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Abstract. We consider a n× d random matrix Xn,d whoses entries can be expressed as Skorohod
integrals. By using the techniques of the Malliavin calculus, we study the fluctuations under the
Wasserstein distance, as n, d→∞, of the renormalized Wishart matrix

Wn,d =
√
d

(
1

d
Xn,dX Tn,d − In

)
,

where In is the n× n identity matrix.

1. Introduction

Consider a n × d random matrix Xn,d = (Xi,j)1≤i≤n,1≤j≤d. We can associate to it the so-called
(renormalized) Wishart matrix Wn,d =

√
d
(

1
dXn,dX

T
n,d − In

)
where In is the n× n identity matrix

and X T denotes the transpose of the matrix X . This matrix has been introduced by Wishart in the
twenties in Wishart (1928) and it has numerous applications in multivariate analysis or statistics. Of
particular interest is to understand its asymptotic behavior when the dimensions d and n are large.
Assume that the entries of the starting matrix Xn,d are independent and identically distributed,
with zero mean and unit variance. Then it is easy to see that for fixed n ≥ 1, the entries of
the matrix 1

dXn,dX
T
n,d converge, as d → ∞, to the entries of the so-called n × n GOE matrix Zn

(Gaussian Orthogonal Ensemble) which is a random matrix with Gaussian elements given by (3.17)
with m4 = 3 (this matrix belongs to the larger class of the so-called Wigner matrices). Moreover,
the renormalized Wishart matrix Wn,d satisfies a Central Limit Theorem (CLT in the sequel) when
d→∞ and n is fixed. A relatively recent research direction on random matrices is the study of the
limit behavior in distribution of the Wishart matrix in the "high-dimensional regime", i.e. when
both sizes n and d tend to infinity. This research is motivated by the need to handle large data sets
nowadays.
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A possible way to analyze the behavior of the Wishart matrix in the high-dimensional regime is
to evaluate the Wasserstein distance between its probability distribution and the law of its limiting
matrix when the sizes n and d are large enough. It was first discovered (independently) in Bubeck
et al. (2016) and Jiang and Li (2015) that, if the entries of the starting matrix Xn,d are independent
Gaussian random variables, then the Wasserstein distance between the associated renormalized
Wishart matrix Wn,d and its limit (the Wigner matrix (3.17) with m4 = 3) is of order less than√

n3

d which means that Wn,d is "close" to the Wigner matrix when n3

d tends to zero. Since then,
these results have been extended in mainly two directions: by supposing that these entries are
independent but with a possibly non- Gaussian distribution, or by assuming that the entries of the
initial matrix are (at least partially) correlated. Concerning the second line of research, we mention
the recents works Nourdin and Zheng (2019), Bourguin et al. (2021), Diez and Tudor (2021) in which
the authors assume that the correlation between the elements of the initial matrix are correlated and
the correlation is related to the correlation structure of the increments of the fractional Brownian
motion or of the Hermite process. Our work concerns the first direction of study: we start with a
matrix with independent entries, not identically distributed, and we assume that these entries follow
a very general probability law. As mentioned before, several works treated this question: besides
the case of Gaussian entries studied in Bubeck et al. (2016), Jiang and Li (2015) (see also Rácz and
Richey, 2019 for results on the phase transition from the Wishart to the limit matrix and Bubeck
and Ganguly, 2018 for a discussion of the optimality of the estimates), we mention the paper Bubeck
and Ganguly (2018) for entries with a log-concave distribution, the work Mikulincer (2020) also for
entries with log-concave distribution but only column independent, the work Bourguin et al. (2021)
for the situation when the entries belong to a Wiener chaos of arbirary order, or Fang and Koike
(2021+) for entries with a general distribution, assuming only the finiteness of their sixth moment.

Our purpose is to extend these results on the behavior of Wishart matrices to a more general
situation by using the techniques of the Malliavin calculus. We will assume that the entries of
the initial matrix Xn,d are independent random variables which can be expressed as Skorohod (or
divergence) integrals. This covers a very general case since basically any centered square integrable
random variable can be expressed as a Skorohod integral. Our results are not covered by the findings
in Fang and Koike (2021+) due to the following aspects. Firstly, in Fang and Koike (2021+) the
authors measure the Wasserstein distance between the law of the Wishart matrix Wn,d viewed as
vector (Wi,j , 1 ≤ i < j ≤ n) and its limit. Notice that the random vector considered in Fang and
Koike (2021+) does not include the diagonal terms of the Wishart matrix. This is due to the fact
that they use an approach based on the Stein method for exchangeable pairs, which does not allow
to include the diagonal of the Wishart matrix. Actually, including the diagonal is not trivial, see
Mikulincer (2020) (in this reference the author uses the log-concavity of the law of the entries).
Secondly, we work with a different distance (the so-called d2-distance) which is not necessarily
defined via Lipschitz functions. We detailed the relation between our findings and those in Fang
and Koike (2021+) in Remark 3.7 and we noticed that in some particular cases, our estimates can
be more optimal when the diagonal of the Wishart matrix is considered.

We need in addition some regularity assumptions (in the sense of Malliavin calculus) for the
integrands of the Skorohod integrals which define the entries the matrix Xn,d and we will also use
the hypothesis of strong independence for the entries of the initial matrix Xn,d which means more
than the usual independence. The strong independence of two square integrable random variables
F and G actually means that any component of the chaos expansion of F is independent of any
component of the chaos expansion of G. This is the price to pay in order to keep a very general
form for the entries of the starting matrix. Under these assumptions, we are able to evaluate
the distance (the so-called d2-distance defined later) between the random vector associated to the
Wishart matrix and its limit in distribution and then to deduce the Wasserstein distance (in the
matrix sense) between the renormalized Wishart matrix and its limiting Gaussian matrix. We
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use criteria from the recent Stein-Malliavin calculus and we exploit the strong independence of
the entries, which leads to several simplifications in the calculations. Actually, we will prove that
this d2-distance between the distribution of the random vector associated to the Wishart matrix
(including the diagonal) and its limit is less than Cn2

√
n3

d and then that the Wasserstein distance

between the renormalized Wishart matrixWn,d and its limit is less C n
9
4

d
1
4
, meaning that we lose some

speed with respect to the standard bound
√

n3

d . This is due to the following fact: in a first step we
majorate the Wasserstein distance between the laws of the random matrices Wn,d and Zn by the
Wasserstein distance between their so-called associated half-vectors (defined in Section 2.2). But
there are no criteria to estimate directly the Wasserstein distance between random vectors whose
components are Skorohod integrals and we need to bound it by a new distance (the d2 distance
defined in Section 2.2) in order to have some estimates.

Our paper is structured as follows. In Section 2 we describe the basic tools from Malliavin calculus
which are needed in our work as well as the distances between random matrices and random vectors.
Section 3 is the core of our work: here we introduce our random matrices, we present the assumptions
and prepare, state and prove the main result concerning the limit in distribution, under the high-
dimensional regime, of the renormalized Wishart matrix. In Section 4 we present some examples
where our theoretical results can be applied.

2. Preliminaries

This section contains the basic tools from Malliavin calculus needed in our work (the monographs
Nourdin and Peccati, 2012 and Nualart, 2006 contain a more complete exposition). We also define
the distances between random matrices and random vectors which are used in the sequel.

2.1. Malliavin derivative. Let T ⊂ R be a nonempty set and denote by L2
S(T p) the set of real-

valued symmetric square integrable functions on T p. Let (Bt)t∈T be a Wiener process. Denote by
B(ϕ) :=

∫
T ϕsdBs the Wiener integral of ϕ ∈ H := L2 (T,B(T ), λ) with respect to the Brownian

motion B. We denoted by λ the Lebesgue measure and B(T ) stands for the Borel subsets of T .
The family (B(ϕ), ϕ ∈ H) forms an isonormal process, i.e. a Gaussian family of centered random
variables such that

EB(ϕ1)B(ϕ2) = 〈ϕ1, ϕ2〉H =

∫
T
ϕ1(s)ϕ2(s)ds

for any ϕ1, ϕ2 ∈ H.
Denote In the multiple stochastic integral with respect to B (see Nualart, 2006). This In is

actually an isometry between the Hilbert space H�n(symmetric tensor product) equipped with the
scaled norm

√
n!‖ · ‖H⊗n and the Wiener chaos of order n which is defined as the closed linear span

of the random variables Hn(B(ϕ)) where ϕ ∈ H, ‖ϕ‖H = 1 and Hn is the Hermite polynomial of
degree n ≥ 1

Hn(x) = (−1)n exp

(
x2

2

)
dn

dxn

(
exp

(
−x

2

2

))
, x ∈ R. (2.1)

The isometry of multiple integrals can be written as: if f̃ denotes the symmetrization of the function
f , for m,n positive integers,

E (In(f)Im(g)) = n!〈f̃ , g̃〉H⊗n if m = n,

E (In(f)Im(g)) = 0 if m 6= n. (2.2)
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We will use the product formula for multiple stochastic integrals, if f ∈ L2
S(Tm) and g ∈ L2

S(Tn),
then

Im(f)In(g) =
m∧n∑
r=0

r!

(
m

r

)(
n

r

)
Im+n−2r(f ⊗r g) (2.3)

where for r = 0, ...,m ∧ n, the contraction f ⊗r g is the function in L2(Tm+n−2r) given by

(f ⊗r g)(t1, ..., tm+n−2r) =

∫
T r

f(u1, ..., ur, t1, ..., tm−r)g(u1, ..., ur, tm−r+1, ..., tm+n−2r)du1...dur.

(2.4)
Notice that f ⊗r g is not necesarily a symmetric function (even if f, g are symmetric) and we will
denote by f⊗̃rg its symmetrization.

Let S be the class of smooth functionals of the form

F = f(Bt1 , .., Btn), t1, .., tn ∈ T, (2.5)

with f ∈ C∞(Rn) with at most polynomial growth (for f and its derivatives). For the random
variable (2.5) we define its Malliavin derivative with respect to B by

DtF =

n∑
i=1

∂f

∂xi
(Bt1 , .., Btn)1[0,ti](t), t ∈ T.

The operator D is an unbounded closable operator and it can be extended to the closure of S with
respect to the Malliavin -Sobolev norm

‖F‖pk,p = E|F |p +
k∑
j=1

E‖D(j)F‖p
L2(T j)

, F ∈ S, p ≥ 2, k ≥ 1. (2.6)

where D(j) stands for the jth iterated Malliavin derivative. This closure will be denoted by Dk, p.
The Skorohod integral integral, denoted by δ, is the adjoint operator of D. Its domain is

Dom(δ) =

{
u ∈ L2 (T × Ω) ,E

∣∣∣∣∫
T
usDsFds

∣∣∣∣ ≤ C‖F‖2}
and we have the duality relationship

EFδ(u) = E

∫
T
DsFusds, F ∈ S, u ∈ Dom(δ). (2.7)

We set Lk,p = Lp
(
T ;Dk,p

)
, k ≥ 1, p ≥ 2. This set is a subset of Dom(δ) and it is endowed with the

norm

‖u‖pk,p =

∫
T

E|ut|p +

k∑
j=1

E‖Ds1,...,skut‖
p
L2(T j)

 dt.
We recall the Meyer’s inequality, for u ∈ Lk,p with k ≥ 1, p ≥ 2 (see e.g. Nualart, 2006, Proposition
1.5.4)

‖δ(u)‖k−1,p ≤ Cp‖u‖k,p. (2.8)
We also recall (see e.g. Lemma 1 in Tudor and Yoshida, 2018) that if F ∈ Dk,p then D(−L)−1F ∈
Lk+1,p and

‖D(−L)−1F‖k+1,p ≤ Cp,k‖F‖k,p (2.9)
where (−L)−1 denotes the pseudo-inverse of the Ornstein-Uhlenbeck operator L, which satisfies
(−L)−1InF = 1

nIn(f) if n ≥ 1 and f ∈ L2
S(Tn).

The Malliavin derivative D acts on the Wiener chaos as an annihilation operator: if F = In(f)
with f ∈ L2(Tn) symmetric, then DtF = nIn−1(f(·, t)) where "·" stands for n− 1 variables in T .
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2.2. Distances. Let us recall the definition of some distances between random matrices and random
vectors. Let X ,Y be two random matrices with values in Mn(R), n ≥ 1 (the set of n × n ma-
trices with real entries). We will denote by dW the Wasserstein distance between the probability
distributions of X and Y. That is,

dW (X ,Y) = sup
‖g‖Lip≤1

|E (g(X ))−E (g(Y))| ,

where the Lipschitz norm ‖·‖Lip of g : Mn(R)→ R is defined by

‖g‖Lip = sup
A 6=B,A,B∈Mn(R)

|g(A)− g(B)|
‖A−B‖HS

,

with ‖·‖HS denoting the Hilbert-Schmidt norm onMn(R).
If X,Y are two random vectors in Rn, we will consider the d2-distance between their probability

distributions
d2(X,Y ) = sup

‖h′′‖∞≤1
|Eh(X)−Eh(Y )| (2.10)

where

‖h′′‖∞ = sup
x∈Rn

sup
1≤i,j≤n

∣∣∣∣ ∂2h

∂xi∂xj
(x)

∣∣∣∣ .
If X = (Xi,j)1≤i,j≤n is an n × n symmetric random matrix, we associate to it its “half-vector”

defined to be the n(n+ 1)/2-dimensional random vector

X half = (X1,1, X1,2 . . . , X1,n, X2,2, X2,3, . . . , X2,n, . . . , Xn,n) . (2.11)

It is possible to bound the Wasserstein distance between two random matrices by a constant
times the square root of the d2-distance between their associated half random vectors as follows.

Lemma 2.1. If X ,Y are two symmetric random matrices with values inMn(R) then

dW (X ,Y) ≤ 4n
1
4

√
d2(X half ,Yhalf), (2.12)

where X half ,Yhalf are the associated half-vectors defined in (2.11) and C > 0.

Proof : The inequality (2.12) is obtained by combining the results in Lemma 2.2 and Proposition 4.4
in Nourdin and Zheng (2019). �

3. The behavior of the Wishart matrix

Here we introduce the starting random matrix Xn,d and the assumptions on its entries. Then we
state and prove some auxiliary results concerning the strong independence, which will be used in
the final part for the proof of the main result.

3.1. The starting matrix and the assumptions on its entries. We will consider a n×d random matrix
Xn,d = (Xi,j)1≤i≤n,1≤j≤d whose entries are centered, square integrable, independent and they are
written in a very general form, as an infinite sum of multiple stochastic integrals with respect to an
isonormal process (see Section 2.1). More precisely,

Xi,j =
∑
p≥1

Ip(f
(i,j)
p ) (3.1)

with f (i,j)
p ∈ L2

S(T p) for every 1 ≤ i ≤ n, 1 ≤ j ≤ d and for every p ≥ 1. Notice that we can express
the entries Xi,j as Skorohod integrals

Xi,j = δ(ui,j) with ui,j(t) =
∑
p≥1

Ip−1(f (i,j)
p (·, t)), t ∈ T
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where ” · ” stands for p− 1 variables. Actually we have

ui,j(t) = Dt(−L)−1Xi,j , t ∈ T (3.2)

where D is the Malliavin derivative, L denotes the Ornstein-Uhlenbeck operator with respect to
B and (−L)−1 its pseudo-inverse (see Section 2.1). The bound (2.9) assures that ui,j is Skorohod
integrable for every 1 ≤ i ≤ n, 1 ≤ j ≤ d.

We will make the following hypothesis:

• H1: We will assume that (Xi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ d) are strongly independent random
variables. That means that every chaos component of Xi,j is independent of every chaos
component of Xk,l if (i, j) 6= (k, l), i.e. Ip(f

(i,j)
p ) and Iq(f

(k,l)
q ) are independent for every

p, q ≥ 1 and for every (i, j) 6= (k, l).
• H2: For every 1 ≤ i ≤ n, 1 ≤ j ≤ d, the random variables Xi,j have the same second and
fourth moments (without loss of generality, the second moment is assumed to be 1),

EX2
i,j = 1 (3.3)

and

EX4
i,j = m4. (3.4)

• H3: The processes (ui,j(t), t ∈ T ) are sufficiently regular in the sense of Malliavin calculus,
more precisely, for some p ≥ 8, for every 1 ≤ i ≤ n, 1 ≤ j ≤ d, ui,j ∈ L2,p and

‖ui,j‖2,p ≤ Cp (3.5)

with Cp > 0 an universal constant depending only on p.

3.2. Some technical results. This paragraph is devoted to the proof of some technical results needed
later. These results concern some inequalities for the Malliavin-Sobolev norms and some conse-
quences of the strong independence assumption.

We start with the following crucial lemma, well-known in the Stein-Malliavin calculus.

Lemma 3.1. Let F =
∑

p≥1 Ip(fp) with fp ∈ L2
S(T p) be a centered random variable in Dk,p with

k ≥ 1, p ≥ 2. Then u = D(−L)−1F ∈ Lk+1,p and

F = δD(−L)−1(F ). (3.6)

In particular u = D(−L)−1F given by u(t) =
∑

p≥1 Ip−1(fp(·, t)) for every t ∈ T .

Proof : Let p ≥ 2. The fact that u = D(−L)−1F belongs to L1,p follows from the inequality (2.9)
while the identity (3.6) is well-known (see e.g. Nourdin and Peccati, 2012). �

Lemma 3.2. Let u, v ∈ L2,2p with p ≥ 1. Then δ(u)δ(v) ∈ D1,p and

‖δ(u)δ(v)‖1,p ≤ Cp‖u‖2,2p‖v‖2,2p.

Proof : Let p ≥ 2. We use the definition of the norm in D1,p, the derivation rule for D and the
inequality (a+ b)q ≤ 2q−1(aq + bq) for q ≥ 1, we obtain
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‖δ(u)δ(v)‖p1,p = E |δ(u)δ(v)|p + E

(∫
T

(Ds(δ(u)δ(v)))2ds

) p
2

= E |δ(u)δ(v)|p + E

(∫
T

[δ(u)Dsδ(v) + δ(v)Dsδ(u)]2 ds

) p
2

≤ E |δ(u)δ(v)|p + E

(
2

∫
T

([δ(u)Dsδ(v)]2 + [δ(v)Dsδ(u)]2)ds

) p
2

≤ E |δ(u)δ(v)|p + 2
p
2E

(∫
T

(δ(u)Dsδ(v))2ds+

∫
T

(δ(v)Dsδ(u))2ds

) p
2

≤ E |δ(u)δ(v)|p + 2p−1E

∣∣∣∣∣δ(u)p
(∫

T
(Dsδ(v))2ds

) p
2

∣∣∣∣∣
+2p−1E

∣∣∣∣∣δ(v)p
(∫

T
(Dsδ(u))2ds

) p
2

∣∣∣∣∣
≤ (E |δ(u)|2p)

1
2 (E |δ(v)|2p)

1
2

+2p−1
(
E |δ(u)|2p

) 1
2

(
E

(∫
T

(Dsδ(v))2ds

)p) 1
2

+ 2p−1
(
E |δ(v)|2p

) 1
2

(
E

(∫
T

(Dsδ(u))2ds

)p) 1
2

. (3.7)

Notice that

E |δ(u)|2p ≤ ‖δ(u)‖2p1,2p ≤ Cp‖u‖
2p
2,2p (3.8)

where the last inequality is obtained via Meyer’s inequality (2.8). Clearly a similar bound will hold
for v. Also, from the definition of the norm in D1,2p,

E

(∫
T

(Dsδ(u))2ds

)p
≤ Cp‖δ(u)‖2p1,2p ≤ Cp‖u‖

2p
2,2p. (3.9)

Then the conclusion follows by plugging (3.8) and (3.9) into (3.7). �

Let us now state and prove some results concerning the strongly independent random variables.
Let us recall a key result from Üstünel and Zakai (1989) concerning the independence of multiple
stochastic integrals. For n,m ≥ 1, let f ∈ L2

S(Tn) and g ∈ L2
S(Tm). The multiple Wiener integrals

In(f) and Im(g) are independent if and only if (recall the definition (2.4) of the contraction)

f ⊗1 g = 0 almost everywhere on Tm+n−2. (3.10)

Relation (3.10) implies that for r = 1, ..., n ∧m,

f ⊗r g = 0 almost everywhere on Tm+n−2r. (3.11)

Lemma 3.3. Consider the random variables F =
∑

p≥1 Ip(fp) and G =
∑

q≥1 Iq(gq) with fp, gp ∈
L2
S(Tp) for every p ≥ 1. Assume that F,G ∈ D1,4 and that they are strongly independent. Then
(1) The random variables F 2 and G2 are strongly independent.
(2) Let u = D(−L)−1F and v = D(−L)−1G. Then

〈u, v〉L2(T ) = 〈u,DG〉L2(T ) = 〈v,DF 〉L2(T ) = 0 almost surely.
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(3) Let u = D(−L)−1F and v = D(−L)−1G. Then the random variables 〈DF, u〉L2(T ) and
〈DG, v〉L2(T ) are strongly independent.

(4) Let H =
∑

p≥1 Ip(hp), J =
∑

q≥1 Iq(jq) with hp, jp ∈ L2
S(T p) for p ≥ 1 be two other random

variables in D1,4. Assume that F,G,H, J are mutually strongly independent. Then the
random variables FG and HJ are strongly independent.

Proof : For point 1., by the product formula (2.3),

F 2 =
∑

p1,p2≥1

p1∧p2∑
r=0

r!

(
p1

r

)(
p2

r

)
Ip1+p2−2r(fp1 ⊗r fp2)

and

G2 =
∑

p1,p2≥1

p1∧p2∑
r=0

r!

(
p1

r

)(
p2

r

)
Ip1+p2−2r(gp1 ⊗r gp2)

To obtain the conclusion, it suffices to show that for every p1, p2, q1, q2 ≥ 1 and for every r1 =
0, ..., p1 ∧ p2, r2 = 0, ..., q1 ∧ q2,

(fp1⊗̃r1fp2)⊗1 (gq1⊗̃r2gq2) = 0 a.e. on T p1+p2+q1+q2−2r1−2r2−2

and this follows by Lemma 3.1 in Bourguin et al. (2021).
Let us prove point 2. For every t ∈ T , we have

u(t) =
∑
p≥1

Ip−1(fp(·, t)) and v(t) =
∑
q≥1

Iq−1(gq(·, t)).

It suffices to show that for every p, q ≥ 1,∫
T
Ip−1(fp(·, t))Iq−1(gq(·, t))dt = 0 almost surely.

Again by the product formula (2.3),∫
T
Ip−1(fp(·, t))Iq−1(gq(·, t))dt

=

∫
T
dt

(p−1)∧(q−1)∑
r=0

r!

(
p− 1

r

)(
q − 1

r

)
Ip+q−2r−2(fp(·, t)⊗ gq(·, t))

=

(p−1)∧(q−1)∑
r=0

r!

(
p− 1

r

)(
q − 1

r

)
Ip+q−2r−2(fp ⊗r+1 gq)

and by (3.11), for every g ≥ 0, fp ⊗r+1 gq = 0 almost everywhere on T p+q−2r−2. Point 3. is a
consequence of Lemma 3.3 in Bourguin et al. (2021).

Let us show the last point of the statement. By the product formula and the strongly indepen-
dance, we remain with the simple expressions

FG =
∑

p1,p2≥1

Ip1+p2(fp1 ⊗ gp2)

and
HJ =

∑
p1,p2≥1

Ip1+p2(hp1 ⊗ jp2)

Thus, it suffices to show that for every p1, p2, q1, q2 ≥ 1

(fp1⊗̃gp2)⊗1 (hq1⊗̃jq2) = 0 a.e. on T p1+p2+q1+q2−2 (3.12)
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where

(fp1⊗̃gp2)(t1, . . . , tp1+p2)

=
1

(p1 + p2)!

∑
σ∈Sp1+p2

f(tσ(1), ..., tσ(p1))g(tσ(p1+1), ..., tσ(p1+p2)).

Similarly,

(hq1⊗̃jq2)(t1, . . . , tq1+q2)

=
1

(q1 + q2)!

∑
σ∈Sq1+q2

h(tσ(1), ..., tσ(q1))j(tσ(q1+1), ..., tσ(q1+q2))

Hence, we can write via (2.4),((
fp1⊗̃gp2

)
⊗1

(
hq1⊗̃jq2

))
(t1, . . . , tp1+p2+q1+q2−2)

=

∫
T

(fp1⊗̃gp2)(t1, . . . , tp1+p2−1, x)(hq1⊗̃jq2)(tp1+p2 , . . . , tp1+p2+q1+q2−1, x)dx. (3.13)

Note that for a symmetric function h ∈ H�n, it holds that

h̃(t1, . . . , tn−1, x) =
1

n!

∑
σ∈Sn−1

n∑
i=1

h
(
tσ(1), . . . , tσ(i−1), x, tσ(i+1), . . . , tσ(n−1)

)
,

so that by plugging the above identity into (3.13), we get[(
fp1⊗̃gp2

)
⊗1

(
hq1⊗̃jq1

)]
(t1, . . . , tp1+p2+q1+q2−2)

=
1

(p1 + p2)!(q1 + q2)!

∑
σ∈Sp1+p2−1,τ∈Sq1+q2−1

p1+p2∑
i=1

q1+q2∑
j=1∫

T
(fp1⊗gp2)(tσ(1), . . . , tσ(i−1), x, tσ(i+1), . . . , tσ(p1+p2−1))

(hq1 ⊗ jq1)(tτ(1), . . . , tτ(j−1), x, tτ(j+1), . . . , tτ(q1+q2−1))dx.

To obtain (3.12), we prove that for all 1 ≤ i ≤ p1 + p2 and 1 ≤ j ≤ q1 + q2,∫
T

(fp1⊗gp2)(tσ(1), . . . , tσ(i−1), x, tσ(i+1), . . . , tσ(p1+p2−1)) (3.14)

(hq1⊗jq2)(tτ(1), . . . , tτ(j−1), x, tτ(j+1), . . . , tτ(q1+q2−1))dx = 0

almost everywhere with respect to t1, . . . , tp1+p2+q1+q2−2.
Assume that 1 ≤ i ≤ p1 and 1 ≤ j ≤ q1 (the other cases can be dealt with in the same way).

Then, we have ∫
T

(fp1 ⊗ gp2)(tσ(1), . . . , tσ(i−1), x, , tσ(i+1), . . . , tσ(p1+p2−1))

(hq1 ⊗ jq2)(tτ(1), . . . , tτ(j−1), x, tτ(j+1), . . . , tτ(q1+q2−1))dx

=

∫
T
fp1(tσ(1), . . . , tσ(i−1), x, tσ(i+1), . . . , tσ(p1−1))gp2(tσ(p1), . . . , tσ(p1+p2−1))

hq2(tτ(1), . . . tτ(j−1), x, tτ(q1−1))jq2(tτ(q1), . . . , tτ(q1+q2−1))dx.

Now, the strong indepedence and so the fact that the contraction of f and h vanishes, implies for
almost every tσ(1), . . . , tσ(p1+p2−1), tτ(1), . . . , tτ(q1+q1−1) (see (3.10))
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∫
T
fp1(tσ(1), tσ(i−1), x, tσ(i+1), ..., tσ(p1−1))gp2(tσ(p1), . . . , tσ(p1+p2−1))

×hq1(tτ(1), . . . , tτ(j−1), x, tσ(j+1), ..., tσ(q1−1))jq2(tτ(q1), . . . , tτ(q1+q2−1))dx

= gp2(tσ(p1), . . . , tσ(p1+p2−1))jq2(tτ(q1), . . . , tτ(q1+q2−1))

×
∫
T
fp2(tσ(1), . . . , tσ(i−1), x, tσ(i+1), ..., tσ(p1−1))hq1(tτ(1), . . . , tτ(j−1), x, tσ(j+1), ..., tσ(q1−1))dx

= 0

which concludes the proof. �

3.3. The Wishart matrix and its asymptotic behavior. We introduce the (renormalized) Wishart
matrix Wn,d = (Wi,j)1≤i,j≤n associated to the starting matrix Xn,d whose entries are given in (3.1),

Wn,d =
√
d

(
1

d
Xn,dX Tn,d − In

)
where ”T ” denotes the transpose and In the identity n× n matrix. Its components are

Wi,i =
1√
d

d∑
k=1

(X2
i,k − 1), for 1 ≤ i ≤ n (3.15)

and

Wi,j =
1√
d

d∑
k=1

Xi,kXj,k for 1 ≤ i, j ≤ n, i 6= j. (3.16)

The independence of the components of the matrix Xn,d and the assumptions (3.3), (3.4) imply

EW 2
i,i = m4 − 1 and EW 2

i,j = 1 for 1 ≤ i, j ≤ n, i 6= j.

Also, consider the Wigner matrix Zn = (Zij)1≤i,j≤n with entries given by
Zi,i ∼ N(0,m4 − 1) for 1 ≤ i ≤ n
Zi,j ∼ N(0, 1) for 1 ≤ i < j ≤ n
Zi,j = Zj,i for 1 ≤ j < i ≤ n

, (3.17)

where the entries (Zi,j : i ≤ j) are (mutually) independent. Clearly, by the standard Central Limit
Theorem, the Wishart matrix Wn,d converges componentwise in distribution, as d → ∞ to the
Wigner matrix Zn when n is fixed. We are interested to evaluate the distance between Wn,d and
the Wigner matrix when both dimensions n, d are large enough.

Our main tool to evaluate the distance between the Wishart and Wigner matrices is the following
result (Proposition 2.3 in Huang et al., 2020, see also relation (4.6) and the footnote (6) in Nourdin
and Zheng, 2019).

Proposition 3.4. Let F = (F1, ..., , Fm) be a random vector with Fi = δ(ui), ui ∈ Dom(δ) and
Fi ∈ D1,2 for every 1 ≤ i ≤ m. Let Z be a centered Gaussian vector with covariance matrix
C = (Ci,j)1≤i,j≤m. Then

d2(F,Z) ≤ m

2

√√√√ m∑
i,j=1

E
(
Ci,j − 〈DFi, uj〉L2(T )

)2
.
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Let us observe that the elements of the Wishart matrixWn,d can be written as Skorohod integrals.
Indeed, since for every 1 ≤ k ≤ d and 1 ≤ i, j ≤ n with i 6= j the random variables X2

i,k − 1 and
Xi,kXj,k are centered (by assumption (3.3)) and sufficiently regular (by H3). Then by Lemma 3.2,
we have

X2
i,k − 1 = δD(−L)−1(X2

i,k − 1), 1 ≤ i ≤ n, 1 ≤ k ≤ d. (3.18)

Consequently, the diagonal entries of the Wishart matrix can be expressed as, for every 1 ≤ i ≤ n,

Wi,i = δ(Vi,i) with Vi,i =
1√
d

d∑
k=1

D(−L)−1(X2
i,k − 1). (3.19)

Similarly, for every 1 ≤ i, j ≤ n with i 6= j, we have

Wi,j = δ(Vi,j) with
1√
d

d∑
k=1

D(−L)−1Xi,kXj,k. (3.20)

Since all the elements of Wn,d can be expressed as Skorohod integrals, we will apply Proposition
3.4 in order to evaluate the d2-distance between the half vectors associated to the Wn,d and to the
Wigner matrix Zn. To this end we need to calculate and to evaluate the quantity

E
(
〈DWi,j , Va,b〉L2(T ) −E(Zi,jZa,b)

)2 (3.21)

for every 1 ≤ i, j, a, b ≤ n with i ≤ j and a ≤ b. The processes Vi,j are those defined in (3.19) and
(3.20) respectively.

If 1 ≤ i, j, a, b ≤ n, we denote by Mi,j,a,b the subset of {1, 2, .., n}4 such that i ≤ j, a ≤ b and
{i, j} ∩ {a, b} = ∅. The quantity (3.21) is estimated in the below result.

Proposition 3.5. Assume H1-H3. Let (Wi,j , 1 ≤ i, j ≤ n) be given by (3.15), (3.16). Then for
1 ≤ i, j, a, b ≤ n with i ≤ j, a ≤ b,

E (〈DWi,j , Va,b〉 −EZi,jZa,b)
2 ≤ C 1

d
if (i, j, a, b) /∈Mi,j,a,b

and
〈DWi,j , Va,b〉 −EZi,jZa,b = 0 if (i, j, a, b) ∈Mi,j,a,b.

Proof : Assume (i, j, a, b) /∈ Mi,j,a,b. We separate the proof into the following cases: (i = j = a =

b), (i = a 6= j = b) and (i = a or j = b). Note that E
(
Z2
i,i

)
= m4 − 1, E

(
Z2
i,j

)
= 1 if i 6= j, and

E (Zi,jZa,b) = 0 if (i, j) 6= (a, b).
Let us consider first the case i = j = a = b. We have,

〈DWi,i, Vi,i〉 =
1

d

d∑
k,l=1

〈D(X2
i,k − 1), D(−L)−1(X2

i,l − 1)〉L2(T ).

Notice that X2
i,k is strongly independent, for k 6= l, by X2

i,l by Lemma 3.3, point 1. Therefore, by
Lemma 3.3, point 2. we have

〈D(X2
i,k − 1), D(−L)−1(X2

i,l − 1)〉L2(T ) = 0 if 1 ≤ k, l ≤ d, k 6= l.

Thus we can write

〈DWi,i, Vi,i〉 =
1

d

d∑
k=1

〈D(X2
i,k − 1), D(−L)−1(X2

i,k − 1)〉L2(T ).
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On the other hand, by the duality formula (2.7), (3.18) and assumptions (3.3), (3.4),

E〈D(X2
i,k − 1), D(−L)−1(X2

i,k − 1)〉L2(T ) = E(X2
i,k − 1)δ(D(−L)−1(X2

i,k − 1))

= E
(
X2
i,k − 1

)2
= m4 − 1.

Thus

E (〈DWi,i, Vi,i〉 − (m4 − 1))2

=
1

d2
E

(
d∑

k=1

〈D(X2
i,k − 1), D(−L)−1(X2

i,k − 1)〉L2(T )

−E〈D(X2
i,k − 1), D(−L)−1(X2

i,k − 1)〉L2(T )

)2
=

1

d2

d∑
k,l=1

E
(
〈D(X2

i,k − 1), D(−L)−1(X2
i,k − 1)〉L2(T )

−E〈D(X2
i,k − 1), D(−L)−1(X2

i,k − 1)〉L2(T )

)
×
(
〈D(X2

i,l − 1), D(−L)−1(X2
i,l − 1)〉L2(T ) −E〈D(X2

i,l − 1), D(−L)−1(X2
i,l − 1)〉L2(T )

)
=

1

d2

d∑
k=1

E
(
〈D(X2

i,k − 1), D(−L)−1(X2
i,k − 1)〉L2(T )

−E〈D(X2
i,k − 1), D(−L)−1(X2

i,k − 1)〉L2(T )

)2
.

We used the fact that for k 6= l, the random variables X2
i,k and X2

i,l are strongly independent
(Lemma 3.3, point 1.) and also the fact that 〈D(X2

i,k − 1), D(−L)−1(X2
i,k − 1)〉L2(T ) and 〈D(X2

i,l −
1), D(−L)−1(X2

i,l − 1)〉L2(T ) are independent (Lemma 3.3, point 3.)
It suffices to show that for every i, k,

E
(
〈D(X2

i,k − 1), D(−L)−1(X2
i,k − 1)〉L2(T )

)2 ≤ C
with C > 0 an universal constant (not depending on i, k). We have

E
(
〈D(X2

i,k − 1), D(−L)−1(X2
i,k − 1)〉L2(T )

)2
≤ E

(
‖D(X2

i,k − 1)‖2L2(T )‖D(−L)−1(X2
i,k − 1)‖2L2(T )

)
≤

(
E‖D(X2

i,k − 1)‖4L2(T )

) 1
2
(
E‖D(−L)−1(X2

i,k − 1)‖4L2(T )

) 1
2

≤ C‖X2
i,k − 1‖21,4‖D(−L)−1(X2

i,k − 1)‖21,4 (3.22)

and by Lemma 3.2 and (2.9),

E
(
〈D(X2

i,k − 1), D(−L)−1(X2
i,k − 1)〉L2(T )

)2
≤ ‖δ(ui,k)2 − 1‖21,4‖δ(ui,k)2 − 1‖2L4(Ω)

≤ C(‖ui,k‖82,8 + 1) ≤ C

due to (3.5).
Now, let us assume i = a 6= j = b and compute the term 〈DWi,j , Vi,j〉L2(T ) with i 6= j where

Wi,j , Vi,j are given by (3.16) and (3.20) respectively.
Since the random variables Xi,kXj,k are centered for every 1 ≤ i ≤ n, 1 ≤ k ≤ d, we have using

Lemma 3.2
Xi,kXj,k = δ(D(−L)−1(Xi,kXj,k))
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and by Lemma 3.3 point 4. Xi,kXj,k and Xi,lXj,l are strongly independant for k 6= l. The same
Lemma 3.3 point 2. implies

〈D(Xi,kXj,k), D(−L)−1(Xi,lXj,l)〉L2(T ) = 0 if 1 ≤ k 6= l ≤ d

and consequently

〈DWi,j , Vi,j〉 =
1

d

d∑
k=1

〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T ) (3.23)

Moreover, using again the duality formula, the strongly independence and assumption (3.3),

E〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

= E(Xi,kXj,kδ(D(−L)−1(Xi,kXj,k)) = E
(
X2
i,kX

2
j,k

)
= 1.

Thus

E (〈DWi,j , Vi,j〉 − 1)2

=
1

d2
E

(
d∑

k=1

〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

−E〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

)2
=

1

d2

d∑
k,l=1

E
(
〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

−E〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

)
×
(
〈D(Xi,lXj,l), D(−L)−1(Xi,lXj,l)〉L2(T ) −E〈D(Xi,lXj,l), D(−L)−1(Xi,lXj,l)〉L2(T )

)
=

1

d2

d∑
k=1

E
(
〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

−E〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

)2
.

We also used the fact that for k 6= l, the random variables 〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

and 〈D(Xi,lXj,l), D(−L)−1(Xi,lXj,l)〉L2(T ) are also strongly independent due to point 3. in
Lemma 3.3.

It suffices to show that for every i 6= j, k, with C > 0 not depending on these parameters,

E
(
〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

)2 ≤ C.
We have

E
(
〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

)2
≤ E

(
‖D(Xi,kXj,k)‖2L2(T )‖D(−L)−1(Xi,kXj,k)‖2L2(T )

)
≤

(
E‖D(Xi,kXj,k)‖4L2(T )

) 1
2
(
E‖D(−L)−1(Xi,kXj,k)‖4L2(T )

) 1
2

≤ ‖Xi,kXj,k‖21,4‖D(−L)−1(Xi,kXj,k)‖21,4
and by Lemma 3.2 and (2.9), by proceeding as for the bound (3.22),

E
(
〈D(Xi,kXj,k), D(−L)−1(Xi,kXj,k)〉L2(T )

)2 ≤ Cp‖ui,k‖42,8‖uj,k‖42,8 ≤ C
where the last inequality is due to the assumption H3.
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Next case we have to deal is when i = a, j 6= b, (by symmetry we can deduce the case i 6= a
j = b). Using the same arguments as above and assuming i < j and i ≤ b, we get

〈DWi,j , Vi,b〉 =
1

d

d∑
k,l=1

〈D(Xi,kXj,k), D(−L)−1(Xi,lXb,l)〉L2(T )

=
1

d

d∑
k=1

〈D(Xi,kXj,k), D(−L)−1(Xi,kXb,k)〉L2(T )

.

Moreover by the same bounds as above, the following inequality is verified for every (i, j, b, k) such
as (i, j, b) are all distinct

E
(
〈D(Xi,kXj,k), D(−L)−1(Xi,kXb,k)〉L2(T )

)2 ≤ C
The next case is when (i, j, a, b) ∈Mi,j,a,b,

〈DWi,j , Va,b〉 =
1

d

d∑
k,l=1

〈D(Xi,kXj,k), D(−L)−1(Xa,lXb,l)〉L2(T )

=
1

d

d∑
k,l=1

〈D(δ(ui,k)δ(uj,k)), D(−L)−1(δ(ua,l)δ(ub,l)〉L2(T ).

We have, by using Lemma 3.3, points 2 and 4., ∀ 1 ≤ k, l ≤ d
〈D(Xi,kXj,k), D(−L)−1(Xa,lXb,l)〉L2(T ) = 0 if (i, j, a, b) ∈Mi,j,a,b

Hence ∀ (i, j, a, b) ∈Mi,j,a,b,

〈DWi,j , Va,b〉 = 0

�

The above result allows to evaluate the d2-distance between the half-vector associated to the
Wishart matrix Wn,d and its limit. Recall that the half-vector associated to a matrix is defined by
(2.11).

Theorem 3.6. Assume that Wn,d has the entries given by (3.15) and (3.16) and consider the
Wigner matrix (3.17). Then for every n, d ≥ 1, and for any function h : R

n(n+1)
2 → R with bounded

second partial derivative, ∣∣∣Eh(Whalf
n,d )−Eh(Zhalf

n

∣∣∣ ≤ Cn2

√
n3

d
(3.24)

and consequently

d2

(
Whalf
n,d ,Zhalf

n

)
≤ Cn2

√
n3

d
.

Proof : It suffices to use Proposition 3.4 and the estimates in Proposition 3.5, by noticing that
the dimension of the vectors Whalf

n,d and Zhalf
n is n(n+1)

2 and the cardinal of the set Mi,j,a,b (the
complement of the set Mi,j,a,b) is less than 6n3. �

Remark 3.7. Let us denore by Whalf
n,d and Zhalf

n the following random vectors:

Whalf
n,d = (W1,2, . . . ,W1,n,W2,3, . . . ,W2,n, . . . ,Wn−1,n)

and
Zhalf
n = (Z1,2, . . . , Z1,n, Z2,3, . . . , Z2,n, . . . , Zn−1,n) .
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That is, the components of the above vectors are the components of Whalf
n,d and Zhalf

n without the
diagonal terms. It follows from Theorem 1.2 in Fang and Koike (2021+) that for any suitable
function h : R

n(n−1)
2 → R (in particular h is Lipschitz but it also satisfies additional conditions),

∣∣∣Eh(Whalf
n,d )−Eh(Zhalf

n )
∣∣∣ ≤ C√n3

d
. (3.25)

Notice that the above estimate (3.25) does not take into account the diagonal of the matrice Wn,d,
which is not trivial to include (actually, in Mikulincer (2020) one uses the log-concavity of the
distribution of the entries in order to include the diagonal terms). Moreover, if we would use the
triangle inequality (which is not probably, the most optimal choice),∣∣∣Eh(Whalf

n,d )−Eh(Zhalf
n )

∣∣∣ ≤ ∣∣∣Eh(Whalf
n,d )−Eh(Whalf

n,d )
∣∣∣

+
∣∣∣Eh(Whalf

n,d )−Eh(Zhalf
n )

∣∣∣+
∣∣∣Eh(Zhalf

n )−Eh(Zhalf
n )

∣∣∣ (3.26)

where we kept the notation Whalf
n,d for the random vector

(0,W1,2, . . . ,W1,n,W2,1, 0,W2,3, . . . ,W2,n, . . . ,Wn−1,n, 0) . It is easy to see that, since h is Lipschitz,

∣∣∣Eh(Whalf
n,d )−Eh(Whalf

n,d )
∣∣∣ ≤ CE

( n∑
i=1

W 2
i.i

) 1
2


≤ C

[
E

(
n∑
i=1

W 2
i.i

)] 1
2

=
1

d

E n∑
i=1

(
d∑

k=1

(X2
i,k − 1)

)2
 1

2

= (m4 − 1)
√
n (3.27)

and a similar estimate holds for
∣∣∣Eh(Zhalf

n )−Eh(Zhalf
n )

∣∣∣. By plugging (3.25) and (3.27) into (3.26),

we would get
∣∣∣Eh(Whalf

n,d )−Eh(Zhalf
n )

∣∣∣ ≤ C

(
√
n+

√
n3

d

)
which is, for large enough d, a worse

estimate than (3.24). We also refer to Remark 1.5 in Fang and Koike (2021+) for similar estimates
when the covariance matrix of Zn is not invertible.

We state our main result.

Theorem 3.8. Consider the Wishart matrix Wn,d with entries (3.15) and (3.16) and assume H1
- H3. Then for every n ≥ 1, the matrix Wn,d converges compontwise in law, as d → ∞, to the
Wigner matrix Zn defined by (3.17) and for every n, d ≥ 1, there exists C > 0 such that

dW (Wn,d,Zn) ≤ Cn
9
4

d
1
4

Proof : By Lemma 2.1 we have, since the dimension of the half-vector associated to Wh,d is n(n+1)
2 ,

dW (Wn,d,Zn) ≤ Cn
3
2

 n∑
i,j,k,l=1

E
(
Ci,j − 〈DW̃i,j , Vk,l〉L2(T )

)2

 1
4

and by Proposition 3.5, we obtain, since the cardinal of the set Mi,j,a,b is less than 6n3,

dW (Wn,d,Zn) ≤ Cn
9
4

d
1
4

.

�
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In the literature, one usually says thatWn,d is "Φ-close to Zn", where Φn,d = n
9
4

d
1
4
. As commented

in the introduction, we have lost some speed with respect to the classical bound C
√

n3

d . This is due
to the need to use the d2 distance between random vectors.

4. Examples

We present few examples of random matrices to which our main result can be applied.

4.1. Random entries in a finite sum of Wiener chaoses. Let us consider a starting matrix Xn,d =
(Xi,j)1≤i≤n,1≤j≤d such that every random variable Xi,j can be expanded into a finite sum of Wiener
chaos, i.e. for every 1 ≤ i ≤ n and 1 ≤ j ≤ d we have, with N ≥ 1 integer

Xi,j =
N∑
k=1

I
q
(k)
i,j

(
fki,j

)
with f (k)

i,j ∈ L
2
S(T q

(k)
i,j )

where q(k)
i,j ≥ 1 are interger numbers for every 1 ≤ i ≤ n, 1 ≤ j ≤ d and 1 ≤ k ≤ N . Assume that

the family of random variables (Fi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ d) are independent where

Fi,j =

(
I
q
(k)
i,j

, k = 1, ..., N

)
.

This ensures the strong indeoendence of the entries of the matrix Xn,d (assumption H1). We
need to assume (3.3) and (3.4) in order that H2 holds true. Moreover, it is well-known that
the assumption H3 is satisfied for variables in a finite sum of Wiener chaoses (actually we have
Xi,j , D(−L)−1Xi,j ∈ Dk,p for every k ≥ 1 and p ≥ 2).

This example contains as a particular case a result in Bourguin et al. (2021) (where the entries
of Xn,d are assume to be in a Wiener chaos of fixed order).

4.2. Explicit probability laws in a finite sum of Wiener chaoses. A particular case of the previous
example is when the elements Xi,j have the same probability distribution. For example, we can
consider

Xi,j =
1√
3

(
W (hi,j) +W (gi,j)

2 − 1
)

where W is a Wiener process and (hi,j , gi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ d) constitutes a family of orthogonal
elements in L2(T ). We can also write

Xi,j =
1√
3

(
I1(hi,j) + I2(g⊗2

i,j )
)
.

Then (Xi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ d) is a family of strongly independent random variable and
assumptions H2-H3 are also verified.

4.3. Random variables with an infinite chaos expansion. It is possible to provide examples of random
variables with an infinite chaotic decomposition which satisfy H1-H3. Let for 1 ≤ i ≤ n, 1 ≤ j ≤ d

Yi,j = eW (Ai,j)− 1
2 − 1 and Xi,j =

Yi,j

(EY 2
i,j)

1
2
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where Ai,j are disjoint intervals of length one and W (Ai,j) =
∫
Ai,j

dWs. Then for every 1 ≤ i ≤
n, 1 ≤ j ≤ d, we have (see e.g. Nualart, 2006)

Xi,j =
∑
n≥1

1

n!
In(1⊗nAi,j

)

and therefore (Xi,j , 1 ≤ i ≤ n, 1 ≤ j ≤ d) is a family of strongly independent random variables with
infinite chaos expansion. It is easy to see that H2 holds true while to check H3, we can use for
example the bound (2.9).
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