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Parkinson’s Disease & higher order functional representations
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« Single gene mutations?
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Schematic representation of metabolic networks
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Generation of higher order functional features ()
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I Longitudinal analyses
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Feature selection strategies on transcriptomics data for a
Random forest predictive model of PD diagnosis
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GOBP | GOCC | CORUM |
Ft. selection N ft. cutoff GENES mean sd mean sd mean sd

DEA 0.58+0.05 0.55+0.06 054+0.03 054+0.05 057+0.05 0.55+0.04 0.55+0.06
DEA 0.59+0.06 0.58+0.06 057+0.06 054+0.07 056+0.07 0.55+0.05 0.55+0.06

DEA 0.56+0.07 0.54+0.09 0.56+0.06 0.55+0.06 0.55+0.07 - .
0.63+0.08 0.64+0.09 0.60+0.11 059+0.05 06301 0.54+0.1 0.66%0.07
Pearson COIT. 0.59+0.06 0.57+0.06 0.56+0.06 0.56+0.05 0.56+0.06 0.56+0.04 0.56+0.05
No selection 0.58+0.06 0.57+0.05 057+0.05 056+0.05 057+0.05 0.55+0.05 0.56+0.04

Table 4.1 Predictive performance for PD diagnosis measured as average cross-validated AUC + standard
deviation from gene expression data at gene and aggregated levels (mean and standard deviation) using
DEA filter, Lasso penalty, a Pearson correlation filter (0.85) and no feature selection at all on a random forest

model.

Lasso penalty obtained highest cross-validated AUC in a Random Forest model across most
transcriptomics-based datasets.



Predictive PD diagnosis with ML models on transcriptomics data

Crossvalidated AUC scores from best performing model on transcriptomics-based datasets
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Relevant features from predictive PD diagnosis

Shap values of (SD -aggregated) protein complexes (CORUM ) predictors on Logistic Regression model
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I Limitations & outlook for future analyses

X Unknown confounders

X Large variability among PD patients makes identifying common trends difficult
X Data represents late stages of the disease

®» Modelling other PD prognostic outcomes (e.g. motor dysfunction scores)
®» Use a graph representation of the data via protein-protein interactions network
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Gene expression profile as a graph signal of the molecular network
Source: Chereda, H., 2022. Explaining decisions of graph convolutional neural networks for analyses of molecular
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