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STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS ASSOCIATED WITH

FELLER PROCESSES

JIAN SONG, MENG WANG, AND WANGJUN YUAN

Abstract. For the stochastic partial differential equation ∂u
∂t

= Lu + uẆ where Ẇ is Gaussian
noise colored in time and L is the infinitesimal generator of a Feller process X, we obtain Feynman-
Kac type of representations for the Stratonovich and Skorohod solutions as well as for their moments.
The regularity of the law and the Hölder continuity of the solutions are also studied.
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1. Introduction

Consider the following SPDE in Rd,




∂

∂t
u(t, x) = Lu(t, x) + u(t, x)Ẇ (t, x), t ≥ 0, x ∈ Rd

u(0, x) = u0(x), x ∈ Rd,
(1.1)

where u0(x) is a bounded measurable function, Ẇ (t, x) is Gaussian noise with covariance given by

E[Ẇ (t, x)Ẇ (s, y)] = |t − s|−β0γ(x − y), (1.2)

with β0 ∈ [0, 1) and γ(x) being a non-negative and non-negative definite (generalized) function,
and L is the infinitesimal generator of a time-homogeneous Markov process X = {Xt, t ≥ 0} which
is independent of the noise Ẇ . Let µ(dξ) = γ̂(ξ)dξ be the spectral measure of the noise, i.e.,
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∫
Rd ϕ(x)γ(x)dx =

∫
Rd ϕ̂(ξ)µ(dξ) for any Schwartz function ϕ(x). Recall that µ is a positive and

tempered measure, i.e.,
∫
Rd(1 + |ξ|2)−pµ(dξ) < ∞ for some p > 0.

A typical example of Ẇ is given by the partial derivative of fractional Brownian sheet W H with
Hurst parameter H0 in time and (H1, · · · , Hd) in space satisfying H = (H0, H1, . . . , Hd) ∈ (1

2 , 1)1+d:

the Gaussian noise Ẇ H(t, x) = ∂d+1W H

∂t∂x1···∂xd
(t, x) is a distribution-valued Gaussian random variable

with the covariance function (up to a multiplicative constant)

E[Ẇ H(t, x)Ẇ H(s, y)] = |t − s|2H0−2
d∏

i=1

|xi − yi|
2Hi−2. (1.3)

In this case, γ(x) =
d∏

i=1
|xi|

2Hi−2 with γ̂(ξ) =
∏d

i=1 |ξi|
1−2Hi . Another typical example of γ(x) is

the Dirac delta function δ(x) whose Fourier transform is the constant 1. Some other interesting
examples of the spatial covariance function are, for instance, the Riesz kernel γ(x) = |x|−α, α ∈ (0, d)

with γ̂(ξ) = |ξ|α−d, the Cauchy kernel γ(x) =
∏d

i=1(1 + x2)−1 with γ̂(ξ) = exp
(∑d

i=1 |ξi|
)
, the

Poisson kernel γ(x) = (1 + |x|2)−(d+1)/2 with γ̂(ξ) = exp (−|ξ|), and the Ornstein-Uhlenbeck kernel
γ(x) = exp (−|x|α) , α ∈ (0, 2].

Let p
(x)
t−s(y) = P(Xt = y|Xs = x) be the probability transition density of the time-homogeneous

Markov process X. We assume the following condition on X throughout the paper:

Assumption (H). We assume p
(x)
t (y) ≤ CPt(y−x) for some non-negative function Pt(x) satisfying

0 ≤ P̂t(ξ) ≤ c1 exp (−c2tΨ(ξ)) , (1.4)

where c1, c2, C are positive constants and Ψ(ξ) = Ψ(|ξ|) is a non-negative measurable function
satisfying lim|ξ|→∞ Ψ(ξ) = ∞.

Clearly, symmetric Lévy processes X such as Brownian motion and α-stable process satisfy
Assumption (H) with Ψ(ξ) being the characteristic exponent of X. Moreover, the diffusion process
Xx governed by the stochastic differential equation

Xx
t = x +

∫ t

0
b(Xx

s )ds +

∫ t

0
σ(Xx

s )dBs, s > 0, (1.5)

where {Bt, t ≥ 0} a d-dimensional Brownian motion, also satisfies Assumption (H), if we assume
the uniform ellipticity condition: there exists a constant c > 0 such that for all x, y ∈ Rd,

y∗σ(x)σ∗(x)y ≥ c|y|2. (1.6)

Indeed, by By Theorem 1.5 of Baudoin, Nualart, Ouyang and Tindel (AOP 2016), under the
condition (1.6), we have for all y ∈ Rd,

p
(x)
t (y) ≤ c1t−d/2 exp

(
−

|y − x|2

c2t

)
, (1.7)

and hence Assumption (H) is satisfied. In this situation, the differential operator L is of the
following form:

Lu =
1

2

d∑

i,j=1

(σσT)i,j
∂2

∂xi∂xj
u +

d∑

i=1

bi
∂

∂xi
u.

The equation (1.1) can be understood in the Stratonovich sense and in the Skorohod sense,
depending on the definition of the product uẆ . We say that it is a Stratovich equation if the
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product is ordinary and a Skorohod equation if the product is a Wick product. Note that if the
noise is white in time, Skorohod solution reduces to Itô solution.

To obtain the existence of the solutions, we propose the following Dalang’s conditions (see [6]):
∫

Rd

(
1

1 + Ψ(ξ)

)1−β0

µ(dξ) < ∞ (1.8)

and ∫

Rd

1

1 + Ψ(ξ)
µ(dξ) < ∞ (1.9)

for Stratonovich equation and Skorohod equation, respectively. Clearly, (1.8) implies (1.9), noting
that β0 ∈ [0, 1) and Ψ(ξ) → ∞ as |ξ| → ∞.

Denote by Xx
t the Feller process X which starts at x at time t = 0. We shall prove that under

the stronger condition (1.8), the Stratonovich solution ust and the Skorohod solution usk can be
represented by the following Feynman-Kac type of formulas respectively,

ust(t, x) = EX

[
u0(Xt) exp

(∫ t

0

∫

Rd
δ(Xx

t−s − y)W (ds, dy)

)]
(1.10)

and

usk(t, x) = EX

[
u0(Xt) exp

(∫ t

0

∫

Rd
δ(Xx

t−s − y)W (ds, dy) −
1

2

∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − Xx
s )drds

)]
,

(1.11)
where δ(·) is the Dirac delta function, EX is the expectation in the probability space generated by
X (similarly, we will use EW to denote the expectation with respect to the noise Ẇ ).

Note that there exists a unique Skorohod solution under the weaker condition (1.9) while the

Feynman-Kac formula (1.11) may not hold as the Itô-Stratonovich correction term 1
2

∫ t
0

∫ t
0 |r −

s|−β0γ(Xx
r − Xx

s )drds is infinite if the condition (1.8) is violated. As a contrast, the moments
of the Stratonovich solution and the Skorohod solution can be represented by Feynman-Kac type
formulas under (1.8) and under (1.9), respectively. With the help of Feynman-Kac formula, we also
study the properties of the solutions such as the regularity of the probability law and the Hölder
continuity.

To close the introduction, we provide a short survey and comments on the related works which
by no means is complete.

For the heat equation on R driven by space-time white noise, it has a unique Itô solution which
cannot be presented by a formula in the form of (1.11) since the Itô-Stratonovich correction term
is infinite (see [26]). For heat equations driven by Gaussian noise induced by fractional Brownian
sheet, the existence of Feynman-Kac formulae was conjectured in [18] and was later on established
in [14]. The result in [14] was extended to general Gaussian noise in [10] and to the equation
∂u
∂t = Lu + uẆ where L is the infinitesimal generator of a symmetric Lévy process. One key
ingredient in the validation of Feynman-Kac formulae is to establish the exponential integrability
of the Hamiltonian

∫ t
0

∫ t
0 |r − s|−β0γ(Xx

r − Xx
s )drds which guarantees the well-definedness of the

Feynman-Kac representations (1.10) and (1.11). In [14, 10] where X is Brownian motion, the
exponential integrability was proved by using the technique developed in [16] which employs some
unique properties of Brownian motion. For a general Feller process X, Le Gall’s technique is not
convenient. Our method is inspired by [24] and [23] which only involves the Markov property of
X and some Fourier analysis techniques (see Section 3.1). Another key ingredient of validating
Feynman–Kac formula (1.10) is to justify that it does solve (1.1) in some sense, and we shall follow
the approach in [14, 10, 24] in which Malliavin calculus was used and prove that (1.10) is a mild
Stratonovich solution to (1.1) (see Section 3.2).
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With the help of Feynman-Kac formulae, it is more convenient to study the properties of the
solutions such as the regularity of the distribution law which will be studied in Sections 3.3 and
4.2. For one-dimensional heat equation with space-time white noise, by using Malliavin calculus,
the absolute continuity of the law of the solution was obtained in [22], and the smoothness of the
probability density was proved in [2, 19] under proper conditions. For SPDEs of the form Lu =
b(u)+σ(u)Ẇ , the absolute continuity of the law was deduced in [25] when L is a psudodiffererential
operator and Ẇ is space-time white noise, and the smoothness was obtained in [21] when L is a
parabolic/hyperbolic operator and Ẇ is Gaussian noise white in time and homogeneous in space.
The smoothness of the density for stochastic heat equations was obtained by using Malliavin calculus
together with Feynman-Kac formula in [14, 15].

Another application of Feynman-Kac formula is to study the Hölder continuity for the Stratonovich
solution (see Section 3.4); the Hölder continuity of the Skorohod solution is analysed by its Wiener
chaos expansion (see Section 4.3), as in general it does not have the Feynman-Kac representation
(1.11) under the condition (1.9). The Hölder continuity of the solutions to (fractional) heat equa-
tions has been studied in, for instance, [14, 10, 24, 1, 11]. We also refer to a survey [9] and the
references therein.

This paper is organized as follows. In Section 2, some preliminaries on the Wiener space as-
sociated with the noise Ẇ , in particular some fundamental ingredients in Malliavin calculus, are
collected. In Section 3 and Section 4, the Stratonovich solution and the Skorohod solution are
studied, respectively. In Appendix A, the Feynman-Kac formula for PDE ∂tu = Lu + f(t, x)u
where L is the infinitesimal generator of a Feller process is provided.

2. Preliminaries

In this section, we provide some preliminaries on the Wiener space associated with the Gaussian
noise Ẇ of which the covariance is given by (1.2). In particular, some basic elements in Malliavin
calculus is recalled. We refer to [20, 8] for more details.

Let D(R+ ×Rd) be the space of smooth functions on R+ ×Rd with compact support. Let H be
the completion of D(R+ ×Rd) with respect to the inner product given below,

〈f, g〉H : =

∫

R2
+

∫

R2d
f(t, x)g(s, y)|t − s|−β0γ(x − y)dxdydsdt

=

∫

R2
+

∫

Rd
f̂(t, ξ)ĝ(s, ξ)|t − s|−β0µ(dξ)dsdt.

(2.12)

Here f̂ means the Fourier transform in the space variable. In particular, for f ∈ L1(Rd), its Fourier

transform can be defined by the integral f̂(ξ) =
∫
Rd e−ιx·ξf(x)dx, where ι is the imaginary unit.

Let W = {W (f), f ∈ H} be a centered Gaussian family (also called an isonormal Gaussian
process) with covariance

E[W (f)W (g)] = 〈f, g〉H , for f, g ∈ H.

We call W (f) a Wiener integral which is also denoted by W (f) :=
∫
R+

∫
Rd f(s, x)W (ds, dx). De-

noting W (t, x) := W (I[0,t]×[0,x]), then {W (t, x), t ≥ 0, x ∈ Rd} is a random field and we have

Ẇ (t, x) = ∂1+d

∂t∂x1···∂xd
W (t, x) in the sense of distribution. It is of interest to consider the following

case as a toy model: when β0 = 2 − 2H0 and γ(x − y) =
∏d

i=1 |xi − yi|
2Hi−2 with Hi ∈ (0, 1) for

i = 0, 1, . . . , d, the random field {W (t, x), t ≥ 0, x ∈ Rd} is the so-called fractional Brownian sheet
(up to some multiplicative constant) with Hurst parameters H0 in time and (H1, . . . , Hd) in space.
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Denote the mth Hermite polynomial by Hm(x) := (−1)mex2/2 dm

dxm e−x2/2 for m ∈ N ∪ {0}. For
g ∈ H with ‖g‖H = 1, the mth multiple Wiener integral of g⊗m ∈ H⊗m is defined by Im(g⊗m) :=
Hm(W (g)). In particular, we have W (g) = I1(g). For f ∈ H⊗m, denote the symmetrization of f
by

f̃(t1, x1, . . . , tm, xm) :=
1

m!

∑

σ∈Sm

f(tσ(1), xσ(1), . . . , tσ(m), xσ(m)),

where Sm is the set of all permutations of {1, 2, . . . , m}. Let H⊗̃m be the symmetrization of H⊗m.

Then for f ∈ H⊗̃m, one can define the mth multiple Wiener integral Im(f) by a limiting argument.

Moreover, for f ∈ H⊗̃m and g ∈ H⊗̃n, we have

E[Im(f)In(g)] = m!〈f, g〉H⊗mδmn, (2.13)

where δmn is the Kronecker delta function. For f ∈ H⊗m which is not necessarily symmetric, we
simply define Im(f) := Im(f̃). For a square integrable random variable F which is measurable with
respect to the σ-algebra generated by W , it has the following expansion (Wiener chaos expansion):

F = E[F ] +
∑∞

n=1 In(fn) with fn ∈ H⊗̃n for n ∈N which is unique.

Now, let us collect some knowledge on Malliavin calculus that will be used in this paper. Let F
be a smooth cylindrical random variable, i.e., F is of the form F = f(W (φ1), · · · , W (φn)), where
φi ∈ H and f is a smooth function of which all the derivatives are of polynomial growth. Then the
Malliavin derivative DF of F is defined by

DF =
n∑

j=1

∂f

∂xj
(W (φ1), · · · , W (φn))φj .

Noting that the operator D is closable from L2(Ω) into L2(Ω; H), we can define the Sobolev space
D

1,2 as the closure of the space S of all smooth cylindrical random variables under the norm

‖F‖1,2 =
(
E[F 2] + E[‖DF‖2

H]
)1/2

.

Similarly, one can define the kth Malliavin derivative DkF as an H⊗k-valued variable for k ≥ 2,
and for any p > 1 let Dk,p be the completion of S under the norm

‖F‖k,p =


E[|F |p] +

k∑

j=1

E[‖DjF‖p
H⊗j ]




1/p

.

Then we define D∞ = ∩∞
k,p=1D

k,p.

The divergence operator δ (also called Skorohod integral) is defined by the duality

E[δ(u)F ] = E[〈DF, u〉H]

for F ∈ D1,2 and u ∈ Dom δ, where Dom δ is the domain of the divergence operator which is the
set of u ∈ L2(Ω, H) such that |E[〈DF, u]〉H | ≤ cu‖F‖2 for all F ∈ D1,2. The second moment of
δ(u) has the following upper bound:

E[|δ(u)|2] ≤ E[‖u‖2
H] + E[‖Du‖2

H⊗2 ]. (2.14)

The following formula will be used in the proof

FW (φ) = δ(Fφ) + 〈DF, φ〉H , (2.15)

for φ ∈ H and F ∈ D1,2.
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3. Stratonovich solution

In this section, we will derive the Feynman-Kac formula (1.10) for the Stratonovich equation
(1.1).

3.1. Exponential integrability of Hamiltonian. In this subsection, we shall define the Hamil-
tonian ∫ t

0

∫

Rd
δ(Xx

t−s − y)W (ds, dy)

appearing in Feynman-Kac formulas (1.10) via approximation, and then prove that it is exponen-
tially integrable. We shall follow the approach used in [14, 24].

We use ϕδ(t) and qε(x) to approximate the Dirac delta functions in space and in time, respectively,

where ϕδ(t) = 1
δ I[0,δ](t) for t ≥ 0 and qε(x) = (2πε)− d

2 e
−|x|2

2ε for x ∈ Rd. Thus,

Aε,δ
t,x(r, y) =

∫ t

0
ϕδ(t − s − r)qε(X

x
s − y)ds, (3.16)

is an approximation of δ(Xx
t−r − y) when ε and δ are small.

In the theorem below, we will show that Aε,δ
t,x ∈ H almost surely for ε, δ > 0, indicating that

V ε,δ
t,x =

∫ t

0

∫

Rd
Aε,δ

t,x(r, y)W (dr, dy) = W (Aε,δ
t,x) (3.17)

is a well-defined Wiener integral (conditional on X), and we shall show the L2-convergence of V ε,δ
t,x

as (ε, δ) → 0 which defines the Hamiltonian.

Theorem 3.1. Assume Assumption (H) and condition (1.8). Then, Aε,δ
t,x belongs to H almost surely

for all ε, δ > 0. Furthermore, V ε,δ
t,x converges in L2 as (ε, δ) → 0, the limit Vt,x being denoted by

Vt,x =:

∫ t

0

∫

Rd
δ(Xx

t−r − y)W (dr, dy) = W (δ(Xx
t−· − ·)). (3.18)

Conditional on X, Vt,x is a Gaussian random variable with mean 0 and variance

Var[Vt,x] =

∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − Xx
s )drds. (3.19)

Proof. The proof essentially follows from that of [24, Theorem 4.1]. Firstly, in order to show

Aε,δ
t,x ∈ H for ε, δ > 0, we compute

〈
Aε,δ

t,x, Aε′,δ′

t,x

〉
H

=

∫

[0,t]4

∫

R2d
ϕδ(t − s − u)qε(Xx

s − y)|u − v|−β0

× γ(y − z)ϕδ′ (t − r − v)qε′(Xx
r − z)dydzdudvdsdr.

(3.20)

By Lemma 3.1, we have, for ε, δ, ε′, δ′ > 0,
〈

Aε,δ
t,x, Aε′,δ′

t,x

〉
H

≤ C

∫

[0,t]2

∫

R2d
qε(Xx

s − y)qε′(Xx
r − z)|s − r|−β0γ(y − z)dydzdsdr, (3.21)

and then the Parseval–Plancherel identity implies that
〈

Aε,δ
t,x, Aε′,δ′

t,x

〉
H

≤ C

∫

[0,t]2
|s − r|−β0dsdr ×

∫

Rd
q̂ε(ξ)q̂ε′(ξ)µ(dξ).
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The product of the integrals on the right-hand side is finite due to the condition β0 < 1 and the
fact ∫

Rd
q̂ε(ξ)q̂ε′(ξ)µ(dξ) ≤

∫

Rd
q̂ε(ξ)µ(dξ) < ∞

where the second step follows from the fact that µ(dξ) is a tempered distribution while q̂ε(ξ) decays

exponentially fast as |ξ| → ∞. Thus, we have Aε,δ
t,x ∈ H a.s.

Now we show that {Aε,δ
t,x}ε,δ>0 is a Cauchy sequence in L2(Ω; H) as (ε, δ) → 0. Taking expectation

for (3.20), we have

E

〈
Aε,δ

t,x, Aε′,δ′

t,x

〉
H

=

∫

[0,t]4

∫

R2d
ϕδ(t − s − u)ϕδ′(t − r − v)|u − v|−β0

× qε(y)qε′(z)E[γ(Xx
s − Xx

r − (y − z))]dydzdudvdsdr.

Without loss of generality, we assume r < s. Then, by the Markov property of X and Assumption
(H), we have

E[γ(Xx
s − Xx

r − (y − z))] = E [E [γ(Xx
s − Xx

r − (y − z))|Xx
r ]]

= E

∫

Rd
γ(u − Xx

r − (y − z))p
(Xx

r )
s−r (u)du

≤ CE

∫

Rd
γ(u − Xx

r − (y − z))Ps−r(u − Xx
r )du

≤ C

∫

Rd
e−c2(s−r)Ψ(ξ)µ(dξ),

and thus ∫

R2d
qε(y)qε′(z)E[γ(Xx

s − Xx
r − (y − z))]dydz ≤ C

∫

Rd
e−c2(s−r)Ψ(ξ)µ(dξ).

Combining this fact with Lemma 3.1, by dominated convergence theorem we can get, as ε, δ, ε′, δ′

go to zero,

E

〈
Aε,δ

t,x, Aε′,δ′

t,x

〉
H

→ E

∫

[0,t]2
|s − r|−β0γ(Xx

s − Xx
r )dsdr,

the right-hand side of which is finite due to [24, Proposition 3.2]. This implies that {V ε,δ
t,x =

W (Aε,δ
t,x)}ε,δ>0 is a Cauchy sequence in L2(Ω) as (ε, δ) → 0.

Finally, the formula (3.19) holds true because

lim
ε,δ→0

〈
Aε,δ

t,x, Aε,δ
t,x

〉
H

=

∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − Xx
s )drds

by Scheffé’s Lemma, where the limit is taken in L1(Ω). �

Theorem 3.2. Assume Assumption (H) and condition (1.8). Then, for any β ∈ R, we have

EWEX

[
exp

(
β

∫ t

0

∫

Rd
δ(Xx

t−r − y)W (dr, dy)

)]
< ∞.

Proof. Recalling (3.18), we have

EWEX [exp (βVt,x)] = EX

[
exp

(
β2

2 V ar[Vt,x]
)]

= EX

[
exp

(
β2

2

∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − Xx
s )drds

)]
.

Then the desired result follows from Theorem 3.3. �
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Theorem 3.3. Assume Assumption (H) and condition (1.8). Then, we have for all β ∈ R,

E

[
exp

(
β

∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − Xx
s )drds

)]
< ∞.

Proof. In the proof we shall omit the superscript x in Xx
t . By Taylor’s expansion, we have

E

[
exp

(
β

∫ t

0

∫ t

0
|r − s|−β0γ(Xr − Xs)dsdr

)]

=
∞∑

m=0

βm

m!

∫

[0,t]2m

m∏

i=1

|s2i − s2i−1|−β0E

[
m∏

i=1

γ(Xs2i
− Xs2i−1)

]
ds

=
∞∑

m=0

βm

m!

∑

τ∈S2m

∫

[0,t]2m
<

m∏

i=1

|sτ(2i) − sτ(2i−1)|
−β0E

[
m∏

i=1

γ(Xsτ(2i)
− Xsτ(2i−1)

)

]
ds,

where [0, t]2m
< = {0 < s1 < . . . < s2m < t}, ds = ds1 . . . ds2m, and S2m is the set of all permutations

on {1, 2, . . . , 2m}.

For each fixed τ ∈ S2m, we denote by t+
i = max{sτ(2i), sτ(2i−1)} and t−

i = min{sτ(2i), sτ(2i−1)}.
We have,

E

[
exp

(
β

∫ t

0

∫ t

0
|r − s|−β0γ(Xr − Xs)dsdr

)]

=
∞∑

m=0

βm

m!

∑

τ∈S2m

∫

[0,t]2m
<

m∏

i=1

|t+
i − t−

i |−β0E

[
m∏

i=1

γ(Xt+
i

− Xt−
i

)

]
ds,

(3.22)

Let t∗
i be the unique si that is closest to t+

i from the left. Then we always have t+
i ≥ t∗

i ≥ t−
i for

1 ≤ i ≤ m. Let k be such that t+
k = s2m. Then,

E

[
m∏

i=1

γ(Xt+
i

− Xt−
i

)

]
= E

[
∏

i,k

γ(Xt+
i

− Xt−
i

)E

[
γ(Xt+

k
− Xt−

k
)

∣∣∣∣Ft∗
k

]]

By Assumption (H), we have

E

[
γ(Xt+

k
− Xt−

k
)

∣∣∣∣Ft∗
k

]
=

∫

Rd
p

(Xt∗
k

)

t+
k

−t∗
k

(y)γ(y − Xt−
k

)dy

≤C

∫

Rd
Pt+

k
−t∗

k
(y)γ(y + Xt∗

k
− Xt−

k
)dy

=C

∫

Rd
exp

(
−c2(t+

k − t∗
k)Ψ(ξ)

)
γ̂(ξ) exp

(
−ιξ · (Xt∗

k
− Xt−

k
)
)

dξ

≤C

∫

Rd
exp

(
−c2(t+

k − t∗
k)Ψ(ξ)

)
µ(dξ),

where the second equality follows from the Parseval-Plancherel identity. Hence, we have

E

[
m∏

i=1

γ(Xt+
i

− Xt−
i

)

]
≤ C

∫

Rd
exp

(
−c2(t+

k − t∗
k)Ψ(ξ)

)
µ(dξ) × E

[
∏

i,k

γ(Xt+
i

− Xt−
i

)

]
,

and by repeating this procedure, we have

E

[
m∏

i=1

γ(Xt+
i

− Xt−
i

)

]
≤ Cm

∫

Rmd

m∏

i=1

exp
(
−c2(t+

i − t∗
i )Ψ(ξi)

)
µ(dξi) (3.23)
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Thus, we have

E

[
exp

(
β

∫

[0,t]2
|r − s|−β0γ(Xr − Xs)drds

)]

≤
∞∑

m=0

Cm βm

m!

∑

τ∈S2m

∫

[0,t]2m
<

ds

∫

Rmd
µ(dξ) exp

(
−c2

m∑

i=1

(t+
i − t∗

i )Ψ(ξi)

)
m∏

i=1

|t+
i − t−

i |−β0.

To deal with the above integrals, we apply the change of variables ri = si −si−1 for i = 1, . . . , 2m
with the convention s0 = 0 and then we have

[0, t]2m
< = [0 < s1 < · · · < s2m < t] = [0 < r1 + · · · + r2m < t] ∩R2m

+ := Σ2m
t .

By the symmetry of the integrals, we have

E

[
exp

(
β

∫

[0,t]2
|r − s|−β0γ(Xr − Xs)drds

)]

≤
∞∑

m=0

(Cβ)m (2m)!

m!

∫

Σ2m
t

dr

∫

Rmd
µ(dξ) exp

(
−c2

m∑

i=1

riΨ(ξi)

)
m∏

i=1

|ri|
−β0

=
∞∑

m=0

(Cβ)m (2m)!

m!

∫

[0,t]2m
<

ds

∫

Rmd
µ(dξ) exp

(
−c2

m∑

i=1

(si − si−1)Ψ(ξi)

)
m∏

i=1

|si − si−1|−β0

≤
∞∑

m=0

(Cβ)m (2m)!

m!

tm

m!

∫

[0,t]m<

ds

∫

Rmd
µ(dξ) exp

(
−c2

m∑

i=1

(si − si−1)Ψ(ξi)

)
m∏

i=1

|si − si−1|−β0

=
∞∑

m=0

(Cβ)m (2m)!

m!

tm

m!

∫

Σm
t

dr

∫

Rmd
µ(dξ) exp

(
−c2

m∑

i=1

riΨ(ξi)

)
m∏

i=1

|ri|
−β0

≤ec2Mt
∞∑

m=0

(Cβ)m (2m)!

m!

tm

m!

∫

Σm
t

dr

∫

Rmd
µ(dξ) exp

(
−c2

m∑

i=1

ri(M + Ψ(ξi))

)
m∏

i=1

|ri|
−β0

≤ec2Mt
∞∑

m=0

(Cβ)m (2m)!

m!

tm

m!

(∫ t

0
dr

∫

Rd
µ(dξ) exp (−c2r(M + Ψ(ξ))) |r|−β0

)m

≤ec2Mt
∞∑

m=0

(Cβ)m (2m)!

m!

tm

m!

(∫

Rd

(
1

M + Ψ(ξ)

)1−β0

µ(dξ)

)m

, (3.24)

of which the right-hand side is finite if we choose M sufficiently large, by Stirling’s formula and
Dalang’s condition (1.8). �

Lemma 3.1. Suppose that α ∈ (0, 1). There exists a constant C > 0 such that

sup
δ,δ′

∫ t

0

∫ t

0
ϕδ(t − s − r)ϕδ′(t − s′ − r′)|r − r′|−αdrdr′ ≤ C|s − s′|−α.

Lemma 3.2. Assume Assumption (H) and condition (1.8). Then, we have

sup
x,y∈Rd

E

(∫ t

0
s−β0γ(Xx

s − y)ds

)2

< ∞.

Proof. Note that

E

(∫ t

0
s−β0γ(Xx

s − y)ds

)2
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= 2E

∫ t

0

∫ s

0
(sr)−β0γ(Xx

r − y)γ(Xx
s − y)drds.

By Assumption (H) and the Markov property of X, we have for 0 < r < s < t,

E [γ(Xx
r − y)γ(Xx

s − y)] = E

[
γ(Xx

r − y)

∫

Rd
p

(Xx
r )

s−r (z)γ(z − y)dz

]

≤ CE

[
γ(Xx

r − y)

∫

Rd
exp (−c2(s − r)Ψ(ξ)) µ(dξ)

]

≤ C2
∫

Rd
exp (−c2rΨ(ξ)) µ(dξ)

∫

Rd
exp (−c2(s − r)Ψ(ξ)) µ(dξ)

Thus,

E

∫ t

0

∫ s

0
(sr)−β0γ(Xx

r − y)γ(Xx
s − y)drds

≤ C

∫ t

0

∫ s

0

∫

R2d
(sr)−β0 exp (−c2rΨ(ξ1))

∫

Rd
exp (−c2(s − r)Ψ(ξ2)) µ(dξ1)µ(dξ2)drds

= C

∫
{

u1,u2>0
0<u1+u2<t

}
∫

R2d
(u1(u1 + u2))−β0 exp (−c2u1Ψ(ξ1))

∫

Rd
exp (−c2u2Ψ(ξ2)) µ(dξ1)µ(dξ2)du1du2

≤ C

(∫ t

0

∫

Rd
s−β0 exp (−c2sΨ(ξ)) µ(dξ)ds

)2

which is finite due to [24, Lemma 3.7] and condition (1.8). �

3.2. Feynman-Kac formula. In this subsection, we prove that (1.10) is a mild Stratonovich
solution to (1.1). Let

Ẇ ε,δ(t, x) =

∫ t

0

∫

Rd
ϕδ(t − s)qε(x − y)W (ds, dy) = W (ϕδ(t − ·)qε(x − ·)) (3.25)

be an approximation of Ẇ (t, x). As in [14], we define Stratonovich integral as follows.

Definition 3.1. Given a random field v = {v(t, x), t ≥ 0, x ∈ Rd} such that
∫ T

0

∫

Rd
|v(t, x)|dxdt < ∞,

almost surely for all T > 0, the Stratonovich integral
∫ T

0

∫
Rd v(t, x)W (dt, dx) is defined as the

following limit in probability,

lim
(ε,δ)→0

∫ T

0

∫

Rd
v(t, x)Ẇ ε,δ(t, x)dxdt.

Let FW
t be the σ-algebra generated by {W (s, x), 0 ≤ s ≤ t, x ∈ Rd}. A mild solution to (1.1) is

defined below.

Definition 3.2. A random field {u(t, x), t ≥ 0, x ∈ Rd} is a mild Stratonovich solution to (1.1) if
for all t ≥ 0 and x ∈ Rd, u(t, x) is FW

t -measurable and the following integral equation holds

u(t, x) =

∫

Rd
p

(x)
t (y)u0(y)dy +

∫ t

0

∫

Rd
p

(x)
t−s(y)u(s, y)W (ds, dy), (3.26)

where the stochastic integral is in the Stratonivich sense of Definition (3.1).
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Theorem 3.4. Assume Assumption (H) and condition (1.8), and suppose that u0(x) is a bounded
measurable function. Then,

u(t, x) = EX

[
u0(Xx

t ) exp

(∫ t

0

∫

Rd
δ(Xx

t−r − y)W (dr, dy)

)]
(3.27)

is a mild Stratonovich solution of (1.1).

Proof. Consider the approximation of (1.1)




∂uε,δ(t, x)

∂t
=Luε,δ(t, x) + uε,δ(t, x)Ẇ ε,δ(t, x), t ≥ 0, x ∈ Rd,

uε,δ(0, x) =u0(x), x ∈ Rd,

(3.28)

where Ẇ ε,δ is given in (3.25). Recall the definition of V ε,δ
t,x = W (Aε,δ

t,x) by (3.17) and note that

EWEX

[
exp

(∣∣∣∣
∫ t

0
Ẇ ε,δ(t − s, Xx

s )ds

∣∣∣∣
)]

= EWEX

[
exp

(∣∣∣V ε,δ
t,x

∣∣∣
)]

. (3.29)

We now show that for any p > 0,

sup
ε,δ>0

E

[
exp

(
pV ε,δ

t,x

)]
< ∞. (3.30)

Indeed, by (3.21) and Taylor’s expansion, we have the following estimation parallel with (3.22)

E

[
exp

(
pV ε,δ

t,x

)]
= 2E

[
exp

(
p2

2
‖Aε,δ

t,x‖2
H

)]

≤
∞∑

m=0

Cm p2m

m!

∫

[0,t]2m

∫

R2md

m∏

i=1

qε(yi)qε(zi)
m∏

i=1

|s2i − s2i−1|−β0E

[
m∏

i=1

γ(Xs2i
− Xs2i−1 − (yi − zi))

]
dydzds

=
∞∑

m=0

Cm p2m

m!

∑

τ∈S2m

∫

[0,t]2m
<

∫

R2md

m∏

i=1

qε(yi)qε(zi)
m∏

i=1

|t+
i − t−

i |−β0E

[
m∏

i=1

γ(Xt+
i

− Xt−
i

− (yi − zi))

]
dydzds,

where the symbols t±
i are defined in the proof of Theorem 3.3. By the same argument that yields

(3.23), we can show

E

[
m∏

i=1

γ(Xt+
i

− Xt−
i

− (yi − zi))

]
≤ Cm

∫

Rmd

m∏

i=1

exp
(
−c2(t+

i − t∗
i )Ψ(ξi)

)
µ(dξi),

the right-hand side of which is independent of (yi, zi)
′s. Thus, use the same proof as in the rest

part of the proof of Theorem 3.3, we can prove (3.30). Therefore, we have

E

[
exp

(
p|V ε,δ

t,x |
)]

≤ 2E
[
exp

(
pV ε,δ

t,x

)]
< ∞. (3.31)

Noting (3.29) and (3.31), we can apply the classical Feynman-Kac formula (see Appendix A)
and get that

uε,δ(t, x) = EX

[
u0(Xx

t ) exp

(∫ t

0
Ẇ ε,δ(t − s, Xx

s )ds

)]
= EX

[
u0(Xx

t ) exp
(
W (Aε,δ

t,x)
)]

, (3.32)

is a mild solution to (3.28), that is

uε,δ(t, x) =

∫

Rd
p

(x)
t (y)u0(y)dy +

∫ t

0

∫

Rd
p

(x)
t−s(y)uε,δ(s, y)Ẇ ε,δ(s, y)dyds. (3.33)

To prove u(t, x) given in (3.27) is a mild solution to (1.1), it suffices to show that both sides of
(3.33) converge to those of (3.26) in probability as (ε, δ) → 0, respectively .
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Step 1. Firstly, we shall prove that for any (t, x) ∈ R+ ×Rd and all p ≥ 1,

lim
(ε,δ)→0

E[|uε,δ(t, x) − u(t, x)|p] = 0.

By Theorem 3.1, V ε,δ
t,x converges to Vt,x in probability as (ε, δ) → 0. Hence, to get the Lp-convergence

of uε,δ(t, x) to u(t, x), noting that u0(x) bounded, we only need to show

sup
x∈Rd

sup
(ε,δ)>0

E[|uε,δ(t, x)|p] < ∞, (3.34)

which is a direct consequence of (3.30). Moreover, we can show uε,δ(t, x) → u(t, x) in D1,2, for
which it suffices to show noting that the Malliavin derivative D is closable,

lim
(ε,δ),(ε′,δ′)→0

E[‖Duε,δ(t, x) − Duε′,δ′
(t, x)‖2

H] = 0, (3.35)

where the Malliavin derivative is taken with respect to Ẇ . For simplicity of expressions, we assume
u0(x) ≡ 1 throughout the rest of the proof. Noting that

Duε,δ(t, x) = EX

[
exp

(
W (Aε,δ

t,x)
)

Aε,δ
t,x

]
, (3.36)

we have

E

〈
Duε,δ(t, x), Duε′,δ′

(t, x)
〉

H
= E

[
exp

(
W (Aε,δ

t,x + Ãε′,δ′

t,x )
) 〈

Aε,δ
t,x, Ãε′,δ′

t,x

〉
H

]
,

where we recall that Aε,δ
t,x(r, y) given in (3.16) is an approximation of δ(Xx

t−r − y) and Ãε′,δ′

t,x is

obtained from replacing X by its independent copy X̃ in Aε′,δ′

t,x . Thus,

E

〈
Duε,δ(t, x), Duε′,δ′

(t, x)
〉

H

= E

[
exp

(
W (Aε,δ

t,x + Ãε′,δ′

t,x )
) ∫

[0,t]2

∫

R2d
Aε,δ

t,x(r1, y1)Ãε′,δ′

t,x (r2, y2)|r1 − r2|−β0γ(y1 − y2)dydr

]

= E

[
exp

(
W (Aε,δ

t,x + Ãε′,δ′

t,x )
) ∫

[0,t]4

∫

R2d
ϕδ(t − s1 − r1)ϕ(δ

′)(t − s2 − r2)

× qε(Xx
s1

− y1)qε′(X̃x
s2

− y2)|r1 − r2|−β0γ(y1 − y2)dydrds

]
.

By a similar argument used in the proof of Theorem 3.2, one can show that as ε, δ, ε′, δ′ go to zero,
the above term converges to

E

[
exp

(
1

2

∫ t

0

∫ t

0
|s − r|−β0

(
γ(Xx

s − Xx
r ) + γ(X̃x

s − X̃x
r ) + 2γ(Xx

s − X̃x
r )
)

dsdr

)

×

∫ t

0

∫ t

0
|s − r|−β0γ(Xx

s − X̃x
r )dsdr

]
< ∞.

This proves (3.35), and consequently we have

Du(t, x) = EX

[
exp

(
W (δ(Xx

t−· − ·))
)
δ(Xx

t−· − ·)
]
. (3.37)

Step 2. In this step, we prove the convergence of the right-hand side. Noting Definition 3.1, it
suffices to prove

Iε,δ :=

∫ t

0

∫

Rd
p

(x)
t−s(y)vε,δ

s,yẆ ε,δ(s, y)dyds
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converges to 0 in L1(Ω) as (ε, δ) tends to zero, where vε,δ
s,y = uε,δ(s, y) − u(s, y). Applying (2.15) to

vε,δ
s,yẆ ε,δ(s, y) = vε,δ

s,yW (φε,δ
s,y) where

φε,δ
s,y(r, z) = ϕδ(s − r)qε(y − z),

we have

Iε,δ =

∫ t

0

∫

Rd
p

(x)
t−s(y)

[
δ(vε,δ

s,yφε,δ
s,y(·, ·)) +

〈
Dvε,δ

s,y, φε,δ
s,y

〉
H

]
dyds

= δ

(∫ t

0

∫

Rd
p

(x)
t−s(y)vε,δ

s,yφε,δ
s,y(·, ·)dyds

)
+

∫ t

0

∫

Rd
p

(x)
t−s(y)

〈
Dvε,δ

s,y, φε,δ
s,y

〉
H

dyds

=: Iε,δ
1 + Iε,δ

2 .

(3.38)

Denote

Φε,δ
t,x(r, z) :=

∫ t

0

∫

Rd
p

(x)
t−s(y)vε,δ

s,yφε,δ
s,y(r, z)dyds.

To deal with the first term Iε,δ
1 = δ(Φε,δ

t,x) of Iε,δ, by (2.14) it suffices to show

lim
(ε,δ)→0

E[‖Φε,δ
t,x‖2

H] + E[‖DΦε,δ
t,x‖2

H⊗2 ] = 0.

Note that

E[‖Φε,δ
t,x‖2

H] =

∫

[0,t]2

∫

R2d
p

(x)
t−s1

(y1)p
(x)
t−s2

(y2)E
[
vε,δ

s1,y1
vε,δ

s2,y2

] 〈
φε,δ

s1,y1
, φε,δ

s2,y2

〉
H

dyds (3.39)

By Step 1, we know that E
[
vε,δ

s1,y1
vε,δ

s2,y2

]
is uniformly bounded and converges to 0 as ε, δ go to zero.

For the integral without E
[
vε,δ

s1,y1
vε,δ

s2,y2

]
, noting that

〈
φε,δ

s1,y1
, φε,δ

s2,y2

〉
H

=

∫

[0,t]2

∫

R2d
φε,δ

s1,y1
(r1, z1)φε,δ

s2,y2
(r2, z2)|r1 − r2|−β0γ(z1 − z2)dzdr

=

∫

[0,t]2

∫

Rd
ϕδ(s1 − r1)ϕδ(s2 − r2)|q̂ε(η)|2eιη·(y1−y2)|r1 − r2|−β0µ(dη)dr,

we have∫

[0,t]2

∫

R2d
p

(x)
t−s1

(y1)p
(x)
t−s2

(y2)
〈

φε,δ
s1,y1

, φε,δ
s2,y2

〉
H

dyds

≤ C

∫

[0,t]2

∫

R2d
Pt−s1(y1 − x)Pt−s2(y2 − x)

〈
φε,δ

s1,y1
, φε,δ

s2,y2

〉
H

dyds

≤ C

∫

[0,t]4

∫

Rd
ϕδ(s1 − r1)ϕδ(s2 − r2)|q̂ε(η)|2e−c2[(t−s1)+(t−s2)]Ψ(η)|r1 − r2|−β0µ(dη)drds

≤ C

∫

[0,t]2

∫

Rd
|s1 − s2|−β0e−c2(s1+s2)Ψ(η)µ(dη)ds

which is finite due to [24, Proposition 3.2]. Then, by dominated convergence theorem, we have

limε,δ→0E[‖Φε,δ
t,x‖2

H] = 0. Similar to (3.39), we have

E[‖DΦε,δ
t,x‖2

H⊗2 ] =

∫

[0,t]2

∫

R2d
p

(x)
t−s1

(y1)p
(x)
t−s2

(y2)E
[〈

Dvε,δ
s1,y1

, Dvε,δ
s2,y2

〉
H

] 〈
φε,δ

s1,y1
, φε,δ

s2,y2

〉
H

dyds,

which converges to 0 as ε, δ tend to zero, noting that E
[〈

Dvε,δ
s1,y1

, Dvε,δ
s2,y2

〉
H

]
is uniformly bounded

and tends to 0 as (ε, δ) → 0 by Step 1. This implies that the first term Iε,δ
1 in (3.38) converges to

0 in L2.
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To prove the second term Iε,δ
2 in (3.38) converges to 0 in L1, it suffices to show that both

∫ t
0

∫
Rd p

(x)
t−s(y)

〈
Duε,δ(s, y), φε,δ

s,y

〉
H

dyds and
∫ t

0

∫
Rd p

(x)
t−s(y)

〈
Du(s, y), φε,δ

s,y

〉
H

dyds converge to the same

limit in L1 (note that ‖φε,δ
s,y‖ → ∞ as (ε, δ) → 0). Note that by (3.36) we have

〈
Duε,δ(s, y), φε,δ

s,y

〉
H

=

∫

[0,s]3

∫

R2d
ϕδ(s − τ − r1)EX

[
exp

(
Aε,δ

s,y

)
qε(Xx

τ − z1)
]

× ϕδ(s − r2)qε(y − z2)|r1 − r2|−β0γ(z1 − z2)dzdτdr.

By a similar argument used in the proof of Theorem 3.2, one can show that the above term converges
in L1 to ∫ s

0
τ−β0EX

[
exp

(
δ(Xy

s−· − ·)
)

γ(Xx
τ − y)

]
dτ,

of which the L1-norm is bounded in (s, y) noting Lemma 3.2 and supy∈Rd E[|u(s, y)|p] < ∞ for all

p ≥ 1 by (3.34). This shows that
∫ t

0

∫
Rd p

(x)
t−s(y)

〈
Duε,δ(s, y), φε,δ

s,y

〉
H

dyds converges in L1 to

EX

∫ t

0

∫

Rd
p

(x)
t−s(y) exp

(
δ(Xy

s−· − ·)
) ∫ s

0
τ−β0γ(Xy

τ − y)dτdyds.

The convergence of
∫ t

0

∫
Rd p

(x)
t−s(y)

〈
Du(s, y), φε,δ

s,y

〉
H

dyds to the same limit can be proven in a similar

way. This justifies the L1-convergence of Iε,δ
2 to zero.

Combining the convergences of Iε,δ
1 and Iε,δ

2 , we get that Iε,δ converges to 0 in L1. The proof is
concluded. �

3.3. Regularity of the law. In this subsection, we shall prove the existence of the probability
density of the Stratonovich solution u(t, x) of (1.1) given by (1.10), and show that the density is
smooth under proper conditions.

Our tool of studying the probability law is Malliavin calculus. By Bouleau–Hirsch’s criterion
(see [3] or [20, Theorem 2.1.2]), for a random variable F ∈ D1,2, if ‖DF‖H > 0 a.s., the law of F
is absolutely continuous with respect to the Lebesgue measure, i.e., the law of F has a probability
density. Moreover, if F ∈D∞ and E‖DF‖−p

H < ∞ for all p > 0, then the law of F has an infinitely
differentiable density (see [20, Theorem 2.1.4]).

Theorem 3.5. Assume Assumption (H) and condition (1.8). Furthermore, suppose that u0(x) > 0
almost everywhere and

E[γ(Xx
r − X̃x

s )] > 0, (3.40)

where X̃ is an independent copy of X. Then, the law of u(t, x) given by (1.10) has a probability
density.

Remark 3.1. The condition (3.40) is satisfied, if we assume γ(x) is a strictly positive measurable

function, or if we assume γ(x) = δ(x) and the density function p
(x)
t (y) > 0 for all x, y ∈ R.

Proof. By Theorem 3.4, we have u(t, x) = EX [u0(Xx
t ) exp (Vt,x)], where Vt,x = W (δ(Xx

t−· − ·)) is
given by (3.18). By (3.37), The Malliavin derivative of u(t, x) is,

Ds,yu(t, x) = EX
[
u0(Xx

t ) exp (Vt,x) δ(Xx
t−s − y)

]
, (3.41)
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and hence, denoting Ṽt,x = δ(X̃t−· − ·) where X̃ is an independent copy of X,

‖Du(t, x)‖2
H = EX,X̃

[
u0(Xx

t )u0(X̃x
t ) exp

(
Vt,x + Ṽt,x

) 〈
δ(Xx

t−· − ·), δ(X̃x
t−· − ·)

〉
H

]

= EX,X̃

[
u0(Xx

t )u0(X̃x
t ) exp

(
Vt,x + Ṽt,x

) ∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − X̃x
s )drds

]
.

(3.42)

Noting that u0(Xx
t )u0(X̃x

t ) exp
(
Vt,x + Ṽt,x

)
> 0, by (3.40) and (3.42), we have ‖Du(t, x)‖2

H is

positive a.s. The proof is concluded. �

Theorem 3.6. Assume Assumption (H) and condition (1.8). Furthermore, suppose that for all
p > 0, we have E|u0(Xx

t )|−p < ∞ and

E

(∫ t

0

∫ t

0
γ(Xx

r − X̃x
s )drds

)−p

< ∞, (3.43)

where X̃ is an independent copy of X. Then, the law of u(t, x) given by (1.10) has a smooth
probability density.

Proof. Using a similar argument leading to (3.37), we can show u(t, x) ∈ D∞. Then, to prove that

u(t, x) has a smooth density, it suffices to show (see [20, Theorem 2.1.4]) E[‖Du(t, x)‖−2p
H ] < ∞.

Applying Jensen’s inequality to (3.42) yields

‖Du(t, x)‖−2p
H ≤EX

[∣∣∣u0(Xx
t )u0(X̃x

t )
∣∣∣
−p

exp
(
−p[Vt,x + Ṽt,x]

) ∣∣∣
〈
δ(Xx

t−· − ·), δ(X̃x
t−· − ·)

〉
H

∣∣∣
−p
]

,

and then Hölder’s inequality implies

E‖Du(t, x)‖−2p
H ≤ I1I2I3 (3.44)

where I1 =

(
E

∣∣∣u0(Xx
t )u0(X̃x

t )
∣∣∣
−pp1

)1/p1

, I2 =
(
E exp

(
−pp2[Vt,x + Ṽt,x]

))1/p2
and

I3 =

(
E

∣∣∣
〈
δ(Xx

t−· − ·), δ(X̃x
t−· − ·)

〉
H

∣∣∣
−pp3

)1/p3

,

with 1
p1

+ 1
p2

+ 1
p3

= 1. By the assumption on u0(x) and Theorem 3.2, it is clear that both I1 and

I2 are finite. For the term I3, by (2.12) we have

Ip3
3 =E

(∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − X̃x
s )drds

)−pp3

≤ tβ0pp3E

(∫ t

0

∫ t

0
γ(Xx

r − X̃x
s )drds

)−pp3

,

where we use the fact that |r−s| ≤ t. The right-hand side is finite due to the assumption (3.43). �

Condition (3.43) relates to the small ball probability of
∫ t

0

∫ t
0 γ(Xx

r −X̃x
s )drds, i.e. the asymptotic

behavior of P (
∫ t

0

∫ t
0 γ(Xx

r −X̃x
s )drds < ε) as ε goes to zero. Usually it is not an easy task to estimate

small ball probabilities. In particular, when the spatial covariance function γ(x) is the Dirac delta
function δ(x), Condition (3.43) concerns the small ball probabilities of mutual intersection local
time of X, which is still open even for Brownian motion.

If γ(x) is a classical measurable function rather than a distribution, by Jensen’s inequality, a
sufficient condition for (3.43) which is easier to justify is the following

sup
r,s∈[0,t]

E

[
|γ(Xx

r − X̃x
s )|−p

]
< ∞. (3.45)

Corollary 3.1. Assume Assumption (H) and condition (1.8). Suppose that E|u0(Xx
t )|−p < ∞ and

that the covariance function γ is a measurable function such that (3.45) is satisfied for all p > 0.
Then, the law of u(t, x) given by (1.10) has a smooth probability density.
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Remark 3.2. By Assumption (H),

E

[
|γ(Xx

r − X̃x
s )|−p

]
= E

∫

Rd
p(X̃x

s )
r (y)|γ(y − X̃x

r )|−pdy ≤ C

∫

Rd
Pr(y)|γ(y)|−pdy. (3.46)

The right-hand side of (3.46) is uniformly bounded for r, s ∈ [0, t], if we assume, for instance,
the Feller process X is a diffusion process given by (1.5) whose density function satisfies (1.7) and

(γ(x))−1 ≤ CeC|x|α for some α ∈ (0, 2). (3.47)

The spatial covariance satisfying (3.47) includes the kernels mentioned in the Introduction such as
the Riesz kernel, Poisson kernel, Cauchy Kernel, and Ornstein-Uhlenbeck kernel with α ∈ (0, 2).
This result is stated as a corollary below.

Another typical situation in which (3.46) is uniformly bounded for all p > 0 is the following:
Pr(y) is a rapidly decreasing function and (γ(x))−1 is at polynomial growth.

3.4. Hölder continuity of Stratonovich solution. In this subsection, we will obtain Hölder
continuity in space for the Stratonovich solution u(t, x) of (1.1).

Assumption (H1). Assume Assumption (H) and p
(x)
t (y) = pt(y − x). Furthermore, we assume

there exists θ ∈ (0, 1] and C > 0 such that,
∫ T

0

∫ T

0

∫

Rd
|r − s|−β0p|r−s|(y)

[
γ(y) − γ(y + z)

]
dydrds ≤ C|z|2θ. (3.48)

Note that if we assume p̂t(ξ) ∼ e−tΨ(ξ), then condition (3.48) is equivalent to the condition in
[24, Hypothesis S1 ]:

∫ T

0

∫ T

0

∫

Rd
|r − s|−β0 exp (−|r − s|Ψ(ξ)) (1 − cos(ξ · z))µ(dξ)drds ≤ C|z|2θ,

for which a sufficient condition is (see[24, Remark 4.10])

∫

Rd

|ξ|2θ

1 + (Ψ(ξ))1−β0
µ(dξ) < ∞.

Theorem 3.7. Assume Assumption (H1). Then the solution u(t, x) given by the Feynman-Kac
formula (1.10) is κ-Hölder continuous in x with κ ∈ (0, θ) on any compact set of [0, ∞) ×Rd.

Remark 3.3. Note that if we assume Eeιξ·Xt = e−tΨ(ξ), then [24, Theorem 4.11] also holds in our
setting.

Proof. The proof essentially follows the proofs of [14, Theorem 5.1] and [24, Theorem 4.11]. Recall-

ing (3.18): Vt,x =
∫ t

0

∫
Rd δ(Xx

t−s − y)W (ds, dy) and using the inequality |ea − eb| ≤ (ea + eb)|a − b|,
we have for all p ≥ 2,

E[|u(t, x1) − u(t, x2)|p] = EW [|EX [exp(Vt,x1) − exp (Vt,x2)]|p]

≤ EW

[
(EX [exp(2Vt,x1) + exp(2Vt,x2)])p/2

(
EX |Vt,x1 − Vt,x2 |2

)p/2
]

≤ CE [exp(pVt,x1) + exp(pVt,x2)]
(
EW

[(
EX |Vt,x1 − Vt,x2|2

)p])1/2

≤ C
(
EW

[(
EX |Vt,x1 − Vt,x2|2

)p])1/2
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where the last step follows from Theorem 3.2. Applying Minkowski’s inequality and noting the
equivalence between the Lp-norm and L2-norm of Gaussian random variables, we have

(
EW

[(
EX |Vt,x1 − Vt,x2|2

)p])1/2
≤

(
EX

[(
EW |Vt,x1 − Vt,x2 |2p

)1/p
])p/2

≤ Cp

(
E|Vt,x1 − Vt,x2|2

)p/2
.

Thus, we have

E[|u(t, x1) − u(t, x2)|p] ≤ C
(
E|Vt,x1 − Vt,x2 |2

)p/2
. (3.49)

Note that

E|Vt,x1 − Vt,x2|2 =

∫ t

0

∫ t

0
|r − s|−β0EX [γ(Xx1

r − Xx1
s ) + γ(Xx2

r − Xx2
s ) − 2γ(Xx1

r − Xx2
s )] drds

= 2

∫ t

0

∫ t

0
|r − s|−β0EX [γ(Xr − Xs) − γ(Xr − Xs + x1 − x2)] drds,

where the second equality holds since (Xx
r )r≥0 has the same distribution of (Xr + x = X0

r + x)r≥0

due to the condition p
(x)
t (y) = pt(y − x). Hence,

E|Vt,x1 − Vt,x2|2 = 2

∫ t

0

∫ t

0

∫

Rd
|r − s|−β0p|r−s|(y)

[
γ(y) − γ(y + x1 − x2)

]
dydrds. (3.50)

Thus, by (3.49), (3.50) and (3.48), we have

E|u(t, x1) − u(t, x2)|p ≤ C|x1 − x2|θp

for all p > 0. The desired result then follows from Kolmogorov’s continuity criterion. �

4. Skorohod solution

In this section, we consider the equation (1.1) in the Skorohod sense.

Definition 4.3. A random field u = {u(t, x) : t ≥ 0, x ∈ Rd} is a mild Skorohod solution to (1.1)
if for all t ≥ 0 and x ∈ Rd, E|u(t, x)|2 < ∞, u(t, x) is FW

t -measurable, and the following integral
equation holds

u(t, x) = p
(0)
t ∗ u0(x) +

∫ t

0

∫

Rd
p

(0)
t−s(x − y)u(s, y)W (ds, dy), (4.51)

where the stochastic integral is in the Skorohod sense.

Suppose u is a mild Skorohod solution to (1.1). Then repeating (4.51), we have the following
Wiener chaos expansion of u(t, x):

u(t, x) =
∞∑

n=0

In(f̃n(·, t, x)), (4.52)

where

fn(t1, x1, . . . , tn, xn, t, x) = p
(0)
t−tn

(x − xn) . . . p
(0)
t2−t1

(x2 − x1)p
(0)
t1

∗ u0(x1)1{0<t1<...<tn<t} (4.53)

and f̃n is the symmetrization of fn, i.e.,

f̃n(t1, x1, . . . , tn, xn, t, x) =
1

n!

∑

σ∈Sn

fn(tσ(1), xσ(1), . . . , tσ(n), xσ(n), t, x)

=
1

n!
fn(tτ(1), xτ(1), . . . , tτ(n), xτ(n), t, x),
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where Sn is the set of all permutations of {1, 2, . . . , n} and τ ∈ Sn is the permutation such that
0 < tτ(1) < . . . < tτ(n) < t. In view of the expansion (4.52), there exists a unique mild Skorohod
solution to (1.1) if and only if

∞∑

n=0

n!‖f̃n(·, t, x)‖2
H⊗n < ∞, for all (t, x) ∈ [0, T ] ×Rd. (4.54)

4.1. Existence and uniqueness of Skorohod solution.

Theorem 4.1. Assume assumption (H) and the Dalang’s condition (1.9). Suppose u0 is a bounded
function. Then, (4.54) holds, and hence u(t, x) given by (4.52) is the unique mild Skorohod solution
to (1.1).

Proof. Without loss of generality, we assume that u0 ≡ 1. We define the following function:

Fn(t1, x1, . . . , tn, xn, t, x) = Pt−tn(xn − x) . . . Pt2−t1(x1 − x2)1{0<t1<...<tn<t} (4.55)

Then by assumption (H), we have

fn(t1, x1, . . . , tn, xn, t, x) ≤ CnFn(t1, x1, . . . , tn, xn, t, x). (4.56)

Note that

FFn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn) = e−ix·(ξ1+...+ξn)
n∏

j=1

FPtj+1−tj
(ξ1 + . . . + ξj)1{0<t1<...<tn<t}.

(4.57)
with the convention that tn+1 = t. By the definition (2.12) of H-norm together with (4.56), we
have

n!‖f̃n(·, t, x)‖2
H⊗n ≤ n!‖fn(·, t, x)‖2

H⊗n

=n!

∫

R2n
+

∫

R2nd
fn(t1, x1, . . . , tn, xn, t, x)fn(s1, y1, . . . , sn, yn, t, x)

n∏

j=1

|tj − sj|
−β0γ(xj − yj)dxdtds

≤C2nn!

∫

R2n
+

∫

R2nd
Fn(t1, x1, . . . , tn, xn, t, x)Fn(s1, y1, . . . , sn, yn, t, x)

n∏

j=1

|tj − sj|
−β0γ(xj − yj)dxdtds.

Then, by (1.4) and (4.57) we have

n!‖f̃n(·, t, x)‖2
H⊗n

=C2nn!

∫

R2n
+

dtds
d∏

j=1

|tj − sj|
−β0

∫

Rnd
µ(dξ)FFn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn)

× FFn(s1, ·, . . . , sn, ·, t, x)(ξ1, . . . , ξn)

=C2nn!

∫

([0,t]n<])2
dtds

n∏

j=1

|tj − sj|
−β0

∫

Rnd
µ(dξ)

n∏

j=1

FPtj+1−tj
(ξ1 + . . . + ξj)FPsj+1−sj

(ξ1 + . . . + ξj)

≤C2nn!

∫

([0,t]n<])2
dtds

n∏

j=1

|tj − sj|
−β0

∫

Rnd
µ(dξ)

n∏

j=1

exp (−c2(tj+1 − tj + sj+1 − sj)Ψ(ξ1 + . . . + ξj)) ,

where the right-hand side has been shown to be summable in the proof of [24, Theorem 5.3]. Thus,
(4.54) follows and the proof is concluded. �

Using the same argument as in the proof of [14, Theorem 7.2], we can show that the Feynman-Kac
representation (1.11) is a mild Skorohod solution under the condition (1.8).
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Theorem 4.2. Assume the Dalang’s condition (1.8). Then the unique Skorohod solution to (1.1)
can be represented by

u(t, x) = EX

[
u0(Xx

t ) exp

(∫ t

0

∫

Rd
δ(Xx

t−r − y)W (dr, dy) −
1

2

∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − Xx
s )drds

)]
.

Theorem 4.1 indicates that under the condition (1.9) (which is weaker than (1.8)), there is a
unique Skorohod solution. On the other hand, as shown in [14, Proposition 3.2], if the condition

(1.8) is violated, the sequence V ε,δ
t,x may diverge and hence the term

∫ t
0

∫
Rd δ(Xx

t−r − y)W (dr, dy)
given in (3.18) may not be well-defined. In this situation, Feynman-Kac representation of the form
(1.11) for the Skorohod solution is not available. However, we do have Feynman-Kac representation
for the moments of the Skorohod solution under (1.9).

Theorem 4.3. Assume assumption (H) and the Dalang’s condition (1.9). Suppose u0 is a bounded
function. Then for any p ∈ N+, we have the following representation of the unique Skorohod
solution to (1.1):

E [u(t, x)p] = E




p∏

j=1

u0(X
(j)
t + x) exp


 ∑

1≤j<k≤p

∫ t

0

∫ t

0
|r − s|−β0γ

(
X(j)

r − X(k)
s

)
drds




 . (4.58)

Here, X(1), . . . , X(p) are i.i.d. copies of X.

Proof. Without loss of generality, we assume u0(x) ≡ 1. Similar to (3.28), we consider the following
approximation of (1.1):





∂uε,δ(t, x)

∂t
=Luε,δ(t, x) + uε,δ(t, x) ⋄ Ẇ ε,δ(t, x), t ≥ 0, x ∈ Rd,

uε,δ(0, x) =u0(x), x ∈ Rd,

(4.59)

where the symbol ⋄ means Wick product and Ẇ ε,δ is given in (3.25). The mid Skorohod solution
uε,δ(t, x) is given by the following integral equation

uε,δ(t, x) =1 +

∫

[0,t]2

∫

R2d
p

(0)
t−s(x − y)ϕδ(s − r)qε(y − z)uε,δ(s, y) ⋄ W (dr, dz)dsdy,

where the integral on the right-hand side is in the Skorhod sense. Recall the notation Aε,δ
t,x given

by (3.16). By a similar argument used in Step 1 in the proof of [24, Theorem 5.6] (see also [12,

Proposition 5.2]), one can show that W (Aε,δ
t,x) is well-defined and that the following Feynman-Kac

formula holds:

uε,δ(t, x) = EX

[
exp

(
W
(
Aε,δ

t,x

)
−

1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H

)]
. (4.60)

As in Step 3 in the proof of [24, Theorem 5.6], we can prove uε,δ(t, x) converges to u(t, x) in Lp for
all p > 0 as (ε, δ) → 0. By (4.60), the pth moment of uε,δ(t, x) can be calculated explicitly:

E

[(
uε,δ(t, x)

)p]
=E


exp


W




p∑

j=1

A
(ε,δ,j)
t,x


−

1

2

p∑

j=1

∥∥∥A(ε,δ,j)
t,x

∥∥∥
2

H






=EX


exp




1

2

∥∥∥∥∥∥

p∑

j=1

A
(ε,δ,j)
t,x

∥∥∥∥∥∥

2

H

−
1

2

p∑

j=1

∥∥∥A(ε,δ,j)
t,x

∥∥∥
2

H







=EX


exp


 ∑

1≤j<k≤p

〈
A

(ε,δ,j)
t,x , A

(ε,δ,k)
t,x

〉
H




 , (4.61)
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where A
(ε,δ,j)
t,x is given by (3.16) with Xx being replaced by X(j), i.i.d. copies of Xx, and EX is the

expectation with respect to the randomness of X(1), . . . , X(p). Thus, by the same method used in
the proof of Theorem 3.1, we can prove the following L1-convergence:

lim
ε,δ→0+

〈
A

(ε,δ,j)
t,x , A

(ε,δ,k)
t,x

〉
H

=

∫

[0,t]2
|r1 − r2|−β0γ (Xr2 − Xr1) dr1dr2. (4.62)

We claim that for any λ > 0,

sup
ǫ,δ>0

E

[
exp

(
λ
〈

A
(ε,δ,j)
t,x , A

(ε,δ,k)
t,x

〉
H

)]
< ∞. (4.63)

Then the desired result (4.58) follows from (4.61), (4.62) and (4.63).

To conclude the proof, we prove the claim (4.63). By (3.16) and Lemma 3.1, we have
〈
A

(ε,δ,j)
t,x , A

(ε,δ,k)
t,x

〉
H

≤C

∫

[0,t]2
|s − r|−β0dsdr

∫

R2d
qε(X

(j)
s − y)qε(X

(k)
r − z)γ(y − z)dydz

=C

∫

[0,t]2
|s − r|−β0dsdr

∫

R2d
qε(y)qε(z)γ(X(j)

s − X(k)
r − y + z)dydz.

By Taylor expansion, we get

E

[
exp

(
λ
〈

A
(ε,δ,j)
t,x , A

(ε,δ,k)
t,x

〉
H

)]

≤1 +
∞∑

m=1

λmCm

m!

∫

[0,t]2m
dsdr

m∏

l=1

|sl − rl|
−β0

×

∫

R2md

m∏

l=1

qε(yl)qε(zl)E

[
m∏

l=1

γ(X(j)
sl

− X(k)
rl

− yl + zl)

]
dydz.

(4.64)

To compute the expectation in (4.64), we apply Lemma 4.3 below to the conditional expectation

given X(k) and get, for 0 = s0 < s1 < · · · , sm < t,

E

[
m∏

l=1

γ(X(j)
sl

− X(k)
rl

− yl + zl)

]
≤ Cmcm

1

∫

Rmd

m∏

l=1

exp (−c2(sl − sl−1)Ψ(ξl)) µ(dξ1) . . . µ(dξm).

(4.65)
Note that (4.65) is independent of y1, . . . , ym, z1, . . . , zm and r1, . . . , rm. and hence

Thus, to estimate (4.64), we can integrate with respet to dy1 . . . dymdz1 . . . dzm first, and then
to dr1 . . . drm using the fact

∫

[0,t]n

n∏

j=1

|sj − rj|
−β0dr ≤ Dn

t , with Dt = 2

∫ t

0
|s|−β0ds < ∞, (4.66)

to obtain

E

[
exp

(
λ
〈

A
(ε,δ,j)
t,x , A

(ε,δ,k)
t,x

〉
H

)]

≤1 +
∞∑

m=1

λmCmcm
1

m!

∫

[0,t]2m
dsdr

m∏

l=1

|sl − rl|
−β0

∫

Rmd

m∏

l=1

exp (−c2(sl − sl−1)Ψ(ξl)) µ(dξ)

≤1 +
∞∑

m=1

Dm
t λmCmcm

1

∫

[0,t]m<

ds

∫

Rmd

m∏

l=1

exp (−c2(sl − sl−1)Ψ(ξl)) µ(dξ).

Then we can use the same technique leading to (3.24) to prove the convergence of the series.
Applying the change of variable τl = sl − sl−1 for l = 1, . . . , m and recalling the notation Σm

t =
[0 < τ1 + · · · + τm < t] ∩Rm

+ , we have
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E

[
exp

(
λ
〈

A
(ε,δ,j)
t,x , A

(ε,δ,k)
t,x

〉
H

)]

=1 +
∞∑

m=1

Dm
t λmCmcm

1

∫

Σm
t

dτ

∫

Rmd
µ(dξ) exp

(
−c2

m∑

i=1

riΨ(ξi)

)

≤1 + ec2Mt
∞∑

m=0

Dm
t λmCmcm

1

∫

Σm
t

dτ

∫

Rmd
µ(dξ) exp

(
−c2

m∑

i=1

τi(M + Ψ(ξi))

)

≤1 + ec2Mt
∞∑

m=1

Dm
t λmCmcm

1

(∫ t

0
dτ

∫

Rd
µ(dξ) exp (−c2τ(M + Ψ(ξ)))

)m

≤1 + ec2Mt
∞∑

m=1

Dm
t λmCmcm

1

(∫

Rd

1

M + Ψ(ξ)
µ(dξ)

)m

.

Thus, by the Dalang’s condition (1.9), we can find M sufficiently large such that the above series
converges. The proof is concluded. �

The following lemma has been used in the proof of Theorem 4.3.

Lemma 4.3. For 0 = r0 < r1 < · · · < rm < ∞, we have

sup
(a1,...,am)∈Rm

E

[
m∏

i=1

γ (Xri
− ai)

]
≤ Cmcm

1

∫

Rmd

m∏

j=1

exp
(

− c2(rj − rj−1)Ψ(ξj)
)
µ(dξ).

Proof. The proof essentially follows the argument leading to (3.23). By Markov property of Xwe
have

E

[
m∏

i=1

γ (Xri
− ai)

]
=E

[
m−1∏

i=1

γ (Xri
− ai)E

[
γ (Xrm − am)

∣∣Frm−1

]
]

=E

[
m−1∏

i=1

γ (Xri
− ai)E

[
γ (Xrm − am)

∣∣Xrm−1

]
]

=E

[
m−1∏

i=1

γ (Xri
− ai)

∫

Rd
γ(ym − am)p

(Xrm−1 )

rm−rm−1
(ym)dym

]

Applying assumption (H) and Parseval-Plancherel indentity to the integral, we have
∫

Rd
γ(ym − am)p

(Xrm−1 )
rm−rm−1

(ym)dym ≤C

∫

Rd
γ(ym − am)Prm−rm−1(Xrm−1 − ym)dym

=C

∫

Rd
exp(−i(Xrm−1 − am) · ξm)FPrm−rm−1(−ξm)µ(dξm)

≤Cc1

∫

Rd
exp

(
− c2(rm − rm−1)Ψ(ξm)

)
µ(dξm).

Combining the above calculations, we get

E

[
m∏

i=1

γ (Xri
− ai)

]
≤ Cc1E

[
m−1∏

i=1

γ (Xri
− ai)

] ∫

Rd
exp

(
− c2(rm − rm−1)Ψ(ξm)

)
µ(dξm).

The proof is then concluded by repeating this procedure. �



22 J. SONG, M. WANG, AND W. YUAN

4.2. Regularity of the law. In this subsection, we study the regularity of the law of the Skorohod
solution to (1.1).

In light of Theorem 4.2, using a similar argument in the proof of Theorem 3.5 we can prove the
existence of probability density under the stronger condition (1.8).

Theorem 4.4. Assume Assumption (H) and condition (1.8). Furthermore, suppose that u0(x) > 0
almost everywhere and (3.40) is satisfied. Then, the law of u(t, x) given by (1.10) has a probability
density.

Still assuming (1.8), we can prove the smoothness of the density with the help of Feynman-Kac
formula given in Theorem 4.2 under some proper condition.

Theorem 4.5. Assume Assumption (H) and condition (1.8). Suppose that for all p > 0, we have

E

[
|u0(Xx

t )|−p
]

+ E



∣∣∣∣∣

∫

[0,t]2
γ(Xx

r − X̃x
s )drds

∣∣∣∣∣

−p

 < ∞. (4.67)

Then the probability density of the mild Skorohod solution u(t, x) to (1.1) exists and is smooth.

Proof. The proof is similar to the proof of Theorem 3.6 and is sketched below. By Theorem 4.2,
we have

u(t, x) = EX [u0(Xx
t ) exp (Vt,x − Ut,x)] ,

where Vt,x = W (δ(Xx
t−· − ·)) is given in (3.18) and we denote

Ut,x =
1

2

∫ t

0

∫ t

0
|r − s|−β0γ(Xx

r − Xx
s )drds.

Then the Malliaven derivative is given by

Ds,yu(t, x) = EX [u0(Xx
t ) exp (Vt,x − Ut,x) Ds,yVt,x] = EX

[
u0(Xx

t ) exp (Vt,x − Ut,x) δ(Xx
t−s − y)

]
,

and thus

‖Du(t, x)‖2
H = E

[
u0(Xx

t )u0(X̃x
t ) exp

(
Vt,x − Ut,x + Ṽt,x − Ũt,x

) 〈
δ(Xx

t−· − ·), δ(X̃x
t−· − ·)

〉
H

]
,

where X̃ is an i.i.d. copy of X, and Ṽt,x, Ũt,x are the corresponding quantities of Vt,x, Ut,x with X

replaced by X̃ . Then by Jensen’s inequality and Hölder inequality, we have

‖Du(t, x)‖−2p
H

≤E

[(
u0(Xx

t )u0(X̃x
t )
)−p

exp
(
−p

(
Vt,x − Ut,x + Ṽt,x − Ũt,x

)) ∣∣∣
〈
δ(Xx

t−· − ·), δ(X̃x
t−· − ·)

〉
H

∣∣∣
−p
]

≤

(
E

[(
u0(Xx

t )u0(X̃x
t )
)−pp1

])1/p1 (
E

[
exp

(
−pp2

(
Vt,x + Ṽt,x

))])1/p2

×
(
E

[
exp

(
pp3

(
Ut,x + Ũt,x

))])1/p3
(
E

[∣∣∣
〈
δ(Xx

t−· − ·), δ(X̃x
t−· − ·)

〉
H

∣∣∣
−pp4

])1/p4

, (4.68)

for any positive numbers p1, p2, p3, p4 satisfying p−1
1 + p−1

2 + p−1
3 + p−1

4 = 1.

By (4.67) and independence, we have
(
E

[(
u0(Xx

t )u0(X̃x
t )
)−pp1

])1/p1

=
(
E

[
(u0(Xx

t ))−pp1
])2/p1

< ∞. (4.69)

Since X and X̃ has identical distribution, by Cauchy-Schwarz inequality and Theorem 3.2, we have
(
E

[
exp

(
−pp2

(
Vt,x + Ṽt,x

))])1/p2
≤ (E [exp (−2pp2Vt,x)])1/p2 < ∞. (4.70)
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By independence and Theorem 3.3, we have
(
E

[
exp

(
pp3

(
Ut,x + Ũt,x

))])1/p3

= (E [exp (pp3Ut,x)])2/p3 < ∞. (4.71)

By (4.67) together with the fact that |r − s|−β0 ≥ t−β0, we have
(
E

[∣∣∣
〈
δ(Xx

t−· − ·), δ(X̃x
t−· − ·)

〉
H

∣∣∣
−pp4

])1/p4

=


E



∣∣∣∣∣

∫

[0,t]2
|r − s|−β0γ(Xx

r − X̃x
s )drds

∣∣∣∣∣

−pp4





1/p4

≤t−β0p


E



∣∣∣∣∣

∫

[0,t]2
γ(Xx

r − X̃x
s )drds

∣∣∣∣∣

−pp4





1/p4

< ∞. (4.72)

Substituting (4.69), (4.70), (4.71) and (4.72) to (4.68), we have for all p > 0,

‖Ds,yu(t, x)‖−2p
H < ∞.

The proof is concluded. �

The proof of Theorem 4.5 involves the Feymann-Kac formula, which requires the Dalang’s con-
dition (1.8). However, the Skorohod solution exists under the weaker Dalang’s condition (1.9). The
following theorem study regularity of the density of Skorohod solution under weaker conditions.

Theorem 4.6. Assume that assumption (H) and the Dalang’s condition (1.9) hold. Suppose that
for all p > 0, we have

E

[
|u0(Xx

t )|−p
]

+

∫

[0,t]2
sup
a∈Rd

E

[∣∣∣γ(Xx
s − X̃x

r + a)
∣∣∣
−p
]

dsdr < ∞. (4.73)

Then the probability density of the mild Skorohod solution u(t, x) to (1.1) exists and is smooth.

Proof. We approximate the solution to (1.1) using (4.59) as in the proof of Theorem 3.4. Note that
the solution uε,δ(t, x) to (4.59) is given by the Feynman-Kac formula (4.60). We will show that
Duε,δ(t, x) converges in L2 using the idea of Step 1 of the proof of Theorem 3.4. We have

Ds,yuε,δ(t, x) =EX

[
u0(Xx

t ) exp

(
W (Aε,δ

t,x) −
1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H

)
Ds,y

(
W (Aε,δ

t,x) −
1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H

)]

=EX

[
u0(Xx

t ) exp

(
W (Aε,δ

t,x) −
1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H

)
Aε,δ

t,x

]
. (4.74)

Thus,

E

[〈
Duε,δ(t, x), Duǫ′,δ′

(t, x)
〉

H

]

=E

[
u0(Xx

t )u0(X̃x
t ) exp

(
W
(
Aε,δ

t,x + Ãε,δ
t,x

)
−

1

2

∥∥∥A(ǫ,δ)
t,x

∥∥∥
2

H
−

1

2

∥∥∥Ãε,δ
t,x

∥∥∥
2

H

)∫

[0,t]4

∫

R2d
ϕδ(t − s1 − r1)

× ϕδ′(t − s2 − r2)qε(X
x
s1

− y1)qε′(X̃x
s2

− y2)|r1 − r2|−β0γ(y1 − y2)dydrds

]
.

Computing EW first, we can show that

E

[〈
Duε,δ(t, x), Duǫ′,δ′

(t, x)
〉

H

]
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→ E

[
u0(Xx

t )u0(X̃x
t ) exp

(∫ t

0

∫ t

0
|s − r|−β0γ(Xx

s − X̃x
r )dsdr

)∫ t

0

∫ t

0
|s − r|−β0γ(Xx

s − X̃x
r )dsdr

]
.

as ε, δ, ε′, δ′ → 0. The limit is finite due to the boundedness of u0 and (4.63). Thus, we have

lim
ǫ,δ,ǫ′,δ′→0+

E

[∥∥∥Duε,δ(t, x) − Duǫ′,δ′
(t, x)

∥∥∥
2

H

]
= 0.

Hence, Duε,δ(t, x) is a Cauchy sequence in L2, so it is convergent in L2. For any p > 2, we have
that both uε,δ and u belongs to Lp. Thus, By Cauchy-Schwarz inequality, we have

E

[∥∥∥Duε,δ(t, x) − Duǫ′,δ′
(t, x)

∥∥∥
p

H

]

≤

(
E

[∥∥∥Duε,δ(t, x) − Duǫ′,δ′
(t, x)

∥∥∥
2

H

])1/2 (
E

[∥∥∥Duε,δ(t, x) − Duǫ′,δ′
(t, x)

∥∥∥
2p−2

H

])1/2

,

which converges to 0 as ǫ, δ, ǫ′, δ′ → 0. Therefore, Duε,δ(t, x) converges in Lp for all p ≥ 2.

Next, we show that

sup
ε,δ
E

[∥∥∥Duε,δ(t, x)
∥∥∥

−p

H

]
< ∞. (4.75)

By Jensen’s inequality, we have
∥∥∥Duε,δ(t, x)

∥∥∥
−2p

H

≤E

[(
u0(Xx

t )u0(X̃x
t )
)−p

exp

(
−p

(
W (Aε,δ

t,x) −
1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H
+ W (Ãε,δ

t,x) −
1

2

∥∥∥Ãε,δ
t,x

∥∥∥
2

H

))

×
∣∣∣
〈

Aǫ,δ
t,x, Ãǫ,δ

t,x

〉
H

∣∣∣
−p
]

≤

(
E

[(
u0(Xx

t )u0(X̃x
t )
)−pp1

])1/p1
(
E

[
exp

(
−pp2

(
W (Aε,δ

t,x) −
1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H
+ W (Ãε,δ

t,x) −
1

2

∥∥∥Ãε,δ
t,x

∥∥∥
2

H

))])1/p2

×

(
E

[∣∣∣
〈
Aǫ,δ

t,x, Ãǫ,δ
t,x

〉
H

∣∣∣
−pp3

])1/p3

,

By (4.73) and (4.69), in order to show (4.75), we only need to prove for any λ ∈ R:

E

[
exp

(
λ

(
W (Aε,δ

t,x) −
1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H
+ W (Ãε,δ

t,x) −
1

2

∥∥∥Ãε,δ
t,x

∥∥∥
2

H

))]
< ∞, (4.76)

and for any p > 0,

E

[∣∣∣
〈

Aǫ,δ
t,x, Ãǫ,δ

t,x

〉
H

∣∣∣
−p
]

< ∞. (4.77)

For (4.76), compute the expectation with respect to W first, we have

E

[
exp

(
λ

(
W (Aε,δ

t,x) −
1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H
+ W (Ãε,δ

t,x) −
1

2

∥∥∥Ãε,δ
t,x

∥∥∥
2

H

))]

=E

[
exp

(
λ

(
1

2

∥∥∥Aε,δ
t,x + Ãε,δ

t,x

∥∥∥
2

H
−

1

2

∥∥∥Aε,δ
t,x

∥∥∥
2

H
−

1

2

∥∥∥Ãε,δ
t,x

∥∥∥
2

H

))]

=E
[
exp

(
λ
〈

Aε,δ
t,x, Ãε,δ

t,x

〉
H

)]
.

This quantity is bounded uniformly in ǫ, δ because of (4.63). For (4.77), by (3.20) and Jensen’s
inequality with respect to the measure ϕδ(t−s−u)ϕδ(t−r −v)qε(Xx

s −y)qε(X̃
x
r −z)dydzdudvdrds,
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we have

E

[∣∣∣
〈
Aǫ,δ

t,x, Ãǫ,δ
t,x

〉
H

∣∣∣
−p
]

≤C(t, p)E

[∫

[0,t]4

∫

R2d
|γ(y − z)|−p |u − v|β0pϕδ(t − s − u)ϕδ(t − r − v)qε(Xx

s − y)qε(X̃
x
r − z)dydzdudvdsdr

]

≤C(t, p)tβ0p
E

[∫

[0,t]4

∫

R2d
|γ(y − z)|−p ϕδ(t − s − u)ϕδ(t − r − v)qε(Xx

s − y)qε(X̃x
r − z)dydzdudvdsdr

]

=C(t, p)tβ0p
E

[∫

[0,t]2

∫

R2d
|γ(y − z)|−p qε(X

x
s − y)qε(X̃

x
r − z)dydzdsdr

]

=C(t, p)tβ0p
E

[∫

[0,t]2

∫

R2d

∣∣∣γ(Xx
s − X̃x

r − y + z)
∣∣∣
−p

qε(y)qε(z)dydzdsdr

]

≤C(t, p)tβ0p
∫

[0,t]2

∫

R2d
sup
a∈Rd

E

[∣∣∣γ(Xx
s − X̃x

r + a)
∣∣∣
−p
]

qε(y)qε(z)dydzdsdr

=C(t, p)tβ0p
∫

[0,t]2
sup
a∈Rd

E

[∣∣∣γ(Xx
s − X̃x

r + a)
∣∣∣
−p
]

dsdr.

where we integrate dudv in the fourth line, change of variables in the fifth line, and integrate dydz
in the last line. Here, C(t, p) is a positive constant that depends on t, p only. Thus, (4.77) follows
directly from (4.73).

Now we show that for any p,

E

[
‖Du(t, x)‖−p

H

]
< ∞. (4.78)

We choose εn, δn → 0+, then we have the convergence of ‖Duǫn,δn(t, x)‖H to ‖Du(t, x)‖H in Lp(Ω).
The convergence is also in probability, and thus, there is a subsequence that converges almost surely.
Without loss of generality, we assume that ‖Duǫn,δn(t, x)‖H converges to ‖Du(t, x)‖H almost surely.
By Fatou’s lemma and (4.75), we have

E

[
‖Du(t, x)‖−p

H

]
= E

[
lim

n→∞

∥∥∥Duǫn,δn(t, x)
∥∥∥

−p

H

]
≤ lim inf

n→∞
E

[∥∥∥Duǫn,δn(t, x)
∥∥∥

−p

H

]
< ∞.

The proof is concluded. �

4.3. Hölder continuity of Skorohod solution. Let u(t, x) be the unique mild solution to (1.1).
In this subsection, we study the Hölder continuity of u(t, x). For simplicity, we assume that
u0(x) ≡ 1. In this case, the chaos decomposition (4.52) of u(t, x) still holds with

fn(t1, x1, . . . , tn, xn, t, x) = p
(0)
t−tn

(x − xn) . . . p
(0)
t2−t1

(x2 − x1)1{0<t1<...<tn<t},

and the Fourier transform on spatial variables is

Ffn(t1, ·, . . . , tn, ·, t, x)(ξ1, . . . , ξn) = e−ix·(ξ1+...+ξn)
n∏

j=1

Fp
(0)
tj+1−tj

(ξ1 + . . . + ξj)1{0<t1<...<tn<t}.

We have the following theorem on the Hölder continuity of spatial variable.

Theorem 4.7. Suppose that there exists α1 ∈ (0, 1) and CT > 0, such that for all x ∈ Rd, the
following holds:

sup
η∈Rd

∫ T

0

∫

Rd

∣∣∣1 − eix(ξ+η)
∣∣∣
2 ∣∣∣Fp

(0)
t (ξ + η)

∣∣∣
2

µ(dξ)dt ≤ CT |x|2α1 . (4.79)
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Under the assumption (H), then u(t, x) has a version that is α1-Hölder continuous in x on any
compact set of [0, ∞) ×Rd.

Proof. By the chaos expansion (4.52) of u(t, x), triangle inequality and hypercontractivity, we have

‖u(t, x) − u(t, y)‖Lp ≤
∞∑

n=1

∥∥∥In(f̃n(·, t, x)) − In(f̃n(·, t, y))
∥∥∥

Lp

≤
∞∑

n=1

(p − 1)n/2
∥∥∥In(f̃n(·, t, x)) − In(f̃n(·, t, y))

∥∥∥
L2

=
∞∑

n=1

(p − 1)n/2(n!)1/2
∥∥∥f̃n(·, t, x) − f̃n(·, t, y)

∥∥∥
H⊗n

(4.80)

for any p ≥ 2.

Note that the Fourier transform on spatial variables of f̃n(·, t, x) − f̃n(·, t, y) is

F
(
f̃n(t1, ·, . . . , tn, ·, t, x) − f̃n(t1, ·, . . . , tn, ·, t, y)

)
(ξ1, . . . , ξn)

=
1

n!

(
e−ix·(ξ1+...+ξn) − e−iy·(ξ1+...+ξn)

) n∏

j=1

Fp
(0)
tτ(j+1)−tτ(j)




j∑

l=1

ξτ(l)


 ,

where τ ∈ Sn is the permutation such that 0 < tτ(1) < . . . < tτ(n) < t and we set tτ(n+1) = t. By
definition of H-norm, we have

n!
∥∥∥f̃n(·, t, x) − f̃n(·, t, y)

∥∥∥
2

H⊗n

=n!

∫

[0,t]2n

n∏

j=1

|sj − tj |−β0ds1 . . . dsndt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

× F
(
f̃n(t1, ·, . . . , tn, ·, t, x) − f̃n(t1, ·, . . . , tn, ·, t, y)

)
(ξ1, . . . , ξn)

× F
(
f̃n(s1, ·, . . . , sn, ·, t, x) − f̃n(s1, ·, . . . , sn, ·, t, y)

)
(ξ1, . . . , ξn)

=
1

n!

∫

[0,t]2n

n∏

j=1

|sj − tj |−β0ds1 . . . dsndt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

×
∣∣∣e−ix·(ξ1+...+ξn) − e−iy·(ξ1+...+ξn)

∣∣∣
2

n∏

j=1

Fp
(0)
tτ(j+1)−tτ(j)




j∑

l=1

ξτ(l)




n∏

j=1

Fp
(0)
sθ(j+1)−sθ(j)




j∑

l=1

ξθ(l)


,

where θ ∈ Sn is the permutation such that 0 < sθ(1) < . . . < sθ(n) < t and we use the convention

sθ(n+1) = t. Using the inequality 2|ab| ≤ a2 + b2 and symmetry, we have

n!
∥∥∥f̃n(·, t, x) − f̃n(·, t, y)

∥∥∥
2

H⊗n

≤
1

2n!

∫

[0,t]2n

n∏

j=1

|sj − tj |−β0ds1 . . . dsndt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

×
∣∣∣e−ix·(ξ1+...+ξn) − e−iy·(ξ1+...+ξn)

∣∣∣
2

∣∣∣∣∣∣

n∏

j=1

Fp
(0)
tτ(j+1)−tτ(j)




j∑

l=1

ξτ(l)



∣∣∣∣∣∣

2

+
1

2n!

∫

[0,t]2n

n∏

j=1

|sj − tj |−β0ds1 . . . dsndt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)
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×
∣∣∣e−ix·(ξ1+...+ξn) − e−iy·(ξ1+...+ξn)

∣∣∣
2

∣∣∣∣∣∣

n∏

j=1

Fp
(0)
sθ(j+1)−sθ(j)




j∑

l=1

ξθ(l)



∣∣∣∣∣∣

2

. (4.81)

We treat the two terms separately. For the first term, we integrate ds1 . . . dsn first. Substitute
(4.66) to the first term of (4.81), we have

1

2n!

∫

[0,t]2n

n∏

j=1

|sj − tj |−β0ds1 . . . dsndt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

×
∣∣∣e−ix·(ξ1+...+ξn) − e−iy·(ξ1+...+ξn)

∣∣∣
2

∣∣∣∣∣∣

n∏

j=1

Fp
(0)
tτ(j+1)−tτ(j)




j∑

l=1

ξτ(l)



∣∣∣∣∣∣

2

≤
Dn

t

2n!

∫

[0,t]n
dt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

×
∣∣∣1 − ei(x−y)·(ξ1+...+ξn)

∣∣∣
2

∣∣∣∣∣∣

n∏

j=1

Fp
(0)
tτ(j+1)−tτ(j)




j∑

l=1

ξτ(l)



∣∣∣∣∣∣

2

=
Dn

t

2

∫

0<t1<...<tn<t
dt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

×
∣∣∣1 − ei(x−y)·(ξ1+...+ξn)

∣∣∣
2

∣∣∣∣∣∣

n∏

j=1

Fp
(0)
tj+1−tj




j∑

l=1

ξl



∣∣∣∣∣∣

2

. (4.82)

For the second term of (4.81), we have similar result

1

2n!

∫

[0,t]2n

n∏

j=1

|sj − tj|
−β0ds1 . . . dsndt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

×
∣∣∣e−ix·(ξ1+...+ξn) − e−iy·(ξ1+...+ξn)

∣∣∣
2

∣∣∣∣∣∣

n∏

j=1

Fp
(0)
sθ(j+1)−sθ(j)




j∑

l=1

ξθ(l)



∣∣∣∣∣∣

2

≤
Dn

t

2

∫

0<t1<...<tn<t
dt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

×
∣∣∣1 − ei(x−y)·(ξ1+...+ξn)

∣∣∣
2

∣∣∣∣∣∣

n∏

j=1

Fp
(0)
tj+1−tj




j∑

l=1

ξl



∣∣∣∣∣∣

2

. (4.83)

Hence, substitute (4.82) and (4.83) to (4.81), we have

n!
∥∥∥f̃n(·, t, x) − f̃n(·, t, y)

∥∥∥
2

H⊗n

≤Dn
t

∫

0<t1<...<tn<t
dt1 . . . dtn

∫

Rnd
µ(dξ1) . . . µ(dξn)

×
∣∣∣1 − ei(x−y)·(ξ1+...+ξn)

∣∣∣
2

∣∣∣∣∣∣

n∏

j=1

Fp
(0)
tj+1−tj




j∑

l=1

ξl



∣∣∣∣∣∣

2

≤Dn
t

∫ t

0

∫

Rd

∣∣∣1 − ei(x−y)·(ξ1+...+ξn)
∣∣∣
2
∣∣∣∣∣Fp

(0)
t−tn

(
n∑

l=1

ξl

)∣∣∣∣∣

2

µ(dξn)dtn
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×

∫

0<t1<...<tn−1<t
dt1 . . . dtn−1

∫

R(n−1)d
µ(dξ1) . . . µ(dξn−1)

∣∣∣∣∣∣

n−1∏

j=1

Fp
(0)
tj+1−tj




j∑

l=1

ξl



∣∣∣∣∣∣

2

≤Dn
t CT |x − y|2α1

∫

0<t1<...<tn−1<t
dt1 . . . dtn−1

∫

R(n−1)d
µ(dξ1) . . . µ(dξn−1)

∣∣∣∣∣∣

n−1∏

j=1

Fp
(0)
tj+1−tj




j∑

l=1

ξl



∣∣∣∣∣∣

2

,

(4.84)

where we use the assumption (4.79) in the third inequality.

To compute the integral, one option is to integrate the spatial variables in the order dξn−1, . . . , dξ1

using the maximal principle (Lemma 4.4) and assumption (H). Then we will have

n!
∥∥∥f̃n(·, t, x) − f̃n(·, t, y)

∥∥∥
2

H⊗n

≤Dn
t CT |x − y|2α1

∫

0<t1<...<tn−1<t
dt1 . . . dtn−1

n−1∏

j=1

∫

Rd

∣∣∣Fp
(0)
tj+1−tj

(ξj)
∣∣∣
2

µ(dξj)

=Dn
t CT |x − y|2α1

∫

0<t1<...<tn−1<t
dt1 . . . dtn−1

n−1∏

j=1

∫

R2d
p

(0)
tj+1−tj

(xj)p
(0)
tj+1−tj

(yj)γ(xj − yj)dxjdyj

≤Dn
t C2n−2CT |x − y|2α1

∫

0<t1<...<tn−1<t
dt1 . . . dtn−1

n−1∏

j=1

∫

R2d
Ptj+1−tj

(−xj)Ptj+1−tj
(−yj)γ(xj − yj)dxjdyj

=Dn
t C2n−2CT |x − y|2α1

∫

0<t1<...<tn−1<t
dt1 . . . dtn−1

n−1∏

j=1

∫

Rd

∣∣∣FPtj+1−tj
(−ξj)

∣∣∣
2

µ(dξj)

≤Dn
t C2n−2c2n−2

1 CT |x − y|2α1

∫

0<t1<...<tn−1<t
dt1 . . . dtn−1

n−1∏

j=1

∫

Rd
exp (−2c2(tj+1 − tj)Ψ(−ξj)) µ(dξj),

where we use definition (2.12) of the inner product in the third line and fifth line. The integral
coincides with the integral line 2 of page 66 of [24]. Thus, n!‖f̃n(·, t, x) − f̃n(·, t, y)‖2

H⊗n/|x − y|2α1

is finite and sumable in n. Therefore, the Hölder continuity of u(t, x) follows directly from (4.80)
and the Hölder continuity of each f̃n(x1, . . . , xn, t, ·). �

We have the following maximal principle.

Lemma 4.4. For any a ∈ Rd, t ∈ R+, we have
∫

Rd

∣∣∣Fp
(0)
t (ξ + a)

∣∣∣
2

µ(dξ) ≤

∫

Rd

∣∣∣Fp
(0)
t (ξ)

∣∣∣
2

µ(dξ).

Proof. By Parseval–Plancherel identity, we have
∫

Rd

∣∣∣Fp
(0)
t (ξ + a)

∣∣∣
2

µ(dξ) =

∫

R2d
p

(0)
t (x)e−ιx·ap

(0)
t (y)e−ιy·aγ(x − y)dxdy

≤

∫

R2d
p

(0)
t (x)p

(0)
t (y)γ(x − y)dxdy

=

∫

Rd

∣∣∣Fp
(0)
t (ξ)

∣∣∣
2

µ(dξ).

�

Acknowledgement J. Song is partially supported by the National Natural Science Foundation
of China (nos. 12071256 and 12226001), the Major Basic Re- search Program of the Natural Science



SPDES ASSOCIATED WITH FELLER PROCESSES 29

Foundation of Shandong Province in China (nos. ZR2019ZD42 and ZR2020ZD24). W. Yuan
gratefully acknowledges the financial support of ERC Consolidator Grant 815703 “STAMFORD:
Statistical Methods for High Dimensional Diffusions”.

Appendix A. Feynman-Kac formula

Consider the following partial differential equation
{

∂u
∂t = Lu(t, x) + f(t, x)u(t, x), t ≥ 0, x ∈ Rd,

u(0, x) = u0(x), x ∈ Rd,
(1.85)

where L is the infinitesimal generator of a Feller process X, u0(x) is a bounded measurable function,
and f(t, x) is a measurable function. The Feynman-Kac formula for (1.85) can be found in [17,
Theorem 3.47]. Nevertheless, we provide our version of Feynman-Kac formula which suits our
purpose.

Assume

EX

[
exp

(∣∣∣∣
∫ t

0
f(t − s, Xx

s )ds

∣∣∣∣
)]

< ∞, for all x ∈ Rd. (1.86)

Then, the following Feynman-Kac representation

u(t, x) = EX

[
u0(Xx

t ) exp

(∫ t

0
f(t − s, Xx

s )ds

)]
(1.87)

is a Duhamel’s solution to (1.85), i.e.,

u(t, x) =

∫

R

p
(x)
t (y)u0(y)dy +

∫ t

0

∫

Rd
p

(x)
t−s(y)u(s, y)f(s, y)dyds. (1.88)

Proof. One can verify directly that u(t, x) given by (1.87) satisfies (1.88). For simplicity, we assume
u0(x) ≡ 1. Plugging the expression (1.87) to (1.88), we have that the right-hand side of (1.88) is

1 +

∫ t

0
EX [u(s, Xx

t−s)f(s, Xx
t−s)]ds

=1 +

∫ t

0
EX [u(t − s, Xx

s )f(t − s, Xx
s )]ds

=1 +

∫ t

0
EX

[
ẼX̃

[
exp

(∫ t−s

0
f(t − s − r, X̃Xx

s
r )dr

)]
f(t − s, Xx

s )

]
ds,

(1.89)

where X̃ is an independent copy of X and Ẽ means the expectation with respect to X̃ . Applying
Taylor’s expansion to the function ex and then taking expectation, one can show that the resulting
series of the right-hand side of (1.89) is absolute convergent under the condition (1.86) and coincides

with the series expansion of u(t, x) = EX

[
exp

(∫ t
0 f(t − s, Xx

s )ds
)]

on the left-hand side of (1.88).
�
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