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Abstract— Recent works on SLAM extend their pose graphs
with higher-level semantic concepts exploiting relationships
between them, to provide, not only a richer representation of
the situation/environment but also to improve the accuracy of its
estimation. Concretely, our previous work, Situational Graphs
(S-Graphs), a pioneer in jointly leveraging semantic relation-
ships in the factor optimization process, relies on semantic
entities such as wall surfaces and rooms, whose relationship
is mathematically defined. Nevertheless, excerpting these high-
level concepts relying exclusively on the lower-level factor-
graph remains a challenge and it is currently done with ad-hoc
algorithms, which limits its capability to include new semantic-
relational concepts.

To overcome this limitation, in this work, we propose a
Graph Neural Network (GNN) for learning high-level semantic-
relational concepts that can be inferred from the low-level
factor graph. We have demonstrated that we can infer room
entities and their relationship to the mapped wall surfaces, more
accurately and more computationally efficient than the baseline
algorithm. Additionally, to demonstrate the versatility of our
method, we provide a new semantic concept, i.e. wall, and its
relationship with its wall surfaces. Our proposed method has
been integrated into S-Graphs+, and it has been validated in
both simulated and real datasets. A docker container with our
software will be made available to the scientific community.

I. INTRODUCTION

Incorporating higher-level semantic-relational entities en-
hances the situational awareness [2] of a robot and hence
enriches the built model of the world. Furthermore, it pro-
vides advantageous information for successive tasks such as
planning [3].

Graph-based SLAM optimizes a graph with real-world
objects observed from measurements and only geometric
and temporal information. During recent years, 3D Semantic
Scene Graphs [4]–[6] emerged as a promising framework
to associate the SLAM graph structure with higher-level
semantic-relational concepts. [7] goes beyond and optimizes
the conjunction graph leveraging loop closures.
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Fig. 1: System Overview. We augment the original S-
Graph from our SLAM system [1] with additional constraints
derived from higher-level information like relations between
walls and rooms. Taking low-level concepts like wall sur-
faces as graph nodes, a trained graph neural network (GNN)
classifies which relations belong to the same room or same
wall and decides which constraints are then added to the S-
Graph to improve the quality of the map and the estimated
camera trajectory.

Our previous work S-Graphs [1] fully integrates the
SLAM graph with the scene graph optimizing them as a uni-
fied entity. However, S-Graphs only extracts a few semantic-
relational entities and these semantic-relational entities are
extracted with ad-hoc algorithms per entity type, limiting the
capability of S-Graphs to generalize to different and complex
type of semantic entities.

To address these limitations, we present a framework to
enhance S-Graphs with relational and generalization capa-
bilities over semantic entities based on GNNs [8], [9]. Our
framework can infer pairwise relationships among wall sur-
faces belonging to the same higher-level entities either walls
or rooms. These relationships are subsequently processed and
clustered in the set of nodes relating to the new entity.

Furthermore, these newly generated entities along with
their relationships are incorporated as nodes and edges into
the appropriate layers of the four-layered optimizable S-
Graph. The results over several simulated and real struc-



tured indoor environments demonstrate that our method
improves the baseline in detection time, expressiveness, and
the number of entities detected. Refer to Fig. 1 for a visual
representation of our system.

To summarize, the primary contributions of our paper are:
• A GNN-based framework to generate high-level seman-

tic entities (concretely, rooms and walls) and their rela-
tionships from the low-level entities (i.e. wall surfaces)
in a computationally efficient and versatile manner.

• Integration of the algorithm within the four-layered op-
timizable S-Graphs framework [1] along with validation
in simulated and real datasets with ablation studies.

II. RELATED WORK

A. Semantic Scene Graphs for SLAM

Scene graphs serve as graph models that encapsulate
the environment as structured representations. This graph
comprises entities, their associated attributes, and the in-
terrelationships among them. In the context of 3D scene
graphs, [4] has pioneered the development of an offline,
semi-autonomous framework. This framework relies upon
object detections derived from RGB images, creating a multi-
layered hierarchical representation of the environment and its
constituent elements such as cameras, objects, rooms, and
buildings. Additionally, [5] employs a sequence of images
for visual questioning and answering and planning.

GNNs [8], [9] have been proposed to deduce scene graphs
from images [10], [11], where the entities within the scene
constitute the nodes of the graph, specifically object in-
stances. Scene graph prediction necessitates the incorporation
of relationships between these instances. [12] presented an
initial large-scale 2D scene graph dataset, while [13]–[15],
have extended the concept to generate 3D semantic scene
graph annotations within indoor and outdoor environments,
including object semantics, rooms, cameras, and the relation-
ships interconnecting these entities. [16] extends this model
to dynamic entities as humans. Furthermore, [6] does not
need any prior scene knowledge and segments instances,
their semantic attributes, and the concurrent inference of
relationships, all in real-time.

While all these frameworks run SLAM in the background,
they do not utilize the scene graph to enhance the SLAM
process. Hydra [7] focuses on real-time 3D scene graph
generation and optimization using loop closure constraints.
[17] introduces the concept of Neural Trees, H-Tree, as an
evolution from GNNs where message-passing nodes within
the graph correspond to subgraphs within the input graph,
and they are organized hierarchically, effectively enhancing
the expressive capacity of GNNs. The extension of Hydra
in [18] introduces H-Tree to enhance the characterization
of specific building areas, like kitchens. However, they do
not integrate the SLAM state with the scene graph for
simultaneous optimization.

Our prior works S-Graphs [1], [19], successfully bridged
the gap by demonstrating the potential of tightly integrating
SLAM graphs and scene graphs. S-Graphs creates a four-
layered hierarchical optimizable graph while concurrently

representing the environment as a 3D scene graph, achieving
remarkable performance even in complex settings. Further-
more, we have expanded its capabilities by hierarchically
selecting regions of the graph to optimize [20], incorporating
prior architectural information [21], visual fiducial markers
[22], or collaborative data from multiple robots [23]. It has
also been employed to formulate a navigation problem [3].
In this work, our objective is to harness the capabilities of
GNNs to enhance all these research directions by generat-
ing more reliable, versatile, and comprehensive higher-level
representations within S-Graphs.

B. Room and Wall Detection

The first step in the generation of higher-level concepts
resides in comprehending the interrelations among funda-
mental geometric entities. The identification of structural
configurations corresponding to wall surfaces which collec-
tively form rooms and walls, is crucial. Various methods have
been explored to address this challenge, encompassing the
utilization of pre-existing 2D LiDAR maps [24]–[26], the
utilization of 2D occupancy maps within complex indoor
environments [27], and pre-established 3D maps [28]–[30].
It should be noted, however, that these approaches exhibit in-
herent performance constraints and lack real-time operational
capabilities. [7] introduce a real-time room segmentation
approach designed to classify different places into rooms.
In [1], we leverage the wall surfaces contained in the S-
Graphs+ to instantaneously define rooms in real-time, while
concurrently incorporating these findings into the optimiz-
able graph. To the best of our knowledge, no analogous
methodologies exist for the automated identification of wall
entities.

III. METHODOLOGY

The pipeline of our method is illustrated in Fig. 2. First,
the low-level layer of S-graph, i.e. the mapped keyframe and
wall surface, is received, extracting only the wall surface
nodes. Then, the features of those nodes are preprocessed to
build a proximity graph and define the initial embedding of
nodes and edges, as described in Sec. III-A. Next, node and
edge embeddings are updated to infer a classification in every
edge, as presented in Sec. III-B. Later, the inferred edges
are clustered, and new nodes for the new wall and room
entities are generated, introducing along with them, a link
with the wall surface nodes, following the method proposed
in Sec. III-C. Finally, the new nodes and relationships are
integrated as the high-level layers of S-Graphs.

A. Initial Graph

Initially, raw wall surfaces in S-Graphs+ are defined as a
point cloud and a normal, which describes the observation
side. To simplify this representation, points are flattened and
assimilated to a 2D line. Subsequently, overlapping lines are
filtered out and intersecting lines are split to overcome the
issue of a unique long wall surface belonging to various
rooms. Finally, the initial node embedding v0i is defined as



Fig. 2: System Architecture. The entire process from geometric entities reception to the inclusion of new higher-level
entities to S-Graph. a) The low-level layer of S-Graph is received. b) Only nodes of interest are selected i.e. the wall
surfaces. c) A proximity graph for message passing is created amongst the nodes and the initial features of edges and nodes
are computed from incoming node definitions. d) A GNN for nodes and linear layers for edges are employed to update
embeddings via message sharing. e) Both embedding types are used to classify edges through linear layers. f) Edges are
consistently grouped. g) For each group, a new node is created and linked with the clustered nodes. h) The new semantic
nodes and links are added to the original S-Graph.

[wi, ni] where wi is the width of the wall surface and ni is
the normal from the observed side.

At this point, we have a set of clean nodes without a graph
structure. Hence, new directed edges are artificially created in
the message-passing graph by node proximity. See Fig. 2.B.
The initial embedding of those new edges, e0ij , is defined as
[cj − ci, cdij ] where cdij is the closest distance and ci is the
centroid of the ith node.

B. Embedding Update and Classification

Inspired by [6], the classification process follows an
encoder-decoder fashion. The encoder updates the node and
edge embeddings separately but interleaved using the latest
updates as in Eq. (1) and Eq. (2).
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where gv(·) and ge(·) are linear layers [31], N (i) are the
neighbors of ith node and GAT(·) is a Graph Attention
Network [8], [9]. Encoder hyperparameters are maintained
across the classification of both classes. Two layers of Eq. (1)
and Eq. (2) are used.

As opposed to encoder, decoder hyperparameters are spe-
cific to the target class. The outcome of the Encoder is passed
through a multi-layer perceptron as in Eq. (3) before the final
binary classification of a specific edge.
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where gd(·) are three linear layers and L is the last layer of
the encoder.

Algorithm 1: same room edge clustering
Input: wall surface nodes and same room edges
graph GWS

Output: Clustering as list of node lists VR

VR ← []
for li ∈NWS do

Ec ← find cycles of size l(GWS , li)
Vini ← Ec,j .nodes ∀ Ec,j ∈ Ec

Icount ← count set repetitions(Vini)
Vsort ← sort descendent(Vini, Icount)
for Vsort,j ∈ Vsort do

if all(Vsort,j /∈ VR) then
VR.append(Vsort,j)
GWS .remove(Vsort,j)

end
end

end

C. Subgraph Generation

Each set of predicted relations, same room and same
wall, follows a different clustering process to generate rooms
and walls nodes. On one hand, since wall is composed of
two wall surfaces, only one inferred same wall relation is
required to obtain a cluster of two wall surface nodes.

On the other hand, for same room relationship, the ex-
istence of cycles is leveraged to select wall surface nodes
that appear in the higher number of cycles, as explained in
Algorithm. 1. We assume all wall surface nodes forming a
same room relationship are connected through at least one
cycle. As rooms can vary in the number of wall surfaces
contained, cycles of that length are found in a descendent
order, prioritizing bigger rooms. For each length, a set of wall



(a) same room inference (b) same wall inference

Fig. 3: Training performance of our approach on our
synthetic dataset. Green lines represent edges inferred as
positive for the respective relation. Black lines represent
wall surfaces not included in a cluster. For the rest of the
entities, those with the same color are grouped in the same
cluster. Note that some wall surfaces are omited to simulate
occlusions.

surface nodes defined by the largest cycle are prioritized.
However, even though any number of wall sufraces could
be associated with a room, only sets linked to two and
four are generated, since currently, S-Graphs+ only contains
those factor types. Since the same node cannot be part of
two different rooms, every selected set of nodes is removed
from the initial graph and the process is repeated for smaller
rooms. This overcomes the issue of the existence of false
positives that may lead to the merging of wall surfaces of
two different rooms.

Finally, the newly generated nodes (rooms, walls) along
with the respective wall surface nodes are incorporated into
the Rooms layer of the optimizable S-Graph. For room nodes,
the factor already present in S-Graphs as described in [1]
is utilized. Whereas for wall nodes, the factor employed is
presented in [21].

IV. TRAINING WITH SYNTHETIC DATASET

Due to the lack of an existing tagged dataset in the
literature that provides the targeted entities and relationships,
we have developed a synthetic one focused on replicating
the common wall surface structure of usual indoor envi-
ronments. To create replicate data as similar as possible to
the observed S-Graphs+, the data is augmented with several
layers of randomization in size, position, and orientation
when creating rooms and wall surfaces. Ground truth edges
are automatically tagged as same room or same wall and
included along with negative tagged message passing edges
with the 15 closest neighbor nodes for each node. During the
training process, 800 different layouts are used for backprop-
agation during each one of the 35 epochs. Xavier uniform
initialization [32] is used for the learnable parameters. Fig. 3
shows an example of inference in this dataset after training.
After the initial training with the synthetic dataset, the
model is used on real data without further training, with no
additional tuning of parameters and the same normalization
applied.

TABLE I: Scenes description. Enumeration of all simulated
and real scenes included in the validation. Room shapes can
be squared, L-shaped, elongated or corridors.

Scene World Description

C1F1s Simulated 1 L-shaped, 1 squared rooms and 2 corridors.
C1F2s Simulated 5 squared, 2 elongated rooms and 1 corridor.
SE1s Simulated 6 squared rooms and 3 corridors.
SE2s Simulated 5 squared and 2 elongated rooms.
SE3s Simulated 22 squared rooms and 4 corridors.
C1F1r Real 1 L-shaped, 1 squared rooms and 2 corridors.
C1F2r Real 5 squared, 2 elongated rooms and 1 corridor.
C2F2r Real 7 squared, 2 L-shaped and 3 elongated rooms.
C3F2r Real 9 squared, 3 L-shaped rooms and 2 corridors.

V. EXPERIMENTAL RESULTS

A. Methodology

Our work is validated across multiple construction sites
and office spaces, both simulated and real-world scenarios,
as detailed in Tab. I and [1]. We compare it with the ad-
hoc room detection algorithm presented in S-Graphs+ [1]
which we name Free Space. Furthermore, we ablate our
method tagged as Ours (rooms only) standing for inference
without walls. VLP-16 LiDAR data is utilized across all
datasets. The example scenarios are tagged with either s or
r to differentiate simulation and real respectively.

In all the experiments, no fine-tuning of the specified net-
work hyper-parameters is applied, as the empirically chosen
ones suffice for all cases.

Simulated Data. We performed a total of five experiments
on simulated datasets denoted as C1F1s, C1F2s, SE1s, SE2s,
and SE3s. C1F1s and C1F2s are generated from the 3D
meshes of two floors of actual architectural plans, while
SE1, SE2s and SE23s simulate typical indoor environments
with varying room configurations. In order to assess the
tracking and mapping performance of our pipeline with and
without our S-Graph augmentation, our reported metrics
include Average Trajectory Error (ATE) and Map Matching
Accuracy (MMA), and the evaluations are conducted against
the ground truth provided by the simulator. Due to the
absence of odometry from robot encoders, the odometry is
solely estimated from LiDAR measurements in all simulated
experiments.

Real Dataset. We conducted four experiments in two
different construction sites. C1F1r and C1F2r are conducted
on two floors of a construction site whose plan is used in the
simulated dataset. C2F2r and C3F2r are conducted in two
other construction sites. To validate the accuracy of each
method in all real-world experiments, we report the MMA
of the estimated 3D maps in comparison to the actual 3D
map generated from the architectural plan. We employ robot
encoders for odometry estimation.



TABLE II: Absolute Trajectory Error (ATE) [m], of
S-Graph+ with different detection modules on simulated
data. Best results are boldfaced. Both of our approaches
improve the ATE of the baseline in the most complex scenes
Considering semantic relations between both walls and room
is always better or equal than only rooms.

Dataset [m ×10−2]

Module C1F1s C1F2s SE1s SE2s SE3s Avg

Free Space [1] (baseline) 2.70 6.93 1.47 1.36 2.98 3.09
Ours (rooms only) 2.72 6.58 1.55 1.57 2.23 2.93
Ours 2.71 6.35 1.54 1.56 2.23 2.88

TABLE III: Map Matching Accuracy (MMA) [m] of S-
Graphs+ with different detection modules on simulated and
real data. Best results are boldfaced. In all real scenes and
in all but one simulated, the MMA is outperformed by our
approach, including the ablated method.

Dataset [m ×10−2]

Module SE2s C1F1s C1F2s C1F1r C1F2r C2F2r C3F2r Avg

Free Space [1] 27.53 7.40 7.55 32.60 18.75 17.8 44.86 22.35
Ours (rooms only) 27.52 7.61 7.53 32.54 18.64 17.8 44.35 22.28
Ours 27.51 7.60 7.51 32.67 17.79 17.27 43.31 21.95

B. Results and Discussion

Average Trajectory Error. The ATE for the simulated
experiments is presented in Tab. II. S-Graphs+ with our
approach for room and wall detection demonstrates an im-
provement of 6.8% with respect to S-Graphs+ with Free
Space for rooms. The ablation of walls in Ours (rooms only)
shows an improvement of 5.2% even though no new entity
types are leveraged. Note that in construction sites more
complex and similar to real data, C1F1s, C1F2s and SE3,
our approach is capable of dealing better with edge cases.
See examples in Fig. 5. However, when complexity and size
decrease, Free Spaces presents a better performance.

Map Matching Accuracy. Tab. III presents the point
cloud RMSE for simulated and real experiments. S-Graphs
with our approach for room and wall detection presents an
improvement of 1.8% with respect to S-Graphs with Free
Space for rooms. In this case, the ablation of walls in Ours
(rooms only) still represents an improvement of 0.3% when
only the same entity type of the baseline is used. The results
demonstrate that, even the MMA was already low in the
baseline, in inclusion of better and new factors to S-Graphs+
still represents a notable improvement.

Precision/Recall. Fig. 4 showcases the performance on the
detection of rooms for simulated and real scenarios. Free
Space is compared with our ablated module (rooms only).
On average, precision is maintained slightly over Free Space.
Note that it is over 80% in all simulated sites and all real ones
but one. Recall average is also maintained, although both
methods experience a descent in performance. This is due

TABLE IV: Normalized precision and recall in wall detec-
tion of our approach in different simulated and real scenes.
The precision is maintained at 1.00 for every site. The recall
is over 0.75 but in one edge case in simulation.

Dataset

Metric C1F1s C1F2s SE1s SE2s SE3s Avg

Precision 1.00 1.00 1.00 1.00 1.00 1.00
Recall 0.80 1.00 0.87 0.43 0.89 0.80

C1F1r C1F2r C2F2r C3F2r Avg

Precision 1.00 1.00 1.00 1.00 1.0
Recall 0.80 0.75 0.82 0.84 0.80

to detections being heavily dependent on the layout of the
building and the GNN could not generalize properly enough
from the training dataset.

On its side, wall detection can not be compared due to the
lack of an analogous baseline. The results in the performance
are presented in Tab. IV. It is worth mentioning that precision
is maintained at 1.00 along every simulated and real scene.
Recall is over 75% in all scenes but in a simulated one. On
the contrary to rooms, the shape of all walls present a low
variability. It reduces the complexity for the generalization
increasing the performance.

(a) Simulation, precision (b) Simulation, recall

(c) Real, precision (d) Real, recall

Fig. 4: Precision and recall in room detection for Free Space
[1] (blue) and our approach (green) in 9 different simulated
and real scenes. In simulated scenes, precision and recall are
plainly improved by our method, while in real scenes there
is more variability due to the larger amount of noise.

First Detection Time. Additionally, Tab. V provides a
comprehensive overview of the time required by each module
to accomplish detection of the first room. Every experiment is
started inside the construction site, that is inside of a room.



(a) Free Space [1] in SE2s (b) Ours in SE2s

(c) Free Space [1] in SE3s (d) Ours in SE3s

(e) Free Space [1] in C1F2r (f) Ours in C1F2r

(g) Free Space [1] in C2F2r (h) Ours in C2F2r

Fig. 5: Complete final S-Graph after Free Space [1] and
Ours higher-level entity detections in real and simulated
environments. In both of the generations of our method,
the room (pink, orange and green cubes) density is higher.
Furthermore, only in our approach, wall nodes (blue cubes)
are generated. The first two examples show the performance
in simulated scenes and the last two, in real scenes. Note
the difference from our approach (right column) compared
to free space (left column) in the density of inferred rooms.
Also, note that walls are only inferred by our method.

TABLE V: First Detection Time (FDT) [s] of rooms
employing S-Graphs+ with different detection modules on
simulated and real data. Our method is substantially faster
than the baseline. Best results are boldfaced.

Dataset

Computation Time (mean) [ms]

Module C1F1s C1F2s SE1s SE2s SE3s Avg

Free Space [1] (baseline) 76.0 19.0 19.0 115.0 160.0 77.8
Ours 2.7 2.8 10.2 8.2 37.1 12.2

C1F1r C1F2r C2F2r C3F2r Avg

Free Space [1] (baseline) 19.0 25.5 367.0 308.0 179.9
Ours 1.7 2.6 54.0 210.2 67.1

Free Space is compared with our ablated module (rooms
only), demonstrating a drastic average improvement of 84.3%
in the simulated dataset and 62.7% in the real dataset. Note
that the detection time drastically decreases in all cases. This
is due to the need of Free Space to observe many points until
a cluster is inferred while our method succeeds in the first
observation half of the time.
Limitations. Although our experiments demonstrate that
the augmentation of the S-Graph with semantic relation
improves both map and trajectory estimation performance,
the training for identifying related walls and rooms is sep-
arate from these improvement goals. The exact dependency
between a better labeling performance of the GNN and the
final mapping and tracking scores is not fully explored.

VI. CONCLUSION

We presented a novel approach for the detection of rooms
and walls using Graph Neural Networks to enrich the scene
graph utilized by S-Graphs+ in the context of SLAM.
Our method unfolds in several steps: (a) Edge Inference:
Initially, we infer same room and same wall edges among
the wall surface nodes already present in S-Graphs+. (b)
Clustering: Subsequently, we process these inferred edges to
cluster nodes corresponding to each higher-level concept. (c)
Subgraph Creation: Finally, we represent these clusters in the
form of a subgraph, incorporating it into the existing factors
employed in S-Graphs+, and seamlessly integrate it into the
scene graph for optimization.

In comparison to the current algorithm used for rooms,
and given that walls are not yet automatically detected,
our approach exhibits notable enhancements in terms of
detection time, expressiveness, and generalization attributes.
Importantly, these improvements do not compromise the
performance of trajectory estimation and mapping.

In future research, our primary objective is to learn the
optimal new graph in an end-to-end manner, leveraging the
actual performance of the SLAM optimization as feedback.
This approach would generate the entire new subgraph,
factors included, as the outcome of the GNN process, thereby
obviating the necessity for manually crafted rules. We also
aim to expand the range of relations we can infer and hence
augment the node and edge types integrated into S-Graphs.
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