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Abstract—Task-oriented communication design (TOCD) has
gained significant attention from the research community due
to its numerous promising applications in domains such as
IoT and industry 4.0. This paper introduces an innovative
approach to designing scalable task-oriented quantization and
communications in cooperative multi-agent systems (MAS). Our
proposed approach leverages the TOCD framework and the
concept of the value of information (VoI) to facilitate efficient
communication of quantized observations among agents while
maximizing the average return performance of the MAS-a metric
that measures the task effectiveness of the MAS. Learning the
VoI becomes a prohibitively large computational problem as the
number of agents grows in the MAS. To address this challenge, we
present a three-step framework. First, we employ reinforcement
learning (RL) to learn the VoI for a two-agent, rather than for
the original N -agent system, reducing the computational costs
associated with obtaining the value of information. Next, we
design the quantization policy for a MAS with N agents, utilizing
the learned VoI across a range of bit-budgets. The resulting
quantization strategy for agents’ observations, ensures that more
valuable observations are communicated with greater precision.
Finally, we apply RL to learn the agents’ control policies,
while adhering to the quantization policies designed in the
previous step. Our analytical results showcase the effectiveness
of the proposed framework across a wide range of problems.
Numerical experiments demonstrate improvements in reducing
the computational complexity required for obtaining VoI by
five orders of magnitude in TOCD for MAS problems while
compromising less than 1% on the average return performance
of the MAS.

Index Terms—Task-oriented data compression/quantization,
communications for machine learning, machine learning for
communications, multiagent systems, reinforcement learning.

I. INTRODUCTION

We are witnessing a remarkable surge in applications ne-
cessitating seamless communications between machines, rep-
resenting a paradigm shift from traditional human-centred
communications. While it is reasonable to design a communi-
cation pipeline aiming at minimizing the information distortion
between the transmitting and receiving ends, communication
between machines has a different mission which cannot be
effectively captured by minimizing the traditional distortion
metrics. In fact, communications for a machine at the receiving
end are to improve the accuracy or timeliness of a computa-
tional task performed at the receiver. Moreover, the computa-
tional task of the receiving end has to abide by the limitations
coming from the side of communications, ultimately, resulting

This work is supported by European Research Council (ERC) advanced
grant 2022 (Grant agreement ID: 742648).

in a joint communication and computation design. Due to the
huge savings they offer in radio resource expenditure, joint
design of communications and computations are receiving
ever-increasing attention from the research community [1]–
[7].

A certain class of the joint design of communications
and computations is the joint communications and control
design (JCCD) [3]–[9], where the computational task car-
ried out at the receiver impacts the future observations of
the transmitting end. While some of the existing works are
focused on the JCCD problem for a single controller [6],
others address the problem for a multi-agent system [3], [4],
[7]. With a double exponential time complexity, however,
solving the joint problem for a multi-agent system proves
challenging [9]. Accordingly, some efforts are put in place
to avoid directly solving the JCCD problem while designing
task-aware communications [6], [7], [10] - meaning that the
communication policy is designed such that it is aware of the
control/computational task carried out at the receiving end.
This can be done by adopting task-dependent fidelity criteria
to design task-oriented data transmissions [5]. The framework
proposed by this paper provides insights into how to use
the value of information (VoI) as a measure to quantify the
semantic/task-relevant content of an agent’s observations in
a MAS. Interestingly, the measure of VoI that we arrive at
in this paper is similar to the one proposed by [11], with a
single difference: the proposed measure in [11], quantifies the
expected difference in the average return of the system with
and without knowing some information, whereas by VoI, here,
we refer to the expected return of the system knowing some
information1.

Motivated by the above discussions, in this paper we aim at
reducing the complexity of learning VoI from exponential time
complexity - O(cN ) with c > 1 - to constant time complexity
- O(1) - with respect to the number of agents N . We show
that a two-agent centralized training phase is sufficient to
effectively learn the VoI function - when the reward function
and observation structure follow certain conditions. Regardless
of the method used in the centralized training to compute
the VoI of an agent’s observation e.g., deep reinforcement
learning, exact reinforcement learning or dynamic program-
ming, our analytical results stay valid. According to these

1We have shown before in [7], how preserving our defined VoI in commu-
nications between agents, can maintain the performance of the MAS.



results, we propose a scalable state aggregation algorithm
for data compression (ESAIC) which can easily be applied
to MASs composed of many agents to fulfil a collaborative
task. Carrying out numerical studies on geometrical consensus
problem [12], will show that the proposed ESAIC is capable
of reducing the complexity of the centralized training for
hundreds of days - if not years - even in very simple problems,
while it maintains the average return performance of the
algorithm close to the optimality.

The remainder of this paper is organized as follows. The
problem of optimizing the performance of a cooperative MAS
for a general task under rate-constrained inter-agent communi-
cations is cast in section II. Section III proposes the extended
SAIC (ESAIC), an algorithm for the joint design of data
quantization and control which enjoys reduced computational
complexity and similar average return performance compared
with SAIC [7]. Section IV analyzes the proposed ESAIC
algorithm. Section V reports the result of the numerical
experiments. Finally, the paper is concluded in Section VI.

Notations: Random variables and their realizations are dif-
ferentiated via bold and simple font respectively. We also
use the concept of image functions in our analytical studies
which is defined as the following. Let g(·) : D → C be a
function and D′ ⊂ D be a subset of its domain. The image
function of g(·) denoted by g̈(·) : P(D) → P(C) is defined as
g̈(D′) ≜ {c ∈ C | g(d) = c , d ∈ D′}. For the sake of the
simplicity of the analysis, the arguments of the function may
be omitted when no confusion is raised, e.g., we have used
r[n](·) instead of r[n](o1, ..., on,m1, ...,mn).

II. PROBLEM STATEMENT

Let N = {1, 2, ..., N} be a multi-agent system composed of
N agents which execute a cooperative task distributedly. The
system runs on discrete time steps t. At every time step t,
each agent i ∈ N observes oi(t) ∈ Ω while the state s(t) ∈ S
of the system is defined by the vector of joint observations
s(t) ≜ [oi(t)]i∈N ∈ ΩN . Now let si(t) ∈ {Ω ∪ 0}N be
the vector of agent i’s local state, with all its elements being
equal to zero except for its i’th element which is equal to
oi(t). We assume that ∀i, j ∈ N the local states si(t) and
sj(t) are linearly independent. This is also referred to as joint
observability of the state. At the time step t each agent i’s
control is denoted by mi(t) ∈ M, and the vector of all
agents’ control by m(t) ∈ MN which is, in fact, a collection
of all agents’ controls m(t) ≜ ⟨m1(t), ...,mN (t)⟩. All of
the observation, state and action spaces Ω,S,M are discrete
sets. The dynamics of the environment are represented by an
underlying Markov Decision Process that is denoted by the
tuple M =

〈
S,MN , r(·), γ, T (·)

〉
, with r(·) : S ×MN → R

being the stage reward function, and the scalar 0 ≤ γ ≤ 1
the discount factor. Also, the function r[n](·) : Ωn → Mn is
the reward function of an MAS comprised of n agents. The
function T (·) : S ×MN × S → [0, 1] is a conditional proba-
bility mass function (PMF) which represents state transitions
such that T

(
s(t + 1),m(t), s(t)

)
= Pr

(
s(t + 1)|s(t),m(t)

)
.

The performance of the MAS is measured according to the

system’s average return defined as the summation of obtained
per-stage rewards within the time horizon T ′:

g(t
′
) =

∑T ′

t=t
′ γ

t−1r
(
s(t),m(t)

)
. (1)

Once per time step agent i ∈ N is allowed to transmit a com-
munication vector ci(t) to every other agent j ∈ N−i = N−i -
following a full mesh topology for connectivity. Conditioned
on its observation oi(t), agent i transmits a vector of com-
munication messages ci(t) = [ci,j(t)]j∈N−i

∈
∏

j∈N−i
Ci,j ,

in which the element ci,j(t) denotes the message sent by
agent i to agent j, where ci,j(t) is generated following the
communication policy πc

i,j(·) : Ω → Ci,j . The non-empty set
Ci,j is an alphabet {ci,j , c′i,j , c′′i,j , ..., c

(Bi,j−1)
i,j } composed of a

finite Bi,j number of communication code-words - we use the
same notation to refer to the different elements of the action,
observation and state spaces too. Agent i’s communications are
generated by following the tuple πc

i = ⟨πc
i,j(·)⟩j∈N−i

which is
comprised of N − 1 different communication policies. Agent
i’s communications are sent over N − 1 separate error-free
finite-rate bit pipe, with its rate constraint to be Ri,j ∈ N
(bits per channel use) or equivalently (bits per time step). As
a result, the cardinality of the communication symbol space
Ci,j for each i to j inter-agent communication link should
follow the inequality

0 ≤ Bi,j ≤ 2Ri,j . (2)

In the special case of homogeneous bit-budgets, we have
Ri,j = R,∀i, j ∈ N . Each agent i exploits a combination
of its local observation oi(t) as well as all the received
quantized messages c̃i(t) = [cj,i(t)]j∈N−i

∈
∏

j∈N−i
Cj,i

within time-step t to select the control signal mi(t) following
a deterministic control policy πm

i (·) :
∏

j∈N−i
Cj,i×Ω → M.

Accordingly, the problem we solve is detailed in Definition 1.

Definition 1. (Distributed Joint Control and Communication
Design (D-JCCD) problem). Let M be the MDP governing
the environment and the scalar Ri,j ∈ R to be the bit-budget
of each inter-agent communication channels. At any time step
t′, we aim at designing the tuple πi = ⟨πm

i (·), πc
i ⟩ to solve

the following variational dynamic programming

argmax
πi

Eπi

{
g(t′)

}
; s.t. Bi,j ≤ 2Ri,j , ∀i, j ∈ N (3)

where the expectation is taken over the
joint pmf of system’s trajectory {tr}T ′

t′ =
[o1(t

′), ..., oN (t′),m(t′), ..., o1(T
′), ..., oN (T ′),m(T ′)],

when each agent i follows the policy πi for all agents i ∈ N .

In contrast to [7], we do not characterize the performance
gap caused by the limited connectivity in the communication
network of agents. Characterizing the difference between the
performance of the MAS that runs over heterogeneous bit-
budgets and the MAS that runs over perfect communication
channels is deferred to future works. The present paper,
however, will provide numerical studies on the performance
of the proposed scheme - ESAIC - under asymmetrical com-
munication bit-budgets Ri,j .
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Figure 1. Illustration of the steps taken to design the communication policy πc
i,j(·) using SAIC and ESAIC.

III. EXTENDED STATE AGGREGATION FOR INFORMATION
COMPRESSION IN MULTIAGENT COORDINATION TASKS

In this section, we propose a straightforward extension of
SAIC [7], called Extended SAIC (ESAIC) which is capable
of drastically reducing its time complexity in the centralized
training phase to learn the VoI. While the time complexity of
the centralized training phase in SAIC grows exponentially
with respect to the number of agents, in ESAIC, it stays
constant with respect to the number of agents N - making
ESAIC more efficient than SAIC [7] and any other MARL
with a central training phase [10], [13]. ESAIC is not just a
replacement for SAIC, but introduces the more general idea
of reducing the number of agents in the MAS for the central-
ized training phase. Extended SAIC, proceeds by following
the same steps as SAIC to solve the D-JCCD problem: (i)
centralized training phase, (ii) task-oriented data compression
problem, (iii) distributed training of agents’ control policies.
The only difference is that the centralized training phase is
done with only two agents in the training phase - regardless
of the number of agents N for which we want to solve the
original D-JCCD problem (3).

A. Centralized Training Phase

We perform a centralized training phase, by solving the
centralized control problem (4) for a two-agent system, with
N ≥ 2, to obtain V ∗[2](·), π∗[2](·) following

π∗[2](·) = argmax
π(·)

Eπ

{
g(t)

}
. (4)

B. Task-oriented communication/quantization design (TOCD)

Afterwards, by solving the following task-oriented quanti-
zation problem

min
P[2]

i,j

∑2Ri,j

k=1

∑
o∈Pi,k

∣∣∣V ∗[2](oi(t) = o
)
− µ

′

k

∣∣∣, (5)

we obtain a new partition P [2]
i,j of the observation space that

leads to a different, yet effective communication/quantization
policy π

c[2]
i,j (·). K-median clustering can be used to solve the

above-mentioned problem (5). In this direction, to obtain the
quantization policy of agent i for its communication to agent j
we compute a partition P ′[2]

i,j of the set V [2]
i - where V [2]

i is the
image of Ω under the function V ∗[2](·) i.e., V [2]

i = V̈ ∗[2](Ω).
We first solve the following problem

min
P′[2]

i,j

∑2Ri,j

k=1

∑
V ∗(oi(t))∈P

′[2]
i,j,k

∣∣∣V ∗[2](oi(t))− µ
′′

k

∣∣∣. (6)

Afterwards, as shown in Figure 1, we cluster the observation
any points oi, o

′
i ∈ Ω based on their corresponding values

V ∗[2](oi), V
∗[2](o′i), and not based on their original values.

Accordingly, each agent i solves the problem (6) for Ni ≤ N
number of times where, N c

i stands for the distinct number of
bit-budgets at which agent i has to communicate with other
agents in the network.



C. Decentralized Training Phase

After obtaining the communication policies, we solve the
following distributed control design problem

argmax
πm
i

Eπi

{
g(t′)

}
, ∀i ∈ N (7)

through a distributed training phase to obtain the control
policy of each agent i, where the expectation is taken over
the MAS’s trajectory that is influenced by both the control
policy πc

i (·) and the communication/quantization policy πm
i (·)

of all agents i ∈ N . The detailed recipe of ESAIC can be
found in Algorithm 1 and its performance will be studied both
analytically and numerically in sections IV and V, respectively.

As will be shown in section IV, the number of agents in
the training phase can be reduced, regardless of the specific
method used to compute the function V ∗[2](·). Accordingly,
we conjecture that other similar (deep) reinforcement learning
algorithms can be used for a two-agent centralized training
phase to approximate the value function V ∗[2](·) - as long as
the condition of theorem 2 is met.

Algorithm 1 : ESAIC
1: Input: γ, α, c
2: Initialize all-zero Q-table Qm

i (·)← Q
m,(k−1)
i (·), for i = 1 : N

3: and all-zero Q-table Q
(
s(t),m(t)

)
.

4: Obtain π∗[2](·) & Q∗[2](·) by solving (4) using Q-learning.
5: Compute V ∗[2](oi(t)) following eq. (43) in [7], for ∀oi(t) ∈ Ω.
6: Obtain π

c[2]
i by solving the problem (5) Nc

i times, for i = 1 : N .
7: for each episode k = 1 : K do
8: Randomly initialize the observation oi(t = 1), for i = 1 : N
9: for tk = 1 : M do

10: Select ci(t) following π
c[2]
i (·), for i = 1 : N

11: Obtain message c̃i(t), for i = 1 : N
12: Update Qm

i

(
oi(t−1), c̃i(t−1),mi(t−1)

)
, for i = 1 : N

13: Select mi(t) ∈M and follow ϵ-greedy, for i = 1 : N
14: Obtain reward r

(
s(t),m(t)

)
, for i = 1 : N

15: Make a local observation oi(t), for i = 1 : N

16: tk = tk + 1
17: end
18: Compute

∑M
t=1 γ

t−1rt for the lth episode
19: update ϵ via: ϵ = −0.99k/K + 1

20: end
21: Output: Qm

i (·) and πm
i

(
mi(t)|oi(t), c̃i(t)

)
, for i = 1 : N

IV. ANALYTICAL STUDY OF ESAIC

This section provides analytical studies on the average
return performance as well as the computational complexity
of the proposed ESAIC. Due to the space limit the proof of
theorem 2 is removed and is present in the extended version
of the manuscript [14].

A. Average return performance

The main result of this subsection is to prove that by
solving the problem (5), one can obtain inter-agent com-
munication/quantization policies which are as effective as

the solutions to the problem (13) in [7]. Equivalently, one
can reduce the number of agents in the centralized training
phase and yet draw enough insights from it to design task-
oriented communication policies. The proof provided in this
section, therefore, is a testament to how rich is the value
function of a two-agent centralized training phase to indirectly
incorporate the features of the control task into the task-
oriented communication design problem (5).

Theorem 2. Let the bijection f(·) : V [2] → V [N ] be the
mapping from the value of observations for a two-agent
scenario to the N -agent. For all i, j ∈ N , the partition P [2]

i,j

proposed by ESAIC (that is obtained by solving the problem
(5)) are the same as the partition P [N ]

i,j proposed by SAIC (that
is obtained by solving the problem (13) in [7]) if

c1 : ∀k ∈ {1, . . . , Bi,j} ∃k′ ∈ {1, . . . , Bi,j} : (8)

f̈(P ′[2]
i,j,k) = P ′[N ]

i,j,k′ .

Proof. The is removed due to the space limit and is available
in the extended version of this manuscript [14]. ■

Remark 1: Following the theorem 2, all the guarantees that
are presented for the performance of SAIC are in place if
Ri,j = R ∀i, j ∈ N .

B. Computational complexity

As is discussed in [15], the computational complexity of ex-
act Q-learning is proportional to the size of state-action space.
Exact Q-learning is used in the centralized and distributed
training phases of SAIC and ESAIC. In the centralized training
phase of SAIC, the computational complexity O(|Ω×M|N )
grows exponentially with the size of MAS N . Accordingly, the
addition of each agent to the system multiplies the complexity
of the Q-learning by |Ω×M|. The complexity O(|Ω×M|2)
of the centralized training phase in ESAIC with respect to the
size of the MAS N , however, is constant time. That is, ESAIC
will always execute at the same time (or space) regardless of
the size of the MAS N .

The complexity O(|Ω × Cn−1 × M|) of the Q-learning
problem that each agent solves in SAIC, at the decentralized
training phase, also grows exponentially with the addition
of each agent to the system. Compared with the centralized
training phase, in the distributed training phase, SAIC is
much less sensitive to the addition of an agent to the system.
Although the complexity of the Q-learning at each agent i
multiplies by a constant |C| with the addition of each agent to
the system, the size of the communication space |C| is much
smaller than |Ω × M|2. In the decentralized training phase,
ESAIC follows the same complexity patterns.

2To understand why ”the size of the communication space |C| is much
smaller than |Ω × M|”, remember that we solve the problem (5) to signif-
icantly reduce the size of the communication message space C of agent i
compared with the size of its observation space Ω.



Remark: If the condition c1 of theorem 2 is met, ESAIC
offers the same performance as SAIC at a much reduced
computational cost. Accordingly, for a problem comprised of
N agents, the time complexity of SAIC is |Ω×M|N−2 times
higher than ESAIC.

V. NUMERICAL STUDIES

To evaluate our proposed method, ESAIC, in this section,
we leverage numerical experiments on a specific cooperative
task i.e., a geometric consensus problem with finite observ-
ability, called the rendezvous problem. Geometric consensus
problems are emerging in many new applications, such as
UAV/vehicle platooning, which makes them a useful appli-
cation domain for the framework proposed in this paper [12].

A rendezvous problem is a geometrical consensus problem
where the goal of a team of agents N is to simultaneously
arrive at a goal point ωT ∈ Ω, while each agent i is only
aware of its own location oi(t) ∈ Ω. We consider a square
p × p grid to be where agents move and operate and for
it to be the observation space Ω = {0, 1, ..., p2 − 1} of all
agents. As soon as the goal point is visited by one agent
(or more) an episode terminates leading to non-deterministic
time-horizons T ′. Accordingly, all state realizations which
correspond to the termination of an episode are illustrated by
ST = {⟨o1(t), ..., on(t)⟩ ∈ S | ∃i ∈ N : oi(t) ∈ ωT }.

We also define the subset ST
n′ ⊂ ST that includes all

the terminal states where only n′ agents have simultaneously
reached the goal point i.e.,

ST
n′ = {⟨o1(t), ..., on(t)⟩ ∈ S | ∀i ∈ N ′ : oi(t) ∈ ωT },

with N ′ ⊆ N being a subset of all agents and n′ = |N ′|.
Accordingly, the subset ST

N ⊂ ST is a collection of all
terminal states in which all agents have reached the goal
location. At the initial time step t = 1, the location of all
agents is randomly selected amongst the non-goal locations,
i.e., for each agent i ∈ N the initial position is selected
following a uniform distribution oi(1) ∼ U{Ω− {ωT }}.

Accordingly, given observations ⟨oi(t + 1), ..., on(t + 1)⟩
and actions ⟨m1(t + 1), ...,mn(t + 1)⟩, all agents receive a
single team reward

r
(
o1(t), ..., on(t),m1(t), ...,mn(t)

)
=


C1, if P1

C2, if P2,

0, otherwise,
(9)

where C1 < C2 and the propositions P1 and P2 are defined
as P1 : T

(
o1(t), ..., on(t),m1(t), ...,mn(t)

)
∈ ST − ST

n and
P2 : T

(
o1(t), ..., on(t),m1(t), ...,mn(t)

)
∈ ST

N . When only
a subset N ′, |N | = n′ < N of agents arrives at the target
point ωT , an episode is ended with the small reward C1

being obtained, and the large team-reward C2 >> C1 is
accrued when every agent i ∈ N simultaneously arrives at the
goal location. Naturally, this reward function demands further
coordination between agents which in turn can encourage
agents to achieve effective communication among themselves.
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Figure 2. Comparison of the obtained average return via SAIC and ESAIC
in MAS in the decentralized training phase while the condition c1 in (8) is
violated.

Moreover, each agent i follows its communication policy at
every time step t to obtain a communication ci,j(t) ∈ C =
{0, 1}Ri,j to transmit to every other agent j ∈ N−i, where
Ri,j (bits per channel use / per time step) is the fixed bit-
budget of agent i when communicating with j. By solving
the D-JCCD problem (3), we aim at maximizing the average
return of the MAS.

A. Results

ESAIC, SAIC, and centralized schemes are compared by
their average return in Fig. 2. The figure is intended to show
the applicability of the ESAIC scheme in more complex
geometric consensus environments. The size of the grid world
for this figure is 8×8, and the multi-agent system is composed
of three agents. The figure demonstrates that the performance
of ESAIC closely follows that of SAIC, with almost similar
average return performance as well as the speed of conver-
gence. The centralized scheme, which is represented by the
solid black curve, achieves optimal performance but requires
virtually twice the time required for the convergence of
ESAIC and SAIC. Fig. 2 suggests that ESAIC is a promising
approach for achieving high average return performance in
complex MASs, with similar performance to SAIC and faster
convergence time than the centralized scheme.

As discussed earlier in section IV, SAIC suffers from
prohibitively high computational complexity in its centralized
training phase. ESAIC is introduced in this paper to tackle
the issue of complexity in the centralized training phase by
designing the communication policies only according to a two-
agent centralized training. Figure 3 compares the run time
required for the implementation of the centralized training
phase in both schemes SAIC and ESAIC - both theoretically
and analytically. This figure is plotted for the grid worlds of
smaller size i.e., 3×3 across all schemes. The analytical results
reflect the explanations provided at IV-B.

To realize the end-to-end time required for the training of
both algorithms, Fig. 4 is brought. This figure illustrates the
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Figure 3. Comparison of the average time required to carry out the centralized
training phase in both algorithms SAIC and ESAIC.
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Figure 4. Comparison of the average time required to carry out end-to-end
training in both algorithms SAIC and ESAIC.

combined time required to carry out the centralized as well as
the decentralized training phase. Inter-agent communications
are considered to be Ri,j = 2 (bits per channel use) across
all agents ∀i, j ∈ N . With an increase in the number
of agents, the size of the received communication message
space Cn−1 increases exponentially leading to an increase
in the end-to-end complexity of both algorithms SAIC and
ESAIC. Nevertheless, the goal of solving the problem (5) is
to significantly reduce the size of each agent’s communication
transmission space C compared with the observation space Ω.
Accordingly, the exponential increase in the size of received
communication space has a much less pronounced impact on
the overall complexity of both algorithms. Yet, we expect
the size of the received message space Cn−1 to be another
bottleneck of SAIC that ESAIC can not solve. This bottleneck
gets more serious when the number of agents goes double
digits. The analytical results reflect the explanations provided
at IV-B.

VI. CONCLUSTION

This paper presents a novel and scalable approach for
quantifying the value/importance of the observed informa-
tion in a multi-agent system. In particular, we observe that

the computational complexity of obtaining the VoI can be
drastically reduced by gaining insights from a similar two-
agent MAS - rather than the original N -agent MAS. Yet, the
obtained measure to quantify the value of agents’ observa-
tions is sufficiently rich to help design task-effective multi-
agent communication/quantization policies. ESAIC quantized
agents’ observations such that the observations which are more
important/valuable for the cooperative control task are com-
municated at a higher precision. The result of the analytical as
well as numerical studies demonstrates a striking reduction in
the end-to-end computational complexity of the communica-
tions and control co-design. The proposed algorithm, ESAIC,
holds substantial implications for communication system de-
sign within multi-agent systems, offering promising applica-
tions across various domains including autonomous vehicles,
robotics, and wireless sensor networks.
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