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Abstract.

We characterise subcategories of semistable modules for noncom-
mutative minimal models of compound Du Val singularities, including
the non-isolated case. We find that the stability is controlled by an
infinite polyhedral fan that stems from silting theory, and which can
be computed from the Dynkin diagram combinatorics of the minimal
models found in the work of Iyama–Wemyss. In the isolated case, we
moreover find an explicit description of the deformation theory of the
stable modules in terms of factors of the endomorphism algebras of
2-term tilting complexes. To obtain these results we generalise a corre-
spondence between 2-term silting theory and stability, which is known
to hold for finite dimensional algebras, to the much broader setting of
algebras over a complete local Noetherian base ring.

§1. Introduction

Stability conditions are an important tool in algebra, as they provide
an avenue for studying wild representation theory through moduli spaces
of (semi)stable objects. In some cases one can extract noncommutative
Donaldson–Thomas invariants [21] from these moduli spaces that give a
“virtual count” of the semistable objects, which takes the deformation
theory of these objects into account.

The aim of this paper is to understand stability condition from this
perspective for algebras with geometric significance: noncommutative
minimal models for compound Du Val singularities. These are a three-
dimensional analogue of the noncommutative resolutions of ADE sur-
face singularities encountered in the McKay correspondence, which are
part of a noncommutative approach to the minimal model program for
threefolds [24]. We work in a wide setting, which includes both Van
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den Bergh’s NCCRs [22], as well as the more general noncommutative
minimal models studied by Iyama–Wemyss [14, 13].

The (semi)stable modules for these noncommutative minimal mod-
els have only been classified in a limited number of cases, due to the
complexity of the representation theory involved. Most notable is the
work of Nagao–Nakajima [18], who show that the stability of the “coni-
fold” is controlled by a hyperplane arrangement. As a consequence, the
enumerative theory of these examples is now well-established [21, 5]. In
our recent work [23] we were able to uncover the enumerative theory
for a new family of examples, by showing that the stability is again
controlled by a hyperplane arrangement, coming from the silting the-
ory of the noncommutative minimal model. Moreover, we showed that
these silting complexes determine the deformation theory of the stable
modules.

In this paper we further develop this connection between silting and
stability and thereby give a complete picture of the stability over any
cDV singularity, via the characterisation of the 2-term silting theory
in the work of Iyama-Wemyss [13]. In fact, by applying recent results
of Kimura [15] we are able to work in a much more general setting
of algebras over any complete local base ring. The paper is therefore
split into two parts: the first containing general results about silting &
stability for algebras over a complete local ring, and the second on the
application of these results to cDV singularities.

1.1. Stability and silting over a complete local ring

We work over a complete local Noetherian commutative ring (R,m),
and consider finite R-algebras Λ with R central. Our goal is to charac-
terise semistable modules of such algebras for King stability conditions
parametrised by K-theory vectors

θ ∈ K0(projΛ)R := K0(projΛ)⊗ R.

To do this we leverage a certain duality between King stability and
silting theory, building on the work of various authors [2, 4, 26] in the
setting of finite dimensional algebras. Concretely, we construct a silting
fan

SFan(Λ) =
⋃

T∈2-siltΛ

Cone(T )

as the union of closed cones in K0(projΛ)R generated by basic 2-term
silting complexes , and show that for each θ in this fan the category
Sθ ⊂ flΛ of finite length θ-semistable modules can be characterised via
an orthogonality condition defined by a certain silting complex and its
direct summands.
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In Proposition 2.8 we show that the silting fan is indeed a fan, whose
faces are the strict cones of basic 2-term presilting complexes.

Proposition A (Proposition 2.8). Let Λ be a finite algebra over a
complete local Noetherian ring. Then SFan(Λ) is a polyhedral fan with
decomposition

SFan(Λ) =
⊔

T ′∈2-presiltΛ

Cone◦(T ′),

where each face Cone◦(T ′) is the strict cone of 2-term presilting com-
plexes T ′.

The above is well-known in the finite dimensional setting, where it
follows from the work of Demonet–Iyama–Jasso [6]. To lift this to the
complete local setting, we apply the a reduction theorem due to Kimura
[15], which allows us to compare the silting theories of the algebra Λ

and its finite dimensional fibre Λ := Λ ⊗R R/m over the closed point
in SpecR. In particular, we find that the structure of SFan(Λ) depends
only on the fibre Λ, which yields the following.

Proposition B (Proposition 2.9). If I ⊂ m is an ideal, the base-
change over the quotient R → R/I identifies the the silting fans SFan(Λ)
and SFan(Λ/IΛ).

For finite dimensional algebras such as Λ, the semistable objects for
stability conditions in SFan(Λ) can be described via certain torsion pairs,
as shown by Brüstle–Smith–Treffinger [4] in the language of τ -tilting
theory, and by Yurikusa [26] and Asai [2] in terms of silting theory. One
interpretation of these torsion pairs is as an orthogonality condition in
the derived category between semistable modules and 2-term (pre)silting
complexes. Our main technical result is that an analogous orthogonality
condition also controls the stability in the complete local setting.

Theorem C (Theorem 2.12). Let T ∈ 2-siltΛ be the Bongartz com-
pletion of a summand T ′ ⊂ T . For all θ ∈ Cone◦(T ′) the θ-semistables
form the subcategory

Sθ = {M ∈ flΛ | HomD(Λ)(T,M [1]) = 0, HomD(Λ)(T
′,M) = 0}.

Moreover, Sθ is an abelian length category containing |T | − |T ′| simple
objects, which are precisely the θ-stable modules.

The orthogonality condition gives a description of Sθ as a subcate-
gory inside the heart of a t-structure on the derived category Db(flΛ),
which is induced by induced by T . Via a derived Morita equivalence,
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this heart can be identified with the module category flEndKb(Λ)(T ),
leading to the following description of Sθ.

Theorem D (Theorem 2.13). Let T be the Bongartz completion of
a summand T ′ ⊂ T . Then for all θ ∈ Cone◦(T ′) there is an equivalence
of abelian categories

Sθ
∼−−→ flEndKb(Λ)(T )/(e),

where e : T → T ′ → T is the idempotent projecting onto the summand
T ′ ⊂ T .

One way to interpret this theorem is through the lens of noncommu-
tative deformation theory: for each θ ∈ Cone◦(T ′) the theorem implies
that EndKb(Λ)(T )/(e) pro-represent Laudal’s [17] deformation functor
for the set of θ-stable modules.

1.2. Results about cDV singularities

We now discuss the applications of the above results in the setting
of cDV singularities. In [14] Iyama–Wemyss introduced a type of non-
commutative minimal model for a cDV singularity R, in the form of
endomorphism algebras

ΛM := EndR(M)

of a certain distinguished set of reflexive modules, which are related by
mutations. In their follow up work [13] they moreover characterise the
2-term tilting theory of these minimal models by relating them to the
2-dimensional case: if g ∈ R is a sufficiently generic section then the
slice

Λ → Λ/gΛ

is a noncommutative partial resolution of a simple surface singularity
as in the McKay correspondence, and they show that the 2-term tilting
theory of this slice is closely related to that of Λ. In particular, they
are able to show that the 2-term tilting complexes of Λ correspond to
chambers in an intersection hyperplane arrangement

XΓ ,J ⊂ RJ ,

which is determined by a Dynkin type (Γ , J) associated to the slice.
Although this correspondence gives a strong grip on the tilting theory
of Λ, it may fail to be a bijection if R is not an isolated singularity.
Using Proposition 2.9, we are however able to strengthen their result in
the non-isolated setting at the cost of moving to silting theory.
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Proposition E (Proposition 3.4). Let Λ = ΛM be a noncommuta-
tive minimal model of a cDV singularity with Dynkin type (Γ , J). Then
SFan(Λ) is identified with the intersection arrangement XΓ ,J via an iso-
morphism K0(proj Λ) ≃ RJ .

With the silting fan identified, Theorem 2.12 now directly yields a
classification of all K-theory vectors for which there exists semistable
modules. This holds both for isolated as well as non-isolated singulari-
ties.

Proposition F (Proposition 3.5). Let Λ = ΛM be a noncommuta-
tive minimal model of a cDV singularity with Dynkin type (Γ , J). For
θ contained in a codimension k face of XΓ ,J there are precisely k stable
modules in Sθ ⊂ flΛ. In particular:

• if θ lies in a chamber, then Sθ = 0,
• if θ lies generically on a hyperplane, then there is a unique

θ-stable module.

This result gives a strong grip on the stability of finite length mod-
ules, because the intersection arrangements, though infinite, can be de-
scribed concretely using Dynkin diagram combinatorics. As an example,
one can consider the arrangement associated to a choice of two nodes in
the extended D4 Dynkin diagram:

The proposition implies that for a Λ with this Dynkin-type, the sub-
categories Sθ behave constructibly with respect to the above wall-and-
chamber structure: Sθ is trivial for θ in a chamber, Sθ = flΛ if θ = 0,
and θ if lies in the complement of 0 inside a wall then Sθ consists of
self-extensions of a unique θ-stable module.

The constructible behaviour of Sθ also holds for higher dimensional
arrangements, such as those illustrated in [13], and implies that the K-
theory classes of semistable modules in K0(flΛ) are contained in a lattice
that is dual to the intersection arrangement. This has implications for
enumerative theories, because it determines which classes in K0(flΛ) will
contribute to the enumerative invariants of Λ.

In the isolated setting, the correspondence of [13] yields an explicit
tilting complex for each chamber in XΓ ,J , and the endomorphism al-
gebras are again noncommutative minimal models. Therefore Theorem



6 O. van Garderen

2.13 can be used in this setting to give an explicit description of the
subcategories of semistable modules.

Theorem G (Theorem 3.7). Let Λ = ΛM be a noncommutative
minimal model of an isolated cDV singularity. Then for all θ ∈ XΓ ,J

there is an equivalence of abelian categories

Sθ ≃ flΛN/(e),

for some noncommutative minimal model ΛN and idempotent e ∈ ΛN .

Hence, the deformation theory of θ-stable modules of a fixed mini-
mal model ΛM is pro-represented by the factor algebras ΛN/(e) of the
other noncommutative minimal models, at least for θ contained in the
fan. This has strong implications for the enumerative geometry of flops,
which we will cover in a separate paper.

1.3. Acknowledgements
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at the University of Glasgow, who the author thanks for their financial
support. The author would also like to thank Michael Wemyss for helpful
discussions.

§2. Stability and silting

In this section we fix a complete local Noetherian commutative ring
(R,m) with residue field κ = R/m, and an R-algebra Λ such that R is
central in Λ and Λ is finite as an R-module. Equivalently, Λ is a coherent
sheaf of algebras over SpecR, whose fibre over the unique closed point
Specκ is the finite dimensional algebra

Λ := Λ/mΛ ≃ Λ⊗R κ.

In what follows we compare the stability conditions and silting theory
for Λ and Λ via functors induced by the quotient map Λ → Λ.

2.1. King stability over a complete local base

King [16] defined stability conditions on any abelian category A in
terms of linear forms K0(A) → R on its Grothendieck group. Here
we want to define such stability conditions on the abelian categories
A = flΛ and A = flΛ of finite length modules over Λ and Λ, in a
compatible way. To do this we use a pairing of K0(flΛ) with the real
K-theory space

K0(projΛ)R := K0(projΛ)⊗Z R,



Stability over cDV singularities and other complete local rings 7

where projΛ denotes the category of projectives, and similarly for Λ.
Before defining this pairing we need the following elementary lemma.

In what follows, let lengthRM denote the length of a module M over
R.

Lemma 2.1. Let P ∈ projΛ and M ∈ flΛ, then HomΛ(P,M) is a
finite length R-module.

Proof. Because P is a finitely generated projective, it is a direct
summand of Λ⊕n for some n. Because HomΛ(P,M) is a direct summand
of HomΛ(Λ

⊕n,M), the additivity of the length therefore implies

lengthRHomΛ(P,M) ≤ lengthRHomΛ(Λ
⊕n,M) = n · lengthRM.

Because Λ is finite as an R-module, a finitely generated Λ-module has
finite length over Λ if and only if it has finite length over the base ring
R. In particular, M ∈ flΛ implies lengthRM < ∞, and the result
follows. Q.E.D.

Lemma 2.1 implies that there is a well-defined mapping projΛ× flΛ →
N which sends a pair (P,M) ∈ projΛ × flΛ to lengthRHomΛ(P,M).
Because the length is additive over short exact sequences, it induces the
following pairing on K-theory.

Lemma 2.2. The assignment (P,M) 7→ lengthRHomΛ(P,M) ex-
tends to a pairing

⟨−,−⟩Λ : K0(projΛ)R ⊗K0(flΛ) → R.

Proof. The Grothendieck groups K0(projΛ)R and K0(flΛ) are gen-
erated by the symbols [P ] for P ∈ projΛ, and [M ] for M ∈ flΛ respec-
tively. Therefore, we can define ⟨−,−⟩Λ by extending bi-linearly:

⟨
∑

i θi[Pi],
∑

j nj [Mj ]⟩ =
∑

ij θinj lengthRHomΛ(Pi,Mj),

and it suffices to check that this form ⟨−,−⟩Λ respects the relations in
the Grothendieck group. For P ∈ projΛ, the functor HomΛ(P,−) is
exact and therefore maps every short exact sequence 0 → N → M →
M/N → 0 in flΛ to a short exact sequence in flR, and hence by the
additivity of the length:

lengthRHomΛ(P,M) = lengthRHomΛ(P,N) + lengthRHomΛ(P,M/N).

It follows that ⟨[P ], [N ]−[M ]+[M/N ]⟩Λ = 0. Likewise, every admissible
exact sequence Q ↪→ P ↠ P/Q in the exact category projΛ induces an
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exact sequence for every M ∈ flΛ

0 HomΛ(P/Q,M) HomΛ(P,M)

HomΛ(Q,M) Ext1Λ(P/Q,M) = 0

which implies that ⟨[Q]− [P ] + [P/Q], [M ]⟩Λ = 0. Q.E.D.

Given any vector θ ∈ K0(projΛ)R, the pairing now yields a linear form

⟨θ,−⟩ : K0(flΛ) → R,

and therefore a King stability condition on flΛ. Following King’s def-
inition [16, Def 1.1], a module M ∈ flΛ is θ-semistable if ⟨θ, [M ]⟩ = 0
and ⟨θ, [N ]⟩ ≤ 0 for every submodule N ⊂ M , and is additionally called
θ−stable if1 M ̸= 0 and the inequality is strict for all proper nonzero
submodules. We write Sθ ⊂ flΛ for the full subcategory of semistable
modules:

Sθ = {M ∈ flΛ | M is θ-semistable} .

In the finite dimensional setting discussed in [4, 2] these subcategories
are known to be wide subcategories, i.e. a finite length subcategory
which is closed under kernels, cokernels, and extensions. In our setting
the analogous result holds.

Lemma 2.3. For all θ ∈ K0(projΛ)R the subcategory Sθ ⊂ flΛ is a
wide subcategory, and its simple objects are exactly the θ-stable modules.

Proof. This follows directly from [3, Prop 2.20], after translating
the King stability condition ⟨θ,−⟩ to the associated stability function of
Rudakov [19]. Q.E.D.

One similarly obtains a pairing ⟨−,−⟩Λ for the finite dimensional

fibre Λ, and each vector θ ∈ K0(projΛ) induces a stability condition on
flΛ, with an associated wide subcategory Sθ ⊂ modΛ. The pairings

for Λ and Λ are compatible with the extension/restriction of scalars
functors

(−) := (−)⊗Λ Λ : projΛ → projΛ, (−)Λ : flΛ → flΛ

via the adjunction HomΛ(−, (−)Λ) ≃ HomΛ(− ⊗Λ Λ,−). This results
in the following compatibility between stability conditions on flΛ and
stability conditions on flΛ.

1Note that this definition guarantees that the zero module is semistable but
not stable, just as it is semisimple but not simple.
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Proposition 2.4. Let θ ∈ K0(projΛ)R with image θ ∈ K0(projΛ)R,
then the functor (−)Λ defines an exact embedding Sθ −→ Sθ which iden-

tifies the θ-stable modules with the θ-stable modules. In particular Sθ is
the extension closure

Sθ = ⟨(Sθ)Λ⟩.
Proof. Write θ as a linear combination θ =

∑
i θi[Pi] for Pi ∈

projΛ, so that it image is θ = θi[P i]. For any M ∈ flΛ, the adjunction
yields

⟨θ, [MΛ]⟩Λ =
∑

iθi · lengthRHomΛ(Pi,MΛ)

=
∑

iθi · lengthRHomΛ(P i,M) = ⟨θ, [M ]⟩Λ.

Because the submodules of the restriction MΛ are precisely the restric-
tions of submodules of M , it then follows that that M is θ-(semi)stable
if and only if its image MΛ is θ-(semi)stable. Hence (−)Λ restricts to
an embedding Sθ → Sθ.

To see that every θ-stable module is in the image, recall (see e.g. [19,
Theorem 1]) that the endomorphism ring of a stable object in an abelian
category is a division ring. Therefore, if M ∈ Sθ is a stable module, then
for any z ∈ m the homomorphism z· : M → M of multiplication by z is
either 0 or an isomorphism. Because m maps into the Jacobson radical
of Λ, Nakayama’s lemma implies z· is the zero map for all z ∈ m, which
shows that M ≃ MΛ is in the image of (−)Λ.

By Lemma 2.3 the category Sθ is the extension closure of the set
of θ-stable modules. As these are all in the image (Sθ)Λ it then follows
that Sθ = ⟨(Sθ)Λ⟩. Q.E.D.

2.2. The silting fan

Let Kb(Λ) := Kb(projΛ) denote the homotopy category of complexes
of projectives. Recall that T ∈ Kb(Λ) is presilting if

HomKb(Λ)(T, T [i]) = 0 ∀i > 0,

and is silting if it additionally generates Kb(Λ) as a triangulated category.
BecauseΛ is finite over a complete local ring, Kb(Λ) is known to be Krull-
Schmidt: every complex T ∈ Kb(Λ) splits as a direct sum T = T1⊕ . . .⊕
Tk of indecomposables. We write |T | for the number of indecomposables
in the Krull-Schmidt decomposition. A complex is basic if it has no
repeated indecomposable summands, and is a 2-term complex if it is
supported in degrees −1 and 0. The sets of isomorphism classes of basic
2-term presilting complexes and silting complexes will be denote by

2-presiltΛ, 2-siltΛ
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respectively, and in what follows we will take the liberty to identify
the elements of 2-presiltΛ and 2-siltΛ with a choice of representatives
T ∈ Kb(Λ). (Pre)silting complexes for Λ are defined in a similar way.

The 2-term silting theory of finite dimensional algebras is well-
studied and known to induce a wall-and-chamber structure inside the
K-theory space, which can be used to characterise stability conditions
[4, 2]. To find a similar wall-and-chamber structure for K0(projΛ)R =
K0(K

b(Λ))R we will apply the following reduction result of Kimura [15]
for algebras over complete local Noetherian rings.

Proposition 2.5 ([15, Prop 4.2(b), Prop 4.5(a)]). Let I ⊂ m be an
ideal, then the functor −⊗Λ Λ/IΛ defines a surjection

2-presiltΛ → 2-presiltΛ/IΛ,

which restricts to an equivalence of partially ordered sets

2-siltΛ
∼−−→ 2-siltΛ/IΛ.

Clearly, this result applies to the case I = m, given a bijection
2-siltΛ ≃ 2-siltΛ. However, we require a slightly stronger statement, as
we will also need to compare presilting complexes to find the wall-and-
chamber structure. For this we use a result of Aihara [1, Proposition
2.16], which shows that every T ′ ∈ 2-presiltΛ has a Bongartz completion
in the form of a silting complex T = T ′ ⊕ T ′′ ∈ 2-siltΛ.

Lemma 2.6. The map 2-presiltΛ → 2-presiltΛ is a bijection.

Proof. Suppose T, T ′ ∈ 2-presiltΛ are basic 2-term presilting com-

plexes such that T ≃ T
′
. Let T ⊕ U ∈ 2-siltΛ be the Bongartz com-

pletion of T , then T ⊕ U ≃ T
′ ⊕ U is also the Bongartz completion of

T
′
, which lifts to T ′ ⊕ U ∈ 2-siltΛ. Because the map 2-siltΛ → 2-siltΛ

is bijective, the isomorphism T ⊕ U ≃ T
′ ⊕ U lifts to an isomorphism

T ⊕U ≃ T ′⊕U , and it then follows that T ≃ T ′ because Kb(Λ) is Krull-
Schmidt. It follows that the surjective map 2-presiltΛ → 2-presiltΛ is
injective and hence also bijective. Q.E.D.

Given a presilting complex T ∈ 2-presiltΛ with Krull-Schmidt de-
composition of the form T = T1 ⊕ . . .⊕ Tk, let

Cone(T ) :=
{∑k

i=1 λi[Ti] | λi ≥ 0
}
⊂ K0(projΛ)R,

Cone◦(T ) :=
{∑k

i=1 λi[Ti] | λi > 0
}
⊂ K0(projΛ)R,
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denote respectively the cone and strict cone of T in K0(projΛ)R. The
cone of T is polyhedral with faces given by the strict cones of its sum-
mands, i.e. Cone(T ) decomposes as a disjoint union

Cone(T ) =
⊔

T ′⊂T

Cone◦(T ′).

In particular, Cone◦(T ) is the interior of Cone(T ) inside its linear span,
and the boundary is a union of faces Cone(T \ Ti) of the presilting
complexes obtained by removing one of the indecomposable summands.

Similarly, every presilting complex T ∈ 2-presiltΛ defines a cone in
K0(projΛ), and we claim that this construction is compatible with the
reduction map.

Lemma 2.7. For every T ∈ 2-presiltΛ, the strict cones Cone◦(T )

and Cone◦(T ) are identified by (−) : K0(projΛ)R
∼−→ K0(projΛ)R.

Proof. Let T = T1 ⊕ . . .⊕ Tk be the Krull-Schmidt decomposition
of some T ∈ 2-presiltΛ, then T has the Krull-Schmidt decomposition
T = T 1 ⊕ . . . ⊕ T k as the T i are indecomposable by Proposition 2.5.
Hence

Cone◦(T ) =
{∑k

i=1 λi[T i] | λ > 0
}
= Cone◦(T ),

as claimed. Q.E.D.

If T ∈ 2-siltΛ the classes [Ti] of its indecomposable summands form
a basis for K0(projΛ)R, and Cone◦(T ) is therefore an open subspace
of K0(projΛ)R. In the finite dimensional setting it is known that these
open subspaces form the chambers of a wall-and-chamber structure, with
walls given by the cones of a common summand. Here we find a similar
result.

Proposition 2.8. For T,U ∈ 2-presiltΛ their cones intersect in

Cone(T ) ∩ Cone(U) = Cone(V )

for some V ∈ 2-presiltΛ which is a summands of both T and U . In
particular, if T,U ∈ 2-siltΛ are distinct silting complexes, then

Cone◦(T ) ∩ Cone◦(U) = ∅.

Proof. This is well-known in the finite dimensional setting: for
2-term tilting complexes it is a result by Hille [9], for 2-term silting
complexes by Demonet–Iyama–Jasso [6, Cor 6.7], and analogously for
2-term presilting complexes as in [2, Prop 3.9]. Because the fibre Λ is
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finite dimensional, the reductions T ,U ∈ 2-presiltΛ of a pair of presilting
complexes T,U ∈ 2-presiltΛ satisfy

Cone(T ) ∩ Cone(U) = Cone(V ),

for some V ∈ 2-presiltΛ which is then a summand of T and U . By
Lemma 2.6 the object V lifts uniquely to some V ∈ 2-presiltΛ which is
a summand of T and U . By Lemma 2.7 it then also follows that

Cone(T ) ∩ Cone(U) = Cone(V ).

If T and U are silting then they have the same number |T | = |U | of
indecomposable summands, so if T ̸≃ U then any shared summand V
has |V | < |T | and |V | < |U |. It follows that Cone(V ) is disjoint from
Cone◦(T ) and Cone◦(U). Q.E.D.

The proposition shows that the union

SFan(Λ) :=
⋃

T∈2-siltΛ

Cone(T )

of the cones of 2-term silting complex forms a polyhedral fan inside
K0(projΛ), which we will refer to as the silting fan of Λ. The fan
decomposes into a disjoint union

SFan(Λ) =
⊔

T∈2-presiltΛ

Cone◦(T ),

of its faces, which are precisely the strict cones of 2-term presilting
complexes. In the following section it will be useful to stratify the silting
fan by codimension. If d = dimR K0(projΛ)R denotes the rank of the
K-theory, we define for each k = 0, 1, . . . , d the codimension k stratum
as the disjoint union

SFank(Λ) :=
⊔

|T |=d−k

Cone◦(T ),

over all T ∈ 2-presiltΛ with d − k indecomposable summands. As a
consequence of Kimura’s theorem, we find that the construction of the
silting fan is compatible with any central reduction. More precisely, we
have the following.

Proposition 2.9. For every ideal I ⊂ m, the silting fans SFan(Λ)

and SFan(Λ/IΛ) are identified by K0(projΛ)R
∼−→ K0(projΛ/IΛ)R.
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Proof. By Lemma 2.7 the faces Cone◦(T ) of the silting fan SFan(Λ)
are mapped to the the faces Cone◦(T ) of the silting fan SFan(Λ) of the
fibre, and the faces are moreover in bijection by 2.6. Hence, SFan(Λ) and
SFan(Λ) are identified as polyhedral fans. Likewise, if I ⊂ m then the
reduction Λ/IΛ → Λ identifies SFan(Λ/IΛ) with SFan(Λ). Because
the reduction of Λ factors as Λ → Λ/IΛ → Λ, it follows that the

natural map K0(projΛ)R
∼−→ K0(projΛ/IΛ) identifies SFan(Λ) with

SFan(Λ/IΛ), as both fans map to SFan(Λ) in K0(projΛ). Q.E.D.

2.3. Stability conditions inside the silting fan

In the finite dimensional setting, a connection between silting the-
ory and stability conditions has been established in the work of several
authors [4, 26, 2]: for a finite dimensional algebra A and a stability
condition in θ ∈ SFan(A) it is shown that

• there are a finite number of θ-stable modules,
• the subcategory Sθ depends only on the face Cone◦(T ) of the
fan in which θ lies,

• Sθ is equivalent as an abelian category to a module category
for an algebra determined by T ∈ 2-presiltA and its Bongartz
completion.

In this section we show how to derive similar result for the algebra Λ by
reducing to the finite dimensional setting along the quotientΛ → Λ. Our
strategy follows the approach of Asai [2]: we recover the subcategories
Sθ ⊂ flΛ by identifying the θ-stable objects with simples in the heart
of a t-structure associated to a silting complex. This t-structure can be
identified as follows.

Let T ∈ 2-siltΛ, then T can be viewed as a chain complex in
Cb(projΛ), and therefore has a well-defined endomorphism DG alge-
bra ET := (End•Λ(T ), ∂). Because T is silting, it is by definition also
a generator for the derived category D(Λ) and therefore (see e.g. [25,
Thm 14.2.29]) induces a derived Morita equivalence

RHomΛ(T,−) : D(Λ) −→ D(ET )

between D(Λ) and the derived category of DG modules over ET . More-
over, it follows from Lemma 2.1 that this restricts to an equivalence on
finite length objects

RHomΛ(T,−) : Db(flΛ) −→ Db
fl(ET ).

Because T is silting, the cohomology HiET = HomKb(Λ)(T, T [i]) of ET

vanishes in positive degrees, and the derived category Db
fl(ET ) has a
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standard t-structure with heart given by the complexes concentrated in
degree 0:

H0(Db
fl(ET )) ≃ flH0ET ≃ flEndKb(Λ)(T ).

Pulling this t-structure back along the derived Morita equivalence, one
obtains a t-structure on Db(flΛ) with heart

HT = {E ∈ Db(flΛ) | RHomΛ(T,E) ∈ flEndKb(Λ)(T ) ⊂ Db
fl(ET )}.

This heart HT ⊂ Db(flΛ) is a tilt of the standard heart flΛ ⊂ Db(flΛ)
at a torsion pair, as defined by Happel-Reiten-Smalø [8].

Lemma 2.10. Let T ∈ 2-siltΛ, then the heart HT is the HRS-tilt

T ∗ F [1] := {E ∈ Db(flΛ) | H0E ∈ T , H−1E ∈ F , HiE = 0 otherwise}

associated to the torsion pair

T = {M ∈ flΛ | HomD(Λ)(T,M [1]) = 0},
F = {M ∈ flΛ | HomD(Λ)(T,M) = 0}.

Proof. By construction HT is the heart of the t-structure (T [<
0]⊥, T [> 0]⊥), where

T [< 0]⊥ := {E ∈ Db(flΛ) | HomD(Λ)(T,E[i]) = 0 ∀i > 0},

T [> 0]⊥ := {E ∈ Db(flΛ) | HomD(Λ)(T,E[i]) = 0 ∀i < 0}.

It was shown in [11] in a more general setting that this t-structure is
induced by the torsion pair (T ,F), and hence HT = T ∗ F [1]. Q.E.D.

For any silting complex T ∈ 2-siltΛ the reduction T ∈ 2-siltΛ
again induces a t-structure on the derived category Db(flΛ) of the finite
dimensional algebra Λ, with heart

HT = {E ∈ Db(flΛ) | HomD(Λ)(T ,E) = 0 ∀i ̸= 0}

= {E ∈ Db(flΛ) | HomD(Λ)(T,EΛ) = 0 ∀i ̸= 0}.

Via the exact embedding (−)Λ : Db(flΛ) → Db(flΛ) we can view this
heart as an abelian subcategory (HT )Λ = HT ∩ Db(flΛ) of HT . Using
Lemma 2.10 we can now show that its extension closure in Db(flΛ) is
precisely HT .

Lemma 2.11. The heart HT is the extension closure of the subcat-
egory (HT )Λ ⊂ Db(flΛ).
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Proof. By Lemma 2.10 the heart HT is generated under extension
by T and F [1], and hence it suffices to show that M [1], N ∈ ⟨(HT )Λ⟩
for all N ∈ T and M ∈ F .

For M ∈ F , the mi-torsion submodules Mi = M [mi] yield a finite
filtration

M1 ⊂ M2 ⊂ . . . ⊂ Mn = M,

with subquotients Mi/Mi−1 ≃ M [mi]/M [mi−1] ∈ flΛ ⊂ flΛ. Recall
that a torsion free class is closed under submodules, so that Mi are
again in F , and their shifts Mi[1] therefore give elements in F [1] ⊂ HT .
Because HT is abelian, it then also contains the quotients

Mi[1]/Mi−1[1] ≃ (Mi/Mi−1)[1] ∈ HT ∩ (flΛ[1])

Hence, M [1] is filtered by objects in HT , and therefore lies in its exten-
sion closure.

The statement for N ∈ T can be proven dually, by using the cofil-
tration

N = N/mnN → . . . → N/m2N → N/mN.

Each quotient module Ni is again contained in T , because T is a torsion
class. HenceNi are contained inHT , and the subkernels ker(Ni → Ni−1)
are therefore objects in HT ∩ flΛ ⊂ (HT )Λ. It follows that N is again
in the extension closure of (HT )Λ, completing the proof. Q.E.D.

Let T ∈ 2-siltΛ with Krull-Schmidt decomposition T = T1⊕. . .⊕Tn

and reduction T ∈ 2-siltΛ. Then, following [2, Def. 3.8], the heart HT

is a finite length abelian category of which the simple objects are dual
to the summands T i of T : for each i = 1, . . . , n there is a unique simple
object Xi ∈ HT for which

HomD(Λ)(T j , Xi) = 0 ⇐⇒ i ̸= j.

By Lemma 2.11 the heart now has a similar structure: HT is gener-
ated by the image of HT under the exact embedding (−)Λ : Db(flΛ) →
Db(flΛ), and so

HT = ⟨(HT )Λ⟩ = ⟨X1, . . . , Xn⟩,

where Xi = (Xi)Λ are the images of the simples in HT . In particular,
HT is again a finite length abelian category with simplesXi characterised
by the condition

HomD(Λ)(Tj , Xi) ≃ HomD(Λ)(T j , Xi) = 0 ⇐⇒ i ̸= j.
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Now suppose T is the Bongartz completion of a summand T
′ ⊂ T .

Then it is shown in [2] that for any θ ∈ Cone◦(T
′
) the θ-stable modules

in flΛ are all given by some Xi, and in particular Sθ is a subcategory of
HT . Using this fact, we can now also characterise Sθ as a subcategory
of the heart HT .

Proposition 2.12. Let T ′ ∈ 2-presiltΛ with Bongartz completion
T ∈ 2-siltΛ, then for all θ ∈ Cone◦(T ′) the subcategory Sθ:

(1) contains exactly |T | − |T ′| stable modules.
(2) embeds into Db(flΛ) as the subcategory

HT ∩ (T ′)⊥ := {E ∈ HT | HomD(Λ)(T
′, E) = 0}.

(3) is the following subcategory of flΛ

{M ∈ flΛ | HomD(Λ)(T,M [1]) = HomD(Λ)(T
′,M) = 0}.

Proof. We may number the summands Krull-Schmidt decompo-
sition T = T1 ⊕ . . . ⊕ Tn of T , such that T ′ = Tk+1 ⊕ . . . ⊕ Tn for
k = |T | − |T ′|, and number the simples Xi = Xi in the heart accord-
ingly.

(1) Let θ ∈ Cone◦(T ′), then it follows from Lemma 2.7 that the

reduction θ lies in Cone◦(T
′
). As T = T 1 ⊕ . . . ⊕ Tn is the Bongartz

completion of T k+1 ⊕ . . . ⊕ Tn and Λ is finite dimensional, it follows
from [2, Prop 4.1] that

Sθ = ⟨X1, . . . , Xk⟩ ⊂ flΛ,

and the objects X1, . . . , Xk are precisely the θ-stable modules. By
Proposition 2.4 the θ-stable modules in Sθ ⊂ flΛ are exactly their im-
ages Xi := (Xi)Λ. There are precisely k = |T | − |T ′| such objects, so
the result follows.

(2) Because the objects X1, . . . , Xn generate the heart HT , it follows
that Sθ = ⟨X1, . . . , Xk⟩ is a subcategory of HT . Moreover, the objects
X1, . . . , Xk are precisely those simple objects in HT such that

HomD(Λ)(T
′, Xi) ≃ HomD(Λ)(T k+1 ⊕ . . .⊕ Tn, Xi) = 0,

which implies that Sθ is precisely the subcategory HT ∩ (T ′)⊥ ⊂ HT .
(3) As Sθ is contained in both flΛ and HT it follows from Lemma

2.10 that Sθ is the intersection

(flΛ) ∩HT ∩ (T ′)⊥ = {M ∈ flΛ | M ∈ T , HomD(Λ)(T
′,M) = 0}

= {M ∈ flΛ | HomD(Λ)(T,M [1])

= HomD(Λ)(T
′,M) = 0},
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as claimed. Q.E.D.

Having established the subcategories Sθ ⊂ flΛ as embedded in a
heart HT of some silting object, we can apply the derived Morita equiv-
alence to give an explicit description of Sθ as a module category.

Theorem 2.13. Let T ′ ∈ 2-presiltΛ with Bongartz completion T ∈
2-siltΛ. Then for all θ ∈ Cone◦(T ′), the derived Morita equivalence
restricts to an exact equivalence

Sθ
∼−→ flEndD(Λ)(T )/(e) ⊂ flEndD(Λ)(T )

of abelian categories, where e is the idempotent e : T → T ′ → T . In
particular, every θ-stable module corresponds to a simple EndD(Λ)(T )-
module.

Proof. By Lemma 2.12, for every θ ∈ Cone◦(T ′) the subcategory
Sθ can be identified with HT ∩ (T ′)⊥. By construction, the derived
Morita equivalence

RHomΛ(T,−) : Db(flΛ)
∼−→ Db

fl(ET ),

maps the heart HT to heart standard heart flEndKb(Λ)(T ) and it there-

fore suffices to show that the subcategory HT ∩ (T ′)⊥ ⊂ HT is mapped
to the subcategory

flEndKb(Λ)(T )/(e) ⊂ flEndKb(Λ)(T )

consisting of those EndKb(Λ)(T )-modules which are annihilated by the
idempotent.

Suppose N ∈ flEndKb(Λ)(T ), then N ≃ RHomΛ(T,E) for some

object E and therefore N is in the image of HT ∩ (T ′)⊥ if and only if

HomD(ET )(RHomΛ(T, T
′), N)

≃ HomD(ET )(RHomΛ(T, T
′),RHomΛ(T,E))

≃ HomD(Λ)(T
′, E) = 0.

BecauseN is concentrated in degree 0, while the complexRHomΛ(T, T
′)

has cohomology concentrated in negative degrees it follows that

HomD(Λ)(RHomΛ(T, T
′), N) ≃ HomD(Λ)(τ≥0RHomΛ(T, T

′), N)

≃ HomD(Λ)(H
0RHomΛ(T, T

′), N)

= HomEnd
Kb(Λ)

(T )(HomKb(T )(T, T
′), N)
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where τ≥0 denotes the canonical truncation. By inspection, the module
HomKb(Λ)(T, T

′) is precisely the direct summand

HomKb(Λ)(T, T
′) ≃ e ◦ EndKb(Λ)(T ) ⊂ EndKb(Λ)(T ),

associated to the idempotent e : T → T ′ → T , so it follows that N lies
in the image of HT ∩ (T ′)⊥ if and only if N ∈ flEndKb(Λ)(T )/(e).

Hence, RHomΛ(T,−) maps Sθ = HT ∩ (T ′)⊥ to flEndKb(Λ)(T )/(e),
and therefore restricts to an equivalence of abelian categories

HomD(Λ)(T,−) : Sθ
∼−−→ flEndKb(Λ)(T )/(e)

Q.E.D.

§3. Application to cDV singularities

We now apply the results from the previous section to the non-
commutative minimal models of cDV singularities, using the relation
between their tilting theory and the combinatorics of Dynkin diagrams
described in Iyama–Wemyss [13]. The section is split up as follows.

We start by recalling the construction of the “intersection arrange-
ments” in [13] which associates a hyperplane arrangement to a pair (Γ , J)
of an extended Dynkin diagram and a set of vertices.

Next we recall the bijective correspondence found in [13] between the
chambers of the intersection arrangement and 2-term tilting complexes
of certain subalgebras of the preprojective algebra associated to (Γ , J).

With this background we are then able to derive several results about
noncommutative minimal models of cDV singularities, both isolated and
non-isolated, and give an explicit exposition using a small example.

3.1. Intersection arrangements of extended Dynkin type

In what follows Γ denotes one of the extended ADE Dynkin graphs:

Ãn D̃n Ẽ6

Ẽ7 Ẽ8

Each extended Dynkin graph has an associated hyperplane arrange-
ment inside the vectorspace of real functions on Γ , with an associated
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dense polyhedral fan. We recall here the construction, for which a full
overview can be found in [12].

Let RΓ := {f : Γ → R} denote the space of real functions on the
vertices of Γ . This vectorspace contains a standard cone C ⊂ RΓ of
functions f : Γ → R which are nonnegative: f(v) ≥ 0 for all v ∈ V . The
cone is a union of its faces, which are the open subcones

CV := {f : Γ → R | f(v) = 0 if v ∈ V, f(v) > 0 if v ̸∈ V },

where V ⊂ Γ ranges over all subsets of vertices in Γ . The cone C is a
fundamental domain for the action of the affine Weyl group WΓ associ-
ated to the extended Dynkin diagram, and the orbits form a subspace
TCone(Γ) =

⋃
w∈WΓ

w · C called the Tits cone of Γ . The Tits cone is a
polyhedral fan with decomposition

TCone(Γ) =
⊔
V⊂Γ

⊔
w∈WΓ/WV

w · CV ,

with faces labeled by a subset V of vertices and a coset w of the sta-
biliser subgroup WV ⊂ WΓ of CV . In particular, the images w · C∅ of
the interior C∅ ⊂ C are the Weyl chambers of the hyperplane arrange-
ment. If one removes the origin from the Tits cone, the resulting space
TCone(Γ)\{0} forms an open halfspace in RΓ , and has a boundary given
by certain hyperplane H∞. Hence, RΓ decomposes as

RΓ = (TCone(Γ) \ {0}) ⊔H∞ ⊔ (−TCone(Γ) \ {0}),

where −TCone(Γ) denotes the reflection of TCone(Γ) in the origin. The

following example for Γ = Ã1 illustrates this decomposition:

C

−C

TCone(Ã1)

−TCone(Ã1)

H∞

Given a fixed subset J ⊂ Γ of vertices, we consider the linear subspace
RJ ⊂ RΓ of dimension |J | that consists of all functions f : Γ → R which
vanish on the complement Γ \ J . Following [13] we define the Tits cone

TCone(Γ , J) :=
⊔
V⊂Γ

⊔
w∈W/WV

w·CV ⊂RJ

w · CV ,
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which is the subfan of TCone(Γ), consisting of all faces that lie inside the
subspace RJ . The vectorspace RJ now has an analogous decomposition

RJ = (TCone(Γ , J) \ {0}) ⊔H∞ ⊔ (−TCone(Γ , J) \ {0})

into the positive and negative Tits cones, separated by a hyperplane
H∞ ⊂ RJ . The intersection arrangement of the pair (Γ , J) is defined as
the union of the positive and negative cone:

XΓ ,J = TCone(Γ , J) ∪ −TCone(Γ , J).

In what follows we also write Xk for the codimension k stratum of a
given X = XΓ ,J , which consists of the faces w · CV and w · (−CV ) for
which V satisfies |V | = k + |J |.

Example 3.1. Let Γ = D̃4 and choose J ⊂ Γ to consist of the ex-
tended and middle vertex (indicated by the black nodes below), then
XΓ ,J has the following structure:

V ⊂ D4

⇝

The stratum X0 consists of the Weyl chambers, while X1 is the union
of the strict rays emanating from the origin, and X2 is the origin. The
hyperplane H∞ is the line of slope − 1

2 through the origin.

3.2. Contracted preprojective algebras

Let Q = (Q0, Q1) be the quiver which has a vertex v ∈ Q0 for
every vertex in Γ , and a pair of arrows a : v → w, a∗ : w → v in Q1

for every edge between v and w in Γ . For a given field K, consider the
preprojective algebra

KQ/(
∑

a aa
∗ − a∗a).

It is well known that the preprojective algebra is finite as a module over
its centre, which is the coordinate ring of an ADE surface singularity of
the corresponding Dynkin type. We let Π = ΠΓ denote the completion
of the preprojective algebra at this singularity, which is then a finite
algebra over the complete local ring Z(Π).

There is an idempotent ev ∈ Π for every vertex v ∈ Γ and together
the ev form a complete set of primitive orthogonal idempotents for Π.
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Hence, for each pair (Γ , J) as in the previous section there is an idempo-
tent e = eJ =

∑
v∈J ev and, as in [13], define the contracted preprojective

algebra

eΠe = eJΠeJ ⊂ Π,

generated by the paths starting and ending in a vertex of J . In [13] it is
shown that the hyperplane arrangement XΓ ,J of a pair (Γ , J) is related
to the silting fan of these algebras via the the natural identification

(1) K0(proj eΠe)R ≃
⊕

v∈J R[evΠe] ≃ RJ ,

of the classes of indecomposable projectives evΠe with the corresponding
basis vectors in RJ . We recall this theorem here in our current notation.

Theorem 3.2 ([13, Thm 7.24]). For each preprojective algebra eΠe
associated to a pair (Γ , J), the isomorphism (1) identifies the fan XΓ ,J

with the silting fan SFan(eΠe). In particular, for every T ∈ 2-presilt eΠe
the strict cone is given by

Cone◦(T ) = w · CV ,

for some subset V ⊂ Γ and w ∈ WΓ/WV , such that w · CV lies in RJ .

In particular, Proposition 2.12 now yields the number of stable eΠe-
modules for stability conditions in the fan.

Proposition 3.3. Let (Γ , J) be a Dynkin type with fan X = XΓ ,J as
above. Then for θ ∈ Xk ⊂ RJ the subcategory Sθ ⊂ fl eΠe is generated
by k stable modules, and only depends on the face w ·CV in which θ lies.

The above proposition includes the case where eΠe = Π is the entire
preprojective algebra, for which this result was already established by
Sekiya–Yamaura [20] via a similar tilting method.

3.3. Compound Du Val singularities

In dimension three, the natural analogue of Du Val singularities are
the compound Du Val (cDV) singularities, which have a coordinate ring
that is (up to isomorphism) of the form

R = C[[x, y, z, t]]/(f(x, y, z) + t · g(x, y, z, t)),

where f defines the Du Val surface singularity SpecC[x, y, z]/(f) =
SpecR/(t). These types of singularities are a basic building block of
the minimal model program, as they form the base of various curve
contractions.
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In [14] Iyama–Wemyss characterise a type of noncommutative min-
imal model for cDV singularities. Concretely, they define a set of R-
modules MMR called the maximal modifying modules, which are basic
reflexive R-modules whose endomorphism algebras ΛM := EndR(M)
have similar homological properties to the geometric minimal models.
Moreover, these endomorphism algebras are deformations of a contracted
preprojective algebra: by [13, Prop 9.3(a)] there are isomorphisms

(2) ΛM/tΛM ≃ eΠe = eJΠΓeJ ,

for each M ∈ MMR, where Γ is the extended Dynkin diagram of the
Du Val singularity SpecR/(t) and J ⊂ Γ a subset which may depend on
M .

By applying Proposition 2.9 to the quotient ΛM → eΠe, we recover
the silting fan of any minimal model ΛM , yielding a refinement of [13,
Theorem 9.6].

Proposition 3.4. Let M ∈ MMR with associated Dynkin type
(Γ , J). Then there is an isomorphism K0(proj ΛM )

∼−→ RJ , which iden-
tifies SFan(ΛM ) with XΓ ,J .

Proof. The endomorphism algebra ΛM = EndR(M) is finite as a
module over the complete local ring R, so it follows from Lemma 2.9
that the isomorphism

K0(proj ΛM )R
∼−−→ K0(proj ΛM/tΛM )R ≃ K0(proj eΠe)R

induced by the quotient ΛM → ΛM/tΛM ≃ eΠe onto the contracted
preprojective algebra associated to (Γ , J) identifies the fans SFan(ΛM )
and SFan(eΠe). The result now follows directly from Theorem 3.2, as

the isomorphism K0(proj eΠe)R
∼−→ RJ identifies SFan(eΠe) with XΓ ,J .

Q.E.D.

In what follows we identify K0(proj ΛM ) with RJ and SFan(ΛM )
with the fan XΓ ,J of the intersection arrangement. Proposition 2.12
now yields the following.

Proposition 3.5. Let M ∈ MMR with fan X = XΓ ,J . Then for
θ ∈ Xk the subcategory Sθ ⊂ flΛM is generated by k stable modules and
depends only on the face w · CV in which θ lies. In particular:

• there are no θ-semistable modules if θ lies in a Weyl chamber,
• there is a unique θ-stable module if θ lies generically on a hy-

perplane.
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3.4. The isolated case

Now assume that R is an isolated cDV singularity, and fix a minimal
model Λ = ΛM for some M ∈ MMR with Dynkin type (Γ , J).

For isolated cDV singularities Iyama-Wemyss [13] give a complete
classification of the 2-term silting complexes, which are in fact all tilting,
via an Auslander-McKay type correspondence: by [14, Theorem 4.17]
there is a bijection

(3) {N ∈ MMR} HomR(M,−)−−−−−−−−−→
∼

{basic tilting Λ-modules},

which assigns a tilting module HomR(M,N) ∈ modΛ to each N ∈
MMR with endomorphism algebra

EndΛ(HomR(M,N)) ≃ EndR(N) = ΛN .

The modules HomR(M,N) define 2-term tilting complex PN ∈ 2-silt Λ
via its projective resolution

. . . → 0 → P−1
N → P 0

N → HomR(M,N).

And according to [13] the cones of these complexes fill out the Tits cone.
The negative cone can be obtained by dualising: the dual statement of
(3) yields a tilting module HomR(N,M) ∈ modΛop for the opposite
algebra and the resolution

. . . → 0 → Q−1
N → Q0

N → HomR(N,M)

yields an object QN ∈ 2-silt Λop. By applying the R-linear dual (−)∗ =
Hom(−, R) and shifting, one then obtains a new 2-term silting complex
for Λ.

Lemma 3.6. For every T ∈ 2-silt Λ there exists some N ∈ MMR
such that T is either isomorphic to PN ór isomorphic to Q∗

N [1].

Proof. Let (Γ , J) denote the Dynkin type of Λ, then [13, Corollary
9.8] shows that the cones of PN form the Tits cone:⋃

N∈MMR

Cone(PN ) = TCone(Γ , J).

Hence if T ∈ 2-silt Λ with Cone(T ) ⊂ TCone(Γ , J), then Proposition 2.8
shows that T must be isomorphic to PN for some N ∈ MMR.

Consider now the dual tilting complexes QN ∈ 2-silt Λop. The R-
linear dual induces an exact anti-equivalence (−)∗ : Kb(Λop)op → Kb(Λ).
Hence for every the N ∈ MMR there is a tilting complex

Q∗
N = . . . → 0 → Hom(Q0

N , R) → Hom(Q−1
N , R) → 0 → . . .
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which is concentrated in degrees 0, 1. Hence the objects Q∗
N [1] are indeed

2-term silting complexes in 2-silt Λ. It is shown in [13, Theorem 9.17]
that the K-theory classes of the summands of Q∗

N are equal to those of
the summands of PN , which implies that Cone(Q∗

N [1]) = −Cone(PN ).
Hence, the union of these cones fill out the negative Tits cone:⋃

N∈MMR

Cone(Q∗
N [1]) =

⋃
N∈MMR

−Cone(PN ) = −TCone(Γ , J).

If Cone(T ) is contained in −TCone(T ), then it again follows that T ≃
Q∗

N [1] for some N ∈ MMR. As SFan(Λ) = XΓ ,J = TCone(Γ , J) ∪
−TCone(Γ , J), there are no other 2-term silting complexes. Q.E.D.

Using Theorem 2.13 we can now derive an explicit form for the
subcategories Sθ for all θ in the intersection arrangement, as module
categories for quotients of noncommutative minimal models.

Theorem 3.7. Suppose Λ = ΛM is a noncommutative minimal
model of an isolated cDV singularity R as above. Then for each θ ∈ XΓ ,J

there exists an N ∈ MMR and an idempotent e ∈ ΛN such that

Sθ ≃ flΛN/(e),

as abelian categories.

Proof. Let θ ∈ XΓ ,J = SFan(Λ), Theorem 2.13 implies that the
subcategory

Sθ ≃ flEndKb(Λ)(T )/(e)

for some T ∈ 2-silt Λ and the idempotent e : T → T ′ → T associated to
a summand T ′ ⊂ T . By Lemma 3.6 any T ∈ 2-silt Λ is isomorphic to
either some PN , which has an endomorphism algebra

EndKb(Λ)(PN ) ≃ EndΛ(HomR(M,N)) ≃ ΛN ,

or T is isomorphic to Q∗
N [1], which has endomorphism algebra

EndKb(Λ)(Q
∗
N [1]) ≃ EndKb(Λop)(QN )op

≃ EndΛop(HomR(N,M))op ≃ ΛN .

Hence EndKb(Λ)(T ) ≃ ΛN for some N ∈ MMR and the result follows.
Q.E.D.

Finally we consider the special case where R is the base of a three-
fold flopping contraction f : Y → SpecR. In this setting, Hirano–
Wemyss [10] show that the set MMR is freely acted on by a group
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Zn = ⟨L1, . . . , Ln⟩ ⊂ Cl(R) of invertible ideals, preserving the endomor-
phism algebras: for each N ∈ MMR there are isomorphisms

ΛLi·N = EndR(Li ·N) ≃ EndR(N) = ΛN

for each generator Li, where N 7→ Li · N ∈ MMR denotes the action.
They moreover show that the action partitions MMR into finitely many
orbits, so that there are only finitely many noncommutative minimal
models ΛN up to isomorphism. We can therefore give the following
strengthening of Theorem 3.7 for flops.

Proposition 3.8. Suppose R is the base of a threefold flopping con-
traction. Then there is a finite set {N1, . . . , Nk} ⊂ MMR such that:
for each θ ∈ XΓ ,J there is an equivalence Sθ ≃ flΛNi/(e) for some
i = 1, . . . , k and idempotent e ∈ ΛNi .

We finish with the example of an A2 flop, where we can explicitly
determine the set {N1, . . . , Nk} and the quotients of the endomorphism
algebras ΛNi .

Example 3.9. We recall the example [7, Ex 6.1] where R is the base
of an A2 flopping contraction, in which two rational curves in a smooth
threefold are contracted to the cDV singularity

R = C[[x, y, z, t]]/(xy(x+ y)− tz)

As in [7] we may pick the MM module M = R⊕ (u, x)⊕ (u, xy), which
has an endomorphism algebra isomorphic to the Jacobi algebra C(Q,W )
of the quiver with potential

Q :
a1

b1 b2

a2

b3

a3

W = 1
2

∑3
i=1 aibiaibi + a2a1b1b2

−a1a3b3b1 − a3a2b2b3.

The Dynkin type (Γ , J) of M is the diagram Γ = A2 with J the full
set of its vertices. In particular, the intersection arrangement is just

the ordinary Ã2 hyperplane arrangement XΓ ,J) ⊂ R3, and the Tits cone

TCone(Γ , J) fills the halfspace {r ∈ R3 | r1 + r2 + r3 > 0}. As in [10]
we can visualise the Tits cone by intersecting it with a level {r ∈ R3 |
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r1 + r2 + r3 = 1}, which yields the affine A2 lattice

M

L1·MM∗

L1·M∗L2·M L2
1·M

...
...

...

Here the thick border indicates a fundamental region for the action Z2 ≃
⟨L1, L2⟩ on the level, which contains precisely two chambers: one for
M itself and one for its dual M∗. There are thus two endomorphism
algebras to consider:

EndR(M) ≃ C(Q,W ) and EndR(M
∗) ≃ C(Q,W )op.

From the presentation of the quiver above, one can however observe that
C(Q,W )op and C(Q,W ) are isomorphic.

If θ ∈ XΓ ,J is nonzero, it therefore follows from Proposition 3.8
above that Sθ ⊂ flΛ is equivalent to flEndR(M)/(e) as an abelian cate-
gory, where e is the idempotent associated to a nontrivial summands of
M . The isomorphism C(Q,W ) ≃ EndR(M) identifies this quotient with
the Jacobi algebra C(Q′,W ), where Q′ is obtained from Q by deleting
the vertices corresponding to the summand of M . By inspection, Sθ is
then the module category of one of the following Jacobi algebras:

C( , 0) ≃ C, C
( a

b

, 1
2abab

)
.

References

[ 1 ] T. Aihara, Tilting-connected symmetric algebras, Algebr. Represent. The-
ory, 16(3) (2013), 873–894.

[ 2 ] S. Asai, The wall-chamber structures of the real Grothendieck groups, Adv.
Math., art. no. 107615 (2021), 381.
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