
The Path to Fault- and Intrusion-Resilient
Manycore Systems on a Chip

Ali Shoker Paulo Esteves-Verissimo
RC3 Center, CEMSE Division,

King Abdullah University of Science
and Technology (KAUST)

ali.shoker@kaust.edu.sa, paulo.verissimo@kaust.edu.sa

Marcus Völp
University of Luxembourg

Interdisciplinary Center for Security,
Reliability and Trust (SnT) - CritiX group

marcus.voelp@uni.lu

Abstract— The hardware computing landscape is changing.
What used to be distributed systems can now be found on a chip
with highly configurable, diverse, specialized and general purpose
units. Such Systems-on-a-Chip (SoC) are used to control today’s
cyber-physical systems, being the building blocks of critical
infrastructures. They are deployed in harsh environments and are
connected to the cyberspace, which makes them exposed to both
accidental faults and targeted cyberattacks. This is in addition to
the changing fault landscape that continued technology scaling,
emerging devices and novel application scenarios will bring.
In this paper, we discuss how the very features—distributed,
parallelized, reconfigurable, heterogeneous—that cause many of
the imminent and emerging security and resilience challenges,
also open avenues for their cure though SoC replication, diversity,
rejuvenation, adaptation, and hybridization. We show how to
leverage these techniques at different levels across the entire SoC
hardware/software stack, calling for more research on the topic.

Index Terms—fault and intrusion tolerance, resilience, hard-
ware, system on a chip, FPGA

I. OPPORTUNITIES FOR HARDWARE RESILIENCE

Hardware chips continue to be the core building blocks
of computing devices due to their inherent immutability and
speed, required in modern digital and mission-critical systems
like Cyber-Physical Systems, Healthcare, Fintech, Automotive,
and Space. This hardware can implement an entire monolithic
system or even be used as proof-of-trust anchors. Contrary
to the common belief, hardware is prone to unintentional
(benign) and intentional/malicious (intrusion or Byzantine [1])
faults. The former can be caused by the fabrication (e.g.,
Silicon) material prone to dust, aging, and overheating, or
by design/implementation glitches [2], [3]. Malicious faults
manifest in many forms, prior- or post-fabrication, where
stealthy logic, backdoors, trojans, kill switches, and post-
fab fabric editing are possible [4]–[7]. In line with this,
the trends of building complex hardware out of smaller
commercial-off-the-shelf (COTS) components and introducing
programmable/reconfigurable hardware, e.g., FPGA [8], [9],
are closing the gap with software systems: hardware systems
are no longer rigid, immutable, and fixed creatures. This raises
both new challenges and opportunities, which call to revisit the
way resilient and secure hardware systems are built.

The notable demand on hardware due to the automation
and digitalization of services in many sectors raised new

challenges in the hardware fabrication industry, where vendors
need to maintain delivery on time and reduce production costs.
This resulted in a divide-and-conquer [10] production style: a
system is split into smaller and cheaper building blocks, i.e.,
components. Components are developed in parallel to reduce
the production cycle time. Each block is likely developed by a
dedicated specialized vendor, i.e., generating COTS [11]. This
means that the synthesising entity of these COTS can focus
on the technology it masters, rather than distributing its efforts
on multiple fronts. Despite this, these cheap components are
becoming more prone to failures and attacks [12], which can
lead to drastic impacts on critical sectors like Cyber-Physical
Systems, health smart systems, mission-critical space systems,
etc. Our experience in software systems shows that building
resilient systems composed of small and cheap components
can be more resilient than a single complex monolithic system,
that is usually very expensive.

There are ample opportunities for hardware resilience lever-
aging the above advancements. To demonstrate this, we show-
case in Fig. 1 different levels of the chip development process,
from low-level fine-grained gate logic blocks up to multicore
systems-on-chip (SoC). Literary works reveal some selected
resiliency techniques on most of these layers for constructing
resilient clock networks, replicated power domains, and lock-
step coupling of cores [13]–[18], which is a good starting
point. We, however, advocate for more systematic and com-
prehensive resiliency, probably leveraging hardware hybrids to
simplify the designs. This holistic view helps optimising SoC
designs by suggesting the right level of resiliency at each stage
to reduce the redundant complexity and cost.

In a nutshell, the lowest level, in Fig. 1, is building a
single layer microchip that constitutes a simple logical cir-
cuit of gates. Different gates are known to have different
resiliency levels [13], [17]. Recently, SiNW transistors are
used to bridge Source to Drain with multiple nanowires to
compensate manufacturing defects and aging [19]. While a
typical design process mainly considers the space, energy, and
time metrics in the design, making these circuits more resilient
would mean trading these metrics for resiliency, e.g., using
backup gates, replicated parallel gates, or diverse gates [17],
[18]. On the other hand, single-layered circuits can today be
synthesized in a 3D fabric [20]. Layers typically have different

1

ar
X

iv
:2

30
7.

01
78

3v
1 

 [
cs

.C
R

] 
 4

 J
ul

 2
02

3

ali.shoker@kaust.edu.sa
paulo.verissimo@kaust.edu.sa
marcus.voelp@uni.lu


complementary functionalities. However, they can also have
layers of identical functionality from different vendors, which
is useful to improve diversity in fault masking scenarios
(discussed later). It is also helpful to synthesize a monolithic
chip from multi-vendor layers to avoid vendor lock-in or
potential aging issues, backdoors, and kill switches [2]–[4]—
so called Distribution attack on the supply chain.

At a higher level, always depicted in Fig. 1, these 3D
microchips can be assembled to build a system-on-chip fab-
ric [21]. Again, components of identical functionalities can
be used to build fault and intrusion masking SoC fabric. This
can be enriched with heterogeneous diverse microchips at a
higher level, thus building resilient Multicore Systems on Chip
(MPSoC) [9], [22]. At the higher layers, where a software
stack complements the functionality of the system to form a
more programmable flexible hardware (discussed next), one
can take advantage of a remarkable body of research and
practice to build resilient soft-custom logic [23]–[25]. This
can be done by exploiting virtualization techniques to provide
software-level containment and replication. More complex
systems can be built through networked systems of systems
on chip. First instances of networked SoC systems are already
emerging in the automotive, aeronautics, and CPS domain.

Across this spectrum, we foresee a need and opportunities
to revisit how resilient hardware is built:

• building complex systems of systems and MPSoCs out
of smaller COTS;

• taking advantage of the programability and elasticity
of modern hardware, e.g., FPGA, GPGPU, to replicate,
diversity and adapt; and

• simplifying the design of secure robust systems using
smaller hardware hybrids—easy to design and verify, as
resilient anchors.

II. PROGRAMABILITY, ELASTICITY, PLASTICITY

The genuine immutability properties of hardware compo-
nents and elements, make them ideal for security hardening
and containment, i.e., by making the hard-implemented logic
tamper-resistant against both benign and intrusion faults. De-
spite these facts, there is a continuous wave of relaxing these
“rigid” hardware designs through introducing programmable
(including reconfigurable and adaptable) fabric [8], [26]. The
main reason is to improve hardware flexibility and compatibil-
ity, i.e., making them application-agnostic, and to facilitate the
daunting design verification process prior to fabrication, hence
cutting off fabrication costs thereof. For this, programmable
hardware is considered a tradeoff between software logic—
fully flexible, slow, and mutable—and hard logic—fully rigid,
fast, and immutable. We believe that there are promising
opportunities to boost the resilience of the programmable
platforms against faults and intrusions, although immutability
is slightly reduced. To explain these benefits, we consider two
classes of programmable hardware:

Soft Custom Logic Fabric (SCLF) : these are commonly
known as software-defined devices like PLC, ECU, and SDN

Fig. 1. Resilience forms at the different (networked) hardware layers of
Multicore Systems on Chip.

devices [24], [27]–[29]. This hardware is mostly domain-
specialized, where computing is done using general-purpose
micro-controller or microprocessors, often managed by a full
software stack: hypervisors, RTOS/OS, drivers, libraries, and
applications. Consequently, these devices exhibit high pro-
gramability features, analogous to IT computing, although they
have specialized roles and use domain specific peripherals,
e.g., sensors, actuators, and interfaces.

Hard Custom Logic Fabric (HCLF) : these are hardware
chip fabrics, e.g., FPGA [8] and GPGPU [26], composed of
arrays of logical components, e.g., gates and multiplexers,
that are not “hard etched”, i.e., can be reprogrammed as
needed. The programming logic in this case is almost entirely
implemented in hardware, without the need for a software
stack at runtime. Fabric is reprogrammed through soft IP
Cores [30], [31] (HDL code [32]) or through components
(softcores or blocks) synthesized on the chip as needed. This
programability feature is a very interesting tradeoff that re-
tains the speed and security of Application-Specific Integrated
Circuit (ASIC) chips, while giving the flexibility to support
diverse applications and update implementations without the
need for costly and slow fabrication.

Although programability, in both classes, opens the door
for tampering with the system, and thus injecting surveillance
circuits, intrusions and backdoors [3], [4] after fabrication
(though slightly compared with software systems), there is a
huge opportunity to leverage this programability to improve

2



the resilience of these systems through four main ingredients:
replication, diversity, rejuvenation, and adaptation.

A. Replication

Replication is often useful to build resilience against Benign
or Byzantine faults. Passive replication [33], [34] allows a
failing system to failover into a backup replica. This is a cheap
solution that typically requires one passive backup replica.
However, recovery is slow, requires reliable detection and
is not seemless to the user, even if implemented entirely at
transistor level. For example, Razor [35] integrates detection
capabilities, originally for timing faults in sequential logic, but
also for power instability [36] and side channels [37], and re-
injects stored state into the pipeline for re-execution. Albeit
functionally transparent, users may observe timing differences
and anomalies caused by them. Active replication masks faults
through building a deterministic replicated state machine [38],
composed of replicas of identical functionality, which execute
an agreement protocol, e.g. Paxos [39] or PBFT [1]. The
number of required replicas is typically 2f+1/3f+1 in order
to tolerate f faults. Interestingly, several works make use of
hardware hybrids as root-of-trust to simplify these protocols
to build resilient broadcast and agreement abstractions for
embedded real-time systems [40]–[42] (requiring only 2f +1
replicas to tolerate f Byzantine ones).

Replication in SCLF is analogous to software replication
at the software layer. While some literary works have stud-
ied this in some settings [23]–[25], [43], there are research
opportunities in other real-time applications like software-
defined vehicles, UXVs, Smart Grid, etc. On the other hand,
replication in HCLF is today easier than ever. Using an FPGA,
it is possible to spawn replicas as soft cores or logical blocks,
using off-the-shelf soft IPs. This is a nice hardware feature
that gives the flexibility to create hard-replicas quickly and
on-demand, using only one fabric, in a similar way to creating
virtual machines or containers at software level.

B. Diversity

Resiliency through active replication is, however, only guar-
anteed as long as the replicas fail independently [1], [38].
The second ingredient, diversity, helps building replicas of
the same functionality but with different implementations. The
aim is to avoid common-mode benign failures and intrusions.

Since programability in both classes, SCLF and HCLF,
open new avenues for multi-vendor implementations and
COTS, the likelihood of diversity is higher than the case of
monolithic hardware that require deep technology capabilities.
An interesting trend that would benefit this model greatly is
more standardization for architectures and APIs. For instance,
the introduction of the AutoSAR [44] standard has greatly
enriched the automotive market with multi-vendor implemen-
tations of the entire software and hardware stack, which act
as a blockboxes of identical functionalities. CUDA [26] and
OpenGL [45] provide standard APIs to implement accelerated
parallel computing logic on a GPGPU using COTS implemen-
tations. Open source hardware platforms like RISC-V [46] also

standardize the architectures provided by different vendors,
and enrich the market with diverse architectures.

Interestingly, FPGAs allow for hardware diversity through
modifying the hard-logic through using different implementa-
tions or specifications for the softcore/block IP, possibly from
different vendors, which is then used to spawn computing
cores. It would be interesting to study the case where IP com-
pilers can generate diverse versions of identical softcores to
be used on the fly. First approaches towards such a generation
of morphable softcores has been investigated in the context of
organic computing [47].

C. Rejuvenation

Rejuvenation is the third complementary ingredient to repli-
cation and diversity. These latter techniques can only maintain
resilience as long as the assumed number of failing replicas f
is fixed. This assumption is unfortunately hard due to benign
faults and malicious behaviours. The first is related to aging,
which manifest in software [48] as memory leakage, failure
to release resources and locks, failure to garbage collect, data
corruption, etc. Surprisingly, aging occurs also in hardware,
due to the deterioration of hardware material under overuse
and overheating, etc. The second reason is recently getting
more attention with the increasing attempts of Advanced Per-
sistent Attacks (APT)—where a big deal of time and effort is
usually put to identify vulnerabilities and exploit them. While
this might be clear at the software level, there are continuous
concerns about hardware backdoors and timed Trojans. Indeed,
this is behind the recent agendas of acquiring chip sovereignty
or split manufacturing in many countries [49], [50].

SCLF reprogramability can greatly benefit from the huge
body of research on software rejuvenation, that is proven to
mitigate failures. This would even be more effective when
rejuvenation is simultaneous with diversity, which allows the
rejuvenation to a different implementation with identical func-
tionally, in consequence, reducing the success rate of APTs.
Using FPGAs, rejuvenation can also happen at hardware level
in HCLF [51]. An FPGA allows restarting or spawning new
soft cores and logical blocks at runtime—avoiding slow device
restarts. In fact, one can partially rejuvenate some soft cores
while others continue to run. FPGAs allow for even smarter
techniques, e.g., to rejuvenate to diverse softcore variants that
are loaded in different FPGA spatial locations, which can avoid
potential backdoors in the FPGA grid fabric.

D. Adaptation

Yet, another way to withstand a varying number of faults f
is to adapt the resilient system accordingly. Among the adap-
tation forms are scaling out/in the system when f may change,
e.g., upon experiencing more threats, or switching to a backup
protocol that is more adequate to the current conditions [23],
[52]–[54] (considering safety, liveness, performance, etc.).
This would require research on the aforementioned adaptation
mechanisms and, importantly, on severity detectors that can
trigger adaptation actions once needed. As we discussed above,
both SCLF (e.g., virtualization) and HCLF (e.g., FPGAs)

3



provide tempo-spatial elasticity, which allows changing the
number of replicas and their locations on the fabric as needed.
It will be interesting to study these research questions from
scratch or validating the feasibility of existing ones (developed
in the software realm).

E. Resilient Reconfiguration

It should be evident that reconfiguration must be resilient to
faults and attacks, irrespective of the kind of adjustment per-
formed (i.e., diverse rejuvenation, relocation, or adaptation).
This holds for both reconfiguration of an FPGA grid fabric
as well as multi-chip FPGAs—where the individual FPGA
chiplets are the unit of reconfiguration. We shall focus here
exclusively on internal, partial and dynamic reconfiguration,
since the reliance on external complex and non-configurable
modules (e.g., CPUs) would induce a weak spot in the system,
which could contaminate its resilience or introduce downtimes.
Nevertheless, dependencies on external hybrids that are sim-
ple, and thus easy to verify, are allowed if they simplify the
design. Internal, partial and dynamic mean respectively that
reconfiguration (i) is driven from within the FPGA, e.g., by
an HCLF or softcore defining the configuration bitstream to
be loaded into a reconfigurable region (or frame) through
interfaces like internal configuration access ports, (ii) it is
bound to the reconfigured area and elements therein, and (iii)
it happens while other parts of the FPGA continue to execute.

Optimizing the mapping of blocks to the FPGA grid fab-
ric and integrating the configured block with the remaining
blocks remain sufficiently complex tasks to be executed by
a software-level operating-system kernel. Disabling and en-
abling configured circuits and frames constitute the critical
operations, which leaves writing the configuration memory and
validating that a correct bitstream is written as tasks that can
be executed by the responsible kernel or possibly even kernel
replicas. Provided sufficient access controls are in place at the
internal configuration access ports, the actual configuration of
a frame can even be delegated to its current user. However, as
shown in Gouveia et al. [55], privilege change must remain
a trusted operation executed consensually and enforced by a
trusted-trustworthy component. This leads to the more general
question of architectural hybridization, which we address next.

III. ARCHITECTURAL HYBRIDIZATION

Differentiating how the individual hard- and software com-
ponents of an MPSoC architecture can fail, architectural
hybridization aims at benefiting from small easy-to-verify
and therefore more trustworthy components, called hybrids.
The goal is to enable, simplify or improve the performance
of the overall system, by serving as trust anchors for these
properties. These could be components (registers, memory,
trusted execution environments or networks) such as USIG,
A2M, TrInc, SGX and others, used in hybrid BFT-SMR
protocols [41], [56]–[65].

Realizing hybridization poses a challenge dual to the ques-
tion whether SCLF or HCLF leads to more reliable systems-
on-a-chip. For software-only hybrids, we used to equate

simplicity (measured for example in lines-of-code required
to realize a certain functionality) with a low likelihood of
failure and ease of verification. However, at hardware level,
this equation is not as obvious, even if we consider lines-of-
VHDL or another hardware description language.

We illustrate this using the USIG from the MinBFT protocol
by Veronese et al. [41] as example. USIG is essentially a
sequential circuit, which is driven by the counter register
and a few additional registers, which provide as constants
the secret key for the HMAC and the ID of the replica.
The lowest complexity version of such a circuit will use
normal registers. But then any bitflip in the counter will have
catastrophic effects on the consensus problem at hand since
it is reflected unchanged in the computed HMAC and USIG
output. ECC-registers on the other hand add extra bits and
the logic required for correction, which both increase the
complexity of the circuit at the benefit of tolerating a certain
number of bitflips. We also see the converse effect when the
required complexity of producing a special purpose circuit for
a given functionality exceeds the complexity of a simple core
that is able to fetch, decode and execute software. Once the
inherent complexity of such a functionality exceeds this bound,
software implementations become preferable and hybridization
amounts to providing such an isolated core.

The objective of hardware-level hybridization is therefore
to remain in this middle-ground. Hardware hybrids, protected
by ECC and other accidental- and malicious-fault counter-
measures, provide the desired functionality. This can then be
extended into the realm of software hybrids that are possibly
executed in a replicated manner and that vote to perform
critical operations [55].

IV. CONCLUSIONS AND CALL TO ACTION

We emphasized that hardware architectures, and in particu-
lar multi- and manycore systems-on-a-chip are not the robust,
dependable and reliable computing units we would like to
have. We have subsequently started to replicate entire systems,
which has ultimately lead to the huge body of knowledge on
implementing resilient distributed systems. However, as we
have seen, the continuing miniaturization and integration of
processing elements into a single MPSoC, makes full system
resilience increasingly costly, in particular when a single
system already provides all the processing power that future
critical applications need. We have shown how reconfiguration,
rejuvenation and adaptation already allow the hardware to
repair itself, to recover from faults and retain the resources
classical resilience mechanisms need, when applied entirely
on chip. Hybridization rooted in exactly the right-complexity
circuits and applied to construct incrementally more complex
dependable systems will produce the next generation flexible,
morphable and highly trustable systems mission-critical sys-
tems will need. We therefore appeal for more research to study
the resilience of hardware-based systems, systems of systems,
and MPSoCs at different layers and cutting vertically across
layers, probably through validating the techniques developed
in the software Systems and Dependability areas.

4



REFERENCES

[1] M. Castro, B. Liskov et al., “Practical byzantine fault tolerance,” in
OsDI, vol. 99, no. 1999, 1999, pp. 173–186.

[2] R. L. Merlino and J. A. Goree, “Dusty plasmas in the laboratory,
industry, and space,” PHYSICS TODAY., vol. 57, no. 7, pp. 32–39, 2004.

[3] J. R. Celaya, P. Wysocki, V. Vashchenko, S. Saha, and K. Goebel,
“Accelerated aging system for prognostics of power semiconductor
devices,” in 2010 Ieee Autotestcon. IEEE, 2010, pp. 1–6.

[4] S. Adee, “The hunt for the kill switch,” IEEE Spectrum, vol. 45, no. 5,
pp. 34–39, 2008.

[5] F. Imeson, S. Nejati, S. Garg, and M. Tripunitara, “{Non-Deterministic}
timers for hardware trojan activation (or how a little randomness can go
the wrong way),” in 10th USENIX Workshop on Offensive Technologies
(WOOT 16), 2016.

[6] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware.” Leet, vol. 8, pp.
1–8, 2008.

[7] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in 2016 IEEE symposium on security and privacy
(SP). IEEE, 2016, pp. 18–37.

[8] I. Kuon, R. Tessier, J. Rose et al., “Fpga architecture: Survey and
challenges,” Foundations and Trends® in Electronic Design Automation,
vol. 2, no. 2, pp. 135–253, 2008.

[9] Xilinx2019, “Ug1085: Zynq ultrascale+ device technical reference man-
ual,” Xilinx, 2019.

[10] J. L. Bentley, “Multidimensional divide-and-conquer,” Communications
of the ACM, vol. 23, no. 4, pp. 214–229, 1980.

[11] L. Brownsword and T. Oberndorf, “The opportunities and complexities
of applying commercial-off-the-shelf components.”

[12] D. Doan, “Commercial off the shelf (cots) security issues and ap-
proaches,” NAVAL POSTGRADUATE SCHOOL MONTEREY CA,
Tech. Rep., 2006.

[13] A. Namazi and M. Nourani, “Gate-level redundancy: A new design-for-
reliability paradigm for nanotechnologies,” IEEE transactions on very
large scale integration (VLSI) systems, vol. 18, no. 5, pp. 775–786, 2009.

[14] R. E. Lyons and W. Vanderkulk, “The use of triple-modular redundancy
to improve computer reliability,” IBM journal of research and develop-
ment, vol. 6, no. 2, pp. 200–209, 1962.

[15] L. A. C. Benites and F. L. Kastensmidt, “Automated design flow for
applying triple modular redundancy (tmr) in complex digital circuits,”
in 2018 IEEE 19th Latin-American Test Symposium (LATS). IEEE,
2018, pp. 1–4.

[16] K. S. Morgan, D. L. McMurtrey, B. H. Pratt, and M. J. Wirthlin, “A
comparison of tmr with alternative fault-tolerant design techniques for
fpgas,” IEEE transactions on nuclear science, vol. 54, no. 6, pp. 2065–
2072, 2007.

[17] X. Han, M. Donato, R. I. Bahar, A. Zaslavsky, and W. Patterson, “Design
of error-resilient logic gates with reinforcement using implications,” in
Proceedings of the 26th edition on Great Lakes Symposium on VLSI,
2016, pp. 191–196.

[18] J. D. Lohn and S. P. Colombano, “A circuit representation technique for
automated circuit design,” IEEE Transactions on Evolutionary Compu-
tation, vol. 3, no. 3, pp. 205–219, 1999.

[19] D. Jeon, S. Park, S. Pregl, T. Mikolajick, and W. Weber, “Reconfigurable
thin-film transistors based on a parallel array of si-nanowires,” vol. 129,
pp. 1 245 041 – 1 245 049, 2021.

[20] V. F. Pavlidis, I. Savidis, and E. G. Friedman, Three-dimensional
integrated circuit design. Newnes, 2017.

[21] G. Martin and H. Chang, “System-on-chip design,” in ASICON 2001.
2001 4th International Conference on ASIC Proceedings (Cat. No.
01TH8549). IEEE, 2001, pp. 12–17.

[22] W. Wolf, A. A. Jerraya, and G. Martin, “Multiprocessor system-on-chip
(mpsoc) technology,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 27, no. 10, pp. 1701–1713, 2008.

[23] B.-G. Chun, P. Maniatis, and S. Shenker, “Diverse replication for
single-machine byzantine-fault tolerance.” in USENIX Annual Technical
Conference, 2008, pp. 287–292.

[24] K. ElDefrawy and T. Kaczmarek, “Byzantine fault tolerant software-
defined networking (sdn) controllers,” in 2016 IEEE 40th annual com-
puter software and applications conference (COMPSAC), vol. 2. IEEE,
2016, pp. 208–213.

[25] V. S. Júnior, L. C. Lung, M. Correia, J. da Silva Fraga, and J. Lau,
“Intrusion tolerant services through virtualization: A shared memory

approach,” in 2010 24th IEEE International Conference on Advanced
Information Networking and Applications. IEEE, 2010, pp. 768–774.

[26] J. Ghorpade, J. Parande, M. Kulkarni, and A. Bawaskar, “Gpgpu
processing in cuda architecture,” arXiv preprint arXiv:1202.4347, 2012.

[27] “Virtualized programmable logic controllers,” 2021, accessed
on: Feb, 14, 2023. [Online]. Available: controleng.com/articles/
virtualized-programmable-logic-controllers/

[28] J. Hajda, R. Jakuszewski, and S. Ogonowski, “Security challenges in
industry 4.0 plc systems,” Applied Sciences, vol. 11, no. 21, p. 9785,
2021.

[29] C. Wulf, M. Willig, and D. Göhringer, “A survey on hypervisor-based
virtualization of embedded reconfigurable systems,” in 2021 31st In-
ternational Conference on Field-Programmable Logic and Applications
(FPL). IEEE, 2021, pp. 249–256.

[30] I. Advanced Micro Devices, “Amd/xilinx intellectual property,”
2023, accessed on: May 1st, 2023. [Online]. Available: https:
//www.xilinx.com/products/intellectual-property.html

[31] I. Corporation, “Intel fpga intellectual property,” 2023, accessed on:
May 1st, 2023. [Online]. Available: https://www.intel.com/content/
www/us/en/products/details/fpga/intellectual-property.html

[32] P. Bellows and B. Hutchings, “Jhdl-an hdl for reconfigurable systems,”
in Proceedings. IEEE symposium on FPGAs for custom computing
machines (Cat. No. 98TB100251). IEEE, 1998, pp. 175–184.

[33] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The primary-
backup approach,” Distributed systems, vol. 2, pp. 199–216, 1993.

[34] X. Defago, A. Schiper, and N. Sergent, “Semi-passive replication,”
in Proceedings Seventeenth IEEE Symposium on Reliable Distributed
Systems (Cat. No.98CB36281), 1998, pp. 43–50.

[35] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler,
D. Blaauw, T. Austin, K. Flautner, and T. Mudge, “Razor: a low-power
pipeline based on circuit-level timing speculation,” in Proceedings.
36th Annual IEEE/ACM International Symposium on Microarchitecture,
2003. MICRO-36., 2003, pp. 7–18.

[36] S. Das, D. Roberts, S. Lee, S. Pant, D. Blaauw, T. Austin, K. Flautner,
and T. Mudge, “A self-tuning dvs processor using delay-error detection
and correction,” IEEE Journal of Solid-State Circuits, vol. 41, no. 4, pp.
792–804, 2006.

[37] S. Kim, I. Kwon, D. Fick, M. Kim, Y.-P. Chen, and D. Sylvester, “Razor-
lite: A side-channel error-detection register for timing-margin recovery
in 45nm soi cmos,” in 2013 IEEE International Solid-State Circuits
Conference Digest of Technical Papers, 2013, pp. 264–265.

[38] F. B. Schneider, Replication Management Using the State-Machine
Approach. USA: ACM Press/Addison-Wesley Publishing Co., 1993, p.
169–197.

[39] L. Lamport, “Paxos made simple,” ACM SIGACT News (Distributed
Computing Column) 32, 4 (Whole Number 121, December 2001), pp.
51–58, 2001.

[40] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient byzantine fault
tolerance,” IEEE Transactions on Computers, vol. 65, no. 9, pp. 2807–
2819, 2016.

[41] G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo,
“Efficient byzantine fault-tolerance,” IEEE Transactions on Computers,
vol. 62, no. 1, pp. 16–30, 2011.

[42] D. Kozhaya, J. Decouchant, V. Rahli, and P. Esteves-Verissimo, “Pistis:
an event-triggered real-time byzantine-resilient protocol suite,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp.
2277–2290, 2021.

[43] A. Shoker, V. Rahli, J. Decouchant, and P. Esteves-Verissimo, “Intrusion
resilience systems for modern vehicles,” in In the 97th IEEE Vehicular
Technology Conference (VTC2023). IEEE, 2023.

[44] “Autosar standard,” 2023, accessed on: Feb, 14, 2023. [Online].
Available: https://www.autosar.org/

[45] K. Group, “Opengl,” 2023, accessed on: April, 19, 2023. [Online].
Available: https://www.opengl.org/

[46] R.-V. International, “Risc-v,” 2023, accessed on: April, 19, 2023.
[Online]. Available: https://riscv.org/

[47] J. Zeppenfeld, A. Bouajila, A. Herkersdorf, and W. Stechele, “Towards
scalability and reliability of autonomic systems on chip,” in 2010 13th
IEEE International Symposium on Object/Component/Service-Oriented
Real-Time Distributed Computing Workshops, 2010, pp. 73–80.

[48] Y. Huang, C. Kintala, N. Kolettis, and N. D. Fulton, “Software rejuve-
nation: Analysis, module and applications,” in Twenty-fifth international
symposium on fault-tolerant computing. Digest of papers. IEEE, 1995,
pp. 381–390.

5

controleng.com/articles/virtualized-programmable-logic-controllers/
controleng.com/articles/virtualized-programmable-logic-controllers/
https://www.xilinx.com/products/intellectual-property.html
https://www.xilinx.com/products/intellectual-property.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property.html
https://www.intel.com/content/www/us/en/products/details/fpga/intellectual-property.html
https://www.autosar.org/
https://www.opengl.org/
https://riscv.org/


[49] Y. Yang, Z. Chen, Y. Liu, T.-Y. Ho, Y. Jin, and P. Zhou, “How secure is
split manufacturing in preventing hardware trojan?” ACM Transactions
on Design Automation of Electronic Systems (TODAES), vol. 25, no. 2,
pp. 1–23, 2020.

[50] A. Shoker, “Digital sovereignty strategies for every nation,” 2022.
[51] A. T. Sheikh, A. Shoker, and P. Esteves-Verissimo, “System on chip

rejuvenation in the wake of persistent attacks,” in the 16th European
Workshop on Systems Security (EuroSec), EuroSys-W. IEEE, 2023.

[52] D. Silva, R. Graczyk, J. Decouchant, M. Volp, and P. Esteves-
Verissimo, “Threat adaptive byzantine fault tolerant state-machine
replication,” in 2021 40th International Symposium on Reliable
Distributed Systems (SRDS). Los Alamitos, CA, USA: IEEE
Computer Society, sep 2021, pp. 78–87. [Online]. Available: https:
//doi.ieeecomputersociety.org/10.1109/SRDS53918.2021.00017

[53] J.-P. Bahsoun, R. Guerraoui, and A. Shoker, “Making bft protocols
really adaptive,” in 2015 IEEE International Parallel and Distributed
Processing Symposium. IEEE, 2015, pp. 904–913.

[54] E. Sakic, N. Ðerić, and W. Kellerer, “Morph: An adaptive framework for
efficient and byzantine fault-tolerant sdn control plane,” IEEE Journal
on Selected Areas in Communications, vol. 36, no. 10, pp. 2158–2174,
2018.

[55] I. P. Gouveia, M. Völp, and P. Esteves-Verissimo, “Behind the last line
of defense: Surviving soc faults and intrusions,” Computers & Security,
vol. 123, p. 102920, 2022.

[56] J. Behl, T. Distler, and R. Kapitza, “Hybrids on steroids: Sgx-based high
performance bft,” in Proceedings of the Twelfth European Conference
on Computer Systems, 2017, pp. 222–237.

[57] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
append-only memory: Making adversaries stick to their word,” ACM
SIGOPS Operating Systems Review, vol. 41, no. 6, pp. 189–204, 2007.

[58] S. Gupta, S. Rahnama, S. Pandey, N. Crooks, and M. Sadoghi, “Dis-
secting bft consensus: In trusted components we trust!” arXiv preprint
arXiv:2202.01354, 2022.

[59] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi,
W. Schröder-Preikschat, and K. Stengel, “Cheapbft: Resource-efficient
byzantine fault tolerance,” in Proceedings of the 7th ACM european
conference on Computer Systems, 2012, pp. 295–308.

[60] J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. Pietzuch,
“Teechain: a secure payment network with asynchronous blockchain
access,” in Proceedings of the 27th ACM Symposium on Operating
Systems Principles, 2019, pp. 63–79.

[61] D. L. J. R. D. Jacob and R. L. T. Moscibroda, “Trinc: Small trusted
hardware for large distributed systems.”

[62] M. K. Aguilera, N. Ben-David, R. Guerraoui, A. Murat, A. Xygkis,
and I. Zablotchi, “ubft: Microsecond-scale bft using disaggregated
memory,” in Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems, Volume 2, 2023, pp. 862–877.

[63] T. Distler, C. Cachin, and R. Kapitza, “Resource-efficient byzantine fault
tolerance,” IEEE Transactions on Computers, vol. 65, no. 9, pp. 2807–
2819, 2016.

[64] M. Correia, N. Neves, and P. Verissimo, “How to tolerate half less one
byzantine nodes in practical distributed systems,” in Proceedings of the
23rd IEEE International Symposium on Reliable Distributed Systems,
2004., 2004, pp. 174–183.

[65] J. Decouchant, D. Kozhaya, V. Rahli, and J. Yu, “Damysus: Streamlined
bft consensus leveraging trusted components,” in Proceedings of the
Seventeenth European Conference on Computer Systems, ser. EuroSys
’22. New York, NY, USA: Association for Computing Machinery, 2022,
p. 1–16. [Online]. Available: https://doi.org/10.1145/3492321.3519568

6

https://doi.ieeecomputersociety.org/10.1109/SRDS53918.2021.00017
https://doi.ieeecomputersociety.org/10.1109/SRDS53918.2021.00017
https://doi.org/10.1145/3492321.3519568

	Opportunities for hardware resilience
	Programability, Elasticity, Plasticity
	Replication
	Diversity
	Rejuvenation
	Adaptation
	Resilient Reconfiguration

	Architectural Hybridization
	Conclusions and Call to Action
	References

