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1. Introduction

This paper concerns the eigenvalues of the Brownian sheet matrix X = {X (s,t),0 < s,t < oo},
which is a symmetric-matrix-valued process with entries X;; for 1 <4,j < d given by

bij(sat)u i<j7

X’L" 7t =
J(S ) \/gbii(sut)a Z:.ja

(1.1)

where b = {b;;(s,t),0 < 5,1 < 0o}, ;4 is a family of independent Brownian sheets.
After the fundamental work [25] which established the celebrated Wigner’s semicircle law,
Brownian motion as a one-parameter stochastic process was introduced into random matrix theory
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by Dyson [8]. Since then, there has been fruitful literature on the Dyson Brownian motion which is
the system of eigenvalues of symmetric Brownian matrix (see, e.g. [1,5,6,9,18] and the references
therein), in which It6’s calculus has played a key role. By studying the high-dimensional limit
of the empirical measures of the Dyson Brownian motion, one can provide a dynamical proof
for Wigner’s semicircle law (see, e.g., [1]). The Dyson Brownian motion is also closely related to
interacting particle systems, and the equation (known as the McKean-Vlasov equation) satisfied
by its limiting empirical measure appears naturally in the study of propagation of chaos for large
systems of interacting particles (see, e.g., [2,11,19]).

Multiparameter stochastic processes (or random fields) are a natural extension of one-parameter
processes, they arise naturally in statistical mechanics (e.g. Brownian sheet appears in the Ising
model [14] and interacting particle systems [15]), and systematic theories have been developed (see,
e.g., [4,13] and the references therein). Motivated by the close connection between random matrix
theory and interacting particle systems, it is natural to develop theories for random matrix with
entries being random fields. Recently, the problem on the collision of eigenvalues of symmetric
(Hermitian) matrix whose entries are independent Gaussian fields was investigated in [12, 20],
which to our best knowledge are the only literature on random matrix whose entries are random
fields.

Another motivation for studying the Brownian sheet matrix X is from free probability theory.
As shown in [23,24], many theorems and concepts in free probability have classical probability
analogs, and furthermore free probability is closely connected with random matrix theory. In par-
ticular, free Brownian motion can be viewed as the high-dimensional limit of rescaled Brownian
motion matrix which is define by (1.1) with b being a family of independent Brownian motions.
Stochastic calculus for free Brownian motion was developed in [3]. Free fractional Brownian mo-
tion arose naturally in [16] when studying the central limit theorem for long-range dependence
time series in free probability, and the stochastic calculus was developed in [7]. It was shown in
[17] that free fractional Brownian motion is the high-dimensional limit of empirical measures of
the eigenvalues of rescaled fractional Brownian motion matrices. We remark that the free Brow-
nian motion and the free fractional Brownian motion in [3,7,16,17] are one-parameter stochastic
processes, and we believe that our study of the Brownian sheet matrix in this paper will provide
a useful building block for constructing free random fields.

In the present paper we shall derive a system of stochastic partial differential equations (3.14)
for the eigenvalue processes of the Brownian sheet matrix X given by (1.1), obtain the tightness
of the spectral empirical measures (Theorem 4.1), and show that the limit measure satisfies a
McKean-Vlasov equation (4.15) and a Burgers’ equation (4.22). We briefly explain the structure
of the paper below.

Though the Brownian sheet is a simple multivariable extension of standard Brownian motion,
the stochastic calculus for the Brownian sheet that one needs for deriving the stochastic partial
differential equations for the eigenvalues of the Brownian sheet matrix turns out to be highly non-
trivial and cannot be adapted directly from the classical It6 calculus. In Section 2, we follow the
approach of Cairoli and Walsh in [4] and develop stochastic calculus tools for the multi-dimensional
Brownian sheet on the plane for our purpose. The main results in this section are Theorems 2.5
and 2.6 which are multi-dimensional Green’s formulas.

In Section 3, by applying classical Itd’s formula together with Green’s formulas (Theorems 2.5
and 2.6 ), we derive the system of stochastic partial differential equations (3.14) for the eigenvalues
of the Brownian sheet matrix X. Compared with the following system of SDEs for the classical
Dyson Brownian motion: for 1 <i <d,

1

dAi(t) = V2dW;(t ————dt, 1.2
JFi
where W = (W1, ..., Wy) is a standard d-dimensional Brownian motion, we remark that eq. (3.14)

bears some resemblance to (1.2) but has several extra high-order terms.
In Section 4, we study the high-dimensional limit of empirical distributions for the eigenvalue
processes of X. In Section 4.1, we establish the tightness of the set of empirical spectral measures



J. Song, Y. Xiao & W. Yuan/FEigenvalues of Brownian sheet matriz 3

which are viewed as C([0, S] x [0, T], P(R))-valued random elements (see Theorem 4.1). This guar-
antees that every sequence of the empirical spectral measures has a subsequence which converges
weakly. The tightness together with the classical Wigner’s semicircle law implies the existence and
uniqueness of the high-dimensional limit of the empirical spectral measures (see Theorem 4.2).
In Section 4.2, we derive partial differential equations (4.15) and (4.22) that are satisfied by the
limiting measure, by using the property of the semicircle distribution.

Finally, in Appendix A we provide some results in matrix analysis which are needed in our
analysis.

2. Stochastic calculus for the Brownian sheet

In this section, we shall apply the stochastic calculus on the plane developed in [4] to derive Green’s
formula for the multi-dimensional Brownian sheet, which is a key ingredient for studying SPDEs
for the eigenvalues in Section 3.

2.1. Some preliminaries on stochastic calculus on the plane

In this subsection, we recall from Cairoli and Walsh [4] some preliminaries for stochastic calculus
on the plane.
Define the partial order “<” on R? as follows. For any (s1,t1), (s2,t2) € R?,

(s1,t1) < (s2,t2), iff 51 < 52, 11 < g,

and write
(Sl,tl) << (Sz,tg), iff 51 < S9, t1 < ta.

Let (©2,G,P) be a probability space and let the filtration F = {F.,z € R2} be a family of
sub-o-field of G satisfying

1. F,Cc Foif 2 < 2/
2. JFy contains all null sets of G;
3. foreach 2, F, = (| Fu;

z=<=<z’

4. for each z, F! and F?2 are conditionally independent given F,.

Here, for z = (s,t) € R,

Fl = Foco :=VFs; F2= Foot := VFur.

In particular, the augmented filtration generated by a finite family of independent Brownian sheets
satisfies the above conditions.

Let Y = {Y.,z € R%} be a process such that for each z the random variable Y, is integrable.
We recall the definitions of martingale, strong martingale, weak martingale, and increasing process
relative to F in [4].

Definition 1. Y is a martingale if

1. Y is adapted;
2. E[Yy|F.] =Yy, for each z < 2.

Suppose z = (s,t) and 2/ = (s,t') such that z << 2. We denote by (z, z/] the rectangle
(s,8'] x (t,¢']. The increment of Y over the rectangle (z, 2'] is

Y((2,2"]) = You — Yoo — Yoru + Y.

Definition 2.

(a) Y is a weak martingale if
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1. 'Y 1is adapted;
2. E[Y((z,2'])|Fz] =0 for each z << 2.
(b) Y is an i-martingale (i =1,2) if
1. 'Y is Fi-adapted;
2. E[Y ((2,2'])|Fi] = 0 for each z << 2'.
(¢) Y is a strong martingale if
1. 'Y 1is adapted;
2. Y wanishes on the azes;
3. ElY ((2,2'])|FL vV F2] =0 for each z << 2’
Definition 3. Y is an increasing process if

1. 'Y is right-continuous and adapted;
2. Y, =0 on the axes;
3. Y(A) >0 for each rectangle A C R?..

Let M = {M.,z € R%} be a martingale relative to F. Then M is both a l-martingale and
2-martingale, i.e., {Mso, Fly, s € Ry} and { Mo, F3,,t € R} are martingales. The converse is also
true.

Now we assume that M is a square integrable martingale. By [4, Theorem 1.5], there exists an
increasing process (M) such that M2 — (M) is a weak martingale. For each fixed ¢, let {[M].,, s €
R4} be the unique increasing process which is predictable relative to {Fs;, s € R4} such that
{M?2 — [M]},,s € Ry} is a martingale. Similarly, one can define [M]?. As pointed by [4, p.121],
for a strong martingale M, either [M]* or [M]? can serve as the process (M). Furthermore, by
[4, Theorem 1.9], if either F is generated by the Brownian sheet or M has finite fourth moment,
then [M]' = [M]?, and hence we can choose (M) = [M]* = [M]?. As a consequence, for any fixed
t, {M% — (M)s,s € Ry} is a martingale, and similarly, for any fixed s, {M2 — (M)s,t € Ry}
is a martingale. As in [4], we shall use ds(M)s: (di(M)g, resp.) to denote the differential of (M)
with respect to s (¢, resp.).

For two square integrable martingales M and N, we denote by (M, N) any process which is
the difference of two increasing processes such that M N — (M, N) is a weak martingale. One can
choose, for instance,

(M,N) = = ((M + N) = (M) — (N)). (2.1)

N~

Define [M,N]" = 1 ([M + N]* — [M]* — [N]?) for i = 1,2. Then either [M,N]* or [M,N]? can
serve as the process (M, N). Two martingales M and N are said to be orthogonal if MN is a
weak martingale, and we write M L N.

For p > 1, let 9P denote the set of right-continuous martingales M = {M,,z € Ri} such
that M = 0 on the axes and E[|M.[P] < oo for all z € R%. Let ME (resp. ML) be the set of
continuous (resp. strong) martingales in 9P Similarly, let 9P (zo) (resp. ME(z0), MP(20)) be the
set of right-continuous (resp. continuous, strong) martingales M = {M,, z < zy} such that M, =0
on the axes and E[|M,|P] < oo for all z < 2.

Below we recall some results which will be used in our proofs.

Theorem 2.1. [4, Theorem 1.2] Let {M. : z € R2} be a right-continuous martingale. Then for
p>1

2p
E [sup|Mz|p] < (%) supE [| M, |"].
z p— z

For any z € R?, we denote the rectangle (0,z] by R.. We also fix zo € R%.
Theorem 2.2. [4, Proposition 1.6] Let M, N € 9M?(zy). Then
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1. E[(MN)(D)|F,] = E[M(D)N(D)|F,] for each rectangle D = (z,z'] C R,;
2. M L N iff E]M(D)N(D)|F.] =0 for each rectangle D = (z,2'] C R,.

Theorem 2.3. [4, Proposition 1.8] If M € 9M2(z), then [M]* is the unique F:-predictable in-
creasing process such that fori=1,2,

E [M(D)*|F}] = E [(M?)(D)|F%] = E [[M]'(D)|F%]

for each rectangle D = (z,2'] C R.,,. Consequently, for M,N € 9M2(zy), noting that MN =
% ((M+N)2 — M? —N2), we have fori=1,2,

E [M(D)N(D)|F;] =E [(MN)(D)|F.] =E [[M,N]'(D)|F2]

Theorem 2.4. [4, Theorem 1.9] Let M € 2. Assuming either the filtration F is generated by
the Brownian sheet or M is continuous with finite fourth moment, we have [M]* = [M]2.

2.2. Onv-+-MN and Jyn

Let us recall from [4, Section 6] the notion Jis of a continuous martingale M € 92 on R Recall
the notation Ry = (0, s] x (0,¢t]. By [4, Eq. (6.3)],

JM(so,to):/ M(s,to)M(ds,to)—/ M(s, t)dM (s, 1)
0 Rsofo
to
= M(so,t)M(so,dt)—/ M (s,t)dM(s,t)
0 Rsofo

1 1
:_M2(507t0) - _<M>507t0 - M(Sat)dM(Svt)

2 2 Rugro
Heuristically, one has dJp(s,t) = M (s,dt)M(ds,t) (see [4]). Similarly, for two F-adapted mar-
tingales M and N, we introduce the following generalization Jj;n which induces the measure

M (s,dt)N(ds,t) on R%,

JMN(SQ, to) = /050 M(S, to)N(dS, to) — M(S, t)dN(S, t), (22)

Rsoto

assuming that the right-hand side is well-defined. Clearly we have Jy; = Jyrpr- Analogous to Jas
in [4, Theorem 6.1], Jyn will play a key role in the multi-dimensional Green’s formula in the
forthcoming Theorems 2.5 and 2.6.

Similar to [4], we shall represent Jysny by a new type of stochastic integral denoted by ¢ - M N
which will be defined in the sequel. Firstly, we need to introduce another order relation “A” in
Ri which is complementary to “<” and plays an essential role in the definition of ¢ - M N. For
z=(s,t) and 2/ = (s',t'), wesay z A 2/ if s < s’ and t > ¢/, and 2,2 if s < s’ and ¢t > ¢/. In
the st-plane where the s-axis is horizontal and the t-axis is vertical, z A z’ means that z is on the
upper left of 2’ in the plane. As a comparison, z < 2z’ means that z is on the lower left of 2’.

Proposition 2.1. Suppose M, N € M?(zg). Let A = (za,2'y] and B = (zp, 23] be two rectangles
such that A A B, i.e., z1 A zo for all z1 € A and z3 € B.
Define the process X = {X., z € R2} by

X.=(M(ANR,)N(BNR,), z€R%,

where £ is bounded and F, v, -measurable. Then X belongs to MM?(zo), it is continuous if M is,
and

(X), = & / /R (1) ME AN, (23)
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Proof. We will follow the proof of [4, Proposition 2.4].
For D = (z,2'] with z = (s,t) << 2z’ = (s',¢'), the increment of X over D is

X(D) = M(A)N(B), (2.4)

where A = AN (Ryy\Ry:) and B = B (Ryu\Rs). )
Suppose z ; is the lower-left corner of A. Then both ¢ and N(B) are F. fA-measurable, and hence

B[X(D)IF2) = B[E [eMANB)R2 ]| 72| = B[en B [m(A)72 ]| 72 <0

Similarly, one can show E [X (D)|F}] = 0. Hence, X is a martingale.

Let zz be the lower left-hand corner of B, and denote 29 = 25 V z5. Then 24 V zp < 20, and
hence ¢ is F,,-measurable. Thus, by Theorem 2.2,
fz} .

E[X(D)|F.] = E [E [M(A)?N(B)|F,

Now we have
E[M(A?N(BP|F., | =B [M(A)?|1F.,| E[N(B)?F |
-k [E [M(4717)| 7., | E[E [NB)?17]
=E [[M]*(A)|F., | E [[N] (B)I .,
—E [[MP(A)[N] (B)| )

fz()}

where the first and the last equalities follow from the assumption that ! and Fz 2 are conditionally
independent given F,,, and the third equality follows from Theorem 2. 3 T hus

E[X*(D) - &[M]*(A)[N]'(B)|F:] = 0
and hence X2 —(X), is a weak martingale where (X), is given by (2.3). The proof is concluded. O

With Proposition 2.1 in mind, we define a new type of stochastic integral denoted by - M N,
following the approach in [4].

Fix an integer n and zg = (so,%0) € Rﬁ_. Divide R, into rectangles [J; ; = (2; ;, Zit+1,j+1], Where
zij = (iso/2", jto/2") for 4,5 =0,1,...,2" — 1. We first define ¢ - M N for an indicator function
. If 4,7, k, 1 are positive integers with 1 <7 <k < 2" and 1 <1 < j < 2", ie. O;; A O, define
the so-called indicator function

1/’ijkl(21722) = é.]‘l:li,j (Zl)le,L(ZQ), (25)
where £ is bounded and F, ;-measurable, and define
(Yijkr - MN), = EM(0;; N R.)N(Oky N R.), 2z € R,

Then by Proposition 2.1, ¥;;z; - M N is a well-defined square integrable martingale with quadratic
variation

(ijir - MN), = / / e e dME AN,

and thus we have the following isometry

El[dusu - MNT? [// W, )M, [N, | (2.6)
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We shall define 1 - M N for a more general class of integrands v following the standard ap-
proximation procedure. For this purpose, one needs the isometry (2.6) to hold for finite sum of
indicator functions, and it suffices to prove the following equality

(Vijrt - MN, Ympgr - MN) . = // . Vijri (21, 22)Umpar (21, 22)d[M]2 d[N], . (2.7)

Here, Ympgr (21, 22) = nlo,, ,(21)10, , (22) with m < ¢ < 2", <p < 2" and 7 being a bounded
F., ,-measurable random variable. To prove (2.7), we consider the following more general situation.

Suppose M, N, M', N’ € MM?(z), and let (A, B) and (A’, B’) be two pairs of rectangles satisfying
the conditions in Proposition 2.1, i.e., A A B and A’ A B’. Furthermore, we assume A, A’, B, B" are
from the set {{;;,4,j = 0,1,...,2" — 1}. Thus, any two of the rectangles A, A’, B, B’ are either
coincide or disjoint. Denote zo = (z4 V zp) V (za/ V zp/). We claim that the following equality
holds

E[M(A)M'(A")N(B)N'(B')| F,] + E[M(A)M'(A)N(B)N'(B')| F,]
+E[M(A)M' (A YN(B')N'(B)| F.,] + E[M (A" YM'(A)N(B')N'(B)| F.,]

—E [ (M(A)M’(A’) + M(A’)M’(A)) (N(B)N’(B’) + N(B’)N’(B)) } sz]
= 4IE[ (M, M']2(An AN, N’]l(BmB’)\IZO] (2.8)

Proof of (2.8). The first equality is straightforward. In the following, we shall prove the second
equality.

Recall that the four rectangles A, A’, B, B’ are either disjoint or coincide; furthermore, A A B and
A" X B’ ie., A (resp. A') is on the upper left side of B (resp. B’). We prove the second inequality
in (2.8) by separating the relative locations of A, A’, B’, B’ into four cases. In the following, we
denote the lower left corner of a rectangle E by zg.

Case 1. If A is on the top of A’ and ANA’ = ), noting that A (resp. A’) is to the upper left of B
(resp. B'), we have that M’(A’), N(B), N'(B’) are all 2 -measurable. Since M is a 2-martingale,
we have, noting that 7., C F2,

E[M(A)M'(A)N(B)N'(B')| Fo,] = E[ E[MAM (AN (B)N'(B)| F2,]| .|
—E[ M'(4)N(B)N'(BE [M(4) 72,]| .,
=0.
Similarly, for the other terms on the left-hand side of (2.8) we also have

E[M(A)M'(A)N(B)N'(B')| Fz,| =

E[M(A)M'(A)N (B')N'(B)| F=|

E[M(A)M'(A)N (B )N'(B)| Fz,| =
)

0,
B 0,
B’ 0.
Summing over all the above equalities, we get (2.8).

Case 2. If A’ is on the top of A and ANA’ = (), the proof is the same by considering the o-field
ffA,. If B is to the right (resp. left) of B’ with B N B’ = (), then the proof is also the same by

considering the o-field F7, (resp. ]-"le,).

Case 3. Now we only have one situation left: A and A’ are at the same horizontal level, which
is on the top of B and B’, and B and B’ are at the same vertical level, which is to the right of
A and A’. We denote zo := 24 V zp = za V zp/. Note that M(A), M'(A’"), M(A"), M'(A) are F,,
measurable and N(B), N'(B'), N(B'), N'(B) are F2 measurable. We have

E[ (M(A)M'(A4") + M(A)M'(4)) (N(B)N'(B) + N(B)N'(B) ) | .|

= [ E[M(A)M'(A) + M(A)M'(A)| F=,| E[N(B)N'(B) + N(B')N'(B)| F=,

sz}, (2.9)
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where the equality follows from the conditional independence of F, zlo and ]:z20 given F,.
To compute

E[M(A)M'(A") + M(A)M'(A)| ],

we split it into the following three cases.
(a) If A= A’, noting that F2 = F?

Z,» by Theorem 2.3,
B [MAM'(4)| F2] = E[(MM)(A) 7] =E[MMPA| 7). (210

(b) If A and A’ are two adjacent disjoint rectangles on the same horizontal level, then AU A’
is also a rectangle. Without loss of generality, we may assume that A is to the left of A’, then z4
is also the lower left corner of AU A’. Thus, by Case (a), we have

E[M(A)M'(A)| F2 ] =E[[M,M*(A)|F2],
E[M(A)M'(A)| FZ] = E[[M, M'*(A)| FZ ],
E[MAUAYM (AUANF2] =E[[M,MTP(AUA)|F2].

Noting that M(AUA') = M(A)+M(A"), M'(AUA") = M'(A)+ M'(A’) and [M, M')(AUA") =
[M, M'}(A) + [M, M'](A"), we subtract the first two equations from the third one and obtain

E[M(A)M'(A) + M(A)M'(A)| FZ ] =o0. (2.11)

(¢) If A and A’ are two non-adjacent rectangles on the same horizontal level, we denote by
A" the rectangle between A and A’. Note that A” is the union of small rectangles in the set
{0i,,4,j=1,...,2"}. By Case (b), we have

E [M(A)M'(A") + M(A")M'(A)| FZ, | =0,
E [ M(A)M'(A" U A') + M(A” U A')M'(A)| F2] = 0.

Noting that M'(A”UA") = M'(A”)+ M’'(A’), one can subtract the first equality from the second
one to obtain (2.11).
Therefore, summarizing the three cases (a-c), we can write

E[M(A)M'(A) + M(AM'(A)| F2] =2E [[M,M'?(AnA")| F2].
Hence, by taking conditional expectation with respect to the o-field F,,, we have
E[M(A)M' (A') + M(A)M'(A)| Fo) = 2E [[M, M'P(AN A")| Fs,] - (2.12)
In the same spirit, we can also prove
E[N(B)N'(B') + N(B")N'(B)| F.,] = 2E [[N,N']" (BN B')| F.,] - (2.13)
Finally, substituting (2.12) and (2.13) into (2.9), we have

E[(M(A)M'(A") + M(A)M'(A)) (N(B)N'(B') + N(B')N'(B))| F,]
= 4E [E [[M, M'T*(ANA")| F2, | E [N, NT(B N B)| Fsy ]| Fy]
= 4E [[M, M']>(An A")[N,NY (BN B')| F.,] ,

where the conditional independence of F. and F2 given F., is used again in the last equality.

This proves (2.8). O
By choosing M’ = M and N’ = N, eq. (2.8) degenerates to

E[M(A)M(A)N(B)N(B')| Fv,] =E[ [M,M>(AN A")[N,N]" (BN B)| JFZU} : (2.14)
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Now, as in Proposition 2.1, we can define
X, =EM(ANR,)N(BNR,) and X. =M (A'NR,)N'(B'NR,) (2.15)

for some bounded variables { € F.,v., and {’ € F.,,vz,,. Denote zg := (24 V zB) V (24/ V 2B)
and we assume zg < z = (s, 1), since otherwise at least one of X, and X is zero. Let 2/ = (¢/,¢)
be such that z << z’ and let D := (z,2/].

Assuming M = M’ and N = N’ in (2.15), following the approach used in the proof of Propo-
sition 2.1, we can show by (2.8),

E[(XX")(D)|F=] = §§’E[ [M, M]*(An A)[N,N]" (BN B')

],

where A = A N (Rs’t’\Rs/t)a B=RB N (Rs’t’\Rst’)7 and A’ = A’ n (Rs/t/\Rs’t) and B = B’ n
(Rs¢/\Rst). This leads to

(X, X", _55’//1% . Lana(21)1Bnp (22)d[M, M]? d[N,N]._, (2.16)

and hence (2.7) is verified.

Now we are ready to define b - M N for a more general integrand . We say v is a simple
function if it is a finite sum of ;5 given in (2.5). Let D be the o-filed on Ri X Ri x ) generated
by all the simple functions. We call D the field of predictable sets. Let £3, 5 (z0) be the class of all
predictable processes such that

E

/ / w?(zl,zz)d[M]gld[N];] < . (2.17)
Ry X Rz

Then £3, 5 (z0) is a Hilbert space with the inner product

w,qs):za[ / /R - w<zl,22>¢<zl,zQ>d[M]§ld[N]i2], (2.18)

and the simple functions form a dense subset. By (2.7) and (2.18), the mapping 1) — - M N defines
an isometry between the set of simple functions and 9t2(zg). Then, by a standard approximation
argument, one can extend the definition of ¢ - M N for each process ¢ € £3, 5 (20). Furthermore,
(2.7) also yields for z < 2o,

(- MN,§- MN), = / /R (e )0, M) ANy, V0 € L (). (219)

Throughout the rest of this section, we only consider continuous strong martingales
with finite fourth moments, unless otherwise stated. Then based on Theorem 2.4, we have

[M]" = [M]* = (M); [N]'=[N]*=(N). (2.20)

To end this subsection, we shall follow the approach used in [4, Section 6] to show that Jasn
defined in (2.2) can be represented by ¢ - MN with (21, 22) =1, A 2]

Recall the notations z; ; = (iso/2", jto/2") and O ; = (2, Zi+1,j+1]. We also denote €; ; =
(Zio, Zi+1)j] and 51’,]’ = (Zo)j, Zi)j+1]. Denote

2" —1
Jin(2) = > M(8i; N R:)N(ei; N Ry)

4,5=0

2" 1 /i—1 j—1
=> <Z M((2k,55 2k41,5+1] ﬁRz)) <ZN((Zi,l=Zi+l,l+1] ﬁRz))

i,j=0 \k=0 =0
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=3 (Wrja - MN),, (2.21)
k<i I<j

where ¢y i is given in (2.5). Thus, letting n — oo, we have

Jin(2) = (Y- MN):,

where
1 if Z1 AZQ
21,20) =1, a1 =1 AT
vz, 22) o 2] {O, otherwise.
2" 1
Define M"™ = > 1, (2)M., ;. Then M™ is a sequence of simple functions that approximate
4,j=0
M and
271
/ M™N = > M., N(O;;)
,j=0
271
= > M., (N(ei41) = N(esy))
i,j=0
271 271
= Z (Mzi,j+lN(ei1j+1) le ]N(EZ J)) Z (Mzi,j - Mzi,j+1) N(ei»jJrl)
i,j=0 i,j=0
271
Z 20on N (€i,2n) Z M(6i,5) (N(€i5) + N(Diy)) - (2.22)
2,7=0
If we define M" 'to = Misy an 1, for s € (iso/2", (i + 1)s0/2"], and 6" (z) = M (d; ;) if z € O; 5. Let

H,, be the line segment with endpoints (0,tg) and z¢ = (8¢, to), then

M™N = [ MZ, (s)N(ds,t) — Jiyn(z0) — [ 6"dN. (2.23)

R:, H., R,

By the Cauchy-Schwarz inequality,

:|(/,

-s[f

gIE/ supM(5i,j)2d<N>st]
R

L B

6"dN)2 (5”(s,t))2d<N>st]

20 20

<E [sup M(5,.,)? <N>zo}

L %7

< (JE [supM(5 J) ]]E[<N>fo])l/2

i
=0, n — oo, (2.24)

where the last step holds due to the continuity of M and the dominated convergence theo-

rem, noting that E[sup, ; , M(d;;)*] is dominated by E[sup,_, [M.|*], which is dominated by

(4/3)SIE[|MZO| | due to Theorem 2.1 and the existence of the fourth moment of the M.
Furthermore, Theorem 2.1 yields

E |sup sup (M — Mz)‘*} < 8E [sup sup [M™* + sup |Mz|4] < 16E [sup |Mz|4} < o0

n z<z2o n z<z2o z<2z9 z=<z0
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By the Cauchy-Schwarz inequality, the dominated convergence theorem and the continuity of M,

we have
EK/R (M”—M)dN)2 /R

) <E [supuw: - Mz>2<N>zo}

n,z

=E

(M™ — M)2d<N>]

Z0

< (E [sup<M§ - MJ*] B [<N>§o])1/2

n,z

— 0, n — oo. (2.25)

Similarly, we can show the following L2-convergence,

/ Mst N(ds,t) — M(s,t)N(ds,t), n — oo. (2.26)
Hy, H.,
Recalling that lim, o J3;5(2) = (¥ - MN), with ¢(z1,22) = 1, »
and (2.26), we have

by (2.23), (2.24), (2.25)

22]’

(- MN),, = |  M(s,t)N(ds,t) — [ MadN,
Hzo RZO

and hence by the definition (2.2) of Jyn, we have
Jun(z0) = (- MN),,. (2.27)

Therefore, we can calculate (Jysn) by (2.19),

n) = [ et M) (), = [ )iy,

z

and hence
A{JriN) st = de (M) s1ds(N)st. (2.28)

Furthermore, the following equality holds,

JMN(S(), to) = ‘/OSO M(S, to)N(dS, to) — / M(S, t)dN(S, t)

Rsgtg

:/tON(so,t)M(so,dt)—/ N(s,)dM (s, 1). (2.29)
0 R

spto
This can be deduced by rewriting (2.22) as follows

2" -1
/ M™N = Y M. N(Oi;)
Rz 2,j=0

2" -1

= > M., (N(Sis15) — N(6i)
i,j=0
2" —1 2" —1

= Z (Mzi+1,jN(6i+1;]) M, ;N(é )) Z (Mzi,j - Mzi+1,j) N(5i+17j)
1,j=0 4,j=0
2" —1 2" —1

=Y M.y N(anj) = > M(ei ;) (N(0ij) + N(Dij))-
7=0 3,7=0
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By letting n go to infinity, we get for ¥(z1, 22) = 1[Z1ﬁz2]’

(Y- NM), / M (so,t)N (so, dt) — MdN.
R,

This together with (2.27) implies (2.29).

2.3. Multi-dimensional Green’s formula for martingales on the plane

Now we are ready to prove Theorem 2.5, the multi-dimensional Green’s formula on the plane.
Let {M®(s,t),(s,t) € R2}1<;<4 be a family of independent continuous strong martingales on

R% with finite fourth moment. We assume that the increasing process (M () is deterministic for
everyl <i <d. Let F; = Fj;(s,t),1 < j < d be a sequence of predictable processes of the form,

d t t
F; = Fj i(s, )M (s, d 0(s, m)dr, :
(50 = B0+ 2 / Fra(5, )M (s, dr) + / Fro(s,r)dr (2.30)

where f;;,1 <j <d,0<i<d are F-predictable processes.

Theorem 2.5. Fiz so,to > 0. Suppose that {F;(s,t)}1<j<a are predictable processes given by
(2.30). Assume

to . .
E[/O i fj,i(s,t)2dt<M<1>>SotdS<M<J>>StO] < o0, V1 <i,j<d, (2.31)

and

t() S0 X
E [/ / fj,o(s,t)2d5<M<z>>st0dt] <00, VI<j<d. (2.32)
0 0

Then for any rectangle A C Ry, we have

d d
i(s s,t) = (s, @)
;/@AFJ(J )(ds, t) z_:/ £)dM D (s, 1) +

+Z/ Fio(s, ) MY (ds, t)dt. (2.33)

/ fii(s t)dJMu) o (5,1)

7,7=1

Proof. We will follow the argument in the proof of [4, Theorem 6.1]. Let A = [s1, s2] X [t1,%2] C
[0, s0] x [0,t0]. Without loss of generality, we may assume that F; = 0 on the line segment with
endpoints (s1,¢1) and (s2,¢1). Indeed, noting Fj(s,t) = F;(s,t1) + (Fj(s,t) — F;(s,1)), it follows
from

S2
/Fj(s,tl)dM(j)(s,t):/ Fj(s,t1) (M(j)(ds,tg)—M(j)(ds,tl)) :/ Fy(s,t1) MY (ds, 1),
A OA

s1

that (2.33) holds for Fj(s,t) if and only if it holds for Fj(s,t) — Fj(s,1).
Next, we consider the case that each stochastic partial derivative f;i(s,t) = fji € Fs,1, IS
constant function for 1 < j <d,0 <1 < d. Then by (2.30), we have

Zfﬂ( MO (s,8) = MO (s, 0)) + frolt — ), (s,) € AT j<d (234)

On one hand, noting that JMN(A) = JMN(SQ,tQ) — JMN(Sl,tQ) — JMN(SQ,tl) + JMN(Slatl)a it
follows from (2.2) that

/fj,i(S,t)dJMm,M(j)(Saf)
A
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= / Fi.aMD (s, )M (ds, t) — / FiaM D (s, 6)dM D (s, t)
0A

:/ fii (M(i)(s,t) —M(i)(s,t1)> )(ds, t) / f” M@ (s,t) — M(i)(s,t1)> dM Y (s,t).
- (2.35)

Here |, 94 1s a line integral on JA with clockwise as its positive direction.
On the other hand, It6’s formula yields

/ Fro(t = t1)dM Y (s, 1)

) " 5 )

=f; — I (sq,dt) — MV d
fj,o/tl (t = t2) (MO (2, dt) = MD (51, 1))

to
= fjo(ta —t1) (M(j)(327f2) - M(j)(Sl,t2)) - fj,o/ (M(j)(sz,t) - M(j)(sl,t)) dt

t1

/fjot—tl)M(”(dst / </ FioM© (ds, t))dt (2.36)

By (2.34), (2.35) and (2.36), we get (2.33). Thus, we have proved the theorem for the case that
all stochastic partial derivatives are constant functions. Note that for A = UF_; A; where A; are

disjoint rectangles, one has [, = S Joa, and [, = S 4, Therefore, (2.33) also holds for
the case that all stochastic partial derivatives are simple functions.

For the general case, recall that the martingales { M (i)}lgigd are independent and the increasing
processes {<M(i)>}19—§d are deterministic. By (2.31) and (2.32), for 0 < ¢ <d, 1 < j < d, we can

find sequences { f;Z)}neN of bounded simple functions such that as n — oo,

n) 2 i i
/ / { (s,t) — fj,i(s,t)) ]dt<M(Z>>SOtdS<M(J)>StO —=0,1<i,j<d, (2.37)

an

S0 t()
/ / E [(f;jg)(s,t) - ijo(s,t))j dtd,(MD) 0,  1<j<d (2.38)
o Jo ©

Define
d t ] t
FO60 =30 [ A2 + [ e 1< <a
i=1

Then (2.33) holds for the family {Fj(n)}1<j<d’ and it remains to take the limit as n — oo.

We deal with the left-hand side of (2.33) first. It follows from (2.37) that, as n — oo, for
1<i,j<d

t 2
(/ / fii(s, )M (s, dr)MY (ds, t) / / n) (s,7) M (s, dr)M(j)(ds,t)) 1
aaJo oA

i 2
<2 Z E (/ /t fj, 8,1) f;g)(s,r)) M(i)(s,dT)M(j)(dS,tk)) 1
k=12
/ / [ Falsr) — fﬁ)(s’”ﬂ a (MDY d (MO
t 2
S [ e | (st = 52 60) | antar), aar),,

E

k=1,2

k=1,2
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— 0. (2.39)

Similarly, by (2.38), we have as n — oo, for 1 < j <d,

E l(/@A /Ot fj,o(s,r)drMU)(ds,t)_/aA /Otf(g>(s,r)drM<j>(ds,t))2]
<2} /E [(/Ot (fio(s.m) = 15 (sm) drﬂ ds(MD),,,

k=1,2

<4/ to/ [ f], s,7) fff))(sar))Q] drd (MY) -

Hence, combing (2.39) with (2.40), we get

(2.40)

(" )
nlgr;oz F (s,t)MY) (ds,t) Z (s, t)M"Y)(ds,t)

in L?(Q).
Next, we deal with the first term on the right-hand side of (2.33). By (2.37),

l(//f”er“ (s,dr)dMY) (s, t) — //f<" s, 7)Y MO (s, dr)dM D) (s, t ))2]
:/IE (/Ot(f“(sr
[ el

< [ [ B[ e >) ]d (MO) (),
/ /to [ fii(s,r) f (5 r))2] dT<M(i)>SOTdS<M(j)>StO

n—oo, V1<ij<d. (2.41)

st

M9 (s, dr) ) ] d(MW)

O =
IS8
N
§
=
A
<
s’
~

Similarly, by (2.38),

(// fio(s,r)drdMYD (s, t) // £50) (s, ) drd D 9 (s, t)ﬂ
< / to / tOIE[ (fio(s,m) = 115 (s,7)) }drd<M“’>st
< to/ /tU [ fio(s,T) — fﬁﬁ)(s,ﬂﬂ deS<M(j)>sto

n— oo, V1 <j <d. (2.42)

Hence, (2.41) and (2.42) imply

d d
lim / F{ (s, )M (ds, ) = > / Fj(s,t)MY (ds, t)
n—oo

j=174 j=174

in L?(Q).



J. Song, Y. Xiao & W. Yuan/FEigenvalues of Brownian sheet matriz 15

Next we deal with the limit of the second term on the right hand side of (2.33). By (2.28) and

(2.37), we have
2
</ f]z s, 1) dJM(l) Mmo (8,1) / (s,t) dJM(l) Mo (s, t)> ‘|

< [[ [0 - f0e0] aae), a0,
—0, n— oo, <1,5 <d. .
0 V1<4,7<d 2.43

Hence, we have

Z / £ (5,6)dago g (5,1) = / fi.i(s,0)dTpre) ari (s,1)

1,j=1 7,j=1

in L?(Q).
Lastly, we deal with the limit of the third term on the right hand side of (2.33). By the Cauchy-
Schwarz inequality and (2.38),

</ Fio(s, )M (ds, t) dt—/ £ (s,) U')(ds,t)dt)j
( / / Frols.t) = 15 (5.1)) M<ﬂ‘><ds,t>dt>2]
< (tg — tl)/ E [</:2 (fjo(s,t) — fj(z)(s,t)) M(j)(ds,t))2] dt

ta
= (ta — t1) / / { Fio(s,t) — f;)’g}(s,t))z} (MY (ds, t))dt
—0, n—oo, V1<j<d. (2.44)

Thus, we have the following convergence in L?(2),

Z/f")stM(J) dstdt—>2/f]7 (s, ) MY (ds, t)dt.

The proof is concluded. O

Similarly, for predictable processes of the form

d s s
Fj(s,t) :Fj(o,t)+2/0 fi.a(r, )M D (dr, t)+/0 fio(rt)dr, 1<j<d, (2.45)
=1

where f;;,1 < j < d,0 < ¢ < d are F-predictable processes, we have the following Green’s
formula.

Theorem 2.6. Fiz so,to > 0. Suppose that {F;(s,t)}1<j<a are predictable processes given by
(2.45). Assume

to
|:/ / fjl 5 t Z)>stodt<J\4(j)>st0:| < 05 V1 S Z’] S d;

and

to .
e[ [ fotsraqan), i) <, visis<a
0 0
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Then for any rectangle A C Ry, we have

d
Z/ sdt Z/ sth st Z/f“sthMmMU(st)
j=1

1,j=1

+Z/ Fio(s, )M (s, dt)ds.

Proof. Noting that by the second equality of (2.29), we have that for the left-hand side of (2.35),

/fj,z-(s,t)dJM<j>7M<i>(s,t):/ fj,iM“)(s,t)M(j)(s,dt)—/fj,iM@(s,t)dM(j)(s,t).
A 0A A

The rest of the proof is the same as that of Theorem 2.5 and thus is omitted. O

2.4. Quadratic covariations of Jyyn and JpprNe

Let M,N, M’ N’ be continuous martingales belonging to 9*(z0). In this subsection, for the
completion of the theory, we shall derive the quadratic covariation for Jyy = @ - MN and
Jyrne = MN' with ¢(21, 22) = 1, which are defined in Section 2.2. More specifically, we
aim to show

17 22]

d<JMN7 JM’,N/>st - dt<M; M/>stds<N; N/>st- (246)

Recall that Jyn can be approximated by Jj; 5 as in (2.21), and that one can approximate the
function (21, 22) = 1, » .,y by

= lim E 1/%]1@17
n—o0

%,5,k,0 €L,

where ¥y (21, 22) = 10, ,(21)10, , (22) and I, is a subset of {(4, 4, k,1),4,j, k,l € 1,...,2"} which
consists of (7, j, k,1) sat1sfy1ng 0<i<k<2"—1land 0<I[<j<2"—1.Denote by J,, the subset
of I, x I, such that for ((¢,7,k,1),(7,j',k',l")) € J,, the four rectangles A = O; ;, B = T,
A" =0y, B' = O v are of the same position as in Case 3 in the proof of (2.8) in Section 2.2.
That is, A and A’ are at the same horizontal level and are at the upper left of B and B’, while B
and B’ are at the same vertical level. Now the quadratic covariation can be computed as follows,

(Jarw, Jars),, = lim Y Wi - MN, g - M'N'),
(i,4,k,0) €L, (¢35 k' I)EL,

= ( > (Wijhr - MN, ivjopr - M'N')
((2,5,k,0), (4,57, k" 1) ET

+ Z (i1 - MN, iy - M'N) ) (2.47)
((@:5:k,0), (5" K1) I

For the first term on the right-hand side of (2.47), observing that the indices ((z, j, ¥','), (¢, j', k, 1)),

(@', 4,k 0), (4,5, K", 1)), and ((¢, j', k', "), (i, 4, k, 1)) all belong to J,, as long as ((¢, 7, k, 1), (¢, §/, k' ")

€ J,,. Thus, we have

> (Qijh - MN, $irjopr - M'N')
(kD) (i 37 K 1)) €T
1
== Z (<7/1ijkl “MN, i jigy - M'N') 4 (ijrr - MN,ivjig - M'N')
((4,5,k,0), (47,37 K1) €T,

+ Wi - MN, gy - MIN') (o - MIN, i - M/N/>ZO)
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= Z <M,MI>(I:|1‘7J‘ﬂl:li/7j/)<N,N/>(l:|k)lﬁl:lk/J/)
((2,5,k,0), (4,47 k" ,1'))ET

= Z (M, MI>(Di,j)<N7 NI>(E|/€J)= (2.48)
(i,4,k,1) €L,

where the second equality follows from (2.8).

For the second term in (2.47), noting that when ((¢, 7, k, 1), (¢/, 7', k',1")) ¢ J,, the four rectangles
A=0;,, B=0Ok;, A =0y ; and B’ = O v are of the same position as in Case 1 or Case 2
in the proof of (2.8) in Section 2.2. Thus, we have

Z (Yijht - MN, Yy - M'N') = 0. (2.49)
(o3 k1), (4,5 K1) T

Therefore, substituting (2.48) and (2.49) into (2.47), one has

(Jarw, Tarw),, = lim oy (M, M) (035) (N, N') (O)
(i.d k) €L,

—/R/R A(M, M), d(N, N')...

and this implies (2.46).

Remark 2.1. One can easily check that the computation is still valid if the function ¥ (z1,22) is
the limit of (™ (21, z9) in L2, 5(20) and in L2, n/(20) satisfying

"/J(n) (Zlv Z2)¢(n) (217 Zé) = ¢(n) (217 Zé)"/}(n) (217 22)7 (2'50)

for all z1 = (s1,t1),22 = (S2,t2), 21 = (8),t]), 25 = (s5,t) satisfying max{sy, s2} < s} = s, and
max{t],th} < t; = to. Clearly, Y™ (21, 25) = hi(21)ha(22) satisfies (2.50). Moreover, by firing
(21, 25), one can check that all the functions satisfying (2.50) must have the form (™ (21, z9) =
hi(z1)ha(z2). In this situation, we have

W MN MN. = [ e,z P A d (NN, (2.51)

3. SPDE:s for the eigenvalue processes

In this section, we will derive a system of SPDEs satisfied by the eigenvalue processes of the
Brownian sheet matrix X defined in (1.1). We assume that the family b(s,t¢) of independent
Brownian sheets have deterministic initial values such that the eigenvalues of the symmetric matrix
X (0,0) are distinct.

Recall that the standard 1-dimensional Brownian sheet {B(s,t),(s,t) € R1} is a centered
Gaussian random field with covariance function

E[B(Sl,tl)B(SQ,tQ)] = (51 A 52)(t1 A tg).

It follows directly from Lévy’s characterization of Brownian motion that for any fixed t1, t3 > 0,

1
Vi

are standard 1-dimensional Brownian motions.

Consider the Brownian sheet matrix defined in (1.1). As in Appendix A, for 1 < i < d, let
Ai(s,t) == ®;(b(s,t)) = ®;(X(s,t)) be the i-th biggest eigenvalue of X (s,t), where the function
&) :Sg — R maps a d X d symmetric matrix A € Sy to its i-th biggest eigenvalue P, i(A).

LB(.JQ)

B(tla')a \/5
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Let S,T > 0 be constants. By applying Itd’s formula to \;(S, ), we have
Ai(S,T) ( 0) = Xi(S,T) — Ai(S, 0) (5 T)) ®;(b(5,0))
-y / - (0(S. )b (S, dt) + Z / 0bih £)) (bin (S, dt))
k<h k<h
_ Z/ S (b5, 1)ben (5, ) + Z/ abkh ))dt. (3.1)
k<h k<h

y (3.1) and (A.21), we have

Ai(S,T) — X(0,0) Z/ abkh b(S,))bn (S, dt) + Z/ dt.  (3.2)

k<h St Aj(S,t)

We shall express the right-hand side of (3.2) as a sum of double integrals on [0, S]
first deal with the second term.

For i # j, as in Appendix A we denote for any x € RHU@+1)/2,

x [0,T]. We

EOGE) (3.3)

5 1
= d t)bin (ds, t
/0 Ai(s, 1) = Aj(s,t) S+Z/ 6bkh (5:))bn(ds, 1)

—/S 1 ds—i—Z/ 8‘1’” (b(s,t))bn (ds, t)
B 0 )\i(S,t) St 8bkh kh

+ = Z/ 3bih b(s, t))ds. (3.4)

k<h

Substituting (A.23) into (3.4), we have

s
— (S, t)

6\11”
/ W ER) ds—i—Z/ ST (b(s:1)bn (ds, t)

k<h
2st
-I—/ ds
0 (/\i(svt) - /\j(S,f))S

+ / ’ ! 3 st ds. (3.5
0 (/\i(sv t) - /\j(svt)) Ll (/\i(sv t) - /\l(sv t)) ()‘j(sv t) - /\l(sv t))
Lastly, we substitute (3.5) to (3.2) to obtain
Ai(S,T) — X:(0,0)

o%;
_Z/O S (b(S. )b (S, ) + Z//Ast dsdt

JijF#i )
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+Zz//gxsm%mw

jij#i k<h
+g;/‘/ @ﬂ)““
st
#u#m/’/ eI T @9

The last term on the right-hand side of (3.6) vanishes, noting that it sums over all j # [ for j,1 # ¢
ind that (AiiAj) (Ai—AL%/\j—/\z) changes its sign by interchanging the indices j and [. Therefore, we
ave

Ai(S,T) — X:(0,0)

:Z/ gfzh( (S, £)bkn (S, dt) + Z/ / (Sjt)dsdt

k<h 0 Jij#i

- T pS 6‘1’
+ Z Z/O ~/O Sabkh (b(svt))bkh(dsat)dt

J:jFi k<h
T 2st
+Z/O /0 D) = (s B (37)

Now, we apply the multi-dimensional Green’s formula (Theorem 2.6) to the first term on the
right-hand side of (3.7). By [12, Theorem 2.1] (see also [20, Theorem 1.1]), it has positive proba-
bility for the eigenvalues {\;(s,t),1 <i < d} of the Brownian sheet matrix X to collide. To avoid
the singularity at the collisions, we shall restrict (s,t) in a region where all eigenvalues keep a
distance from each other.

Define the region D, for € > 0 by

DEZ{(J,'l,...,,Td)ERdZ,Ti—JJH_l>€,1§i§d—1}.

Let x. € Cp°(R?) such that x(z) = 1 for 2 € D and x.(z) = 0 for z € R\ D . For simplicity,
we denote & = (Pq,...,P,4). By Itd’s formula, we have

(ﬁZ@MWD
_ (%Xﬁ@)) (b(0,1))

s 0%®; 09, OXe 0P,
*Z/(%EWMW%%Z%W%WyWWWW“

s 83(1) 8Xe 8(I)l
z L (P
P> /0 <6bkh6bk,h, (@) + 6bkhabk,h, ; o) o

d

8‘1%‘ 82)(6 8@1 3‘1)1/ 8)(6
i abkhz (b(r,t))dr.  (3.8)

8bkh =1 6:516551/ 6bk/h/ 6bk/h/ 6:cl 6bk,h,

Note that the function y. and all its partial derivatives vanish when 2 € R?\ D¢, by Lemma
A.2; all the integrand functions in (3.8) are bounded. Hence, we can apply Theorem 2.6 to obtain

T .
> /O <%xe(<b)> (b(S, )bk (S, dt)
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/RST <5bthE (I))> (b(s,1))brn (s, dt)

@)) (b(s, t))dbkh(s, t)

0%; OXe 09,
* Z //R <3bkh3bk/h/ (@) + Obyp, Z 0y (®) 8bk/h/> (b(s, £))d b (5:)

k<h k'<h'
9 (I) 8X€ 8(I)l
+ Xe(®
1;1//3 2 (‘%khabk'hf @)+ 6bkhabk’h’ ; (%cl (%k,h,
8(1)1 4 8 Xe 8(1)1 8(1)1/ 8X€
@ b(s,t))bgn(s,dt)ds. (3.9
Obkn S~ (9:616:61/( )f%kw by s 8bkh Z 8ggl b2, (b(s, t))brn (s, dt) (3.9)

Denote

Te = {(s,t) : (P1(b(s,1)),...,Pa(b(s,1))) & D.}.

We shall construct a sequence of adapted random time pairs {(¢1,71)}n>1 such that (o1,71) <
(Unl+1 THL) First, we choose a pair of random times (o1,71) as follows. For each fixed w € Q,
if Ty(w) = 0, then we choose o1(w) = 71 (w) = o0; if T1(w) # 0, then by Zorn’s lemma, there
exists a minimal element (s1,¢1) in 71 (w), and we set (01 (w), 71 (w)) = (s1,%1). By the meaning of
minimal element, we have [(s,t) << (01,71)] = [(®1(b(s,1)), ..., Pa(b(s,t))) € D1] € Fsi. Next,
for an arbitrary fixed w € €, let (U%,T%) be a minimal element of the set

{(01 (W), (@) < (5,2) : (B1(b(s,1)), ..., Da(b(s,1))) & D%},
)’

[(o1,71) < (s,t) <= (O’%,T%)] = [(P1(b(s,1)),...,Pa(b(s,t))) € D%\Dl] € Fsts

and (U;,T%) = (00, 00) if the set is empty. Clearly (o1,71) < (o

2

T

Nl=

1
3 3

and hence [(s,t) << (01, 71)] € Fsr. The rest of random time pairs (01,71) can be constructed

in the same way. Define
(0,7) =sup(o1,71). (3.10)
n>1 "
Thus, [(s,t) << (0,7)] = Up>1[(s,t) << (01,71)] € Fst.
For each n > 1, on the set [w € Q: (S, T)n<<n (01 (w), T2 (w))], we have that for (s,t) < (S,T),
D(b(s,t)) = (P1(b(s,t),...,P4(b(s,1)) belongs to D and all the partial derivatives of the function
x1 vanish. Thus, by (3.9), we have for (5,T) << (g, T),

Z/ 6bkh b(S, t))bin (S, dt) = Z/

S t))bkh (S dt)

k<h k<h”ORsr (%kh
— b(s,t))dbrn (s, t) + // b(s,1))dJp b, (85T
’;1//1% abkh ! z;m; Rsr abkhabk'h/( (8, ))d ity (,1)
k<h Rs k’<h’ 8bkh6bk,h,

Therefore, substitute (3.11) to (3.7), we have for (S,T) << (o,7) and 1 <i <d,

Ai(S,T) — Xi(0,0)
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= t))db t) b(s,t))d t
Z//R abkh b, n (s, +Z //R 8bkh6bk'h'( (8, ))dTpbyrne (5:)

k<h k<h k'<h’
t
+ / ——————(b(s,t))bin (s, dt)ds + / / dsdt
S 2 I, s Z ey
+3 Z/ / gg’w (b(s, t))sbin (ds, t)dt + Y / / sds.
jiiFik<h 0 J0 CPkR St (8 ))?
(3.12)

Noting that by (3.3),

3\I/ij - -1 0, 8‘I>j
Obrn (b(s, t)) o ()\i(s,t) — )\j(s,t))z <6bkh B 6bkh> ’

we have, by (A.22),

oV,
Z 6bk2 Z 8bkh8b

jiji k/<h/ k'h’

Therefore, (3.12) can be written in a symmetric form: for (S,T) << (o,7) and 1 < i < d,

M8, T) = A (0 0)
_ b(s, £))dbrn (5, ) + / / (b(s, )Ty, (5, 1)
,;,L//R e >3 o waoir Y

thin (5, dt)ds + sy (ds, t)dt)

e

k<h k'<n' /Y Bst

> / / ( NG D) a0 2_S§j(s,t))3) dsdt. (3.13)

JijF#i

abkhabk,h, (b, t))(

Recalling that we have assumed the initial eigenvalues are distinct, by the continuity of eigen-
value functions, we have (0,0) << (o,7) a.s. Thus, for almost all w € Q, we have the following
formal partial differential equations near the initial point (0,0): for 1 <1 < d,

i(s,t) Z

t))db t) t))dJ; t
8bk S kh S, +Z Z abkhabk/h/ (57 )) binbyrpr (87 )

k<h k<h k'<h'
+ 5 Z Z abkhabk/h, (b(s 7t))(tbkh(37dt)d/8+Sbkh(d57t)dt)
k<hk/<h/
2st
dsdt. 3.14
+a§z( ND) (Az—(s,t)—Aj(s,tD?’) ’ (3.14)

4. High-dimensional limit of the empirical spectral distributions

In this section, we study the high-dimensional limit of empirical spectral measure of the rescaled
Brownian sheet matrices. In Section 4.1, we first obtain the tightness of the empirical spectral
measures (Theorem 4.1), and then show the convergence by Wigner’s theorem (Theorem 4.2).
In Section 4.2, we derive a PDE for the Stieltjes transform of the limiting measure and also a
McKean-Vlasov equation for the limiting measure.
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4.1. Tightness and high-dimensional limait

For every integer d > 1, let X%(s,t) be a d x d matrix given by (1.1), and {\¢(s,t) : 1 <i < d}
be the set of eigenvalues of X%(s,t). Define the empirical spectral measure of X%(s,t)/v/d

d
1
La(s, t)(dz) = ~ > 8xa(s1)/valde)- (4.1)
1=1

For a measurable function g : R — R, we write

(g, La(s,1)) ::/]R (z)La(s,t)(dz) = éi (Ad 5.1) ) (4.2)

Let P(R) be the set of probability measures on R equipped with its weak topology and Cy(R)
be the set of continuous functions on R that vanish at infinity. Throughout this subsection, let S
and T be two fixed positive numbers, and recall the notation Rgr = [0,.5] x [0,T].

The following tightness criterion for probability-measure-valued stochastic processes is a straight-
forward generalization of [21, Proposition B.3] (see also [18, Section 3] where this criterion was
applied implicitly).

Lemma 4.1. Let {p14(s,t), (s,t) € Rsr}taen C C(Rst, P(R)) be a sequence of probability-measure-
valued random fields. Assume the following conditions are satisfied:

(A) there exists a non-negative function p(x) satisfying | |1irn o(x) = 400 and
x| =400

ZHEE[K%M(SJ)H”] < o0, ¥(s,t) € Rsr,
S

for some v > 0;
(B) there exists a countable dense subset {f;(x),x € R};en of Co(R), such that for some positive
constants a1 > 1 and ag > 1,

E[|(fi, pa(s2,t2)) = (fis pa(s1,t1))|"] < Cf, sl (s2,t2) — (51,11)]*

for all (s1,t1), (s2,t2) € Rsr,d € N and i € N, where Cy, g1 is a constant depending only
on S, T and f;.

Then the set {pa(s,t),(s,t) € Rsr}aen of C(Rsr, P(R))-valued random elements is tight, i.e., it
induces a tight family of probability measures on C(Rgr, P(R)).

The Kolmogorov continuity theorem for random fields (see e.g. [13, Theorem 2.5.1 in Chapter 5])
implies that, on every compact interval, the Brownian sheet is 8-Holder continuous for 5 € (0, %)
The following lemma is a direct consequence of Fernique’s theorem ([10]).

Lemma 4.2. For any 8 € (0, %), there exists a positive constant 6 = 6(8,S,T) depending only on
(8,5,T) such that

E [exp (811BI35,, )] < o,

where

||B||ﬁ - sup |B(82,t2) —B(Sl,t1)|
;RsT

(4.3)
(s1.01)(s2.t2)eRsr  |(52:82) = (s1,11)]°
is the B-Hdélder norm of B on the rectangle Rgr.

Now we are ready to derive the following result on the tightness of the sequence {Lq(s, 1), (s,t) €
Rsr}den-
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Theorem 4.1. Assume that there exists a nonnegative function p(r) € CH(R) with bounded
derivative, such that

lim ¢(x) =400 and sup(p, Ly(0,0)) < . (4.4)
|z|—+o00 deN

Then the sequence {Lq4(s,t), (s,t) € Rgr}aen is tight on C(Rsr, P(R)).

Proof. Let f be an arbitrary continuously differentiable function with bounded derivative. By the
mean value theorem and the Hoffman-Wielandt inequality (see e.g. [1, Lemma 2.1.19]), we have

for (s9,t2), (s1,t1) € RsT,
St 52’“>>—f<f%“>>|2
( (s2,t2) ) _f</\§l(f/1{1)>‘ < HLw Z‘/\d — M (s1,t1)|”

d
2 2 o
Z SQ,tQ X%(Sl,t1)| = ”f ||L Z|b” SQ,tQ 1J(Sl,t1)|2. (45)

1<j

|(f, La(s2,t2)) — (f, La(s1,t1))]

1

gZ
=1
12
L

IN

S

Noting that {b;;(s,t)}1<i<j<a are standard Brownian sheets, by (4.5) and the Minkowski inequal-
ity, we have for some 3 € (0, %),

E[|(f. La(sz t2)) = (£, La(s1. )"

2

AN )

< d4L E ; |bij(s2,t2) — bij(s1,%1)]
i<j
2

A s

=" ; (E |:|bij($2,t2) — bij(s1,t1)] })
i<j

:4HfC;L|%m (d(d;— 1) (]E |:|b11(327t2) — b11(81,t1)|4D1/2>2

d—|— 1 2 / 4oo
:%E [|b11(82,t2) - bll(slvtl)ﬂ

AL (01115, o | (52, £2) = (1, 11)| ]
=C(B, f',8,T)|(s2,t2) = (s1,1)| ", (4.6)

where C(3, f,S,T) is a finite positive constant by Lemma 4.2.

As a consequence, Condition (A) in Lemma 4.1 is satisfied with v = 4. Moreover, if we choose
B € (3,3), then assumption (4.4) and (4.6) together yield Condition (B) in Lemma 4.1 with
a1 =4, az = 4B and {f;};en being a sequence of functions in C!'(R) with bounded derivative that
is dense in Cp(R). Then the proof is concluded by Lemma 4.1. O

Remark 4.1. In the above proof, the independence of the Brownian sheets b;; (i < j) actually is
not used.

Denote by psc(dz) the semicircle distribution, i.e. psc(dz) = pse(x)dz, where the density func-
tion is given by

V4 — 22

psc(l') = Tor 1[,272] (ac)
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Let {fi(s,t), (s,t) € Rsr} be an element in C(Rst, P(R)) such that fi(s, ) is a probability measure
with density function p, . (z) = \F —Lpe(x/V/st). That is, fi(s, t) is a rescaled semicircle distribution.

Here, we use the convention that fi(s,t)(dx) = do(dx) if st = 0.

Theorem 4.2. Assume the same condition as in Theorem 4.1. Also assume that {X%(0,0),d € N}
are symmetric deterministic matrices such that

D :=sup
deN

%Xd((),())H < o0

where ||-|| is the operator norm (the operator norm of a symmetric matriz is its largest eigenvalue),
and that Ly(0,0) converges weakly to some probability measure 1(0,0) as d goes to infinity.

Then, as d — oo, {La(s,t),(s,t) € Rsr} converges in probability to {u(s,t),(s,t) € Rsr} in
C(RsT,P(R)) which is given by

(s, 1) = fi(s,£) 8 1(0,0), (4.7)
where B is the free additive convolution of two probability measures ([1, Definition 5.3.20] ).
Proof. For any fixed (s,t) € Rgr with st > 0, we have

1 1 1

— Xs,t) = — (X%s,t) — X%0,0)) + —=X%0,0).
FX(5.8) = == (X(5.0) = XU0,0)) + 2= X%(0.0)

By the self-similarity property of the Brownian sheet, one can see that ﬁ (X4(s,t) — X40,0))

is a d x d Wigner matrix (see e.g. [1, Section 2.1] for the definition). By Wigner’s semicircle
law (see e.g. [1, Theorem 2.1.1]), the empirical spectral measure of ﬁ (X4(s,t) — X4(0,0))
converges in probability to the semicircle distribution ps. in P(R) as d — oo. Thus, the empirical
spectral measure of —= (Xd(s t) — X%(0,0)) converges in probability to the measure fi(s,t) in
P(R) as d — occ. Note that the empirical spectral measure of the matrix ﬁXd(O, 0) is L4(0,0),
which converges to £(0,0) in P(R). Therefore, by [1, Theorem 5.4.5], for every (s,t) € Rgsr
with st > 0, the empirical spectral measure of the matrix idX d(s,t) converges in probability
to the measure u(s,t) given by (4.7) in P(R) as d goes to infinity. Moreover, when st = 0,
ﬁXd(s, t) = %Xd(O, 0), and the empirical spectral measures converge to (0,0) in P(R).

By Theorem 4.1, the sequence {Lq4(s,t), (s,t) € Rsr}den is tight. Let {v(s,t), (s,t) € Rsr} be
the weak limit of an arbitrary convergent subsequence of {L4(s,t),(s,t) € Rsr }aen. Noting that
for every fixed (s,t) € Rsr, Lq(s,t) is the empirical spectral measure of the matrix TXd(s t)
and it converges in probability to the deterministic measure p(s,t), we can conclude that v(s,t) =
u(s,t) for (s,t) € Rgr.

Therefore, the limit of any convergent subsequence of {Lg4(s,t), (s,t) € Rsr}aen is the deter-
ministic measure {u(s,t), (s,t) € Rsr} given by (4.7). The proof is concluded. O

4.2. PDEs for the limit measure

It is known (see e.g. [1]) that the high-dimensional limit fi;(dz) of the empirical measures of Dyson
Brownian motion (1.2) satisfies the following McKean-Vlasov equation,

m/f . %/R f/(x;:;”( Y) p(da)in(dy), for f € CA(R). (4.8)

The Stieltjes transform

Gi(z) = /]R ! fi(dx), for z € C\R

zZ—XT

of fi;(dx) solves the following complex version of inviscid Burgers’ equation

6tét(2) + Gt(z)ﬁzét(z) =0
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In this subsection, we will derive parallel PDEs for the limit p(s,t) (see Theorem 4.2) of the
empirical spectral measures of the rescaled Brownian sheet matrices. We remark that the equations
are obtained by the properties the semicircle distribution and may have other equivalent forms.

Assume p(0,0)(dz) = do(dz), then the limiting measure u(s,t)(dz) = (s, t)(dz), recalling that

%pscw@dw

is a rescaled semicircle distribution. Thus, for a test function f, we have

(s, t)(dz) = psi(x)de =

82
asa7 1) 8581%/\/_ Z)Pse

858t/f SEE)Pse(®

o [ L st

- / st + [ mf’(@x)psc(x)dx
- / Tl @pla/ VDo + [ S @la) Ve
(@), s 0)) + 1 (o ), s, 1) (49)

(x/Vst)dx

4st

Noting that the density of the measure fi;(dx) is p:(x) = %psc(:v/\/f), the left-hand side of
(4.8) can be written as

%/Rf(:v)ﬂt(d:v) :%A%f@)psc(m/ﬁ)dw
=2 [ iVitoyis

/R S (Voo (1.10)

Similarly, the right-hand side of (4.8) can be written as

LI P@ P P - (V)
5/R2 P =00 oy tay) Z/W N

Dse(T)pse (y)dady. (4.11)

Substituting (4.10) and (4.11) into (4.8), we get

/Rxf’(\/fx)psc(x)dx = /R2 I'(Vix) - f/(\/gy)psc(x)psc(y)dxdy, vt > 0. (4.12)

r—y

Taking derivative with respect to ¢ for both sides, we have

[ ptayan = [[ FE IV, oy, iray, 0.y

r—=y

Now, combining (4.9), (4.12) and (4.13), we have

o ol = [ S (Ve + [ o (otalpa(a)ds

//]Rz xf"( \/—wx = yf//(\/—y)psc(x)psc(y)dxdy
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Vstz) — f'(V/st y)
4\/_ / ]R2 x—y ('r)psc (y)d{Edy
/ /Rz e i:yf W épsc(:v/ Vst)pse(y/V'st)dzdy

" 4 / R2 ny) . Epsc(x/\/g)psc(y/\/g)dxdy
_% //RQ Mu(s,t)(dx)u(s,t)(dy)

r—=y
1 f'(@) = f'(y)
- e s t)(d t)(dy).
1 [ EEE s ot oy
Therefore, we get the following McKean-Vlasov equation for p(s,t)(dx):

o ats,y =3 [ CTEN =GO o2, )

Now we consider the Stieltjes transform of u(s,t)(dz):

x,u(s, t)> , for z € C\R.

26

(4.14)

(4.15)

Note that the Stieltjes transform G(z) of the semicircle distribution ps.(z)dz can be written as

1

zZ—X

Dse()dx

psc(I/\/_)

G = (=0 me) = |

/z—:v/\/_

- [ e
:\/gGs,t(\/gz)-

By [1, (2.4.6)] (see also [22, (2.103)]), G(z) solves

NeT

G(2)? —2G(z) +1=0.

Substituting (4.16) into (4.17), we have

st (Gs,t(\/gz))2 — 2V/stGy 1 (Vstz) +1 =0,
which can be rewritten as
st (Ger(2))” — 2Gay(2) +1=0.
Taking the derivative with respect to z in (4.18), we get
25tGs1(2)0,Gs1(2) — 20,Gs 4 (2) — Gs4(2) = 0.
Take the derivative with respect to z in (4.19), we have
25t (G t(2)02G(2) + (0:Gou(2))7 ) = 202G a(2) = 20.Gisa(2) = 0.

Now, by choosing f(z) = (z — x)~! in (4.9), we have

%Gs,t(z) :ﬁ <&,u(s,t)> + ﬁ <(Z_xix)2,u($,t)>

(4.16)

(4.17)

(4.18)

(4.19)

(4.20)
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1 <(z —2)? — 22(2 — x) +Z2,u(s,t)> L <%7u(s,t)>

:ﬁ (z—x)3 4st (z—x
_4_5t <Z — I’N(Sat)> - 4_St <(Z _ x)QvM(Sat)> + S5t <m,u(s,t)>

1 3z 22 9
—4—Sth,t(Z) + 4_Stast,t(Z) + 4—St62GS7t(z)

1 z
=17 (Got(2) +20:G4(2) + 7= (20:Gls.1(2) + 202Gl .(2))

1 z 9 5

=5 Cet(0:Gr(2) + 3 (Gurl2)Gus () + (0:Gurl2))’) (1.21)

where the last equality follows from (4.19) and (4.20). Therefore, we have the following generalized
Burgers’ equation for G (2)

%Gs,t(z) = %Gs,t(z)ast,t(z) + g (Gs,t(z)ajas,t(z) + (ast,t(z))Q) : (4.22)

Appendix A: Some lemmas in matrix calculus

In this Appendix, we provide some results in matrix analysis which are used in Sections 3 and 4.

Lemma A.l. Let a = (a1,...,aq),b = (b1,...,bq) be two d-dimensional vectors such that ||a| =
IIb] =1 and a-b=0. Then

D (aibj+agb)® = D (aia; +bibj)* =2.
1<i,j<d 1<i,j<d
Proof. This is elementary to verify:

Z (aibj + a;b;)? = Z (a?b? + a2b} + 2a;b;a;b;) = 2|al?||b]|* + 2(a - b)* = 2.

1<i,j<d i

Similarly, one can show > (a;a; + b;b;)* = 2. O
1<ij<d
For a d x d real symmetric matrix X = (X;;), we write X = UDUT, where U is an orthogonal
matrix and D = diag(A1,...,Aq). Noting that the space of d X d symmetric matrices can be
identified with RU4t1)/2 we consider the i-th biggest eigenvalue \; = ®;(X) as a function of
d(d +1)/2 variables (X, 1 <k <h<d)fori=1,...,d.

Lemma A.2. Suppose that X is a smooth function of parameters 0,€ € R. Then we have

Ophi = (UT0XU),, (A1)
UTopXU) .. (UT8:XU) ..
(95(99/\1' = (UTZ)E&(,XU)M + 2 Z ( i )\).ZJ_()\‘ ‘ )U (A2)
Jiji ‘ J
and
T T T T
B2003s = (UTEEXT) + Z 4(U 6589XU)Z.J. (U 85XU)Z.J. +2(U 69XU)Z.J. (U 6§XU)Z.J.
23 J]7£Z )\i - )\J
ey |y (UT0eXU), (UT0pXU),, (UT0eXU),, Ly (UT9:XU),, (UT9:XU), (UT9XU),.
(A = A1) (A = Aj) (A =) (A = Ay)

jig#i Ll:d#4
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(UT85XU)1'1 (UTaEXU) lj (UTanU)ij

oy (UTayXU),, (UTO:XU),, (UT0XU),,
57 (A = A) (N = &)
(UTpXU), (UTO XU

— ) > 17 T B T
()‘z _)\j)Q ((U agXU)” (U 6£XU)]]>

>

L]

Proof. Since D = UTXU, we have

99D = 0pUT XU + UT0p XU +UTX0pU = 0yUTUD + U9, XU + DU, U.

Besides,
04 = 0ply = 99 (UTU) = 0pUTU + UT .
In particular, this implies
(BUTU),, = (UT0pU),, =0, 1 <i <d.

The first identity (A.1) follows from the diagonal entries of (A.4) and (A.5).
Now we deduce (A.2). By (A.4),

0c0gD = 0:0pUTUD + 8pU T 0:UD + 8pU U D
+ 0cUT0p XU + UT 00 XU + U9 X 0 U
+ 0¢ DU T0gU + DU " 0yU + DU 0 9pU.

v (A.5), we have
(06UTUO:D + 0: DU 9pU) . = 9: i (0UTU + UT0pU) ,, = 0.
Furthermore, taking partial derivative 9z on both sides of (A.5) yields
04 = ¢ (06U U + UT0pU) = 9:0pU U + 0pU " 0cU + 0:U T 0pU + U 00U,
which implies

(0:06UTUD + 0pUT9cUD + DU 9pU + DU 905U ) ..
= \i (009U U + 0pUT0:U + 0cUT 95U + U 005U ), = 0.

Combining (A.7), (A.10) and (A.8), we have

Oc0p i = (0cUT0p XU + U009 XU + UT 99X 0cU) . .

(Aj =) (A = Ay)

(A.3)

(A4)

(A.5)

(A.10)

(A.11)

Note that the matrix identity (A.4) is also valid when 6 is replaced by &. Therefore, the non-

diagonal term is

=X (0UTU) .+ (UT3eXU) . + i (UTOU)

= (UTOXU), + (N = Xy) (UTOU) V1< i # j <d,
where the second equality follows from (A.5). Thus, by (A.12) and (A.5),

(0cUT 0 XU + UT0pX0U),
= (agUT UUT9yXU + UT9pXUUOU)

Z(anT (UT9,XU) , + (UT9,XU),, (UT0U) )

(A.12)
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T T T T
s (UTanxU),, (U ang)A : )(\U 0 XU),. (U 85XU) A13)

JigF

Substituting (A.13) into (A.11) and noting the symmetry of the matrices UT9y XU and U9 XU,
we obtain the second identity (A.2).

Finally, we deal with (A.3). Taking O for the first term on the right-hand side of (A.2), we
have by (A.12) and (A.5),

O (UT0:00XU),,
= (0eUT0c0s XU ), + (UT070sXU) . + (UT0:00 X 0cU) ,
d d
= (UT920sXU),, + > (0:UTU) (UT 009 XU) , + > (UT0:0,XU),, (UTOU) ,
j=1 j=1
(UT0eXU), (UT0:06XU) , + (UT0:0,XU), (UT9XU) .
i — A

= (UT920,XU),, + Y
Jij#
(UT0eXU),, (UT0:04XU),,

= (UT020pXU), +2 ) Y (A.14)
JigF
Similarly, it follows from (A.12), (A.5) and (A.6) that
s (UT9pXU),.
= (0UT9pXU) . + (UT8§89XU),, + (UT0pX0:U),,
d
= (UT0:00XU),, + Z (0:UTU), (UT0eXU), + > (UT9:XU),, (UTOU),,
=1
(UT0:XU),, (UT0pXU),., (UT9,XU),, (UT0:XU),.
= (UT0:00XU),, Z : Ly : J
L1 Ai = A L] Aj— A
+(UT8XU) ;| (0:UTV),, + (UT V) |
(UT9:XU), (UT0pXU),. (UT9pXU), (UTO:XU),.
T S il lj il lj
= (UT0e0sXU),. + T +) Yy . (A.15)

1:1#1 RES]
Now we deal with the second term on the right-hand side of (A.2). By (A.15) and (A.1),

((UTagXU) (UT0eXU),, )

N
O (UT0,XU),, (UTXU),, + (UT0XU),, 0 (UT0 XU,
- Y
UT0,XU). (UT0eXU),
 (UToXU),; (UT0eXU),, Bk — 3e)
(A = Aj)? ‘
(U900 XU),, (UT0eXU), + (UT0yXU),, (UT02XU)
— ij
- N
oy (UT9eXU), (UT0nXU),; (UTOXV),, 5 (UT0pXU),, (UT0XU),, (UT9:XU),,
L:1#14 ( Z_)\l) ()\ _)\ ) L] ( J _)\l) ()\ _)\ )
oy (UT0pXU),, (UTOXU),, (UT0:XU),, 5 (UT0pXU),, (UTOXU),, (UT0:XU),,
— (A = A1) (Ai = A) — (A = X)) (A = Aj)
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T T
(W 39Xg\?_i\g)3§XU) ; ((UTagXU)ii— (UTagXU)jj)' (A.16)

Then the third equality (A.3) follows from (A.2), (A.14) and (A.16). O

In particular, if we choose 8 = Xy, we have for 1 < 1,5 < d,

(UTagXU)ij = (U;”‘Uhj + U}”‘Ukj) 1[k;£h] + U;”‘Ukjl[k:h]

= (UkiUp; + UpiUg; ) (1[k;£h] + 1[k:h]/2) . (A.17)
Applying (A.17) to Lemma A.2 yields
oA, ,
X 2UkiUnilpzn) + Ugili=n), (A.18)
82/\ |Uk Uh'+Uh'Uk'| |Uk Ui |
=2 L] a2 2 mmerl A.19
X2, J%l Ay mr J;z NN =D (A.19)
and
9\
OXn0Xprn
oy (UkiUnj + UniUsj) (L pzn) + ip=n)/2) UniUn'j + Un/iUp ) (e iy + Lir=ny/2)
i Ai =X
(A.20)

Recall that \; = ®;(X) = ®; is the i-th biggest eigenvalue of X and that

1 1
A=A (X)) — B(X)

(=N

=0

>
|

Consider a symmetric matrix (bgp)axq. Let Txn = bkhl[k#h]‘i‘\/ﬁbkhl[k:h] and define ®; = ®;(b) :=
i)i(X) for i =1,...,d. Thus by the chain rule, we have for 1 <i,k,h <d,

9P, 9P, 0P, O\;
Sl | e 1y = —— 1 .
B OXan [k¢h1+\/—5th h=h) = g, LIk#h +\f X Ljp=n)
We also define
1 1

Uiy = Wi(b) = Vy(X) = N—N D(b) — ()

The following lemma is concerned with partial derivatives of ®;(b) and ¥;;(b).

Lemma A.3.

2
Zgbq) =2y —— n _A (A.21)

k<h kh JijFi

Un;Unj — UriUni
=2 (2 X 1[k<h] + \/5 X l[k:h]) Z kjYhy kiVh

Z Bbkhab

0%, 0P,
=2 — : A.22
Z (\i — )\ (8bkh 3bkh) ’ (422)
J: J#Z
0%V, 4 1 2 .
Z J — + Z , fori#j. (A.23)

b, (A=) (=)

)izt i =) (A =)

k<h
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Proof. By (A.19) and the orthogonality of U, we have

> = X ax Z 5%

k<h
—oy s Ml Rl 5 5 It

k<h j:j#i k=1 j:j#i
7 Z > ken |UkiUng + UniUs;|° _y 1
- i — N\ - i — i
Ji J Jii J

where the last equality follows from the orthogonality of U and Lemma A.1. This proves (A.21).
Next, we show (A.22). By the chain rule, we can write

23,

Do, = (Lppan) + \/51[k h) <

3P,
_ i) (A4
2 Z axkhaxk,k,> (A.24)

We choose the parameter § = Xy, and € = Xp,/p in (A.3). The terms with second order or third
order derivative vanish and we only need to consider the terms with only the first order derivative.
Note that for indices 1 < p1,p2,q1,q2 < d

0X 0X 0X 0X
§ (UT U) (UT U) +2 § (UT ) (UT U)
k' <h’ 8Xk/h/ pP1p2 8Xk/h/ q1492 k'=1 8Xk/k/ pP1p2 8Xk/k/ q192

Z Bth(f?X

k' <h’ k' <h' kB!

d
= Z (Uk’;Dl Un'ps + Un'py Uk’Pz)(Uk’lh Un'gs + Uniqy Uk’qz) +2 Z Uk'py Ukrpa Ukt g Uk g
k'<h’ k'=1

d d d d
= ( Z Uk, Uk’th) ( Z Unp, Uh’az) + ( Z Uk'p, Uk’qz) ( Z Un'p, Uh’th)

k'=1 h'=1 k'=1 h/=1
=1p =g =] T pi=ao] L po=ar]- (A.25)

Now taking sum over (', h') for (A.3) (i.e. taking sum over the non-zero terms including U9 XU,
and applying (A.25), we have

Z abkhab

k' <h’' K'h! jiji

UT9pX) i UT0p X )i;
=2 (1[k<h1 + ‘/51[’“:’”) Z (((/\i —0/\3‘))]2] - ((/\i —0/\3‘;2 )

This together with (A.17) yields the first equality of (A.22). The second equality of (A.22) now
follows (A.18):

UkiUnj — UkiUns
2(21[k<h]+\/§1[k:h]) Z kjiYhj kiUh

). )2
i MmN
1 od; 0D,
=2 (Lo + \/51[’“:’”) D PYEDWE (8X;:h - axkh)
gy
ob; 0,
_22 (N —)\ ((%kh _8bkh)'

This proves (A.22).
Now we show (A.23). Note that for i # j,

o2 \IJU 6((1)1- — <I>j)
> (W

k<h kh
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-9\’ (0; — ®;
=) 20 ( (%kh )) —nyfj#. (A.26)

k<h k<h

For the first term of (A.26), by (A.18) and the orthogonality of the columns of U, for i # j, we

have
> 20 < abkhq)j))Q T (@ —2<I>j)3 (Z <(Mzb7;fm)2 +kzd: <(%%b7ﬁ>2>

k<h k<h 1
e (S () e (M)
((I)i — (I)j)3 = 0Xwn, P 00Xk
d
2 2
= @ o7 (4 Z (UniUni — Uy Unj)° + 22 Uz — U,fj) )
' J k<h k=1
4 d
2
=@ -0,)p Z (UkiUni — Ug;jUnj)
¢ 17 koh=1
8 8

T (@) (A (A.27)

where the last step follows from Lemma A.1.
For the second term of (A.26), we have

<1>‘) : 2,

St (S T e - 5
1

RN (Z axz, Zaxzk Zaxzh Zaxa)

(A.28)

y (A.19), the orthogonality of the columns of U, and Lemma A.1, for ¢ # j, we have

8<I> UriU, Un:U UrsU
ZaXQ Z Z| k hl+ h kl| +22 Z| k_k)l\l|

Al

k<h k<h Li#i k=1 Ll
B Z 23 en [UkiUni + UniUnll* + 43, |UniUna |
L6 Ai = A

> en UkiUni + UniUni|” 2
= 2 = . A2
> % DBE vy (A.29)

1:l£i v 1:l£i

Similarly, we have

>3

A.30
= axgh Zaxgk Z by —/\l (A-30)

Putting (A.29) and (A.30) to (A.28) yields that the second term of (A.26) now is

‘I’j)
Sl (st Tty e

k<h L:l# L:1#]
By substituting (A.27) and (A.31) into (A.26), we obtain

Py, 8 |
Zab%h (A —A5)3 (/\i—/\j)2<l§/\z Y Z/\ —)\l>

k<h
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4 1 2 2
T =) ()2 Z‘/\i—/\l_ 2 A — A

L1, Liig )
o I S TV
=N =N S =) (=)
4 1 2

" :
(N =A)% (A=) L1, s =2) (45 =)

This proves (A.23). O
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