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Abstract—Multi-access edge computing (MEC) is regarded as
a promising approach for providing resource-constrained mobile
devices with computing resources through task offloading. Sparse
code multiple access (SCMA) is a code-domain non-orthogonal
multiple access (NOMA) scheme that can meet the demands of
multi-cell MEC networks for high data transmission rates and
massive connections. In this paper, we propose an optimization
framework for SCMA-enabled multi-cell MEC networks. The
joint resource allocation and computation offloading problem is
formulated to minimize the system utility consumption, which
is defined as the weighted energy cost and latency. Due to the
nonconvexity of the proposed optimization problem induced by
the coupled optimization variables, we first propose an algorithm
based on the block coordinate descent (BCD) method to itera-
tively optimize the transmit power and edge computing resources
allocation, and further develop an improved low-complexity sim-
ulated annealing algorithm to solve the computation offloading
and multi-cell SCMA codebook allocation problem. In addition,
we extend the framework to the partial offloading case and
propose an algorithm based on alternating convex search for
solving the task offloading ratio. Numerical results show that the
proposed multi-cell SCMA-MEC scheme achieves lower energy
consumption and system latency in comparison to the orthogonal
frequency division multiple access (OFDMA) and power-domain
(PD) NOMA techniques.

Index Terms—Internet of Things, Sparse Code Multiple Access
(SCMA), Multi-Access Edge Computing (MEC), binary offload-
ing, partial offloading, resource management.

I. INTRODUCTION

Driven by the rapid development of the Internet of Things
(IoT), a large number of computation-intensive applications
are emerging, such as virtual/augmented reality (VR/AR), self-
driving cars, and smart home [1]. However, the limited compu-
tation capability of IoT devices remains a barrier to completing
latency-critical tasks. Against this shortcoming, multi-access
edge computing (MEC) can provide network-edge computing
resources in base stations for resource-constrained users and
offer lower latency and energy consumption for IoT devices to
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perform computation-intensive tasks through task offloading
[2]. The research on task offloading can be divided into
three aspects: task offloading decision, computation resources
allocation, and mobility management [3]. Shu et al. [4]
proposed a fine-grained offloading strategy to minimize the
task completion time by considering dependencies between
subtasks and competition among multiple edge users. In [5],
dynamic voltage frequency scaling (DVFS) technology was
introduced into the optimization of local computation cost.
By optimizing the computational speed, transmit power, and
offloading ratio of IoT devices, energy consumption and delay
can be significantly reduced. The authors in [6] analyzed the
joint optimization of offloading decisions and radio allocation
in sliced multi-cell MEC networks. These two subproblems
were solved iteratively by an alternate optimization method.
The work in [7] considered MEC networks with multiple
servers, where a joint task offloading and resource allocation
algorithm was proposed to improve the devices’ offloading
benefits.

Non-orthogonal multiple access (NOMA) schemes allow
plenty of devices to share the same communication resources
at the same time, including time slots and frequency spectrum.
It brings many advantages, such as a large number of connec-
tions, higher spectral efficiency, and lower latency [8]. Sparse
code multiple access (SCMA) is a NOMA designed in the
code domain, which combines multi-dimensional modulation
technique with low density spread spectrum [9]. Compared
to power-domain (PD) NOMA schemes, SCMA offers the
benefits of coding gain and shaping gain, resulting in im-
proved throughput and bit-error-rate (BER) [10]. Simulations
demonstrated that SCMA-based systems can achieve higher
throughput than PD-NOMA at the cost of more complex
detections [11].

Recently, the application of NOMA into MEC for IoT
scenarios has been regarded as a promising approach to
provide efficient transmission and timely computation for
massive mobile devices [12]–[19]. Particularly, multiple de-
vices can simultaneously offload computation tasks to MEC
servers through NOMA, further increasing the flexibility and
efficiency in computation offloading. More specifically, it is
shown in [12] that NOMA plays an important role in reduc-
ing the energy consumption and latency of task offloading.
The latency minimization problem of NOMA assisted MEC
was investigated in [13], where authors proposed an efficient
layered algorithm to find the optimal offloading strategy for
devices with the minimum task execution delay. The work
in [14] adopted a partial offloading scheme in the hybrid
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NOMA enabled MEC network, which solved the problem
of minimizing energy consumption under delay restriction
through power allocation, time slot scheduling, and offloading
strategy. The authors in [15] proposed a NOMA scheme for
edge computing awareness and designed a heuristic device
clustering and resource allocation algorithm to minimize the
energy consumption of MEC users. In [16], the authors
exploited NOMA to maximize the energy efficiency in multi-
cell MEC networks through a joint radio and computation
resources allocation scheme. An SCMA-enabled MEC scheme
in IoT scenarios was designed in [17], where the authors em-
phasize the maximization of sum rate. In [18], a joint resource
allocation and task offloading optimization design in a single-
cell MEC network enabled by SCMA was proposed to achieve
the tradeoff between task latency and energy expenditure.

While most of the aforementioned studies have focused
on the single-cell MEC network scenarios, multi-cell SCMA-
based MEC systems have not yet been studied. There are sev-
eral key challenges that need to be considered and addressed.
First of all, in the case of multiple cells, multiple terminals can
access the BS randomly by sharing the same SCMA codebook
at the same time. Therefore, It is challenging to allocate
SCMA codebooks to reduce inter-cell interference between
devices and improve transmission rates. Secondly, considering
the joint optimization of task latency and energy efficiency, we
need to properly allocate local computing resources, transmit
power for task offloading, and edge computing resources.
Additionally, offloading too many tasks reduces the offloading
benefits due to interference and competition for limited com-
puting resources, and thus a brilliant offloading strategy is
necessary. Finally, for a terminal, it needs to decide not only
whether the computation task should be offloaded, but also
which SCMA codebook to occupy and which MEC server
to offload the task to. The coupling of SCMA codebook
allocation and offloading decisions makes the problem even
more challenging. Motivated by the above challenges, the
contributions of this paper are presented below.

1) We design an optimization framework for SCMA-enabled
multi-cell edge computing networks, where the problem of
inter-cell interference and SCMA codebook reuse are an-
alyzed. Specifically, a system utility consumption is first
formulated to measure the devices’ energy expenditure and
task execution latency. Under the constraints of the maximum
latency of tasks, the limited communication, and computation
resources, an initial problem of minimizing the system utility
consumption is formulated.

2) Since the formulated problem is non-convex due to
the coupled variables and intractable constraints, we solve
it by subdividing it into two manageable sub-problems, i.e.,
resource allocation and task offloading policy. As such, by
using the variable substitution method, the non-convex opti-
mization problem of resource allocation is transformed into a
convex one, and the closed-form solutions under fixed power
and frequency are found respectively. We further propose
a joint power and computing resource allocation algorithm
based on BCD to obtain the optimal power and frequency
allocation. Furthermore, the task offloading and multi-cell
SCMA codebook allocation based on improved simulated

annealing is proposed with low complexity.
3) We show that the system utility consumption minimiza-

tion problem addressed in this paper is a unified framework
of energy optimization and latency minimization, which can
be achieved by changing the weighted factor. In addition, we
extend to the partial offloading case and propose resource
allocation algorithm and partial offloading policy based on
alternating convex search.

4) Numerical simulations illustrate that the proposed joint
optimization algorithm can minimize the system utility con-
sumption (i.e. the weighted value of energy consumption and
time delay), and show that the proposed multi-cell SCMA-
MEC framework has significant advantages over OFDMA-
MEC and PD-NOMA enabled MEC.

The rest of the paper is organized as follows. Section II
designs the model of SCMA-enabled multi-cell edge comput-
ing networks and formulates the initial optimization problem.
Section III proposes the joint resource allocation and task
offloading scheme. Simulation results are presented in Section
IV, and conclusions are made in Section V.

II. SYSTEM MODEL

The model of multi-cell SCMA-enabled MEC networks is
shown in Fig. 1, where each base station (BS) is equipped with
a MEC server providing task offloading services. We denote
the set of IoT devices and BSs (MEC servers) in the network
as U = {1, 2, . . . , U} and N = {1, 2, . . . , N}, respectively.
Multiple IoT devices can simultaneously offload computing
tasks to MEC servers by SCMA. The system model consists
of three parts: computing task model, task offloading, and
MEC execution model. For easy reading, the key symbols are
summarized in TABLE I.

A. Computing Task Model

We assume that each IoT device u has one computation
task at a time, represented as Tu. The device can choose to
perform the computing task locally or offload it to a nearby
MEC server, i.e., binary offloading is adopted in the model
[7]. The task Tu can be represented by three-tuple parameters,
(du, cu, t

max
u ), where du (in bits) specifies the amount of data

for task description, cu (in cycles) represents the number of
CPU calculations for Tu, and tmax

u (in seconds) indicates the
required completion time of the task. The local computing
frequency of user u is defined as f lu (in cycles/s). When the
computation task Tu is executed locally, the computation time
and energy consumption can be expressed as

tlu =
cu
f lu
, (1)

Elu = κ(f lu)2cu, (2)

where κ denotes the energy factor, determined by the effective
switching capacitance. The local computing rate f lu can be ad-
justed using DVFS technology [20] to optimize the execution
time and energy consumption of IoT devices and the local
computation policy is defined as F l = {f lu, u ∈ U}.
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Fig. 1. A diagram of the system model, where multiple devices offload tasks to MEC servers via SCMA.

TABLE I
SUMMARY OF KEY SYMBOLS.

Symbols Descriptions
u Index of IoT devices
n Index of BSs (MEC servers)
c Index of SCMA codebooks
k Index of subcarriers
U Set of IoT devices
N Set of BSs (MEC servers)
C Set of SCMA codebooks
K Set of subcarriers
F l Local computation adjustment policy
F Edge computation resource allocation strategy
S Computation offloading strategy incorporating

multi-cell SCMA codebook allocation
P Power allocation policy of IoT devices
Tu Computing task of device u
du The amount of data for Tu description
cu The number of CPU calculations for Tu
tmax
u The required completion time of Tu
Snu,c Relationship indicator of device u, codebook c and server n
Snu Offloading decision of device u
pu Transmission power of device u
Unoff Set of devices offloading tasks to MEC server n
f lu Local computing frequency of user u
fnu Allocated edge computation resource for user u at server n
fn Computation frequency of the MEC server n
tlu Local computation time of user u
t

up
u Uplink transmission time of user u
texe
u Edge task execution time of user u
Elu Local energy consumption of user u
Eeu Energy consumption of user u
βt Devices’ preference to time
βe Devices’ preference to energy
L The number of associated pilots for each SCMA codebook
κ Energy factor of the effective switching capacitance.
Glu Local utility consumption of user u
Geu Edge utility consumption of user u
Gu Utility consumption of user u

B. Task Offloading

The devices adopt SCMA as the multiple access scheme
to perform task offloading. We denote the set of codebooks
and subcarriers in every single-cell SCMA system as C =
{1, 2, . . . , C} and K = {1, 2, . . . ,K}, respectively. The con-
nection between SCMA codebooks and subcarriers can be

expressed by the mapping matrix F = (F 1,F 2, · · · ,FC),
where F c = (a1,c, a2,c, · · · , aK,c) is the indicator vector
for the codebook c. If ank,c = 1, it means that codebook c
occupies the kth subcarrier in BS n. pnu,c denotes the transmit
power of device u to BS n on codebook c and it is allocated
to subcarrier k in a given proportion δc,k, which satisfies∑
∀k∈c δ

n
c,k = 1 [11]. Considering the characteristics of multi-

cells, it should be noted that the number of codebooks is
usually less than that of devices, which is different from
the assumption in the single-cell SCMA network [18], [21].
The mapping between codebooks and subcarriers ank,c and
the subcarrier power allocation proportion δnc,k can be solved
by the bidirectional matching principle and the water filling
technique proposed in our previous work [22].

We denote Snu,c as the offloading policy of users, which
also incorporates multi-cell SCMA codebook allocation. If
codebook c is allocated to mobile device u for offloading its
computing task to the server n, then Snu,c = 1, otherwise,
Snu,c = 0. Define Snu =

∑
c∈C S

n
u,c as the offloading decision

of device u. And then the set of devices offloading tasks to
MEC server n can be shown as Unoff = {u ∈ U | Snu = 1}. The
offloading set of IoT devices is denoted as Uoff =

⋃
n∈N Unoff,

and the computation offloading strategy can be defined as S,
a three dimensional matrix with each element Snu,c.

In the SCMA uplink model, we consider that multiple users
in multi-cells may reuse the same codebook, and at most
one codebook per user. There are L associated pilots for
each codebook in a contention transmission unit (CTU) in
the adopted grant-free SCMA scheme [23]. As long as the
pilot sequences are different, the SCMA receiver can detect
the data stream carried by the same codebook [24]. The signal
to interference plus noise ratio (SINR) of user u on codebook
c in BS n can be represented as [11]

γnu,c =
Snu,c

∑
k∈K δ

n
c,kp

n
u,c

∣∣∣hnu,k∣∣∣2
Inu,c +

(
σnu,c

)2 , (3)

where Inu,c =
∑
n′∈N/{n}

∑
u′∈U/{u}

∑
k∈K δ

n′

c,kp
n′

u′,c

∣∣∣hnu′,k∣∣∣2
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represents the inter-cell interference. hnu,k and (σnu,c)
2 are

defined as the channel gain and noise power between the user
u and BS n on the subcarrier k. From the SINR, the transmit
rate of device u in BS n is expressed as

Rnu =
∑
c∈C

log2

(
1 + γnu,c

)
. (4)

Let pu denote the transmission power of device u, then
pnu,c = puS

n
u,c. We define the device power allocation strategy

as P = {pu | u ∈ Uoff}. Therefore, the uplink transmission
time of user u when transferring the task description data du
to MEC server n can be calculated as

tup
u =

du
Rnu

. (5)

The energy consumption of device u can be expressed as

Eeu = put
up
u . (6)

C. MEC Execution Model

MEC servers adopt parallel processing for multiple compu-
tation tasks. The computation frequency of the MEC server n
is denoted as fn (in cycles/s), and the computation resource
allocated to every associated user by the MEC server n is
quantified by fnu . The computation resource allocation strategy
is defined as F = {fnu , u ∈ U , n ∈ N}. Hence, the task
execution time of user u is calculated as

texe
u =

cu
fnu
. (7)

D. Problem Formulation

We define the local utility consumption Glu as the weighted
sum of task delay and energy consumption,

Glu = βtt
l
u + βeE

l
u = βt

cu
f lu

+ βeκ(f lu)2cu, (8)

where βe = 1 − βt. βt and βe represent users’ preference to
time and energy. The total time when offloading computation
tasks to MEC servers is calculated as

teu = tup
u + texe

u =
du
Rnu

+
cu
fnu
. (9)

Then, the edge utility consumption can be obtained as

Geu = βtt
e
u + βeE

e
u = βt

(
du
Rnu

+
cu
fnu

)
+ βe

pudu
Rnu

. (10)

Hence, the utility consumption of device u is expressed as

Gu =
∑
n∈N

(1−
∑
c∈C

Snu,c)G
l
u +

∑
n∈N

∑
c∈C

Snu,cG
e
u. (11)

Under the constraints of the maximum latency of compu-
tation tasks, this paper considers local CPU rate adjustment,
MEC server computing resource distribution, power allocation,
multi-cell SCMA codebook allocation, and task offloading
strategy to minimize the latency and energy consumption for

IoT users. The above optimization problem can be expressed
as:

min
S,Fl,P,F

∑
u∈U

∑
n∈N

∑
c∈C

Snu,c

[
βt

(
du
Rnu

+
cu
fnu

)
+ βe

pudu
Rnu

]

+
∑
u∈U

∑
n∈N

(
1−

∑
c∈C

Snu,c

)[
βt
cu
f lu

+ βeκ
(
f lu
)2
cu

]
(12a)

s.t. Snu,c ∈ {0, 1},∀u ∈ U , c ∈ C, n ∈ N (12b)∑
n∈N

∑
c∈C

Snu,c 6 1,∀u ∈ U (12c)∑
u∈U

Snu,c 6 L,∀c ∈ C,∀n ∈ N (12d)

∑
c∈C

Snu,ct
e
u +

(
1−

∑
c∈C

Snu,c

)
tlu 6 tmax

u ,∀u ∈ U

(12e)

0 6
∑
n∈N

∑
c∈C

Snu,cp
n
u,c 6 pmax

u ,∀u ∈ U (12f)

fnu > 0,∀u ∈ Uoff, n ∈ N (12g)∑
u∈Unoff

fnu 6 fn,∀n ∈ N (12h)

f lu,min 6 f lu 6 f lu,max,∀u ∈ U . (12i)

The constraints in the above problem can be explained as
follows. Constraint (12b) is the binary variable that represents
the task offloading decision and multi-cell SCMA codebook
allocation. Constraint (12c) indicates that each user can offload
its task to one edge server using one SCMA codebook.
Constraint (12d) implies that the same codebook can be reused
at most L times by multiple devices. Constraint (12e) shows
that the calculation time of local and edge execution cannot
exceed the task tolerance latency tmax

u . Constraint (12f) limits
the transmision power for each device u. Constraints (12g)
and (12h) ensure the computation frequency allocated to the
associated devices is positive and does not exceed the server’s
computation capacity fn. Constraint (12i) restricts the devices’
computation frequency.

III. JOINT TASK OFFLOADING AND RESOURCE
ALLOCATION SCHEME

The offloading decision S is coupled among the objective
function and multiple constraints, which makes the prob-
lem (12) belong to the mixed-integer nonlinear programming
(MINLP) and difficult to be solved. Hence, we can fix Snu,c
simplifies the problem (12) into two tractable subproblems,
i.e., resource allocation and task offloading policy.

A. Optimal Resource Allocation

1) Local Frequency Optimization: Firstly, the local CPU
computing frequency of IoT devices can be adjusted to
minimize the local utility consumption Glu. Considering the
constraints (12e) and (12i), the optimization problem can be
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transformed into:

min
Fl

∑
u∈U

βt
cu
f lu

+ βeκ
(
f lu
)2
cu (13a)

s.t.
cu
f lu

6 tmax
u ,∀u ∈ U (13b)

(12i).

Problem (13) is a standard convex optimization problem that
can be settled utilizing CVX tools or the method we proposed
in [18], which is omitted for brevity.

2) Joint Power and Edge Computing Resource Allocation:
In this subsection, we will investigate the transmit power allo-
cation for devices and optimal computing resource allocation
of MEC servers. Considering Snu,c = 1 and the constraints
related to pu and fnu , the optimization problem is expressed
as follows,

min
P,F

∑
u∈Uoff

βt

(
du
Rnu

+
cu
fnu

)
+ βe

pudu
Rnu

(14a)

s.t.
du
Rnu

+
cu
fnu

6 tmax
u ,∀u ∈ Uoff (14b)

0 < pu 6 pmax
u ,∀u ∈ Uoff (14c)

(12g) (12h).

When Snu,c = 1, the transmit rate of device u can be simplified
as

Rnu = log2

1 +
pu
∑
k∈K δ

n
c,k

∣∣∣hnu,k∣∣∣2
Inu,c +

(
σnu,c

)2
 . (15)

An achievable upper bound on Inu,c is defined as

Ĩnu,c ,
∑

n′∈N/{n}

∑
u′∈U/{u}

∑
k∈K

pmax
u′ δn

′

c,k

∣∣hnu′,k∣∣2 . (16)

Similar to [7], [25], we consider Ĩnu,c to be a good ap-

proximation of Inu,c. Let ζnu,c ,
∑
k∈K δ

n
c,k|hnu,k|2

Ĩnu,c+(σnu,c)
2 , and then

Rnu = log2

(
1 + ζnu,cpu

)
. We can use the substitution method

and introduce a new variable ξnu , 1/Rnu , then pu =(
21/ξnu − 1

)
/ζnu,c. The optimization problem (14) can be

rewritten as

min
ξ,F

∑
u∈Uoff

βt

(
duξ

n
u +

cu
fnu

)
+ βeduξ

n
u

21/ξnu − 1

ζnu,c
(17a)

s.t. duξ
n
u +

cu
fnu

6 tmax
u ,∀u ∈ Uoff (17b)

ξnu > 1/ log2

(
1 + ζnu,cp

max
u

)
,∀u ∈ Uoff (17c)

(12g) (12h).

Lemma 1. Problem (17) is a convex optimization problem.

Proof: See Appendix.
Since the constraint (17b) is coupled between ξnu and fnu , we

can use the BCD algorithm to iteratively solve the optimization
problem for each variable block of ξnu and fnu while fixing the
remaining block to the last updated value. Based on the BCD
method, the problem (17) can be solved by addressing two
subproblems iteratively, i.e., power scheduling with given fnu
and edge computing resource allocation with fixed ξnu .

The power scheduling problem given fnu can be written as

min
ξ

∑
u∈Uoff

βtduξ
n
u + βeduξ

n
u

21/ξnu − 1

ζnu,c
(18a)

s.t. ξnu 6
tmax
u − cu/fnu

du
,∀u ∈ Uoff (18b)

(17c).

The root of equation βtdu+ βedu
ζnu,c

[21/ξnu (1− ln 2/ξnu )−1] = 0

is denoted as ξn,0u , which can be solved by the bisection
method. From the Appendix, we know that the objective
function is convex and it decreases monotonically with the
increase of ξnu when ξnu < ξn,0u , otherwise it increases
monotonically. We define ξn,lu = 1/ log2

(
1 + ζnu,cp

max
u

)
and

ξn,hu = (tmax
u − cu/fnu ) /du. Hence, the optimal solution ξn

∗

u

is

ξn
∗

u =


ξn,lu , ξn,0u 6 ξn,lu

ξn,0u , ξn,lu 6 ξn,0u 6 ξn,hu .

ξn,hu , ξn,0u > ξn,hu

(19)

The optimal power scheduling can be obtained by p∗u =(
21/ξn

∗
u − 1

)
/ζnu,c.

The edge computing resource allocation with fixed ξnu is
rephrased as

min
F

∑
u∈Uoff

βtcu/f
n
u (20a)

s.t. fnu >
cu

tmax
u − duξnu

(20b)

(12g) (12h).

Since the problem (20) is convex, it can be solved by the
Karush-Kuhn-Tucker (KKT) condition. Specifically, the La-
grangian of the problem (20) is calculated as

L (fnu , λ, µu) =
∑
u∈Uoff

βtcu/f
n
u + λ

( ∑
u∈Uoff

fnu − fn

)

+
∑
u∈Uoff

µu

(
cu

tmax
u − duξnu

− fnu
)
,

(21)

where λ and µu are non-negative Lagrange multipliers. The
optimal fn

∗

u , λ∗ and µ∗u should satisfy the following equations,

∂L
∂fnu

= − βtcu

(fn∗u )
2 + λ∗ − µ∗u = 0, (22)

µ∗u

(
cu

tmax
u − duξnu

− fn
∗

u

)
= 0, (23)

∑
u∈Uoff

√
βtcu

λ∗ − µ∗u
= fn. (24)

Define the set of µu = 0 is U0, and the optimal edge computing
resource allocation solution fn

∗

u can be written as

fn
∗

u =


cu

tmax
u − duξnu

, u ∈ Unoff\U0

(fn −
∑
u∈Unoff\U0

fn
∗

u )
√
cu∑

u∈U0
√
cu

, u ∈ U0

(25)
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The optimal allocation strategy of edge computing resources
can be obtained from (25). In each MEC server, the compu-
tation resources are evenly distributed with the square root of
the workload

√
cu. For those devices which can not satisfy

the delay demand, fn
∗

u is set to cu/(tmax
u −duξnu ). The rest of

computational frequency is equally allocated w.r.t
√
cu. The

above process is repeated until all the devices meet the latency
requirement, and then the optimal solution fn

∗

u is obtained.
In the joint power and computing resource allocation algo-

rithm based on BCD, the transmit power and edge computing
resource allocation vectors are updated iteratively, as summa-
rized in Algorithm 1. By performing Algorithm 1 at each base
station, the optimal transmission power P∗ and edge resource
allocation strategy F∗ could be obtained.

Algorithm 1: Joint Power and Computing Resource Allo-
cation Algorithm Based on Block Coordinate Descent
Input: βt, βe, pmax

u , fn, ζnu,c, Tu, Unoff
Output: Optimal transmit power P∗n and edge computing

resource allocation strategy F∗n at BS n.
1 Initialize: Set k = 0, convergence tolerance ε1, ε2 > 0,

use the bisection method to get ξn,0u and find initial
feasible solution (ξnu )0 = ξn,0u .

2 repeat
3 Compute (fnu )k by (25) with given (ξnu )k;
4 Compute (ξnu )k+1 by (19) with given (fnu )k;
5 k = k + 1;
6 until

∥∥(fnu )k − (fnu )k−1
∥∥ ≤ ε1,

∥∥(ξnu )k − (ξnu )k−1
∥∥ ≤ ε2;

7 Compute optimal transmit power

pku =
(

21/(ξnu)k − 1
)
/ζnu,c.

8 Then, set pku and (fnu )k, ∀u ∈ Unoff as the optimal
transmit power P∗n and edge computing resource
allocation strategy F∗n at BS n.

B. Task Offloading and Multi-cell SCMA Codebook Allocation

With a fixed task offloading and multi-cell SCMA codebook
allocation decision Snu,c, we get the optimal solutions for
the power and computation resources allocation P∗, F∗ F l∗ .
Therefore, the optimization problem is formulated as

min
S

∑
u∈U

∑
n∈N

∑
c∈C

Snu,cG
e
u (P∗,F∗)

+
∑
u∈U

∑
n∈N

(
1−

∑
c∈C

Snu,c

)
Glu

(
F l
∗
)

s.t. (12b) (12c) (12d).

(26)

Using the exhaustive search method on all possible task of-
floading strategies and multi-cell SCMA codebook allocation
is a direct and brute approach for problem (26). However,
the total number of candidate solutions is 2U×N×C , and the
exponential complexity makes the exhaustive search method
impractical. Therefore, a low complexity algorithm based on
improved simulated annealing is proposed.

The simulated annealing (SA) algorithm is derived from the
process of crystal cooling. When the solid is heated and then

cooled, as the temperature decreases slowly, the atoms are
arranged into a certain shape, forming regular crystals with
high density and low energy, which corresponds to the global
optimal solution in the algorithm. The SA algorithm consists
of two parts: the metropolis criterion [26] and the annealing
process. Instead of using fully determined rules, the metropolis
criterion accepts new states with probability. Specifically,
the improved simulated annealing algorithm would update
new solutions from the solutions of the last iteration in the
following four ways:

(1) Change task offloading decision for device u.
(2) Randomly select another MEC server of the three closest

MEC servers and find an SCMA codebook that has been
allocated less than L devices.

(3) Select another SCMA codebook that has been allocated
less than L devices.

(4) Exchange the MEC server and SCMA codebook policy
with another device.

If the value of the new objective function (Gnew) is less
than the previous value (Gold), then the new solution (Snew)
is accepted. Otherwise, the algorithm accepts Snew as the
new solution with probability e−∆G/T . Finally, as the tem-
perature decreases, the algorithm gradually converges to the
global optimal solution. At each iteration, it needs to perform
Algorithm 1 with Snew in each base station, and obtain the
optimal transmission power P∗ and edge resource allocation
strategy F∗. The specific steps for task offloading and multi-
cell SCMA codebook allocation are described in Algorithm 2.

C. Analysis of Special Cases

The minimization problem of the weighted energy consump-
tion and latency is studied in Problem 12. In this subsection,
we analyze two special cases of the above problem. The
analysis explains the generality and applicability of the studied
problem and proposed algorithms. When the weighting factor
βt is equal to 1, the latency minimization problem can be
formulated as follows,

min
S,Fl,P,F

∑
u∈U

∑
n∈N

∑
c∈C

Snu,c

(
du
Rnu

+
cu
fnu

)

+
∑
u∈U

∑
n∈N

(
1−

∑
c∈C

Snu,c

)
cu
f lu

s.t. (12b) (12c) (12d) (12e) (12f) (12g) (12h) (12i).
(27)

Similarly, when the parameter βe = 1, the energy minimiza-
tion problem can be rewritten as,

min
S,Fl,P

∑
u∈U

∑
n∈N

∑
c∈C

Snu,c
pudu
Rnu

+
∑
u∈U

∑
n∈N

(
1−

∑
c∈C

Snu,c

)
κ
(
f lu
)2
cu

s.t. (12b) (12c) (12d) (12e) (12f) (12i).

(28)

These two problems are special cases of the problem studied in
this paper. Obviously, the algorithms proposed can be directly
used to solve the problems of minimizing task execution delay
and energy consumption.
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Algorithm 2: Task Offloading and Multi-cell SCMA
Codebook Allocation Based on Simulated Annealing

Input: U , C, N , K, βt, pmax
u , fn, Tu, Gl

∗

u , T , Minimum
temperature Tmin, Reduction factor α

Output: The optimal task offloading and multi-cell
SCMA codebook allocation decision S∗

1 Initialize: Randomly generate an initial feasible solution
Sold and calculate Gold =

∑
u∈U Gu.

2 while T > Tmin do
3 Generate new solutions Snew from Sold in one of

several following ways based on the probability
rand ∈ (0, 1).

4 if rand < 0.2 then
5 Change task offloading decision for device u
6 else
7 if rand < 0.4 then
8 Randomly select another MEC server of the

three closest servers and find an SCMA
codebook that has been allocated less than L
devices.

9 else
10 if rand < 0.8 then
11 Select another SCMA codebook that has

been allocated less than L devices.
12 else
13 Exchange the MEC server and SCMA

codebook policy with another device.
14 end
15 end
16 end
17 Perform Algorithm 1 with Snew in each base station,

and obtain the optimal transmission power P∗ and
edge resource allocation strategy F∗.

18 Calculate Gnew, and ∆G = Gnew −Gold.
19 if ∆G 6 0 then
20 Sold = Snew, Gold = Gnew

21 else
22 if e−∆G/T > rand(0, 1) then
23 Sold = Snew, Gold = Gnew

24 end
25 end
26 T = α ∗ T
27 end

D. Extension to Partial Offloading

This subsection extends the proposed algorithms to partial
offloading. In this case, we assume that task Tu can be divided
into two arbitrarily sized blocks, one of which is executed
locally by the UE itself and the other (δu) can be offloaded to
the edge server.

When the number of CPU cycles processed locally is
(1−δu)cu, the execution time and energy consumption can be
expressed as tlu = (1−δu)cu/f

l
u and Elu = κ(f lu)2(1−δu)cu,

respectively. When computation offloading is performed, the
total time spent can be given as tcu = δudu/R

n
u+δucu/f

n
u , and

the energy consumption is expressed as Ecu = δupudu/R
n
u .

Since parallel computing is performed simultaneously on
the device and the MEC server, the delay of the over-
all task should be the maximum value of the two, i.e.,
max

{
(1− δu)cu/f

l
u, δudu/R

n
u + δucu/f

n
u

}
. In addition, the

overall energy consumption can be expressed as κ(f lu)2(1 −
δu)cu + δupudu/R

n
u .

Therefore, similar to binary offloading, the tradeoff problem
between latency and energy consumption can be formulated
as

min
S,δ,Fl,P,F

∑
u∈U

βtmax

{∑
n∈N

∑
c∈C

Snu,cδu

(
du
Rnu

+
cu
fnu

)
, (1− δu)

cu
f lu

}

+
∑
u∈U

βe

[∑
n∈N

∑
c∈C

Snu,cδu
pudu
Rnu

+ (1− δu)κ
(
f lu

)2
cu

]
(29a)

s.t. δu ∈ [0, 1], ∀u ∈ U (29b)

max
{
δut

e
u, (1− δu) tlu

}
6 tmax

u , ∀u ∈ U (29c)

(12b) (12c) (12d) (12f) (12g) (12h) (12i).

The constraint (29b) represents the offloading policy δu is
a continuous variable within [0, 1]. Constraint (29c) implies
that the task execution time cannot exceed the maximum
task execution latency tmax

u . Note that Snu,c in this section
only represents the relationship between IoT devices, BS, and
multi-cell SCMA codebook allocation. δu stands for offloading
policy.

When fixing Snu,c, the optimization problem is transformed
as

min
δ,Fl,P,F

∑
u∈U

βt max

{
δu

(
du
Rnu

+
cu
fnu

)
, (1− δu)

cu
f lu

}
+
∑
u∈U

βe

[
δu
pudu
Rnu

+ (1− δu)κ
(
f lu
)2
cu

]
(30a)

s.t. 0 6 pnu,c 6 pmax
u ,∀u ∈ U (30b)

(12g) (12h) (12i) (29b) (29c).

Using the same idea in subsection III-A, let ξnu = 1/Rnu ,
the optimization problem (30) can be rewritten as

min
δ,Fl,ξ,F

∑
u∈U

βt max

{
δu

(
duξ

n
u +

cu
fnu

)
, (1− δu)

cu
f lu

}

+
∑
u∈U

βe

[
δuduξ

n
u

(
21/ξnu−1

)
ζnu,c

+ (1− δu)κ
(
f lu
)2
cu

]
(31a)

s.t. δu

(
duξ

n
u +

cu
fnu

)
6 tmax

u ,∀u ∈ U (31b)

(1− δu)cu/f
l
u 6 tmax

u ,∀u ∈ U (31c)

ξnu > 1/ log2

(
1 + ζnu,cp

max
u

)
,∀u ∈ U (31d)

(12g) (12h) (12i) (29b).

Lemma 2. [27] If f1(x) and f2(x) are convex, then their
pointwise maximum with domf = domf1 ∩ domf2, defined by
f(x) = max {f1(x), f2(x)} is also convex.

Even if the transformed problem (31) is still non-convex, it
is noted that when δ is fixed, the problem is a standard convex
optimization problem, which can be proved by using Lemma 2.
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The interior-point method and CVX tools can be used to solve
it. When F l, ξ,F are fixed, that problem can be transformed
to be a linear programming problem w.r.t δ, which is easy
to be settled. Then, the optimal solutions can be solved by
an alternating convex search algorithm, shown in Algorithm
3. When the optimal δ,F l,P,F are solved, the improved
simulated annealing algorithm proposed in Algorithm 2 can
be used to solve S.

Algorithm 3: Resource Allocation Algorithm and Partial
Offloading Policy Based on Alternate Convex Search

Input: βt, βe, Tu, pmax
u , fn, ζnu,c, f

l
u,min, f lu,max,

convergence tolerance ε.
Output: Optimal resource allocation F l∗ ,P∗,F∗ and

partial task offloading strategy δ∗.
1 Initialize: Set iterxation index k = 1 and the initial value

of δ1 equals 0.5.
2 repeat
3 Substitute δk into the problem (31) to obtain(

(f l)k+1, (ξnu )k+1, (fnu )k+1
)

by solving the convex
optimization problem using the interior point method.

4 Updata δk+1 based on
(
(f l)k+1, (ξnu )k+1, (fnu )k+1

)
by solving the linear programming problem.

5 k = k + 1;
6 G(k − 1) = Gu

(
δk−1
u , (f l)k−1, (ξnu )k−1, (fnu )k−1

)
;

7 G(k) = Gu
(
δku, (f

l)k, (ξnu )k, (fnu )k
)
;

8 until ‖G(k)−G(k − 1)‖ ≤ ε;
9 Compute optimal transmit power

p∗u =
(

21/(ξnu)k − 1
)
/ζnu,c.

IV. SIMULATION RESULTS AND ANALYSIS

In this section, representative simulation results are shown
to evaluate the performance of the multi-cell SCMA-enabled
MEC design. Specifically, N BSs and U users are randomly
distributed in an area, and the adjacent BSs are set 100m apart
from each other. The number of SCMA codebooks is set as
C = 6. For each codebook, the number of associated pilot
sequences is L = 2 [24]. The channels between the users
and BSs are generated by a distance dependent path loss,
modeled as PL(dB) = 140.7 + 36.7log10(d)[km] [7] with
8dB log-normal multipath shadowing. The maximum transmit
power of users pmax

u is 23dBm. We set the system bandwidth
B as 20MHz. Every BS is equipped with a 20GHz MEC
server. The task description data du and the workload cu
are randomly distributed in [300, 1200]KB and [0.2, 1]Gcycles,
respectively [28]. The maximum latency tmax

u is between 0.5s
and 2s. The terminal device can adjust its computation rate as
0.2GHz∼1GHz and κ = 5 × 10−27 [29]. The termination
temperature and cooling speed of the simulated annealing
algorithm are set as Tmin = 0.0001 and α = 0.98. The
simulation results were obtained on a laptop with equipped
with i7-8550u and 16GB RAM.

The convergence performance of the proposed task of-
floading and multi-cell SCMA codebook allocation based on
improved simulated annealing algorithm is illustrated in Fig. 2.
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Fig. 2. Trend of the system utility consumption versus the number of
iterations and cells.

We consider that each BS can serve an average of 6 devices,
and when the cell number increases from 2 to 6, the number
of devices grows from 12 to 36. In all cases, the utility
value experiences a period of fluctuation due to label 13 in
Algorithm 2, then decreases, and finally converges with the
increase of iterations. It can be seen from the figure that the
convergence can be achieved within 500 iterations in all cells.
When the number of cells grows from 2 to 6, the number
of iterations reaching equilibrium goes from 225 to 416.
Compared with the exhaustive search method, which requires
212×2×6 ∼ 236×6×6 iterations [7], the complexity of proposed
algorithm is significantly reduced.

To demonstrate the superiority of the proposed SCMA-
MEC scheme, we introduce two reference schemes, which
are the same as the proposed scheme except that the of-
floading process adopts OFDMA [28] and PD-NOMA [11]
techniques, respectively. Fig. 3 shows the energy consumption
and latency comparison between the proposed SCMA-MEC
scheme and the multi-cell edge computing networks enabled
by PD-NOMA and OFDMA. In PD-NOMA, each subcarrier
can be assigned to at most two users simultaneously. It can be
seen that the overall execution delay and energy consumption
increase with the number of cells in all schemes. Compared
with OFDMA and PD-NOMA, the energy cost and delay of
the multi-cell SCMA-MEC network are significantly reduced,
and the gap increases with the number of cells.

In the case of two cells, the average energy consumption of
SCMA is 0.064J, which is reduced by 0.072J and 0.215J in
comparison to PD-NOMA and OFDMA. The average latency
equals 0.478s, reduced by 0.229s and 0.347s, respectively.
When the cell number is six, the average energy expenditure
of SCMA is 0.267J, which is 36.6% and 47.0% lower than
that of PD-NOMA and OFDMA, and the time delay comes
to 0.589s, with a relative reduction of 22.4% and 34.6%.

Fig. 4 depicts the impact of multi-cell SCMA codebook
allocation on average system latency and offloading efficiency.
The random SCMA codebook allocation uses a fixed user
order algorithm [21]. We can see that the proposed algorithm
has an advantage in reducing the latency compared with
the random SCMA codebook allocation. In two cells, the
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Fig. 3. Comparison of average (a) utility consumption, (b) energy, and (c) latency while varying the number of cells using different access schemes.
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Fig. 4. Impact of multi-cell SCMA codebook allocation on the (a) average
latency and (b) offloading efficiency, compared to random SCMA codebooks.

average delay of the two schemes is 0.476s and 0.679s,
respectively, and the reduction is 0.203s. In the case of six
cells, the average system latency of the proposed algorithm
is 0.585s, which is 0.114s lower than that of random SCMA
codebook allocation. It can be deduced from the data that the
proposed algorithm can reduce the latency by about 16.3%.
Offloading efficiency is defined as the ratio of the number
of offloaded devices to the total number of devices. Due to
the inter-cell interference of multiple cells, the transmit rate
decreases with the growth of cell numbers, which leads to
less “willingness” of devices to offload tasks. Therefore, the
offloading efficiency drops from 99.8% to 79.7%. Since the
random codebook allocation ignores the interference between
different cells and only considers the competition of multiple
devices for computing resources, the offloading efficiency de-
creases slightly. Therefore, compared with random codebook
allocation, our algorithm can achieve more channel-adapted
offloading efficiency and lower system latency.

The comparison of full offloading, local computing, and
optimal offloading is shown in Fig. 5. Overall, in terms of
average utility consumption and latency, the optimal offloading
is smaller than that of full offloading and local computing.
With a small number of cells (i.e., 2, 3, 4), the average utility
consumption of optimal offloading is similar to that of full
offloading, suggesting that edge computing plays an important
role when interference between devices is relatively low. As

the number of cells gradually increases, the performance of
the proposed scheme improves more significantly. With a
cell count of 6, the average utility consumption of optimal
offloading is 0.401, which is 0.641 (61.5%) and 0.241 (37.5%)
lower than that of local computing and full offloading, re-
spectively, demonstrating the advantages of the proposed task
offloading algorithm. In terms of energy consumption, the
optimal offloading is similar to full offloading and much
smaller than that of local computing. As the number of
cells increases, the energy consumption and latency of local
computing remain almost constant. This is due to the fact
that devices’ computing is independent of the cell count.
When considering full offloading, the interference between
devices increases as the number of cells increases, resulting in
longer average latency. At a cell count of 2, the average local
computing delay is 1.02s, full offloading latency and optimal
offloading delay are close to each other, which are 0.465s
and 0.452s respectively. In this case, almost all of the optimal
offloading options are to be fully offloaded to MEC servers for
computation. When the number of cells is 6, the full offloading
delay rises to 1.118s due to interference, which exceeds the
local calculation delay. The optimal offload decision reduces
the latency to 0.552s, which is 45.9% and 50.6% lower than
the local and full offload approaches respectively.
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Fig. 6. Comparison of average latency versus different offloading schemes.

Fig.6 compares the differences between four computing
schemes (binary offloading, partial offloading, full offloading,
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Fig. 5. Comparison of average (a) utility, (b) energy consumption, and (c) latency when considering full offloading, local computing and optimal offloading.

local computing) with the minimum latency as the optimiza-
tion objective. It can be seen that the partial offloading case
outperforms the other three schemes in general. When the cell
number equals 2, the optimal delay of binary offloading is
0.433s, which is close to full offloading. The average latency
of partial offloading is 0.331s, which is 0.102s (23.6%) lower
than that of binary offloading. This is because the partial
offloading scheme can upload a portion of the task, which
can utilize the computing power of both local devices and
MEC servers to reduce task execution latency. It is also noted
that the advantage of partial offloading over binary offloading
decreases as the number of cells increases, with a difference
of 0.073s for a cell count of 6. This is due to the fact that
interference between devices reduces the percentage of devices
offloaded, resulting in a lower advantage of partial offloading.
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Fig. 7. Relationship between average (a) energy consumption and (b) latency
with user time preference (βt).

Fig. 7 shows the average energy consumption and time
cost when changing the user’s preference to time (βt), and
it is important to note that the user’s preference to energy βe
equals 1 − βt. In addition, it is worth noting that when βt is
equal to 0, the solution corresponds to the energy minimization
problem, while βt = 1, the algorithms proposed could find
the optimal solution for the latency minimization problem.
That is, this paper achieves a unified framework of energy
minimization and delay minimization. It can be seen from

the figure that as βt increases, the average delay is reduced
at the cost of gradually increasing the energy consumed by
devices. Furthermore, as the number of cells in the system
grows, the average energy consumption and latency of the
devices increases. When the optimization objective is energy
minimization, the average energy consumption of the device is
0.06J in the case of three cells, and 0.167J when cells count up
to 6, at an increase of 0.107J. When minimizing the latency,
the average delay of the task is 0.441s when the cell number
is 3, and 0.547s when the cell number equals 6, increasing
by 24%. This illustrates that the device interference between
multi-cells and the competition for limited resources will lead
to the reduction of computation offloading benefits, resulting
in an increase in energy consumption and latency.
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Fig. 8. Comparison of average utility consumption while varying different
task parameters using different schemes.

A comparison of the average utility consumption of local
computing and full offloading against the variation of task
parameters is shown in Fig. 8. It can be seen from the graph
that the system utility consumption, i.e., the weighted value
of energy consumption and latency increases with the growth
of the required CPU computing cycles cu. In addition, local
computing increases by a larger proportion than full offload-
ing, due to the fact that the delay and energy consumption
of local computing are both related to cu and the limited
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local computing capacity leads to a significant increase in
latency and energy consumption when cu increases. The local
computing does not involve the data du uploaded by the task,
so the local utility is independent of du. The utility value
of full offloading increases as du grows. This is because the
larger task input data leads to an increase in task transmit
time. Specifically, when cu = 0.2Gcycles and du = 1100kB,
the average utility of local computing is 0.347, which owns a
53.3% gain, compared with that of full offloading (0.745). In
this case, the devices prefer local computing. When cu equals
0.8Gcycles and du equals 300kB, the average utility of full
offloading equals 0.506, a 70.8% reduction compared to local
computing. Therefore, it is more advantageous to assign tasks
with small task description data and large computation to the
MEC server.

V. CONCLUSIONS

In this paper, we investigated the joint resource alloca-
tion and task offloading for multi-cell SCMA-MEC systems.
Aiming to minimize the system latency and devices’ energy
consumption, we proposed an iterative optimization scheme
based on BCD for the transmit power of users and computing
resources allocation of MEC servers, as well as an algorithm
based on the improved simulated annealing for task offloading
decision and multi-cell SCMA codebook allocation. Then we
explained two special cases of the problem studied in this
paper, namely latency minimization and energy optimization.
Finally, the framework was extended to the partial offloading
case, and an algorithm for solving the partial offloading ratio
based on alternating convex search was proposed. Numeri-
cal results showed that the multi-cell SCMA-MEC scheme
achieves lower energy consumption and system delay in com-
parison to the OFDMA and PD-NOMA techniques. Compared
to the random codebook assignment, the multi-cell SCMA
codebook allocation algorithm can achieve improved channel-
adapted offloading efficiency and reduce the system latency
by approximately 16.3%.

APPENDIX

A. The Proof of Lemma 1

Proof: Let Geu(ξnu , f
n
u ) denote the objective function of

problem (17). The derivatives and second-order derivatives of
Geu with respect to (w.r.t) ξnu and fnu can be calculated as

∂Geu
∂ξnu

= βtdu +
βedu
ζnu,c

[
2

1
ξnu

(
1− ln 2

ξnu

)
− 1

]
(32)

∂Geu
∂fnu

=
−βtcu
(fnu )

2 (33)

∂2Geu

∂ (ξnu )
2 =

βedu2
1
ξnu (ln 2)

2

ζnu,c (ξnu )
3 (34)

∂2Geu

∂ (f lu)
2 =

2βtcu

(fnu )
3 (35)

∂2Geu
∂f luξ

n
u

=
∂2Geu
∂ξnuf

l
u

= 0 (36)

The values βt, βe, du, ζnu,c and the variable f lu and ξnu are all
positive. It is easy to deduce the Hessian matrix of Geu is a
diagonal matrix with positive elements, i.e. positive-definite.
Hence, the objective function is convex w.r.t ξnu and fnu .
Additionally, the constraints (17b), (17c), (12g) and (12h) are
all affine functions. Therefore, the problem (17) is proved to
be a convex optimization problem.

REFERENCES

[1] Q. Pham, F. Fang, V. N. Ha, M. J. Piran, M. Le, L. B. Le, W. Hwang,
and Z. Ding, “A survey of multi-access edge computing in 5G and
beyond: Fundamentals, technology integration, and state-of-the-art,”
IEEE Access, vol. 8, pp. 116 974–117 017, 2020.

[2] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Communications Surveys Tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on ar-
chitecture and computation offloading,” IEEE Communications Surveys
Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[4] C. Shu, Z. Zhao, Y. Han, G. Min, and H. Duan, “Multi-user offloading
for edge computing networks: A dependency-aware and latency-optimal
approach,” IEEE Internet of Things Journal, vol. 7, no. 3, pp. 1678–
1689, 2020.

[5] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Transactions on Communications, vol. 64, no. 10, pp. 4268–4282,
2016.

[6] S. Zarandi and H. Tabassum, “Delay minimization in sliced multi-cell
mobile edge computing (MEC) systems,” IEEE Communications Letters,
vol. 25, no. 6, pp. 1964–1968, 2021.

[7] T. X. Tran and D. Pompili, “Joint task offloading and resource allocation
for multi-server mobile-edge computing networks,” IEEE Transactions
on Vehicular Technology, vol. 68, no. 1, pp. 856–868, 2019.

[8] Z. Ding, Y. Liu, J. Choi, Q. Sun, M. Elkashlan, I. Chih-Lin, and H. V.
Poor, “Application of non-orthogonal multiple access in LTE and 5G
networks,” IEEE Communications Magazine, vol. 55, no. 2, pp. 185–
191, 2017.

[9] H. Nikopour and H. Baligh, “Sparse code multiple access,” in IEEE
24th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), 2013, pp. 332–336.

[10] J. V. C. Evangelista, Z. Sattar, G. Kaddoum, and A. Chaaban, “Fairness
and sum-rate maximization via joint subcarrier and power allocation in
uplink SCMA transmission,” IEEE Transactions on Wireless Communi-
cations, vol. 18, no. 12, pp. 5855–5867, 2019.

[11] M. Moltafet, N. M. Yamchi, M. R. Javan, and P. Azmi, “Comparison
study between PD-NOMA and SCMA,” IEEE Transactions on Vehicular
Technology, vol. 67, no. 2, pp. 1830–1834, 2018.

[12] Z. Ding, P. Fan, and H. V. Poor, “Impact of non-orthogonal multiple
access on the offloading of mobile edge computing,” IEEE Transactions
on Communications, vol. 67, no. 1, pp. 375–390, 2019.

[13] Y. Wu, K. Ni, C. Zhang, L. P. Qian, and D. H. K. Tsang, “Noma-
assisted multi-access mobile edge computing: A joint optimization of
computation offloading and time allocation,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 12, pp. 12 244–12 258, 2018.

[14] H. Li, F. Fang, and Z. Ding, “Joint resource allocation for hybrid
NOMA-assisted MEC in 6G networks,” Digital Communications and
Networks, vol. 6, no. 3, pp. 241 – 252, 2020.

[15] A. Kiani and N. Ansari, “Edge computing aware NOMA for 5G
networks,” IEEE Internet of Things Journal, vol. 5, no. 2, pp. 1299–
1306, 2018.

[16] B. Liu, C. Liu, and M. Peng, “Joint radio and computation resource
allocation for noma-enabled mec in multi-cell networks,” in IEEE
International Conference on Communications (ICC), 2020, pp. 1–6.

[17] A. Alnoman, S. Erkucuk, and A. Anpalagan, “Sparse code multiple
access-based edge computing for iot systems,” IEEE Internet of Things
Journal, vol. 6, no. 4, pp. 7152–7161, 2019.

[18] P. Liu, J. Lei, and W. Liu, “An optimization scheme for SCMA-
based multi-access edge computing,” in IEEE 93rd Vehicular Technology
Conference (VTC-Spring), 2021.

[19] J. Du, W. Liu, G. Lu, J. Jiang, D. Zhai, F. R. Yu, and Z. Ding, “When
mobile-edge computing (mec) meets nonorthogonal multiple access
(noma) for the internet of things (IoT): System design and optimization,”
IEEE Internet of Things Journal, vol. 8, no. 10, pp. 7849–7862, 2021.



12

[20] W. Kim, M. S. Gupta, G.-Y. Wei, and D. Brooks, “System level analysis
of fast, per-core dvfs using on-chip switching regulators,” in 2008
IEEE 14th International Symposium on High Performance Computer
Architecture, 2008, pp. 123–134.

[21] M. Dabiri and H. Saeedi, “Dynamic SCMA codebook assignment
methods: A comparative study,” IEEE Communications Letters, vol. 22,
no. 2, pp. 364–367, 2018.

[22] P. Liu, K. An, J. Lei, G. Zheng, Y. Sun, and W. Liu, “Scma-based multi-
access edge computing in iot systems: An energy-efficiency and latency
tradeoff,” IEEE Internet of Things Journal, pp. 1–1, 2021.

[23] K. Au, L. Zhang, H. Nikopour, E. Yi, A. Bayesteh, U. Vilaipornsawai,
J. Ma, and P. Zhu, “Uplink contention based SCMA for 5G radio access,”
in IEEE Globecom Workshops (GC Wkshps), 2014, pp. 900–905.

[24] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson,
“Grant-free non-orthogonal multiple access for IoT: A survey,” IEEE
Communications Surveys Tutorials, vol. 22, no. 3, pp. 1805–1838, 2020.

[25] Y. Du and G. de Veciana, “wireless networks without edges: Dynamic
radio resource clustering and user scheduling,” in IEEE Conference on
Computer Communications (INFOCOM), 2014, pp. 1321–1329.

[26] P. J. Van Laarhoven and E. H. Aarts, “Simulated annealing,” in Simulated
annealing: Theory and applications. Springer, 1987, pp. 7–15.

[27] S. Boyd, S. P. Boyd, and L. Vandenberghe, Convex optimization.
Cambridge university press, 2004.

[28] J. Zhang, X. Hu, Z. Ning, E. C.-H. Ngai, L. Zhou, J. Wei, J. Cheng, and
B. Hu, “Energy-latency tradeoff for energy-aware offloading in mobile
edge computing networks,” IEEE Internet of Things Journal, vol. 5,
no. 4, pp. 2633–2645, 2018.

[29] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE Transactions on Wireless Communications, vol. 12, no. 9, pp.
4569–4581, 2013.


