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Abstract

Summary: Functional annotation is an integral part in the analysis of organisms, as well as of multi-species
communities. A common way to integrate such information is using biological networks. However, current
data integration network tools are heavily dependent on a single source of information, which might strongly
limit the amount of relevant data contained within the network. Here we present UniFuncNet, a network
annotation framework that dynamically integrates data from multiple biological databases, thereby enabling
data collection from various sources based on user preference. This results in a flexible and comprehensive data
retrieval framework for network based analyses of omics data. Importantly, UniFuncNet’s data integration
methodology allows for the output of a non-redundant composite network and associated metadata. In
addition, a workflow exporting UniFuncNet’s output to the graph database management system Neo4j was
implemented, which allows for efficient querying and analysis.

Availability: Source code is available at https://github.com/PedroMTQ/UniFuncNet.

Introduction1

There exists an unprecedented amount of biomolecular data available thanks to the advances in, among2

others, sequencing, mass spectrometry and bioinformatics techniques. This allows for the study of function3

across several biological levels at high resolution, from single organisms to the combined functional potential4

of microbial communities. This wealth of information is difficult to access and use in a straightforward and5

scalable manner, e.g., due to the lack of a universal data repository and the use of a multitude of data formats6

and annotations.7

Networks are frequently used for large-scale omics data analyses as these are versatile tools that can be8

used to model complex biological systems [1]. The identification and mapping of functional entities (e.g.,9

proteins) to networks are central tasks performed during large-scale studies of new species or microbial10

communities. For example, networks have been used to study ecological interactions such as metabolic11

cross-feeding, synergism, and antagonism [2], to detect correlations in metabolic networks [3], to identify12

keystone functions and genes [4].13

Given the available functional annotations linked to omics data, a common modelling approach, among14

others [5], is to use genome-scale metabolic models (GSMM) to integrate all, or part, of the metabolic and15

transport reaction network(s) within an organism or community [6, 7]. Such networks are usually derived by16

mapping functional annotations to the corresponding reactions and pathways [8, 9], and can be used for the17
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in silico simulation of metabolism.18

Several methodologies [10] and tools [11] are now available for the automated generation and semi-curation of19

GSMMs. Many methods are able to automatically and accurately reconstruct well-known parts of metabolism,20

which, due being shared by many taxa [12], have been more extensively studied [13]. While the apparent21

conservation in function based on homology is advantageous when modelling well-studied metabolism, the22

resulting GSMMs are often very general and redundant, which may not capture the peculiarities of individual23

organisms. Modelling species-specific metabolic pathways is important, e.g., for understanding microbial24

interactions [14], but challenging, since annotations are often incomplete [15, 16]. Here, knowledge integration25

from multiple databases (e.g., MIBig [17], KEGG [18], and MetaCyc [19]) may help.26

Even though some resources provide frameworks for mapping functional entities (e.g., KEGG [18] and27

MetaCyc [19]), combining them into a more comprehensive resource at a case-by-case basis is laborious,28

since this integration requires extensive cross-linking, and often manual review/curation. One additional29

complication is the use of different ontologies [20], which leads to the necessity of cross-linking ontology systems30

with varying structures and resolutions (e.g., KEGG orthologs and gene ontologies[21, 22]). Additionally,31

while some databases are structured and provide access through the use of application programming interfaces32

(API) (e.g., KEGG), relational or non-relational or other standardized formats (e.g., json and xml), others33

provide data in semi-unstructured formats, thereby requiring the implementation of more specialized data34

processing methodologies (e.g., text mining [23]).35

In essence, the diversity and quantity of biological databases, constitute some of the major challenges36

in the integration of such data. These, and other technical challenges, make such resources inaccessible to37

researchers without a computational background.38

The challenge of integrating knowledge from multiple sources in an automated manner in the context of39

network analysis was tackled through the development of the presented network annotation framework -40

(Uni)fied (Func)tional (Net)work (UniFuncNet). UniFuncNet automates the highly time-consuming process of41

searching multiple databases, extracting and integrating data into a composite output. Biological databases42

commonly contain multiple entry types (e.g., compounds or genes), therefore, UniFuncNet’s implementation43

reflects the general structure of such databases; for this purpose, we modelled four different entity types:44

genes, reactions, proteins, and compounds. In turn, these data models can then be linked as a network, and45

used for storing and exporting information in machine and human-readable formats. Combining data models46

with multiple data collection methodologies results in a flexible yet robust data retrieval framework. In turn,47

this allows researchers to fine-tune UniFuncNet to their specific routine data integration tasks, starting from48

simple use cases such as collecting ChEBI identifiers (IDs) for a list of compound names and finding reactions49

for certain protein IDs to linking compounds to organisms, or expanding GSMMs. To showcase how the user50

can include UniFuncNet in their analysis, the last two previously mentioned use cases have been implemented51

as separate example workflows; while these are simple wrappers around UniFuncNet and other tools, they52

may serve as a template for future, and potentially more complex, workflows.53

UniFuncNet aims to provide a straightforward, versatile, and accessible data collection and network54

annotation framework. UniFuncNet will prove useful across multiple domains of bioinformatics, especially at55

a moment in time where large-scale data integration is seen as fundamental rather than optional. In order to56

provide an easily and efficiently queryable database, we implemented an API that exports UniFuncNet’s data57

to Neo4j.58

Materials and methods59

Implementation60

UniFuncNet was implemented in Python (v3.9) and currently collects data from KEGG [18], MetaCyc [19],61

Rhea [24], ChEBI [25], HMDB [26], UniProt [27] and Pubchem [28], cross-linking the information between62

these databases. For web data collection, UniFuncNet uses the Python package ”requests” (v2.25.1), which63

queries each database and collects the respective response (usually HTML or json). To parse the HTML64

responses the ”beautiful soup” [29] package is used (v4.10.0). For some of the databases, i.e., MetaCyc [19],65
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Rhea [24] and ChEBI [25] the database flat files are first downloaded, parsed and stored locally in a SQLite66

(v3.36.0) database. In order to use the MetaCyc database, the user must obtain a license (academic licenses67

are freely available) from MetaCyc (which we recommend since it’s a highly curated and comprehensive68

resource). For web data collection, UniFuncNet makes use of API calls to retrieve information (if possible).69

However, whenever necessary, data is collected by querying the database’s website and parsing the query result70

(i.e., web scraping). Each query result (web or local data) is parsed according to the step of the workflow71

and database being queried (with database-specific scrapers), and standardized according to UniFuncNet’s72

framework. This data parsing allows for the retrieval of annotations (IDs and synonyms) as well as any73

connections between database entries.74

To avoid overloading the respective web servers, UniFuncNet works in a strictly sequential manner and75

additionally enforces a time-out for requests to the same server (10 seconds in-between queries by default).76

Additionally, in order to avoid repeating web queries, UniFuncNet saves past web queries in memory and77

retrieves the necessary entity whenever a query is repeated. This sequential methodology has the additional78

benefit of not creating redundant entities which may lead to downstream issues with redundancy and output79

network connectivity.80

The results shown in this paper were collected from multiple sources, MetaCyc version 25.1 was used; the81

Rhea and ChEBI data corresponded to the flat files uploaded on the 17th of November, 2021; and all data82

extracted from the multiple websites was collected on the 24th of January, 2022. The version of UniFuncNet83

used in this paper is v1.02.84

Input and output85

UniFuncNet takes as input a tab-separated file, containing a list of IDs (e.g., ”P02769”), ID types (source of86

the IDs, e.g., ”uniprot”), entity types (e.g., ”protein”), and search modes (e.g., ”pg”, for ”protein-to-gene”).87

UniFuncNet outputs one tab-separated file per entity type, i.e., genes, proteins, reactions, and compounds,88

listing all the searched entities along with any associated metadata (e.g., database IDs) and all the associations89

between each entity. Additionally, it outputs a file in simple interaction format (SIF), which allows for90

integration into network frameworks, such as Cytoscape [30] or Neo4j.91

For a detailed description of input format requirements and all outputs, as well as a usage guide refer to92

UniFuncNet’s documentation at https://github.com/PedroMTQ/UniFuncNet.93

Workflows methodology94

We implemented two example workflows to showcase potential applications of UniFuncNet. The first workflow95

relates to the expansion of GSMMs using UniFuncNet, and the second to the mapping of compounds to96

organisms. An example use case is provided for each of these workflows. In these use cases, UniFuncNet97

collected information from the databases KEGG, MetaCyc, Rhea, and ChEBI. The code used for the98

generation of results is available at https://gitlab.lcsb.uni.lu/pedro.queiros/benchmark_unifuncnet.99

After installation and download of the required tools and data, the workflows are fully automated (e.g.,100

automatically launching tools and doing the necessary data processing). Mantis [31] v1.3 was run for the101

functional annotation, using the KOfam [32], Pfam [33] and MetaCyc [19] reference databases (the MetaCyc102

database was generated with the code in https://github.com/PedroMTQ/refdb_generator).103

Workflow I - Expansion of GSMMs104

This workflow (Figure 1.A) receives as input multiple protein fasta files, i.e., proteomes, and outputs an105

expanded network per sample in SIF format. The proteomes are passed to Mantis [31] while GSMMs are106

created with CarveMe [34]. The enzyme commission numbers (ECs) and MetaCyc protein IDs absent in107

the CarveMe GSMMs are exported from the Mantis’ functional annotations into a UniFuncNet-formatted108

input file (using the ”prc” search mode). In this manner UniFuncNet can be used to collect data on the109

additional ECs and MetaCyc protein IDs and connect them to the original GSMMs. In order to exclude110

unspecific interactions, edges connecting to common cofactors were removed (this list of cofactors has been111

manually curated but can be edited and is available at https://github.com/PedroMTQ/UniFuncNet/tree/112

main/Resources/cpd_to_ignore.tsv).113

The workflow was implemented with CarveMe [34] v1.5. Additional information is available at https:114

//github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/GSMM_Expansion. It is crucial to note that115

this workflow is merely an example use case, therefore any output files created should be thoroughly curated.116
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As an example application (henceforth referred to as ”use case I”), we used the following five organisms’117

SwissProt[27] reference proteomes: UP000001031 [35] for Akkermansia muciniphila, UP000025221 [36] for118

Bradyrhizobium japonicum, UP000018291 [37] for Microthrix parvicella, UP000002528 [38] for Pelagibacter119

ubique, and UP000000586 [39] for Streptococcus pneumoniae.120

To evaluate the functional redundancy of the baseline and expanded networks, a presence/absence encoding121

of each network’s ECs was applied, followed by a cosine distance calculation using the NLTK package (v3.5),122

where equal encoded vectors have a score of 1 and completely different a score of 0. This calculation is123

henceforth referred to as the ”ECs functional redundancy”.124

Workflow II - Omics cross-linking.125

The second workflow (Figure 1.B) attempts to link compounds to specific organisms by searching for126

information on compounds and linking them to functionally annotated organisms. The input are multiple127

species proteomes and information (i.e., IDs) on the compounds of interest. The output is a network connecting128

each compound to all proteomes, and hence, to all organisms. Additional information is available at https:129

//github.com/PedroMTQ/UniFuncNet/tree/main/Workflows/Compounds_to_Organisms_Mapping.130

As an example application of this workflow (henceforth referred to as ”use case II”), we applied it to the131

metabolomics dataset MTBLS497 from Metabolights [40]. In the respective experimental study [41] four132

organisms, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Staphylococcus aureus,133

were cultured, sampled and analysed to link them with 13 compounds of interest. The following proteomes134

from UniProt were used: E. coli UP000001410 [42], K. pneumoniae UP000000265 [43], P. aeruginosa the135

proteome UP000002438 [44], and S. aureus UP000008816 [45].136

Results137

UniFuncNet138

UniFuncNet is a network annotation framework that collects user-defined data from multiple biological139

databases, e.g., KEGG orthology IDs (Figure 2). The user input determines which information is collected by140

UniFuncNet. UniFuncNet retrieves data from the respective biological databases and parses it; if applicable,141

it then branches out and gathers any additional data associated with the originally retrieved data. This is142

repeated iteratively until all sources of information are exhausted. When retrieving information for compounds,143

UniFuncNet can retrieve data based on synonyms, and not only IDs, as it may facilitate the integration144

of data where only synonyms are available. However, the reliability of synonyms-based data retrieval is145

inferior to IDs due to its ambiguity [46]. UniFuncNet is available as a conda package, and it’s respective146

documentation is available at https://github.com/PedroMTQ/UniFuncNet.147

Data models148

In order to standardize the representation of the multiple types of data within the UniFuncNet framework, we149

implemented multiple data models, each one representing an entity type, i.e., compounds, reactions, proteins,150

and genes. In general, entities are associated with IDs from multiple databases and other entity-specific151

data (e.g., compounds may have an associated chemical formula). The respective data models allow for a152

standardized in-memory integration, storage, and manipulation of data. For example, the reaction data153

models are especially helpful for integrating the same reaction from multiple databases; since some reaction154

database entries do not provide cross-linking, it may be necessary to match reaction entities through their155

stoichiometry and the compound entities they are associated with (i.e., reactants and products). If the156

stoichiometry and the reactants and products compound entities are the same, the reactions can be considered157

the same and merged into the same data model, thus avoiding redundancy. Additionally, these entities can158

be connected to other entities (e.g., a gene can be connected to a protein), and can thus be exported as a159

network. Entities are connected within the network following the search mode and databases used (Figure 3).160

Search modes161

UniFuncNet’s data models represent the four main entity types (”g” = gene, ”p” = protein, ”r” = reaction, ”c”162

= compound, see above). These data models are then organized to be retrieved according to the underlying163
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Figure 1. Use cases workflows. A Workflow I: UniFuncNet is used to aid in the expansion of a previously
generated GSMM. First, a draft GSMM (grey network) and functional annotations (dashed box with grey and
yellow nodes) are extracted from the input proteome (top dashed box with grey nodes). Next, all functional
annotations absent (dashed box with yellow nodes) in the model are input into UniFuncNet. Lastly, all of
the metabolic model’s entities are connected to UniFuncNet’s output (yellow and grey nodes connected with
non-dashed edges). Optionally, the user may also add all remaining nodes in UniFuncNet’s network (yellow
nodes connected with dashed edges). B Workflow II: UniFuncNet is used to identify the proteins of an
organism involved in the metabolism of specific compounds. First, proteomes for all organisms were collected
(represented by the first dashed box with black dots), these were then functionally annotated with Mantis
(represented by the second dashed box with black dots, note the lower number of nodes in each proteome,
which represents the lack of functional annotations for some proteins). Using UniFuncNet, we created a
network with the reactions and respective proteins associated with each input compound. Lastly, using the
previously created network, we linked the compounds with their respective proteins in each proteome.
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Figure 2. UniFuncNet overview. The input of UniFuncNet is a list of IDs, ID types, entity types, and
search modes, which are processed line by line. In this example, UniFuncNet starts by collecting data on
the first query (Q1), which is a gene. According to the search mode ”gprc” it then searches for data for the
connected proteins, reactions and compounds. For the second query (Q2) - a reaction, UniFuncNet first
collects data on the reaction and then on the associated compounds (search mode ”rc”). UniFuncNet then
outputs the results for each collected entity in the respective tsv file, as well as the resulting network in SIF
format.
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structure of each database; i.e., biological databases entities are generally connected in two directions:164

g→p→r→c and c→r→p→g.165

UniFuncNet can process entities in 14 possible search modes, i.e., ”gp”, ”gpr”, ”gprc”, ”pg”, ”pr”, ”prc”,166

”rpg”, ”rp”, ”rc”, ”cr”, ”crp”, ”crpg”, ””, and ”global”. Each letter in the search mode corresponds to one of167

the four different entity types. The ”global” search mode corresponds to a search in both directions, e.g.,168

while searching for a given protein, UniFuncNet retrieves information on the associated genes - ”pg”, as well169

as the associated reactions and compounds - ”prc”. The ”” search mode corresponds to an ”in situ” search170

on the same entity, i.e., UniFuncNet retrieves information on the given input IDs without connecting them171

to additional other entities, e.g., when one aims to fetch ChEBI IDs from compound synonyms or for ID172

conversion. Figure 3 represents a generic example of multiple search modes and how these drive network173

generation.174

The user input and search mode are inherently linked to the data that is collected, i.e., the user input ID175

is used as a seed for data retrieval and to generate an entity, whereas the search mode is used to impose a176

direction and stop criterion on the data retrieval process. If, for example, the user inputs a reaction ID - the177

resulting entity will contain the database IDs associated with this reaction. During data retrieval this entity178

may also be connected to different types of entities, e.g., a reaction entity is usually associated with two or179

more compound entities. The IDs of these connected entities are then used for posterior data retrieval and180

generation of the respective entities (Figure 3). The user is able to input multiple search modes (comma181

separated) for the same input ID, which may be useful, e.g., for connecting a reaction entity to its respective182

compound and protein entities.183

UniFuncNet to Neo4j API184

In order to provide users with the possibility to efficiently query and manage the UniFuncNet results (for185

example during network analysis), an API importing UniFuncNet’s output into Neo4j a highly-flexible graph186

database management system, was implemented.187

UniFuncNet’s output can be depicted as a multipartite graph, which is a graph whose nodes can be split188

into multiple independent sets. In the case of UniFuncNet each output file contains multiple entities (e.g.,189

proteins) with entity related annotations (e.g., EC numbers (ECs)) (Figure 4). Since Neo4j is a highly flexible190

graph-based database it provides a natural integration of UniFuncNet’s data models.191

The API takes as input a folder containing all the UniFuncNet output tsv files and stores the data in a192

Neo4j database. This database can then be queried using Cypher (Neo4j’s querying language) or using any193

programming language Neo4j API (e.g., the Python or Java drivers). Additionally, we added the option to194

input Mantis consensus annotations to query the Neo4j database and create the respective SIF networks.195

Use cases196

UniFuncNet is a flexible network annotation framework, being usable within diverse contexts. We provide197

two case scenarios, the first using UniFuncNet for the expansion of GSMMs, and the second for linking198

compounds with specific organisms.199

Use case I200

In this use case we used UniFuncNet to expand GSMMs built with CarveMe[34], exploring how many putative201

connections UniFuncNet could add to the original GSMM. To that end, Mantis is used to provide additional202

functional annotations, and UniFuncNet to map those functional annotations to the GSMM (Figure 1.A).203

As an example, we expanded the GSMMs of multiple organisms that have been shown to be relevant204

in multiple ecosystems; (i) Akkermansia muciniphila has been shown to play an important role in human205

intestinal health as part of the gut microbiome [47]; (ii) Bradyrhizobium japonicum, has been shown to be a206

key organism in nitrogen fixation, essential for e.g. soybean plant growth [48]; (iii) Microthrix parvicella, has207

been shown to be the dominant species involved in the bulking of activated sludge and lipid accumulation in208

wastewater treatment plants [49]; (iv) Pelagibacter ubique, has been shown to be an ubiquitous ocean-dwelling209

bacterium that belongs to the SAR11 clade, which is reported to account for 25% of all cells in the ocean210

[38], and (v) Streptococcus pneumoniae, has been shown to be a key human pathogen, which is one of the211

leading causes of pneumonia, bacterial meningitis, and sepsis [50].212

This workflow compiled a list of all ECs and MetaCyc protein IDs found by Mantis that are not part of213

the original GSMM (generated by CarveMe). A non-redundant list of IDs over all species was generated.214
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Figure 3. UniFuncNet search modes: Example of three different search modes available in UniFuncNet
and how they sequentially link entities, generating a connected network. The first input line contains a gene
ID with search mode ”gprc”, UniFuncNet searches first for information on this gene and subsequently the
directly or indirectly connected entities (one protein, one reaction and three compounds). The second input
line contains a protein ID with the search mode ”prc”. UniFuncNet retrieves first information on the protein,
then on two reactions and four compounds; notice how one of the compounds found in the second search is
linked to the network created already during the processing of the first input. The third input line contains a
compound ID, and the search mode ”crp”, UniFuncNet then retrieves information on four compounds, three
reactions and four proteins. Again, since one of the proteins was already searched during the processing of
the second input line, the resulting network will connect these inputs’ entities.
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Figure 4. UniFuncNet results as a multipartite graph. The output from UniFuncNet can be
represented as a multipartite graph, where the central layers correspond to the entity types (e.g., proteins),
and the outer layers to the annotations (e.g., IDs or synonyms). The protein layer contains a protein complex
(red dashed circle), comprised of multiple subunits (i.e., protein nodes).
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This list was converted to a UniFuncNet input file, which contained 1329 unique EC numbers and 1052215

unique MetaCyc protein IDs. UniFuncNet were then run for all these IDs with the ”prc” search mode to216

connect the (p)rotein function annotations to the (r)eactions and (c)ompounds.217

UniFuncNet collected 5244 putative reactions, which were then filtered according to multiple steps: (i)218

filter for proteins associated to at least one reaction (ii) filter for proteins that were also absent in the original219

GSMM (iii) extract all reactions connected to these proteins, (iv) exclude reactions that were already present220

in the original GSMM, and (v) match the compounds obtained from UniFuncNet with the GSMM compounds221

to match reactions and exclude redundant reactions.222

For each proteome, a baseline directed network from the initial GSMM was created, where reactions and223

their respective substrates and products are represented as nodes (i.e., reactant(s)→reaction→product(s)).224

We then expanded the network by adding UniFuncNet’s nodes, either by adding new connections to the225

baseline network or adding new nodes.226

The draft GSMMs and expanded networks were evaluated according to: (i) % of reactions in the largest227

network component (%RLC); (ii) % of dead end metabolites (%DEM), i.e., metabolites without a transporter228

reaction that are produced but not consumed or consumed but not produced [51]; (iii) % of newly connected229

dead end metabolites (%CDEM); and (iv) the amount of new putative reactions that could be added to the230

GSMM (NR).231

On average %RLC decreased from 99.6% (sd=0.4%) to 95.0% (sd=0.7%), &DEMs increased from 4.2%232

(sd=0.6%) to 12.8% (sd=0.6%), and 0.1% (sd=0.06%) of DEMs were successfully connected in the expanded233

network. Finally, on average 1005 (sd=485.5) reactions could be added per proteome.234

The expanded networks resulted in a substantial enzyme-specific enrichment (i.e., ECs), the most enriched235

ones being transferases, oxidoreductases and hydrolases. We also analysed the ECs functional redundancy of236

the each organisms’ baseline and expanded networks, i.e., each baseline network was compared to all others237

baseline networks, and the same was repeated for the expanded networks. On average, we found that the238

ECs functional redundancy for the ”only baseline”, ”only expanded”, ”baseline+expanded” networks was239

0.74, 0.44, and 0.66 (0-1, 1 being equal), respectively.240

When analysing KEGG pathways, the most enriched metabolic capacities corresponded to the metabolism241

of carbohydrates, lipids, and cofactors and vitamins (from least to most enriched). In the Akkermansia242

muciniphila expanded network, the biosynthesis and metabolism of glycans was among the metabolic capacities243

most enriched by the network expansion (161 ECs in the baseline to 166 additional ECs in the expanded244

network mapped to the kegg pathway ”Glycan biosynthesis and metabolism”). In the Microthrix parvicella245

expanded network, the metabolism of lipids was the metabolic capacity most enriched by the network246

expansion (31 ECs in the baseline to 218 additional ECs in the expanded network mapped to the kegg247

pathway ”Lipid metabolism”).248

These results are available in Supplementary table ”results.ods” available at https://gitlab.lcsb.uni.249

lu/pedro.queiros/benchmark_unifuncnet.250

Use case II251

In order to understand how UniFuncNet could be used to link different omics levels, we used it to connect252

functionally annotated reference proteomes to a metabolomics dataset, i.e., linking metabolism related253

proteins to their reactions and respective compounds (Figure 1.B).254

As an example, we used a metabolomics study [41] that cultured four organisms in artificial sputum and255

nutrient broth mediums and sampled their headspaces for 13 compounds. These compounds were used as256

potential biomarkers in order to determine the most appropriate antimicrobial therapy in the treatment of257

ventilator-associated pneumonia.258

In order to find the reactions and proteins associated with each compound, UniFuncNet ran with the259

search mode ”crp”. The proteins found to be connected with the compounds via UniFuncNet were then260

intersected with the functional annotations of each proteome, thus allowing for the identification of the261

enzymes within each organism involved in the metabolism of these compounds.262

After running this workflow we successfully retrieved information on 11 of 13 compounds, eight of these263

were linked to a total of 30 reactions. These reactions were then connected to a total of 17 proteins. We264

then linked the proteins connected to reactions (n=17) to the functional annotations of each organism,265

finding which of these organisms could potentially be involved in the metabolism of studied compounds. We266

found that all organisms were involved in the metabolism of indole and that Pseudomonas aeruginosa was267

additionally involved with the metabolism of 2-furanmethanol.268
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Discussion and conclusion269

Here we present UniFuncNet, a network annotation framework that collects and integrates data from multiple270

biological databases. UniFuncNet can be used to search for information and generate annotated networks in271

a flexible manner (i.e., various search modes and input ID types). UniFuncNet automates data collection272

into a human-readable output, by connecting the different biological entities (i.e., genes, proteins, reactions,273

and compounds), and it provides a network-structured output, which can be easily used in network-based274

downstream analysis. An added benefit of UniFuncNet is the standardization of the search methodology,275

potentially decreasing the accidental omission of information during manual collection/curation.276

UniFuncNet collects data from live websites/application programming interfaces (API) and allows the277

user to update their own local flat files (e.g., MetaCyc or Rhea). UniFuncNet ensures that the collected278

data is up to date, which represents a limitation in similar projects [46]), since they require regular database279

maintenance. However, UniFuncNet faces its own challenges: (i) a website’s HTML structure or API may280

change over time, which requires maintenance of UniFuncNet’s data collection protocols, (ii) live retrieval of281

information tends to be slower than using a centralized source of data, and (iii) websites may block scraping282

attempts if these are done too frequently, which is circumvented by UniFuncNet by having 10 second waiting283

period between each web query to the same database. While reliable and large data collection is provided by284

UniFuncNet, as a framework that can speed-up the work of researchers requiring comprehensively annotated285

networks, it is advisable to perform manual curation during downstream data integration. Overall though, we286

believe that the benefits of having a lightweight framework with very low storage footprint, always retrieving287

the latest information, clearly outweigh the aforementioned downsides.288

Current automated reconstruction tools are capable of generating GSMMs ready for modelling. However,289

divergent implementations [52, 34, 53] may lead to different outcomes (i.e., the models) due to multiple factors,290

e.g.: (i) different gene predictions, (ii) different functional annotation reference databases, and (iii) different291

automated curation implementations [54, 55]. While automated curation offers a good modelling basis, it292

is unlikely that the current methods will ever be able to encompass the complexity of in vivo biological293

networks. As such, manual curation and expansion of GSMMs remain essential; the latter is routinely done294

through the iterative analysis of the subsystems for genes, proteins, and reaction(s) of interest. In particular,295

the end-user searches for information regarding a certain ontology ID, such as KEGG [18] orthology IDs,296

ECs, or others, in highly comprehensive (and partially redundant) biological databases. To avoid introducing297

redundancy, cross-linking entities between databases is necessary, which can be done manually or partially298

automated through ID mapping tools offered by MetaNetX [46] or UniProt [27]. To this end, we implemented299

a workflow that uses UniFuncNet to facilitate the cross-linking and expansion of GSMMs.300

We have shown that the networks enriched with UniFuncNet’s workflow were better able to capture301

organism-specific characteristics, e.g., in Microthrix parvicella the metabolism of lipids was the most enriched302

KEGG pathway, which agrees with the findings of Sheik et al. [49]. Similarly, in Akkermansia muciniphila303

the metabolism and biosynthesis of glycans was amongst the most enriched KEGG pathways, which supports304

the hypothesis that this organism and glycans play an important role in human gut health [47, 56]. Lastly,305

the metabolism of cofactors and vitamins was, on average, the most enriched KEGG pathway among all306

organisms.307

In general, we found that this workflow could add a substantial amount of reactions to the GSMMs, which,308

as previously shown [31], is likely due to the more comprehensive reference databases used (Mantis with309

the KOfam, Pfam, and MetaCyc databases and CarveMe with the BIGG database [57]). In addition, we310

also found that the similarity between the functional profiles (i.e., ECs functional redundancy) between each311

organism’s network was substantially lower in the expanded networks, highlighting the benefit of applying312

UniFuncNet to discover functions unique to each organism. It is important to emphasize that the expanded313

networks would still require curation; indeed the aim of this workflow is not to directly output an expanded314

GSMM ready for modelling, but to provide the user with a framework that automates some of the most315

time-consuming curation steps, i.e., expanding and enriching the network. Altogether, these results show316

the potential of UniFuncNet to support the expansion of GSMMs, provided additional curation steps are317

implemented by the end-users. While in this manuscript we have shown how UniFuncNet can be used in a318

targeted manner, it could also be used for the generation of genome-scale metabolic networks.319

We have also shown how UniFuncNet can be used to link different datasets, in particular how it can be used320

for linking different omics, which should prove useful for multi-omics network-based analysis. Specifically, in321

the second workflow, we have shown how UniFuncNet may be used for the mapping of compounds to specific322

organisms. The results shown in the use case II were not able to connect the organisms and compounds in323
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the same resolution as the respective study [41], which further highlights the need to create and use more324

comprehensive functional annotation reference databases. However, we found that indole’s metabolism was325

shared among all organisms, which is a clear indication of conservation of function in prokaryotes[58, 59, 60].326

Despite this, we believe this workflow could be combined with more resolved input proteomes (i.e., using327

proteomics data instead of reference proteomes) and as such could be an even more powerful screening tool328

for more thorough investigations.329

In conclusion, in this article we have highlighted UniFuncNet’s ability to automatically and comprehensively330

annotate networks. Additionally, we have showcased two use cases which could be used as baseline examples331

for more intricate analysis. We believe that UniFuncNet’s flexible search modes and varied input formats332

expands its utility into a variety of analysis well beyond the ones shown in this paper.333
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