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Control systems are ubiquitous and often at the core of Cyber-Physical Systems, like cars and aeroplanes.
They are implemented as embedded software that interacts in closed loop with the physical world through
sensors and actuators. As a consequence, the software cannot just be tested in isolation. To close the loop in a
testing environment and root causing failure generated by different parts of the system, executable models are
used to abstract specific components. Different testing setups can be implemented by abstracting different
elements: The most common ones are model-in-the-loop, software-in-the-loop, hardware-in-the-loop, and
real-physics-in-the-loop. In this article, we discuss the properties of these setups and the types of faults they
can expose. We develop a comprehensive case study using the Crazyflie, a drone whose software and hardware
are open source. We implement all the most common testing setups and ensure the consistent injection of
faults in each of them. We inject faults in the control system and we compare with the nominal performance
of the non-faulty software. Our results show the specific capabilities of the different setups in exposing faults.
Contrary to intuition and previous literature, we show that the setups do not belong to a strict hierarchy, and
they are best designed to maximize the differences across them rather than to be as close as possible to reality.
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1 INTRODUCTION

Control is at the core of many Cyber-Physical Systems (CPS) and pervasive in modern life [53].
Control is found in many devices, from small consumer electronics like phones to cars or space
vehicles [10, 44, 47]. Historically, control systems were built using mechanical devices, like hy-
draulic circuits [42]. Nowadays, they are built using software that interacts with the physical world
through sensors and actuators [9]. The ubiquity and criticality of software-based control systems
makes their verification and validation of primary importance [15, 67].

A controller comprises sensors, actuators, hardware and software and is used to make a physical
system behave according to given requirements [9]. The union of controller and physical compo-
nent is called “control system.” Prominent examples of control systems are the cruise control of a
car or the control of electric motors like a DC servo (a continuous current motor). In the cruise
control, the objective is to ensure that the car reaches and maintains the desired velocity [56]. To
achieve this, the control software iteratively reads the encoders attached to the wheels, computes
a control action, and actuates it by opening the throttle or pushing the brakes. In the DC servo,
the objective is to move the motor shaft to a desired position that varies over time. To reach the
desired shaft position, the control software iteratively measures its actual position and applies a
voltage to the motor to make it move. In both examples, the iteration of sensing and actuation
creates a closed loop between the physical component and the software. The two parts (controller
and physical system) are hence coupled and cannot be evaluated separately.

In control systems, the software plays a crucial role of decision-making. Depending on the appli-
cation, if this process is incorrect, then there can be dramatic consequences. Furthermore, modern
applications include high levels of digitalisation and integration. For example, the software of a car
executes several control systems in parallel (traction control, stability control, anti-lock braking
system), also together with the infotainment systems [18, 25]. This makes control software com-
plex and prone to errors. Unsurprisingly, control software requires a long and costly verification
and validation process [23].

During the verification and validation process, engineers spend most time on testing [13, 23, 73].
The main difficulty in testing a control system implementation arises from the necessity of execut-
ing the system in a closed loop. Unit testing of the individual components is clearly important, but
of limited effectiveness, and system testing is crucial [2, 45]. Given the tight coupling of compo-
nents, it can be very difficult to identify a fault location. In fact, even when only one component is
faulty, the malfunction spreads to all the components in the loop. Furthermore, the physics makes
the execution of tests non-deterministic and costly both in time and resources.

To work around the tight coupling of the system and reduce the cost of executing system tests,
it is common practice to abstract specific components and substitute them with executable mod-
els [37]. Furthermore, the use of given components’ executable models in the place of their final
implementation can enable the system verification earlier in the development cycle, according to
the availability of the different artefacts. The choice of which components to abstract defines dif-
ferent testing setups [17, 32, 72]. Said setups are called X-in-the-loop, where “X” (e.g., software or
hardware) describes which components are included as their final implementation and which com-
ponents are abstracted. To the best of the authors’ knowledge, despite being common industrial
practice, the differences in fault-finding capabilities among X-in-the-loop setups have never been
studied.

In particular, previous research started from the (often implicit) assumption that there exists
a hierarchy among the testing setups. This hierarchy is supposed to manifest itself in terms of
the testing capabilities and the coverage achieved with one or another setup. To mention some
examples, Zander et al. [72, pp. 13−14] and Perez et al. [39, pp. 2] discuss of how each testing setup
adds detail to the testing representativeness, Bringmann et al. [17, pp. 3] discusses the increasing
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level of integration of the different testing setups, and Bringmann et al. [16] and Peleska et al. [58]
discuss the re-use of test cases across testing setups and their incremental nature in approximating
the real-world behaviour. Accordingly, previous literature uses the naming “testing levels” for the
different setups, hence implying an ordering. A likely explanation of why this assumption has not
been challenged is that research on the topic is also limited by the development effort required by
the implementation of the different setups.

With the aim of filling this gap in the study of the setups differences and of enabling further
research, this article provides the following contributions:

(i) a general discussion of the testing abstractions in control systems’ testing (Section 3),
(ii) the development of four complete testing setups for a fully open source case study [1], that

enable the consistent injection of different types of faults (Section 4), and
(iii) the comparison and discussion of said setups in terms of their ability to detect different types

of software faults (Section 6).

We address the latter point by answering the following research questions:

RQ1: What are the differences between the testing abstractions with respect to their fault re-
vealing capability?

RQ2: When and why is it beneficial to have different testing setups? What are the principles to
be followed when designing the testing setups?

RQ3: What are the domain-specific characteristics of system testing for closed-loop control
software?

Our findings confute the common assumption of hierarchy among the setups. We evidence the
strengths and weaknesses in fault-finding capabilities of each setup in the verification of func-
tional properties, timing properties, and code (statement) coverage. We provide insights in the
best practices to be followed when designing the setups; more specifically, we highlight that the
difference in the testing abstractions among the setups is more relevant than the accuracy of each
of them. While the results are based on a single case study, the algorithms used—Kalman filter-
ing and Proportional Integral and Derivative (PID) control—are the most common choice in
control systems. According to an industrial survey [20], 97% of controllers worldwide are PIDs.
As a further element of general validity, we note that all control systems share significant com-
monalities in the implementation structure. This is because they all implement an iterated loop
of sensing, state estimation, control computation, and actuation. Such considerations support the
general validity of the case study.

Paper Outline. The article is organised as follows. Section 2 provides the background on the
development of control systems and defines the testing problem addressed in the article. Section 3
defines the testing setups according to their corresponding testing abstractions. Section 4 presents
the implementation of our open source case study and the choice of the injected faults. Section 5
presents the results of the test flights with the injected faults. Section 6 uses our testing results for
answering the research questions and discusses their generalisability and limitations. Section 7
and Section 8 conclude the article, presenting related work and conclusions.

2 CONTROL SYSTEMS DEVELOPMENT BACKGROUND AND PROBLEM

STATEMENT

Control systems regulate physical quantities so that they behave as desired [33]. In practice, control
software samples in real time a vector of measurements y(t) from a physical component. Control
algorithms use this information to compute the values of a vector u(t) of actuation commands.
The actuators affect the state vector x(t) of the physical component. The state vector is linked to
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the vector y(t) of measurements, creating a closed loop between the physical component and the
control algorithm. The control objective is that the state x(t) follows a vector of corresponding
reference signals r (t).

The synthesis of a control system starts with the definition of the control requirements [34], i.e.,
the description of how x(t) is expected to follow r (t). The most basic and common control require-
ments are as follows: (i) stability (the system eventually converges to an equilibrium point), (ii) set–
point tracking (constraining the difference between x(t) and r (t)), and (iii) settling time (constrain-
ing the time needed for x(t) and r (t) to be sufficiently close).

As a practical example, we cast these requirements into a concrete control system: DC servo
control. In DC servo control, we want to regulate the motor shaft position, p(t), measured in de-
grees deg. Stability requires that the shaft position eventually reaches a constant value, formally
defined as limt→∞ p(t) = p̄, where p̄ is finite. Set-point tracking may be specified as the absolute
value of the difference between p̄ and r (t) is not greater than 2◦, |p̄ − r (t) | ≤ 2◦. The settling time
requirement may impose a maximum of 10 s to bring motor shaft position from 50◦ to 70◦: given
v(t0) = 50◦ and r (tx ) = 70◦ for tx ∈ (t0, t], then v(t) ∈ [68◦, 72◦]∀t ≥ t0 + 10 s .

The next step in the development is the synthesis of a physical component model—usually a set
of nonlinear differential equations. For the DC servo, these equations describe the shaft movements
in response to the voltage changes. Models are derived using first principles (from physics), data-
driven methods, or a combination of the two [8].

Given the requirements and the model, the control engineer, together with application-domain-
specific engineers (e.g., electrical engineers in the case of the DC servo), chooses which quantities
must be measured and actuated, i.e., the sensors and actuators that have to be installed on the
physical component. This defines the measurements and actuation signals available to the control
algorithm. In the DC servo example, possible choices are an encoder mounted on the shaft to
measure its angle and the voltage applied to the main electrical circuit that generates the torque.

Given a model, sensors, and actuators, control theory provides different classes of algorithms
and design methodologies to synthesise a controller that fulfils a priori the specified require-
ments [34]. Examples of such algorithms and methodologies are PID controllers or state-feedback
and frequency-domain design or Linear-Quadratic Regulator control.

Independently of the application, the vast majority of control design methods specify the con-
troller as a set of differential (in continuous-time) or difference (in discrete-time) equations. To
handle discrete inputs, like user commands and operation mode switches, this equation-based
controller is complemented with a high-level discrete-state controller, usually specified as a state-
machine [31, 52]. Continuing with the DC servo example, the low-level equation-based controller
is responsible for using the encoders measurements to actuate the voltage. The high-level discrete-
state controller instead handles the control engagement and disengagement and other discrete
inputs, e.g., user commands. Hence, the complete controller specification is a combination of a
state-machine and equations.

State-machines and differential equations are ideal mathematical objects: their implementation
on discrete computers requires approximation. For example discretisation of continuous equa-
tions and practical definition of transition signals. Finally, the code of the controller is imple-
mented and executed on hardware, closing the loop around the physical component. In our exam-
ple, the DC servo control algorithm is translated into code, compiled and flashed onto the motor
microcontroller.

The correctness of control software implementations and the satisfaction of requirements
depends not only on the code, but also on all the other components in the loop. For example,
the resolutions of digital to analog and analog to digital converters, the sensors’ noise and the
actuators’ performance play a fundamental role in the achieved performance. Different errors in
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Fig. 1. Step responses of the DC servo motor of the motivating example. The plots show how the control sys-

tem makes the angular position of the motor (the blue line) follow the reference (the black line). The orange

line shows the voltage actuated to the motor. The plot on the left-hand side shows the system performance

with the correct implementation of the control system. The central plot shows the system performance in

presence of a software fault in a matrix-vector multiplication. The plot on the right-hand side shows the

system performance in presence of a hardware fault that causes incorrect timing of the software execution.

the development can affect the satisfaction of the requirements. After the requirements definition,
there could be errors like the following: (i) using modelling assumptions that are not consistent
with the physical component or are not detailed enough for the control problem; (ii) faulty design
of the controller, either in the choice of control type or of control parameters; (iii) software faults;
and (iv) issues with the physical component.

When failures appear in the control system, the co-dependant implementation and the interde-

pendence of the different components make it difficult to single out the specific fault that is causing

the problem [11, 55]. To identify the source of the problems, engineers use different testing setups
that abstract different system components. In this way, they can expose the responsibility of the
different parts.

At this stage, the testing objective is to verify that the implemented system fulfils the control
requirements stated at the beginning of the control system design process. This is done by feeding
the system with a sequence of reference values r (t) (the test inputs) and evaluating the require-
ments over the output traces y(t). The most common practice for verifying control properties is to
look at step responses, as those allow the direct verification of stability, tracking, and settling time
properties [8]. We show how this is common control engineering practice with an example. Fur-
thermore, we use the example to showcase the difficulty of root causing failures in control systems
implementations.

Motivating Example. We consider the implementation of the control of a DC servo motor where
the objective is to move the rotating motor to reach a desired angle.1 In our example, the reference
r is the desired angle, the output y is the measured angle, and the control action u is the voltage
fed to the motor. We use the Simulink2 simulation environment for simulating the motor’s physics,
the encoder’s quantization, and the pulse-width-modulation that implements the digital-to-analog
conversion. For the implementation of the control algorithm, we leverage the possibility of
incorporating custom C code in the Simulink environment and consider a fixed-point implemen-
tation of the controller.

1Such systems are also commonly known as servo systems.
2https://www.mathworks.com/products/simulink.html
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We perform three different step response tests, one with the correct system implementation
and two with different types of faults. The first injected fault is an incorrect implementation of the
state estimator of the controller: More specifically, a matrix-vector multiplication is altered. This
emulates an error by the software developer at the time of implementing the control algorithm as C
code. The second injected fault is incorrect timing of the control algorithm execution: more specif-
ically, the software is executed every 0.06[s] instead of 0.05[s]. This emulates a fault introduced by
the hardware engineer when designing or configuring the hardware platform. We show the results
of the three tests in Figure 1. In the plots, the black lines represent the reference values that we ask
the physical system to follow. The controller then performs a sequence of steps for the physical
quantities to meet their reference values. The blue lines show the actual angular position of the
motor, i.e., the quantity that we are trying to control. The orange line in the lower plots are the
voltages fed to the motor, i.e., the control signal.

Step responses allow us to directly verify the main requirements of the control algorithm [8]. We
observe that the system is stable in each test, meaning that the blue and orange lines do not diverge.
Also, the controller achieves reference tracking, as the output eventually (i.e., after a transient phase)
converges to its reference value (blue and black lines). We also observe that it takes approximately
1 second (in the test with the correct implementation) for the blue line to reach the black line after
a step change. This is the settling time and measures the (reaction) speed of the control system.
Finally, we observe that the faulty tests show significant oscillations after the step changes in the
reference. This is apparently undesirable behaviour and exposes the presence of a fault.

The oscillations in the two faulty tests are similar and there is no way to state, on the based
solely on these tests, which is the root cause of the faulty behaviour, i.e., whether it results from
the software fault or the hardware. However, an extra test that includes the software implemen-
tation of the control algorithm, but not the hardware, would enable the distinction between the
two scenarios. If the test does not show the oscillations, then the fault has to be in the hardware,
because the hardware is abstracted in the testing setup. Differently, if the extra test also shows the
oscillations, then we would be able to exclude the hardware from the possible causes and conclude
that the fault is in the software. This conclusion can be drawn, because the hardware is abstracted

in one of the setups. In other words, this extra test would show the undesired oscillations only
if the fault is in the software but not if it is in the hardware, thus enabling the distinction of the
responsibility for the faulty behaviour.

This example shows two things: First, it shows how the step response can be used to verify
the main control requirements. Second, it shows that the use of different testing setups helps root
causing of failures in control systems. However, this is possible only if there is a thorough under-
standing of what the different abstractions of the different setups are. Furthermore, implementing
a setup, and executing the corresponding tests, comes with costs, hence the choice of how many
and which setups to consider in a given application should be optimised. In this article, we set out
to investigate what are the different abstractions involved in the common testing setups used in
control systems and evaluate what implications they have in the fault-finding process. This will
help engineers in the design of their testing infrastructure for CPSs. In the next section, we define
and describe the most common testing setups for control systems and the related design choices
that practitioners have to make [17, 32].

3 TESTING ABSTRACTIONS

Section 2 showed the multi disciplinary nature of control systems. As a consequence, system-level

testing is of fundamental importance. As shown in our motivating example, it allows the engineers
to establish the different responsibilities during the development process. Accordingly, it is one of
the main activities software engineers perform in this context [23].
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Fig. 2. Testing setups for different testing levels. Dashed lines indicate that the corresponding component is

simulated, while solid lines denote the component execution. Notation: c (external commands), u (actuation

signals), y (measured signals), (actuators), and (sensors).

Table 1. Abstractions for System-level Testing of Control Systems

Setup
Name

C H R
Underlying Assumptions

MIL (i) physical component model is accurate, (ii) controller model
corresponds to implementation

SIL (i) physical component model is accurate, (ii) hardware model
captures the relevant properties (e.g., timing and instruction set)

HIL (i) physical component model is accurate, (ii) execution of in-
put/output
hardware peripherals is not affected

RIL —
Comparison among: Model in the Loop (MIL), Software in the Loop (SIL), Hardware in the Loop (HIL) and
Real-Physics in the Loop (RIL). The setup comprises controller code (C), hardware (H) and real physical

component (R); indicates that a component is simulated, that its real instance is used.

The overall structure of a CPS control system is usually represented with a block diagram sim-
ilar to the ones shown in Figure 2. A cyber controller block is connected to a physical component

block to form the closed loop. The system has three main components: (i) the physical compo-
nent, (ii) the software implementing the control algorithm, and (iii) the hardware executing the
software. The interaction between the controller and the physical component happens through
actuators and sensors. The controller can also receive inputs from other software components or
from human operators. In the DC servo control example, the hardware is a control unit (usually a
microcontroller) and the software is the code executed by the control unit, implementing the con-
trol algorithm. The external inputs are the commands received from the driver (e.g., engagement
and disengagement commands, and the desired shaft angle).

Potentially, components can be abstracted, i.e., substituted with simulation models, so that the
other components can be tested in isolation. Abstracting one or more components defines a testing
setup [72]. When a component is abstracted, it is important that its simulation model and interac-
tion with the other components are representative of the actual implementation. In other words,
for an abstracted system-level testing setup to be effective, there are associated assumptions that have

to hold; these assumptions concern the validity of the models, their implementation, and their inter-

action. Figure 2 provides a graphical representation of the closed loop for each testing setup: The
dashed blocks are emulated and solid ones are implemented. Table 1 summarises the main testing
setups and their fundamental assumptions.
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To abstract a component, a corresponding executable model has to be provided. The control
synthesis phase produces executable models for both the control law and the physical component.
On top of these, in this article we consider leveraging a hardware emulator.3 In the following
sections we discuss possible implementation choices for each setup and the consequent testing
abstractions, i.e., the set of assumptions that have to hold for the testing setup to be effective in
detecting faults.

3.1 Model in the Loop (MIL)

At the model-in-the-loop (MIL) abstraction level, all components of the system are simulated
through models, as shown in Figure 2-MIL. The execution of said models requires a dedicated simu-
lation environment. During the system development, MIL testing is performed in two ways: during
the control design and as part of the system testing (so-called model-testing [15]). For control de-
sign, the control engineer develops an executable model of the physical component, represented
in Figure 2-MIL by the function f , and a control law д, that uses measurement signals and con-
trol commands to compute the actuation signals. The models are defined as differential equations,
difference equations, and state machines [34], and they can be implemented using common sim-
ulation software, like MATLAB4 or Modelica.5 In this way, the closed loop is tested to verify that
the algorithm meets the expected performances and can be used to fine-tune the parameters [69].

Testing Abstractions. MIL testing is completely simulation based, and hence it fully relies on
modelling assumptions. These can be divided in two categories depending on what they concern:

(i) Physical component-related assumptions that concern the differences between the model
of the physical component and its actual physical realization. More specifically, such as-
sumptions relate to the physical model being an adequate representation of the physical
component.

(ii) Controller-related assumptions that concern the differences between the control algorithm
model and its implementation. More specifically, such assumptions relate to the software
and hardware being a consistent implementation of the control algorithm.

Examples of assumptions on the physical component are as follows: neglected dynamics (like
friction in the shaft movement), modelling approximations (like linearisation of nonlinear models),
and neglected phenomena (like friction and road surface variability). Control theory provides met-
rics and rules-of-thumb to quantify the robustness of a control algorithm to non-ideal behaviour.
However, these metrics also rely on assumptions and hence need verification.

Examples of controller-related assumptions are ideal timing (instantaneous execution) and infi-
nite numerical precision. Moreover, not necessarily all of the required control features are imple-
mented at this level. For example, a controller with different modes of operation may benefit (in
terms of simplicity) from these modes being implemented and verified individually, neglecting the
mode switching. The DC servo example, might include controllers that set the shaft position or
controllers that instead make the shaft rotate at a desired speed. If this is the case, then the mode
switching code has to be tested in other setups.

3.2 Software in the Loop

In the software-in-the-loop (SIL) setup (Figure 2-SIL), we include the actual software implemen-
tation, while hardware and physical component are still abstracted. The physical component is

3Apparently, such emulator is not always available and requires a development effort. This has to be considered during the
design of the testing process and infrastructure.
4https://www.mathworks.com/products/matlab.html
5https://modelica.org/modelicalanguage.html
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implemented using models that are similar to (or the same as) the ones used for MIL testing.6 On
the hardware side, different choices are viable, from simulating only a few hardware components—
like for example in our motivating example where we emulated the encoder and the pulse width
modulation—to completing cycle-accurate hardware emulation. A simple alternative is to test the
code in a general-purpose machine. The code is then compiled for and executed on a machine dif-
ferent from the target one, hence abstracting the hardware and the execution environment. Under
the associated assumptions, this enables testing of the functional component of the software, i.e., if
the control law д is implemented correctly. However, other non-functional properties (e.g., execu-
tion time) cannot be verified, since they relate to system components that are abstracted. A more
detailed alternative is hardware emulation: Tools like gem57 and Renode8 can provide a higher
degree of testing significance. Such a solution is often preferred in embedded systems (hence in
control systems as well) given the strong coupling between hardware and software. In this way,
the software is compiled for the target hardware. Among other things, hardware emulation en-
ables the testing of the interaction with the Real-Time Operating System (RTOS) and possibly
low-level software routines that interface with the sensor and actuator peripherals [6].

Testing Abstractions. In SIL, the testing abstractions can still be divided into two sets: The
first set is equivalent to MIL and relates to the physical component modelling, which needs to
be accurate. The second set of abstractions is related to the environment in which the software is
executed, varying significantly according to the specific choices made for the hardware abstraction.
In general, these require that execution environment is representative of the actual one. Such
abstractions mainly include the following:

(i) software environment (meaning the interaction with other software components: For exam-
ple the RTOS if the code is executed on machine other than the target one),

(ii) hardware (e.g., support for floating point arithmetic [35]),
(iii) time modelling (the timing of the software execution has to be consistent with the physics

simulation and possibly with other events, like user commands), and
(iv) input and output definitions (measurement and actuation signals are representative of the

real ones, e.g., with respect to measurement units).

3.3 Hardware in the Loop

The hardware-in-the-loop (HIL) setup includes the target hardware in the testing process, as
shown in Figure 2-HIL. The control software is now executed on the target computing platform,
e.g., the microcontroller DC servo example, and the model of the physical component is simulated
on a different machine. The actuation signals produced by the software are extracted and fed to
the physics simulator, while synthetic sensor readings from the simulator are fed to the hardware.
The main design choices for this setup concern (i) the level at which the measurements and actu-
ation signals are redirected (ii) and the synchronisation between the controller execution and the
physical component. For the first item, options range from using a debug port and accessing the
memory registers of interest to manipulating the software so that it interacts with the simulator
instead of the actual peripherals. If signals are intercepted at lower levels, then more details will be

6Here, models might need refinement. In the DC servo example, during the control design process, the engineer might
assume direct control over the shaft acceleration. In the SIL setup, on the contrary, the simulation needs to include the fact
that the actuation signal is the voltage command sent to a digital-to-analog converter that uses pulse-width modulation to
generate an analog voltage signal.
7http://www.gem5.org
8https://renode.io
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Fig. 3. Crazyflie 2.1 with the STM debugger link.

required for the model simulation. For example, in the DC servo example, position readings might
have to be scaled to the encoder resolution instead of being in the physical units of measure. As an
alternative, dedicated testing hardware can be developed so that it interfaces with the simulator at
the physical connection level (i.e., I/O pins) instead of requiring that the software is redirected. This
allows better coverage of the low-level firmware. Concerning the time synchronisation, the testing
setup must ensure the consistency of time between the target hardware and the simulated physics;
this can be done by performing the physics simulation and the I/O operations in real time. Such a
solution is, however, difficult to realise [33], and explicit synchronisation points might be needed,
e.g., every millisecond the hardware is halted, then outputs are read, the physics is simulated, and
sensor values are written before execution is resumed.

Testing Abstractions. Apparently, also the HIL setup includes the abstractions associated to
the modelling of the physical component. The two sets of design choices mentioned above are
associated to respective testing abstractions. Intercepting the actuation and sensor signals at a
higher level will possibly exclude more of the software that handles said signals in the control
system. Consequently, this software is abstracted from the testing, and assumptions have to be
made about its behaviour. Analogously, the chosen synchronisation mechanism (if a real-time
simulation is not implemented) can abstract timing phenomena from the test. For example, if the
controller and physical simulator are synchronised every millisecond, then events that happen at
a higher rate are abstracted. To summarize, the HIL testing abstractions concern

(i) the input–output interactions of the hardware with the physical world and
(ii) the consistent evolution of computational time in the hardware and the evolution of time in

the physical component.

3.4 Real-Physics in the Loop (RIL)

In the Real-Physics in the Loop (RIL) setup the actual physical component is included in the
closed loop; therefore the full implementation of the CPS can be used and there are no testing
abstractions. Extra sensors could be installed on the physical component, and prototypes might be
used in place of production models: Such solutions are highly application dependent and therefore
excluded from this discussion. Once this aspect is excluded, the RIL testing effectiveness is mostly
dependant on the choice of the test cases and their evaluation (which is apparently also important
in the other setups). However, in this work we focus on the design of the setups rather than of the
test case generation and evaluation.
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4 EXPERIMENTAL SETUP

In this section, we present our case study to empirically investigate the differences between the
testing setups described in Section 3. We developed and implemented the MIL, SIL, HIL, and RIL
testing setups for the Crazyflie 2.1 quadcopter,9 developed by Bitcraze10 shown in Figure 3.

We developed the setups with the objective of allowing the consistent injection of the software

faults across the setups. We did so by allowing only modifications strictly necessary to the setup
implementation in the drone software when implementing the different setups. We provide a de-
tailed report on the modifications and the setup design choices behind them. This is crucial to
avoid biases in the study caused by the differences in the fault implementations and to assess the
general validity of the results.

With the different setups, we first run the control software. We then inject faults in it and
run tests in each abstraction configuration. We inject faults in the implementation of the control
software—hence in the SIL, HIL, and RIL setups. The MIL setup abstracts the software implemen-
tation of the control algorithm, and therefore software faults cannot appear in it. For debugging
purposes (e.g., to reproduce a failure in a simulated environment), practitioners might still want
to reproduce some software faults in the MIL setup. Since it was possible to only reproduce 4 of
the 10 faults used in this article, we did not consider them sufficient to compare the fault-revealing
capabilities of this setup with the others. Hence, we focus the experimental campaign on the SIL,
HIL, and RIL setups.11 We finally compare both quantitatively and qualitatively the tests results to
evaluate the different fault-revealing capabilities of the setups.

This section is organised as follows. In Section 4.1 we motivate the choice of the Crazyflie and
provide the relevant background information.12 In Section 4.2, we describe our implementation of
the testing setups. We then describe the results of test flights with nominal software in Section 4.3,
and finally we discuss choices for the faults to inject in the software in Section 4.4. A repository
accompanies the submission [1], providing the code we developed for the testing setups, documen-
tation to reproduce all of the tests (including the ones that require the Crazyflie hardware, i.e., HIL
and RIL), but also pre-recorded flight data and detailed plots for each of the tests.

4.1 Crazyflie Quadcopter

The choice of the Crazyflie case study is motivated by two main reasons. First, the control system
of the quadcopter is both not trivial and based on the most used control algorithms, making it
a practically relevant case study. In fact, the Crazyflie is known to the research community; it
is used for both education and research, e.g., quadcopter control design [19], swarm robotics [5,
30, 46], and distributed [68] and robust control [51]. Second, both the Crazyflie software13 and
hardware14 are completely open source. We therefore have complete knowledge about the design
of the system, which allows us to build a testing infrastructure for all the MIL, SIL, HIL, and RIL
setups. In particular, using the open source hardware specification, we can build the hardware
emulator for the SIL testing. The use of the hardware emulator allows us to run the same binaries
in the different setups, hence ensuring the consistent injection of faults in each of them. Similarly,
we use the open source code for both SIL and HIL testing. To ensure reproducibility of the results

9https://www.bitcraze.io/products/crazyflie-2-1/
10https://www.bitcraze.io/
11In the associated repository, we provide test results for the faults that we were able to reproduce in the MIL setup:
https://github.com/ManCla/testing-abstractions/tree/main/testing-frameworks/mitl/pdf.
12For the sake of reproducibility, in this work we refer to the Crazyflie software at commit 23e9b80c available at https:
//github.com/bitcraze/crazyflie-firmware/commit/23e9b80caa9137d2953ae6dce57507fda1b05a8c.
13https://github.com/bitcraze/crazyflie-firmware
14https://github.com/bitcraze/hardware
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and make the artefact available to the research community for further investigation we used only
open source tools for the implementation of the infrastructure needed in the different setups.

In this work, we consider a Crazyflie equipped with an Inertial Measurement Unit (IMU)

sensor, a camera for optical flow, and a vertical laser ranging sensor.15 The vertical laser provides a
direct measure of the distance from the ground, while the combination of optical flow and IMU data
allows the drone to estimate the horizontal speed. Such setup is very common in drones, a notable
example being the NASA Ingenuity drone flying on Mars [60]. Furthermore, this setup does not
require external measurements systems (like the lighthouse positioning system16), making it more
portable.

As discussed in Section 2, the controller of the drone is constituted of two main components: one
high-level discrete controller and one lower-level continuous controller. The high-level discrete
controller17 mainly handles the external user inputs and generates reference signals r (t) for the
low-level controller. The low-level controller combines a state estimator and a feedback controller.

In the repository associated to the submission we provide a detailed report on the control design
of the Crazyflie.18 Here, we limit ourselves to the discussion of the main quantities involved, since
those are needed for interpreting the results of the tests. The state estimator uses sensor readings
to estimate the state x(t) of the drone in real time, producing the estimated value x̂(t). The state
vector x(t) = [p(t) ,v(t) ,q(t) ,ω(t)] ∈ R13 includes the drone position p(t) ∈ R3, the drone velocity
v(t) ∈ R3, the attitude q(t) ∈ R4, and the attitude rateω(t) ∈ R3. Figure 3 shows the axes definition
for p. The attitude q is expressed using quaternions19 and encodes the three angles: pitch (rotation
θ around the y-axis), roll (rotation ϕ around the x-axis), and yaw (rotation ψ around the z-axis).
The feedback controller uses the estimated state x̂(t) together with the reference values r (t) to
compute the voltage signals to be issued to the motors M1, M2, M3, and M4 illustrated in Figure 3.

When flying with optical flow data, the state estimator is implemented as an Extended Kalman
Filter [49, 50], while the feedback controller is a set of cascaded PID controllers [7]. The setup with
state estimator and feedback controller is standard in control theory and found in most control sys-
tems. The control design process provides equations used to model the quadcopter and equations
to describe the estimator and the controller [22, 26]. Such equations can be found in our technical
report.

4.2 Crazyflie Testing Setups

This section discusses our implementation of the testing setups for the Crazyflie. In every setup,
we use the same simulator of the physical component, so that the tests expose only differences in
the control algorithm executions and the associated testing abstractions.20 The testing setups of
SIL, HIL, and RIL require changes in the Crazyflie software, for which we provide patch files and
application instructions [1].

MIL. We implemented in Python a physical model to describe the Crazyflie and its controller [26].
We use the SciPy module21 to integrate the differential equations describing the physics. In
MIL, several aspects are abstracted with respect to the software implementation of the con-

15https://www.bitcraze.io/products/flow-deck-v2/
16https://www.bitcraze.io/documentation/system/positioning/ligthouse-positioning-system/
17https://www.bitcraze.io/2020/05/the-commander-framework/
18https://github.com/ManCla/testing-abstractions/blob/main/Technical_Report.pdf
19Quaternions are a four-dimensional extension of complex numbers, and a very convenient tool to represent rotations in
the three-dimensional space.
20Investigating the use of different models for the physics is a very interesting research problem, but it is out of the scope
of this work.
21https://docs.scipy.org/doc/scipy/tutorial/integrate.html
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troller. Some examples are (i) the computation of the matrix exponential is performed using the
NumPy22 linear-algebra library, while, in the real Crazyflie software, the calculation is approxi-
mated; (ii) each floating point variable has double precision, while the firmware uses single-word
floats; and (iii) our model implementation is single threaded, while in the software the algorithm is
distributed over different threads. The physics model is based on first principles; however, it also
abstracts different phenomena. Some examples are (i) the flexibility of the structure of the drone
is abstracted (hence assumed infinitely rigid), (ii) the dynamics of the electric motors is abstracted
(the relation between the voltage fed to the motors and the vertical thrust is assumed quadratic),
and (iii) the differences between the two horizontal axes are abstracted (the drone is assumed
symmetric).

SIL. In our SIL setup, we rely on the open source hardware emulator Renode. Bitcraze maintains
its own fork of Renode23 and of the Renode-Infrastructure,24 which contains the emulators of
the hardware peripherals. We implemented the platform emulator, which is able to execute the
binaries as they are compiled for the target hardware. We also implemented the infrastructure
to allow communication between Renode and our simulator of the physics. Said infrastructure
leverages the possibility of exposing, along with a Renode emulation, an OpenOCD25 interface.
OpenOCD is an interface used for debugging of embedded devices. It exposes a Telnet port
through which it is possible to read and write to specific memory addresses or insert breakpoints.
Some changes were required in the software to interface with the physic simulator: (i) in the Flow
deck driver, the low-level interaction with the camera is disabled; (ii) in the Z-ranger driver, the
low-level interaction with the ranging sensor is disabled; (iii) in the motor driver, no output is
written to the motors; (iv) in the IMU driver, the sensors calibration is skipped; (v) in the Kalman
filter, a division by zero check has been added; and (vi) debug variables are added in mm_flow.c
and mm_tof.c. For the interested reader, the exact changes can be found in the patch file. When
compiling the code, our changes are triggered by defining the preprocessor macro SOFTWARE_IN_
THE_LOOP.

The most frequent interaction with the physics is the sampling of the IMU sensors, which hap-
pens every 1 ms. This periodic event is triggered by the IMU itself which sends an interrupt to the
CPU. In our SIL setup, we use a Python script to iteratively (i) simulate the physics for 1 ms, (ii) feed
the synthetic sensor data to the hardware emulator, (iii) trigger the sensor interrupt, and (iv) run
the emulator. We empirically observed that the virtual time in the emulator is dilated. More specif-
ically, the 1-ms software tick of the RTOS does not always increase when the emulator is issued
to run for 1 ms. For this reason, at each iteration our script checks whether the software tick has
increased and runs the emulator until the tick increases. This check suffices to keep the simulated
physic time and the RTOS time synchronised, at least to the resolution at which the sensors are
sampled. Differences from execution on the real platform can still happen in other tasks that are
timed on something else than the RTOS tick.

To summarise, our SIL setup for the Crazyflie is based on the following assumptions and
abstractions:

(i) the physical model is representative of the physical component and of the sensors,
(ii) the emulator of the CPU is accurate,

(iii) the synchronisation between the physical model and the emulator is representative of the
actual interaction, and

22https://numpy.org/doc/stable/reference/routines.linalg.html
23https://github.com/bitcraze/renode/tree/crazyflie
24https://github.com/bitcraze/renode-infrastructure/tree/crazyflie
25http://openocd.org/
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(iv) the hardware of the Flow deck is not emulated.

HIL. In our HIL setup, we chose not to use dedicated hardware, as it is not necessary to be able
to consistently inject bugs across the setups. Hence, we used the normal hardware as it is sold by
Bitcraze. To enable low-level access to the hardware, we used the debugger link ST-LINK/V2,26 also
depicted in Figure 3. We used OpenOCD, the interface introduced in the SIL setup, to communicate
with the debugger and communicate with the CPU. We introduced the following changes in the
software to interface with the physics simulator: (i) In the Flow deck driver, the low-level interac-
tion with the camera for optical flow is disabled; (ii) in the Z-ranger driver, the low-level interaction
with the laser ranging sensor is disabled; (iii) in the motor actuation, no output is written to the
motors; (iv) the IMU sensor is never read; (v) the sensor thread is timed on the RTOS ticks instead
of the external IMU interrupt; (vi) in the Kalman filter implementation, a check for division by zero
has been added; (vii) debug variables are added in the files mm_flow.c and mm_tof.c; and (viii) two
assert statements in uart_syslink.c are skippeed.27 These changes are introduced with the pro-
vided patch file and triggered by defining the preprocessor macro HARDWARE_IN_THE_LOOP.

To synchronise the hardware with the physics simulator, we issue a breakpoint when the IMU
sensor is read. When the breakpoint is hit, our Python script performs the following operations:
(i) Read the motor values, (ii) simulate 1 ms in the physics, (iii) feed the sensor readings to the CPU,
and (iv) issue the CPU to resume execution.

To summarise, our HIL setup for the Crazyflie is based on the following assumptions and
abstractions:

(i) the physical model is representative of the physical component and of the sensors,
(ii) the synchronisation between the physical model and the emulator is representative of the

actual interaction (in a different way compared to the SIL abstraction),
(iii) the IMU interrupt is not used, and
(iv) the hardware of the IMU sensors and of the Flow deck is not executed in the same way as

in normal flight.

RIL. Finally, our RIL testing setup consists of running the Crazyflie with its nominal software.
We use the Micro SD card deck to log flight data.28 When compiling the code, the changes needed
for the logging are triggered by defining the preprocessor macro PROCESS_IN_THE_LOOP. Our MIL,
SIL, and HIL setups are deterministic, meaning that, when executed twice with the same inputs
they will generate the same output. Instead, the RIL setup is not deterministic, because of the
uncertainties related to the physical part of the system. For this reason, we performed 30 test
flights in RIL with the nominal software to assess the repeatability of the RIL experiments.

4.3 Nominal Software

We now describe the test flights, using the MIL, SIL, HIL, and RIL setups. Initially, we discuss MIL
tests results. We then introduce the implementation of the control software in its nominal state (as
released by Bitcraze).

Figure 4 shows plots of flight with the software as released by Bitcraze in our different setups.
The flight sequence consists of a take-off phase from t = 0 to t = 2 where the drone is given the time
to follow the altitude reference step to rz = 0.5. Afterwards, we issue the setpoint step change in
the x direction, rx (2) = 0.2, followed at time t = 6 by a setpoint step change in both the x and they

26https://www.st.com/en/development-tools/st-link-v2.html
27The assert statements are related to the communication with the onboard microcontroller. In HIL they might be triggered
and halt the CPU, because the breakpoint interferes with the communication.
28https://store.bitcraze.io/products/sd-card-deck
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Fig. 4. Nominal flight tests in the MIL, SIL, HIL, and RIL setups. For each axis x , y, and z, the solid coloured

lines show the drone’s true position (when available). The black lines show the step references. The dashed

lines show the position as estimated by the drone control software. For the 30 repeated RIL flights, at each

time point, the dashed lines show the average over the 26 successful flights of the estimated state. Further-

more, the shades show the area between the maximum and minimum value measured at each time step.

directions, rx (6) = 0.0 and ry (6) = 0.2. As mentioned in Section 2, those step responses expose the
main properties of a control algorithm thanks to their broad frequency spectrum [8]. We chose
such step values to minimise the likelihood of RIL tests failing just because of sensor noise. In
fact, the optical flow from the the camera, and the vertical readings from the laser ranging sensor,
deteriorate with higher altitudes and larger movements. Therefore, larger values would introduce
tests failing just because of sensor noise circumstantial to that specific execution (instead of being
related to the injected faults). Furthermore, a recent article on the automatic detection of software
faults in CPSs showed that the majority (in the case of said paper 80%) of control-related software
faults appear in normal operation nor they need specific environmental conditions (and therefore
trajectories) to be exposed [66]. Apparently, exhaustive testing of the controller implementation
requires more tests, and test case generation for CPSs is an active research topic [72]. In this work,
we focus on the differences among the testing setups rather than how to achieve exhaustive testing.

In the figure, the three top-left plots show the position of the quadcopter in the x ,y, z coordinates
in the MIL setup.29 For each plot we include three lines as follows:

29More comprehensive plots for all the nominal and faulty test scenarios can be found in the associated repository [1].
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• The dark solid line is the desired position r that the drone is expected to reach at every time
instant.

• The solid coloured line p is the actual position of the drone from the simulated physics for
the MIL, SIL, and HIL setups.

• The dashed coloured line p̂ is the position estimated by the drone. As part of the control al-
gorithm, the drone needs to estimate its own position, so that it can take corrective actions
through the actuators and reach the desired position. Apparently, when the drone is func-
tioning correctly, the dashed line converges to the continuous line (i.e., the drone correctly
estimates its own position).

This test shows that the model of the controller is able to control the model of the physical compo-
nent. Guarantees on the behaviour of the actual control system are, however, subject to the validity
of both physical component and controller models and on the implementation details [4], i.e., the
testing abstractions discussed in Section 3.1.

The top-right and bottom-left three plots in Figure 4 show the same test flight, respectively, in
the SIL and HIL setups, using the same conventions. The bottom-right three plots show the results
of the repeated tests obtained with the physical component in the RIL setup. In RIL, there is no
physics model involved and ground truth is not available, so we only display the position estimated
by the quadcopter. Among the 30 RIL flights performed, 4 failed without apparent reason, resulting
in immediate crash. One possible explanation, as the producers suggest on their website, is that the
IMU moving parts can get stuck at times. Using the successful 26 flights, we plot the average over
the different flights of the estimated position (dotted lines) and the range between the maximum
and minimum estimation. The RIL flights show consistent results, with the exception of the first
2 seconds. At take off, the turbulence caused by the ground effect can make the drone unpredictably
oscillate. We also note that the z direction control is more accurate. This is due to the higher
performance of the laser sensor compared to the optical flow. Given the general consistency of
the RIL tests we did not perform repeated tests for the faulty software, besides the ones to verify
that the immediate crashes were not caused by the IMU getting stuck, as discussed above. In fact,
performing repeated crashing tests risked damaging the hardware (and could affect the results of
the subsequent tests).

While the general behaviour is consistent across the setups, few differences arise. In the SIL, HIL,
and RIL setups, the drone oscillates around the reference position in the x and y directions: This
is due to the optical flow quantisation caused by the camera pixels. Movements smaller than the
resolution of the camera are not detected. When the flow reading changes, the controller reacts at
once, and the drone oscillates. This quantisation is abstracted in the MIL setup and hence not seen.
In the MIL setup, the drone loses some elevation (z position) while performing the step in the x
direction. This is caused by the loss of vertical thrust when the drone tilts to move laterally. Our
tests show that the software implementation of the controller is robust to this disturbance. Finally,
the ground effect is not captured in the physics model and hence observed only in the RIL setup.
Such phenomenon is chaotic (in the mathematical sense) and difficult to model, and, hence, it is
often neglected in simulated setups.

We note the general consistency across all the setups in nominal conditions. In the next section,
we show that when faults are present in the software implementation, the testing setups exhibit
significant differences.

4.4 Faults Design

We inject faults in the control software to expose the differences between the testing abstractions
and highlight the capacity of each of them to unmask errors in the controller implementation.
Unfortunately, it was not possible to mine the Bitcraze repository for faults, as the developers do
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not use consistent practices to mark issues and commits associated with the control software faults
and frequently squash commits losing part of the version history. Furthermore, to the best of the
authors knowledge, there exists no database of faults in control software.

Therefore, for obtaining faults to inject in the software we used two different methods: (i) We se-
lected two solved issues in the Bitcraze repository: The faults we used were suggested by Bitcraze
engineers, because they struggled to reproduce and identify them. (ii) We took faults types from
the close research field of faults in robotics systems: Specifically, we considered the works of
Wienke et al. [71] and Steinbauer et al. [62] to retrieve common types of faults and used the descrip-
tions and examples to develop faults to inject. The scopes of the cited works are wider than ours as
it relates to the whole robotic system and not just the control system. Hence, we manually filtered
fault types that do not relate to the control system implementation, e.g., faults in communication
protocols.

Wienke et al. [71] use a practitioners survey to identify different categories of faults and provide
some example for each category. Said categories are (with an example from the original work) as
follows:

• algorithms and logic (e.g., erroneous mathematical computations),
• resource leak (e.g., not closing a no longer needed connection),
• skippable computation (e.g., executing the same computation multiple times),
• configuration (e.g., erroneous initialisation of an address),
• threading (e.g., incorrect timing code), and
• communication (e.g., incorrect address in the radio communication stack).

Among said categories, we excluded communication, as it apparently does not relate to the im-
plementation of the control system performance. We also exclude resource leak, and skippable
computation, since they concern the embedded computing performance of the system rather than
the control loop. For example, a memory leak is likely not seen in the control system performance,
since it should not affect the functional properties of the software. Similarly, a repeated computa-
tion is not harmful, as the control software is supposed to be executed in an infinite loop. Such
faults can become an issue when affecting the execution timing of the code, timing faults are,
however, included in the threading class.

Steinbauer et al. [62] surveyed the participants to the RoboCup30 competition about faults en-
countered during the robot development. The practitioners were asked about faults concerning
the robotic platform, the sensors, the control hardware (where “control” refers to the communi-
cation with a master device that monitors and provides commands), sensors, robot software (the
control software), and algorithms. Among those components, we exclude the control hardware,
since, as mentioned, “control” is used with a different meaning than in this work and refers to
the user interface. For each of the remaining we report the main sources of faults mentioned by
developers:

• platform: batteries, motor drivers, and controller board,
• sensors: connectors, configuration, and communication,
• robot software: computer vision, inter-robot communication, and low-level device drivers,
• algorithms: configuration, wrong estimation, and missed deadlines.

Among those fault types we exclude “inter-robot communication,” since we consider a single
system.

We manually develop and inject faults on the base of the descriptions and examples of the
categories mentioned above. We cover all of the categories listed by the two surveys that relate to

30https://www.robocup.org/
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control software. Table 2 reports the list of the developed faults: The second and third columns map
them to the different categories of the surveys mentioned above [62, 71]. For each fault, we provide
a patch file that injects it in the software [1].31 After injecting a fault, we perform tests in the SIL,
HIL, and RIL setups with the same flight sequence from Figure 4. The drone software used is the
same in each setup, ensuring consistent injection of the fault. By setting one compilation macro
(respectively SOFTWARE_IN_THE_LOOP, HARDWARE_IN_THE_LOOP, and PROCESS_IN_THE_LOOP), the
code is compiled for the desired setup.

5 EXPERIMENTAL RESULTS

In this section, we describe the results of the tests performed with the injected faults. Most im-
portantly, we identify for each fault the reasons why it appears or not in the different setups. In
Section 6, we comment our tests and discuss the research questions in light of our results.

Table 2 reports the test results for each injected fault and each setup. We report whether the
fault affects flight performance ( ) or not ( ) in the corresponding setup both qualitatively and
quantitatively. On the qualitative side, we manually compare the traces of the flights with injected
faults to the nominal behaviour observed in Figure 4. On the quantitative side, we compute the
Integrated Squared Error (ISE), which is the sum over time of the squared difference between
the desired position and the actual position (with the exception of the RIL where the ground truth
is not available and we used the estimated position). The ISE is a standard metric for designing and
evaluating control systems both in industrial contexts as well as in scientific literature (e.g., in the
context of the PID controllers autotuning procedures) [7, 21]. While this metric does not directly
relate to the fulfilment of a specific requirement, the violation of the most common requirements in
control systems (e.g., settling time, static tracking, overshoot) will cause an increase in the ISE. For
example, a higher settling time (i.e., time that the actual position takes to converge to its desired
value) implies a larger error for longer time, hence an increase in the ISE. Therefore, we consider
as impaired the flights that show an ISE higher that the one measured in the tests performed with
the nominal software. For the SIL and HIL setups, we expect a deterministic result from the tests;
hence, if a fault does not affect the drone flight, then the ISE should have the same value. Accord-
ingly, every increase in the ISE can be considered as a consequence of the injected fault. However,
given the complexity of the simulator, we accept ISE changes in the order of units as, in prac-
tice, they do not correspond to visible differences in the flight performance. In the case of the RIL,
we allow for some discrepancy given the variability involved in the tests execution. We observe in
Figure 4 that the RIL tests show a variability in the drone position (observed as the thickness of the
shaded area) of up to 10 centimetres at a given point in time. Because of this, given that the tests are
10 seconds long and that the ISE metric is cumulative over time (hence depends on the test dura-
tion), we accept an increase of up to 20 units for the RIL tests.

We report that the qualitative and quantitative evaluations give consistent results. The only
exception are two HIL tests, where we observe an increase of some units in the ISE of the
timingKalman and flowDeckdtTiming tests, respectively of 4 units and 1 unit. While techni-
cally being an increase in the ISE metric, those value variations do not correspond to any visible
change in the plots, and hence we considered those tests as not impaired. Complete flight data and
pre-generated plots are available in the associated repository [1], respectively inside the
flightdata and pdf subfolders for each setup. We also report here plots for the faults that did not
cause an immediate crash and are different from the nominal flights (Figures 5, 6, 7, and 8). In these

31The repository contains information about the specific software version that we used, together with detailed instructions
on how to retrieve the correct version and to inject the faults.
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Fig. 5. SIL, HIL, and RIL plots of the x-axis position with the initialPos fault. This fault affects the initial-

ization of the state estimator and appears equivalently in each setup. These tests show that faults in the

functional aspects of the software appear equivalently across the setups.

Fig. 6. SIL, HIL, and RIL plots of the x-axis position with the flowGyroData fault. This fault affects the

fusion of the inertial and visual odometry data and appears equivalently in each setup, more specifically

the optical flow data with the attitude rate. These tests show that faults in the functional properties of the

software appear equivalently across the setups.

Fig. 7. SIL, HIL, and RIL plots of the x-axis position with the motorRatioDef fault. This fault is caused by

different software components assuming different definitions of the same quantity, in this case the motor

actuation value. As it affects the interaction with the low-level driver of the motors, it does not appear in all

setups; in fact, it does not affect the flight at the RIL level. This shows that abstract setups can cause false

positives.

plots, we show only the position along the x-axis, as it suffices our discussion. As for Figure 4, we
show the reference value rx together with the ground truth px and its estimated value p̂x .

We now describe each fault and analyse the reasons why it appears or not in our different setups.
This is necessary to assess if the differences in fault exposure that we observe are due to our specific
setups implementation choices or are associated to intrinsic properties of the setups. Such analysis
is therefore fundamental to discuss the generalisability of our findings to other CPS. For example,
as mentioned in Section 4.2, the use of dedicated hardware in the HIL setups can enable better
coverage of low-level drivers—as experienced and reported below in the fault motorRatioDef.
Therefore, as we did not develop custom hardware for this experimental campaign, we have to
assess if and how it would have changed the results.
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Fig. 8. SIL, HIL, and RIL plots of the x-axis position with the slowTick fault. This fault affects in the timing

in the real-time operative system. As the timing of the code execution is abstracted in different ways, it

appears differently in the setups. Specifically, it shows a limitation in capturing timing behaviour in both SIL

and HIL.

The voltageCompCast and initialPos faults are taken from the Bitcraze repository.32 The
first consists of casting a float always smaller than 1 to an integer, which is then always rounded
to zero. The variable contains the normalised motor commands: The control action is therefore
always zero, and the drone never takes off. The second fault concerns the wrong initialisation of
the state estimator. In particular, the position estimate along the x-axis is initialised to 1.5 m instead
of 0 m. Since no absolute position measurements is available, the state estimator cannot recover
from this error. As shown in Figure 5, the controller reacts to the wrong estimation and brings the
drone back to the presumed 0 position, which, however, is not the actual 0 position. This happens
equivalently in each of our setups, hence showing that our testing abstractions do not alter the
detection of these faults.

The flowGyroData fault alters how the estimator compensates for the angular rotation in the
optical flow generated measurements. The code uses a local variable containing the latest gyro
measurement. In the altered version, the code uses instead another queue containing the same
information. However, the queue is also accessed in other parts of the code, making the data in-
consistent at times. Figure 6 shows the results of the drone flight for each of our setups. The injected
fault causes an error in the estimation of the speed and consequent large oscillations during the
flight. This fault, like the two above, appears equivalently across the setups. It is interesting to
note that this fault affects the functional properties of the control code, since the equations of the
state estimator are distorted. However, the behaviour of the drone is very similar among both the
setups that include the simulated physics and the RIL. This means that, the abstraction introduced
by the use of the physics model do not alter the impact of this fault on the drone behaviour. It can
be noted, however, that the oscillations resulting from the fault have a slightly different frequency,
being faster in RIL with respect to SIL and HIL.

The motorRatioDef fault consists of two parts of the software assuming different definitions for
the variable containing the command signal to the motors.33 In the altered software, the variable
is implemented as a float smaller than 1 (a percentage) but read as an integer containing the actual
command to the motors. This variable (which was not introduced by us and belongs to the original
software) is read in the SIL and HIL setups to detect if the drone is in flight or not. This information
is used by the state estimator to compensate ground contact forces when the drone is not flying.
Figure 7 shows how this affects the flight for the position along the x direction in our setups. In the
RIL setup, the motor commands are directly read from the motor’s hardware, and hence the flight

32initialPos: https://github.com/bitcraze/crazyflie-firmware/issues/760, and voltageCompCast: https://github.com/
bitcraze/crazyflie-firmware/issues/766
33This fault is inspired by the episode of the NASA Mars Climate Orbiter that crashed in 1999. In that case, one software
component assumed that a variable containing a pressure value was defined in Imperial Units while another used the
International System of Units.
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is not disturbed. This discrepancy is caused therefore by the abstraction of the motor hardware
in our SIL and HIL setups. It could be avoided in SIL with the implementation of a more detailed
emulator of the motors hardware and in HIL with the use of custom hardware.

The simUpdate fault concerns the incorrect implementation of different controller equations in
the state estimator. When updating a vector with a matrix multiplication, the old vector values are
not stored in a temporary variable, and the new values of the already updated components are used
in place of the previous ones, as per specification. In a correct implementation, the software needs
to store and use the previous vector values and use those to perform the update. In each testing
setup, the controller code is robust to this fault. The obtained plots (reported in the associated
repository [1]) are not distinguishable from the plots form Figure 4. As in flowGyroData, this fault
distorts the implementation of the control algorithm equations and alters the functional properties
of the control software.

The byteSwap and gyroAxesSwap faults are injected in the low-level software that handles the
interaction with the IMU. The former swaps the least and most significant bytes in the accelerom-
eter readings. The latter swaps the x and y axes in the gyroscope readings. Both faults disrupt the
flight in SIL and RIL, causing immediate crash. Conversely, the HIL setup is not affected, and the
fault is not detected. In the HIL setup, in fact, the IMU readings are injected at a higher level than
in SIL. In the SIL, in fact, as mentioned in Section 4.2, since the IMU is fully emulated the low-level
firmware is not altered—only the calibration is skipped but not the real-time sensor reading. Dif-
ferently, in the HIL, the firmware stack that interacts with the sensors is interrupted to feed the
values from the simulator to the software, in place of the actual sensor readings. As a result, the
section of code where the faults are injected is not executed with the HIL setup, and the fault does
not affect the flight. This is caused by the abstraction in the HIL setup of the low-level software
used for communicating with the IMU. The use of dedicated hardware could avoid this abstraction
in our HIL setup.

Finally, the timingKalman, flowDeckdtTiming, and slowTick faults concern the timing of the
code execution and its real-time properties. In the nominal software, the periodic execution of the
thread executing the state estimator is triggered by a semaphore released by the IMU interrupt
that signals the availability of the data. In timingKalman, the thread is instead put to sleep for a
time equal to its period. This sleep time is measured by the software tick of the RTOS. This is a
poor real-time programming practice, as it introduces jitter in the execution of the thread. The
flowDeckdtTiming uses a different timer to measure the time interval over which the optical flow
is measured. The optical flow provides a differential measure, and hence it is highly dependent on
its recording time, which needs to be measured. Rigorously speaking, this is not a fault, as long
as the different timers are consistent; however, we use it to expose the different timing properties
of the setups. Both these faults impair the flight in the SIL setup but not in HIL or RIL. In both
cases, this is due to a distortion in the representation of time (and hence of timers) during the
execution of the software in Renode (the hardware emulator used to implement the SIL). Better
representation of time in the Renode emulator would reduce the impact of the abstraction of the
execution timing of the software. Achieving this is, however, a challenging task, and high-fidelity
emulation of software execution time is an open research problem. In slowTick, a hardware clock
malfunction is simulated by setting the RTOS software tick to 800 Hz instead of 1,000 Hz. In our
tests, this does not affect our implementations in SIL and HIL setups, but, as shown in Figure 8, it
does impair flight in RIL. In the SIL and HIL setups, the simulated physics is timed by the RTOS
main clock, and hence the flow of time is still consistent between the controller and the simulated
physics despite the injected fault. In the RIL setup, the physics evolves with the actual time, and
the execution of the controller is therefore disturbed. The abstraction of the synchronization of
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time evolution in the execution of the software and in the evolution of the physics is at the base
of this discrepancy.

6 DISCUSSION AND LIMITATIONS

In this section, we use the test results to address the research questions presented in Section 1. We
use the analysis of each fault to discuss how our answers generalise to other control systems. At
the end of each answer we summarize the main take-away messages from our observations. We
conclude this section discussing the limitations and threats to validity in our study.

RQ1: What are the differences between the testing abstractions with respect to their fault

revealing capability? Our case study shows that the testing abstractions achieve different coverage

of software and timing properties but are similarly effective when testing the software functional

properties.

In fact, the different testing setups equally expose the voltageCompCast, initialPos,
flowGyroData, and simUpdate faults. These faults affect the functional properties of the software
(i.e., the implementation of the control law) and alter neither the low-level interaction with the
hardware nor the timing of the software execution. The main testing abstraction that directly re-
lates to the functional properties is the model of the physics. We also note that such abstraction is
always found in the abstract setups of control software. Our experiments show that this does not
cause relevant differences in the exposure of functional faults with respect to the RIL setup. How-
ever, the use of different physical models might still impact the detection of functional software
faults (this discussion is out of the scope of our work, some investigations in this direction can be
found in the literature [61]).

Among the other faults, byteSwap, gyroAxesSwap, and motorRatioDef affect the interaction
between software and hardware, while timingKalman, flowDeckdtTiming, and slowTick affect
the software timing. Both byteSwap and gyroAxesSwap are hidden in the HIL abstraction setup.
This is due to the abstraction in HIL of the low-level interaction with the IMU. Conversely, they
are exposed in the SIL setup. Therefore, for our system, the SIL setup shows better code coverage than

HIL. This is originated by the necessity of manipulating, in the HIL setup, the low-level code so that

it interacts with the simulated physics. Differently, in SIL, we fully emulate the interaction with the

hardware, and hence expose also faults in the low-level code. This suggests that the fault-revealing
capabilities of HIL can be limited for low-level code, which has been reported to be prone to faults
in robotic systems [62, 71]. However, the actual extension and relevance of such limitation, as well
as its generalisation to other CPSs, requires further investigation. As mentioned in Section 3.3, to
improve the low-level code coverage of HIL, dedicated hardware could be produced. With dedi-
cated HIL hardware, output commands could be read form the output ports, and artificial data can
be fed using the dedicated input ports. Apparently, dedicated hardware prototype likely increases
production costs. However, SIL testing also requires an effort to implement the sensors’ emulation.

The fault motorRatioDef alters the flight in the SIL and HIL setups (Figure 7). This fault affects
the low-level interaction with the motors, and hence a component that is abstracted in both setups.
In RIL, the variable containing the faulty value is only written to and never read. In SIL and HIL,
the motor commands cannot be read directly from the hardware, and this variable is read instead.
Despite not affecting the RIL flight, the variable does contain a faulty value. This can be interpreted
in two equally valid ways: Either that SIL and HIL are introducing a false positive (i.e., they fail a
test that should pass) or the difference between the testing abstractions is pointing to dead code.
Which interpretation is valid depends on the specific application. Either way, this shows that the

abstraction of a component can not only potentially cause a false negative (i.e., hiding a fault) but

also introduce a false positive (i.e., causing a failure when it should not happen).
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The three faults timingKalman, flowDeckdtTiming, and slowTick affect the timing of the code
execution and expose the differences in the timing-related abstractions between the testing setups.
Both timingKalman and flowDeckdtTiming disrupt the flight in SIL: This is inconsistent with the
RIL (and HIL) tests where flight is successful. The SIL setup is therefore introducing false positives,
showing limitations in the abstraction of the timing of the code execution. More specifically, the
faults affect the synchronization of different parts of the code: respectively, the estimator task and
the time measurement of the optical flow readings with the rest of the control code. Due to the
time distortion of SIL, this loss of synchronisation impairs the correct execution of the code and
the flight performance is impaired. Since these changes do not affect HIL or RIL, we can conclude
that the modelling of time in Renode is not accurate enough. In SIL, it could be possible to improve
the timing aspect of hardware emulation, for example, by profiling the target architecture. How-
ever, this is not an easy task, and it is rather an open research problem [64, 65].

The remaining timing-related fault, slowTick, shows a limitation that is common to both SIL
and HIL. In both setups, the simulation of the physics is synchronised to the RTOS software tick.
A distortion in the RTOS clock will therefore not impair the synchronisation between the control
algorithm and the physical component of the system. In the RIL setup, it is possible to detect this
fault, since there is no modelled physics, the physical part evolves according to the actual time,
independently of the software execution. In this case, the abstraction of the real-world flow of time
in the physical model causes false negatives in SIL and HIL. In HIL, it would be possible to develop
a simulator of the physics that is executed in real time and does not need to be synchronized with
the software execution: This would allow us to expose the slowTick fault in the HIL setup. A
similar solution could be implemented in SIL: however, the limitations mentioned above in the
emulation of time aspects of hardware execution would still hold.

These tests show that abstracted testing setups will always have inherent limitation in the mod-

elling of time, and this can significantly affect the quality of the control software testing process. HIL
setups have an advantage with respect to SIL setups, since they do not require explicit modelling
of the timing of software execution as they include the target hardware. RIL does not require any
abstraction and can provide time consistency (between software and physics) by definition.

However, our tests also show that there are several aspects that speak in favour of complement-
ing RIL with SIL and HIL. In the abstracted setups the physical world is simulated, and accessing
the ground truth is always possible (e.g., the drone position in our case) while external sensors
would be required for the RIL setup. Further considerations are related to the practical execution
of the tests. SIL and HIL tests are fully reproducible, reducing the occurrence of flaky tests [36];
moreover, they are more easily automated and performed remotely.

Our observations support the following considerations on the fault-revealing capabilities of
the different testing setups:

• functional properties appear equivalently across the setups,
• depending on the setups implementation choices, SIL can potentially expose better

low-level code coverage with respect to HIL,
• depending on the setups implementation choices, HIL can provide better

representation of the code execution timing, with respect to SIL,
• abstractions in the testing setups can cause both false negative (hiding faults) and

false positive (failing tests that should pass).

RQ2: When and why is it beneficial to have different testing setups? What are the princi-

ples to be followed when designing the testing setups? We have seen that the use of differ-
ent testing setups improves the testing coverage. However, the exposure of a higher faults number
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is originated by having different abstractions in the testing setups that therefore rely on different

assumptions.

As discussed in Section 1, previous literature assumed that the setups are hierarchically ordered
and that the faults that can be found at a level of abstraction are a superset of the faults that
can be found in a less abstract setup. However, our tests disprove this statement and show that
the faults detectable in a setup are neither a subset nor a superset of the ones found in another
setup. Accordingly, the best practice is to maximise the difference between the testing abstractions

of the available setups to enhance testing coverage and fault finding. In other words, it is not best to
have every setup as detailed as possible (i.e., with minimal number of abstractions); instead, it is
important that the abstractions overlap between the different setups is minimal.34

The flowGyroData fault is discovered in all different testing setups. This suggests that the fault
is related to a behaviour that is not abstracted in any of them. Because the testing abstractions are
not the same across the setups, we can narrow the scope of the search for the fault and exclude
all components that are abstracted in each of the setups. In our case, we can deduce that the fault
is neither (among others) in the low-level interaction with the sensors and actuators nor in the
timing aspects of the code.

Conversely, byteSwap and gyroAxesSwap are detected in SIL but not in HIL. This suggests that
they are faults related to the low-level IMU firmware that is executed in SIL but not in HIL. Suppose
that the HIL tests were performed with dedicated hardware (as mentioned in Section 3.3) to enable
the coverage of the IMU low-level firmware and detect faults like byteSwap and gyroAxesSwap.
In this case, it would be more difficult to root cause the failure and identify the fault.

When designing the different testing setups, the objective shall be to maximise the differ-
ences in the testing abstractions across the different setups rather than focusing on making
each setup detailed. The natural choice is to focus on the strengths of each setup pointed
out in the answer to RQ1. This will improve the fault identification process.

RQ3: What are the domain-specific characteristics of system testing for closed loop con-

trol software? System testing is clearly an important step in the development of any software [23].
On top of the general considerations on system testing and the motivation of this article of tight
coupling, our case study highlights challenges that specifically belong to system-level testing of
control software. In particular, we conclude that control systems expose robustness to software faults

and couple functional and non-functional properties, especially with respect to timing.
In our example, the simUpdate tests show that, despite the fault, the drone is able to fly with-

out decreased performance. This is not surprising, as control systems possess a certain level of
robustness to the distortions that appear in their software implementation [8]. Said robustness
varies depending on the physical component under control and its characteristics, as well as the
specific control algorithm used. While robustness is a desirable property in the final product, in
the simUpdate case, the code fails to match its specifications (i.e., it does not implement the pre-
scribed equations). Consequently, the control theoretical guarantees cease to apply for a general
flight and may be lost in certain operating conditions (e.g., in presence of wind). This poses the
challenge of developing adequate coverage metrics and test cases that enable the detection of faults

that are hidden by closing the control loop.
The three faults flowDeckdtTiming, timingKalman, and slowTick show the sensitivity of the

software to its timely execution. This is a general property of control software, and time mod-

34From a practical point of view, it shall also be considered that testing in more abstract setups is usually less expensive,
since more components are simulated. This is an important consideration for practical applications, but the evaluation of
setup development costs is out of the scope of this investigation.
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elling is extremely important in the setups for system testing of control systems. We formulate the
research challenge of synthesising requirements of time modelling for the system testing of control

systems. Failing to formulate and meet such requirements can hide faults (e.g., slowTick) or create
false positives (e.g., timingKalman and flowDeckdtTiming in SIL).

Our experiments show the following domain-specific characteristics in control software:
• robustness to software faults, and
• coupling of functional properties with execution timing properties.

Limitations and threats to validity. Our analysis is based on a single case study. Hence, we
report its properties that limit the generalisation of our conclusions (external validity). Then, we
discuss the limitations of our research methodology (internal validity).

Other control systems may differ from the Crazyflie with respect to hardware platform, software
architecture, dynamics of the physical component, development method, and system criticality. For
example, the control software of an aeroplane runs on more powerful hardware, has redundant
sensors, and is (most likely) distributed. This is different from the Crazyflie that does not have
redundant sensors and has only one computational core dedicated to the critical computations.

The development of the software is also different in a plane, as regulations constrain the ver-
ification and validation process [48]. This is different from the open source development of the
Crazyflie software and hardware. Finally, physical components can have different dynamics. As a
consequence, timing properties are more or less relevant, the robustness to software faults changes,
and input and output signals are different in nature. From this point of view, small drones (like the
Crazyflie) are a relevant case of study as their low weight (and consequently fast reaction) makes
the timing properties of the software highly critical. Despite such differences, our observations fo-
cus on aspects that characterize the testing of any control systems, namely modelling of time in the
setups, synchronisation of the different components, emulation of hardware, testing of functional
and non-functional properties, and abstraction of low-level software. Furthermore, there are sig-
nificant commonalities across every control system: For example, every control system performs
at constant time intervals the actions of sensing, computing, and actuating, and every control al-
gorithm developed with traditional control engineering is specified with differential or difference
equations. Apparently, a complete generalisation of our observations still requires further experi-
mental validation.

Concerning our research methodology, a possible limitation is that our discussion and obser-
vations are based on faults developed from descriptions of typical robotics faults from previous
literature [62, 71]. This can affect the real-world validity of the injected faults. However, in this
study we focus on the capabilities of different testing setups in finding different types of faults.
Therefore, what really matters is the component that is affected and in which way it is affected.
It is not a strict requirement that the fault per se is realistic. Rather, what is important is that the
implementation specifications of the component are not fulfilled.

We also performed manually the analysis of the reasons the different faults appear or not in the
different setups. However, we developed each of the testing setups from scratch, which gives us
high confidence that our understanding of their implementation and properties is adequate. Con-
cerning the development of the setups, a limitation is that we developed our setups by reverse-
engineering a pre-existing control system. In a production environment, the development of the
testing setups is done in parallel with the development of the system. Implementing the testing
setups together with the system can help to better tailor them to the specific system and may
increase their specific coverage. However, our analysis is focused on the differences between the
setups rather than on the development process, and we argue that the observed differences are
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related to fundamental properties of the setups rather than to how they are developed. Further-
more, we developed the setups in close contact with the engineers at Bitcraze, and we discuss in the
article the potential alternatives in the design of our testing setups, together with their potential
impacts on the results of the study.

Finally, we note that in our methodology, we execute only one test case (the step response) for
each fault and setup. This is different from performing a complete testing campaign on the sys-
tem, and it could potentially alter which faults are detected. However, we note that step responses
are common practice to evaluate control requirements; in fact, the most common control require-
ments (e.g., rise time, settling time, overshoot, and static tracking) are defined on the base of step
responses [8]. Furthermore, we note that all of the differences in fault exposure observed across
the testing setups are caused by intrinsic properties of the setups. For example, the gyroAxesSwap
does not appear in HIL, because the code affected by the fault is not executed by the setups. There-
fore, we can state that the difference in the exposure of the fault is caused by a property of the
setup rather than choice of the test. Thanks to this analysis, the choice of the test case does not
consist of a limitation in our experimental campaign.

7 RELATED WORK

Recent research highlighted interesting research directions at the intersection of control and soft-
ware engineering [11, 14]. In the control literature, Zimmer et al. [74] discuss a case study on the
consequences of implementation choices for the control performance. A comprehensive book on
model-based testing for embedded systems is the one by Zander et al. [72]; another review can be
found in the works by Garousi et al. [24] and Chattopadhyay et al. [12].

Whilst testing control software is not a new field, the vast majority of previous work is focused
either on the testing models (i.e., model-based testing) or on applications, mainly in the fields of
avionics [58, 70] and automotive [16, 17].

The concept of testing abstractions is discussed in the book on model-based testing by Zander
et al. [72], and the testing setups discussed in this article appear in different works, with slightly
varying but overall consistent definitions [17, 32, 72]. The MIL setup has been extensively lever-
aged in the literature of model-based testing [15]. The research has focused on verification of
requirements [54], generation of test traces [28], the use of models for the automatic generation of
test cases with search algorithms [38, 40, 41], classification trees [32], system-identification-based
refinements [44], and genetic algorithms [3]. In robotics, Silano et al. [59] showcased the useful-
ness of SIL for the design of quadcopter controllers. Keranen et al. [29] perform a validation of
model-based approaches in the context of HIL testing, and Hansen et al. [27] do the same in the
context of SIL testing. Meedeniya et al. [43] propose an optimisation for reliable deployment of
control software. Ore et al. [57] propose to use program analysis to enrich of physics simulation
and better test control software.

The papers above focus on individual setups, and we found the conclusions drawn in the liter-
ature compatible with ours. Despite the common industrial use of different testing levels, to the
best of the authors’ knowledge, the only other work that compares different testing setups is a very
recent paper by Stocco et al. [63]. This latter work empirically evaluates how the use of simulated
physics impacts the exposure of failures compared to a real-world testing setup. Framed in the
jargon of our work, the work by Stocco et al. focuses how the abstractions associated with the use
of simulated physics instead of the real world impact the exposition of failures. Differently, here
we discuss the different testing abstractions that characterise each testing setup. The two papers
are therefore complementary, as ours discusses the different abstractions of the various setups and
the work by Stocco et al. focuses on the abstractions related to the physics simulation.
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8 CONCLUSION

In this article, we provided a comparison of the fault-finding characteristics of the model-in-the-
loop, software-in-the-loop, hardware-in-the-loop and real-physics-in-the-loop testing setups for
the system-level testing of control systems. We presented the case study of an open source drone
and developed testing support for all the mentioned testing setups. We provide a complete replica-
tion package that enables further research on the topic (generally limited by the high implemen-
tation cost of different setups).

To investigate the differences across the setups, we injected different types of faults in the drone
software developed on the base of descriptions of common faults by practitioners. Contrary to
previous literature, we demonstrated with our case study that a hierarchy among these setups and
abstractions does not exist. In other words, it is not necessarily true that testing setups closer to
the real implementation can expose more bugs than the setups that rely on more abstractions. We
evidenced that SIL setups are superior with respect to HIL in terms of low-level code coverage.
Conversely, HIL better cover the timing properties of the code. On the other side, our experiments
did not show major differences in terms of exposure of functional faults. We also highlighted the
relevant properties and principles that have to be discussed by practitioners in the design of the
testing setups. We evidenced that maximizing variety in the testing abstractions of the different
setups (instead of minimising the abstractions in each setup) will enhance the testing process in
terms of system coverage and fault identification.
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