 color changes (10
changes X 3 sequences per condition) were analyzed.
The mean hit rates were close to ceiling in all conditions
(all over 95% correct: natural color: 95.6% * 1.6%,
natural grayscale: 97.6% = 1.1%, scrambled color:
98.4% + 0.6%, scrambled grayscale: 97.5% =+ 0.7%; all
in M = 1 SEM). The response times were rapid (< 500
ms for all conditions) but varied slightly across
conditions (natural color: 464 ms * 11 ms, natural
grayscale: 445 ms = 11 ms, scrambled color: 441 ms *
11 ms, scrambled grayscale: 433 ms = 11 ms; all in M
+ 1 SEM). A 2 X 2 repeated-measures ANOVA on
response times showed significant differences for both
main effects (color > grayscale, 3% effect: F(1, 19) =
6.86, p =0.02; natural > scrambled, 4% effect: F(1, 19)
=224, p < 0.001) but no significant interaction effect,
F(1, 19) =3.12, p =0.09.

EEG data
Frequency-domain analysis

Here, we report responses to the frequency rates that
represent, respectively, face stimulation (1.33 Hz and
harmonics) and image stimulation (12.0 Hz and
harmonics).
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Figure 2. Experiment 1: Frequency-domain responses. (A) For each of the four conditions, the frequency spectrum plots the SNR
averaged over all observers and all 128 channels as a function of frequency. Black lines: image stimulation responses (12 Hz and
harmonics). Blue lines: face stimulation responses (1.33 Hz and harmonics). (B) Responses to face stimulation, focusing on the two
natural image conditions. Each frequency spectrum shows the SNR averaged over observers and |OT/rOT channels as a function of
frequency. For each condition, the scalp topography (back of the head) shows the sum of observer-averaged, baseline-subtracted
amplitudes over significant face stimulation harmonics (1.33—-16 Hz, except 12 Hz). The bar graph shows the harmonic sums of
baseline-subtracted amplitudes averaged over all 128 channels (Chanavg), IOT and rOT channels separately for all conditions. Each bar
represents the mean over 20 observers (error bar = 1 SEM). (C) Responses to image stimulation. Each scalp topography shows the
sum of observer-averaged, baseline-subtracted amplitudes across significant image stimulation harmonics (12—60 Hz). (D)
Corresponding channel locations that define the I0T, rOT, and mOP; ROls.

Face stimulation frequency (1.33 Hz)

Average across all channels: Figure 2A shows the
frequency spectra (in form of SNRs) for mean
responses over all 128 channels and all 20 observers.
Robust responses were observed at face stimulation
frequency (1.33 Hz) and its harmonics only for the
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natural image conditions (blue lines), representing the
brain’s discrimination of faces from other objects (i.e.,
face-selective responses) only when the shape informa-
tion was intact. A z-score analysis (see Methods) was
performed on the averaged spectra for the natural
image conditions in order to determine the range of
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Figure 3. Experiment 1: Individual frequency-domain scalp topographies for the two natural image conditions. A back-of-the-head
topography shows the sums of baseline-subtracted amplitudes across significant face stimulation harmonics (1.33-16.0 Hz, except 12
Hz) for each of the 20 participants. The color scale is identical across conditions within each participant, but the maximum amplitude

(on top of each topography) varies across participants.

relevant harmonics. The highest significant harmonics
(i.e., z score > 2.33) were both 16.0 Hz (12th
harmonic). (Note: Over the same range, only one
harmonic was significant in each of the scrambled
image conditions.) The baseline-subtracted amplitudes
for each observer and condition were subsequently
summed across these significant harmonics (i.e., over
the range of 1.33, 2.67, 4.00 Hz, and so on until 16.0
Hz, excluding 12.0 Hz, which coincides with the image
stimulation frequency; see grand-averaged scalp to-
pographies in Figure 2B) for the following analyses.
To compare the responses across conditions, the
individual harmonic-summed, baseline-subtracted am-
plitudes, further averaged over all 128 channels (Bar
graph in Figure 2B: Chanavg), were subjected toa 2 X 2
repeated-measures ANOVA. A significant main effect
was found for natural versus scrambled conditions, F(1,
19)=176.0, p < 0.001. Precisely, responses to scrambled
images were only 4.03% of those to natural images on
average. Importantly, however, no significant main
effect was found for color versus grayscale conditions,
F(1, 19) =0.23, p = 0.64, nor a significant interaction,
F(1,19)=0.18, p=0.67. Thus, when considering a data
average over all channels, we did no