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ON A CLASS OF STOCHASTIC FRACTIONAL HEAT EQUATIONS

JIAN SONG, MENG WANG, AND WANGJUN YUAN

Abstract. Considering the stochastic fractional heat equation driven by Gaussian noise with
the covariance function defined by the heat kernel, we establish Feynman-Kac formulae for both
Stratonovich and Skorohod solutions, along with their respective moments. One motivation lies
in the occurrence of this equation in the study of a random walk in random environment which is
generated by a field of independent random walks starting from a Poisson field.
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1. introduction

Consider the following stochastic fractional heat equation






∂

∂t
u(t, x) = − (−∆)

α
2 u(t, x) + u(t, x)Ẇ (t, x), t ≥ 0, x ∈ R

d,

u(0, x) =u0(x),
(1.1)

where −(−∆)
α
2 is the fractional Laplacian with α ∈ (0, 2], the initial value u0 is a bounded con-

tinuous function, the noise Ẇ is a generalized space-time Gaussian field with covariance function
given by

E

[

Ẇ (t, x)Ẇ (s, y)
]

= p|t−s|(x− y), (1.2)

where pt(x) = (2πt)− d
2 exp(− |x|2

2t
) for t > 0 and x ∈ R

d is the heat kernel, and the product in uẆ
is either an ordinary product or a Wick product.

In this note, we shall prove Feynman-Kac formula for the Stratonovich solution of (1.1) (cor-
responding to the ordinary product in uẆ ) which has been done for the case α = 2, d = 1 in
[18], and prove the existence and uniqueness of the Skorohod solution (corresponding to the Wick
product in uẆ ) and derive Feynman-Kac formulae for the solution and its moments. We obtain the
Feynman-Kac formulae for the Stratonovich solution of (1.1) and its moments for d < 2 (i.e. d = 1
and α ∈ (0, 2], see Theorem 3.3), prove that the Skorohod solution exists uniquely for d < 2+α (see
Theorem 4.1), and obtain the Feynman-Kac formulae for the Skorohod solution and its moments
for d < 2 and for d < 2 + α respectively (see Theorem 4.2 and Theorem 4.3).

We present a selection of related works within the SPDEs literature, recognizing that this list
is not exhaustive. It was shown in [10] that (1.1) with space-time white noise Ẇ admits a unique
square integrable Skorohod solution only when d = 1. When the noise Ẇ is white in space and
colored in time, the condition for the existence of a unique Skorohod solution of (1.1) was identified
in [12]. In [13] the Feynman-Kac formulae for the Stratonovich and Skorohod solutions as well as
for the moments were obtained, where Ẇ is the partial derivative of fractional Brownian sheet with
the Hurst parameters within (1

2 , 1). The case that Ẇ is a general Gaussian noise was studied in
[11]. All the above-mentioned works considered the case α = 2. The result in [13] was extended in
[6] to the case α ∈ (0, 2], and to SPDEs with the differential operator associated with a symmetric
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Lévy process in [19]. We also refer to [21, 5, 9, 14, 2, 7, 3, 20] and the references therein for more
related results.

The stochastic heat equation with multiplicative Gaussian noise in the form of (1.1) is intimately
connected with the directed polymer model in random environment, of which the study was initiated
in [1] and further developed in [4, 16, 18, 8, 17], etc. It was proved in [1] that for a simple symmetric
random walk in i.i.d random environment on N × Z, the rescaled partition function converges
weakly to the Itô (i.e. Skorohod) solution of (1.1) with d = 1, α = 2 and Ẇ being space-time
white noise; this result was extended from a simple random walk to a long-range random walk
in [4] and correspondingly α belongs to (1, 2]. When the environment is correlated in space but
still independent in time, the case of simple random walk (resp. long-range random walk) was
considered in [16] (resp. [8]), in which they proved that the rescaled partition function converges
weakly to the Itô solution of (1.1) with α = 2 (resp. α ∈ (1, 2]) and the noise being white in time
and colored in space. When the environment is correlated in time but independent in space and
the random walk is possibly long-range, it was shown in [17] that there are two types of rescaled
partition functions which converge weakly to the Skorohod solution and the Stratonovich solution
respectively of (1.1) with d = 1, α ∈ (1, 2] and the Gaussian noise Ẇ being colored in time and
white in space. For a simple symmetric random walk in time-space correlated random environment
generated by a Poisson field of independent random walks, the rescaled partition function was
proved in [18] to converge weakly to the Stratonovich solution of (1.1) with d = 1, α = 2 and the
covariance of Ẇ being given by (1.2).

The study of the equation (1.1) with the covariance of the noise given by (1.2) is inspired by the
above-mentioned works, in particular by [18] and [17]. In light of [18] and [17], our result suggests
that for a long-range random walk in a Poisson field of independent of random walks, there should
exist two types of partition functions converging weakly to the Stratonovich solution for d = 1
and to the Skorohod solution for d < 2 + α respectively, as done in [17] (see Theorem 1.2 and
Theorem 1.3 therein).

The rest of the paper is organized as follows. In section 2, some preliminary knowledge is
provided. In Sections 3 and 4, the Stratonovich solution and the Skorohod solution are studied
respectively.

2. Preliminaries

In this section, we provide some facts that will be used in this note on α-stale process and
Gaussian analysis.

Let X = {Xt, t ≥ 0} be a d-dimensional α-stable process independent of Ẇ with the density
function gα(·, ·). Note that when α = 2, gα(t, x) = pt(x). The Fourier transform of gα(t, ·) with
respect to the spatial variables is given by

Fgα(t, ξ) = exp (−cαt|ξ|
α) (2.3)

for some cα > 0. Moreover, for p > 0,
∫

Rd
|Fgα(t, ξ)|p dξ = (cαtp)

− d
α

∫

Rd
e−|ξ|αdξ = Cp− d

α t−
d
α (2.4)

for some constant C that depends on cα, α and d.

Let H be the completion of the space of C∞
c ([0,∞) × R

d) of smooth functions with compact
support equipped with the inner product

〈f, g〉H =

∫

R2
+×R2d

f(s, x)g(t, y)p|t−s|(x− y)dxdydsdt



STOCHASTIC FRACTIONAL HEAT EQUATION 3

=

∫

R2
+×Rd

Ff(s, ·)(ξ)Fg(t, ·)(ξ)Fp|t−s|(ξ)dξdsdt. (2.5)

We denote by ‖ · ‖H the norm induced by the inner product.

In a complete probability space (Ω,F , P ), define an isonormal Gaussian process {W (g), g ∈ H}
with covariance E [W (g)W (h)] = 〈g, h〉H for all g, h ∈ H. In this paper, we also denote

W (g) :=

∫

R+

∫

Rd
g(t, x)W (dt, dx).

In particular, if g(s, y) = 1A(s, y) where A is of the form [0, t]×
∏d

j=1[0, xj ], we also write W (t, x) =

W (IA). The Gaussian noise Ẇ (t, x) can be identified as the generalized derivative ∂1+d

∂t∂x1···∂xd
W (t, x).

Let C∞
p (R+ ×R

d) be the set of all infinitely continuously differentiable functions with all partial
derivatives being polynomial growth. We define the set

S =
{

f (W (g1), . . . ,W (gn)) : n ∈ N+, f ∈ C∞
p (R+ × R

d), g1, . . . , gn ∈ H
}

.

Then we can define the Malliavin derivative D on S by

D (f (W (g1), . . . ,W (gn))) =
n
∑

j=1

∂f

∂xj
(W (g1), . . . ,W (gn)) gj .

The operator D is closable from L2(Ω) to L2(Ω; H) and we denote by D
1,2 the closure of S under

the norm ‖F‖1,2 =
(

E
[

|F |2
]

+ E
[

‖DF‖2
H

])
1
2 . Define

Dom(δ) :=
{

u : |E [〈DF, u〉H]| ≤ cu‖F‖2, for all F ∈ D
1,2
}

.

For u ∈ Dom(δ), the divergence operator (also called Skorohod integral) δ(u) defined by the fol-
lowing duality formula E [Fδ(u)] = E [〈DF, u〉H] . We also write δ(u) :=

∫∞
0

∫

Rd u(s, x)W (ds, dx).
For more details, we refer to [15].

Throughout this note, we use C to denote a generic constant which may vary in different contexts.

3. Stratonovich solution

In this section, we will study the solution of (1.1) in the Stratonovich sense, mainly following
the approach used in [18, Section 2].

Denote

Aε,δ
t,x(r, y) =

∫ t

0
ψδ(t − s− r)pε(Xx

s − y)ds, (3.6)

where ψδ(t) = 1
δ
I[0,δ](t) for t ≥ 0, and Xx

s = Xs + x. Hence Aε,δ
t,x(r, y) is an approximation of

δ(Xx
t−r − y) when ε and δ are small. It was shown in [18, Proposition 2.3] that Aε,δ

t,x belongs to H

almost surely for all ε, δ > 0 and Iε,δ
t,x =

∫ t
0

∫

Rd A
ε,δ
t,x(r, y)W (dr, dy) = W (Aε,δ

t,x) is well-defined. By
the same argument used in the proof of [18, Proposition 2.3], we can get the following result.

Theorem 3.1. Assume d = 1. Then we have Iε,δ
t,x converges in L2 as (ε, δ) → 0 to a limit It,x

denoted by

It,x =:

∫ t

0

∫

Rd
δ(Xx

t−r − y)W (dr, dy) = W (δ(Xx
t−· − ·)). (3.7)
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Conditional on X, It,x is a Gaussian random variable with mean 0 and variance

Var[It,x|X] =

∫ t

0

∫ t

0
p|s−r|(Xs −Xr)drds. (3.8)

Theorem 3.2. The following estimate holds if and only if d = 1:

E

[

exp

(∫ t

0

∫ t

0
p|s−r|(Xs −Xr)drds

)]

< ∞. (3.9)

Proof. When d = 1, clearly (3.9) follows from
∫ t

0

∫ t

0
p|s−r|(Xs −Xr)drds ≤

∫ t

0

∫ t

0
(2π|s − r|)− 1

2 drds < ∞.

Now we show the necessity of the condition d = 1, for which we show that d = 1 is a necessary

condition for E

[

∫ t
0

∫ t
0 p|r−s|(Xs −Xr)drds

]

< ∞. Indeed, we have

E

[∫ t

0

∫ t

0
p|s−r|(Xs −Xr)drds

]

= 2

∫ t

0

∫ s

0

∫

Rd
ps−r(y)gα(s− r, y)dydrds

= 2

∫ t

0

∫ s

0

∫

Rd
e−(s−r)(|ξ|2+cα|ξ|α)dξdrds ≥ 2

∫ t

0

∫ s

0

∫

|ξ|≥1
e−C(s−r)(|ξ|2+|ξ|α)dξdrds

≥ 2

∫ t

0

∫ s

0

∫

|ξ|≥1
e−2C(s−r)|ξ|2dξdrds.

Noting that

2

∫ t

0

∫ s

0

∫

Rd
e−2C(s−r)|ξ|2dξdrds = C

∫ t

0

∫ s

0
(s− r)− d

2 drds

is finite iff d = 1 and that 2
∫ t

0

∫ s
0

∫

|ξ|<1 e
−2C(s−r)|ξ|2dξdrds is finite for all d, we deduce that d = 1

is a necessary condition for E

[

∫ t
0

∫ t
0 p|s−r|(Xs −Xr)drds

]

< ∞ and hence for (3.9). �

Consider the following approximation of Ẇ (t, x):

Ẇ ε,δ(t, x) =

∫

[0,t]×R

ψδ(t− s)pε(x− y)W (ds, dy),

The following definition of Stratonovich integral is borrowed from [13, Definition 4.1].

Definition 3.1. Given a random field v = {v(t, x), t ≥ 0, x ∈ R
d} such that

∫ T
0

∫

Rd |v(t, x)|dxdt <

∞ almost surely for all T > 0, the Stratonovich integral
∫ T

0

∫

Rd v(t, x)W (dt, dx) is defined as the

following limit in probability,

lim
ε,δ→0

∫ T

0

∫

Rd
v(t, x)Ẇ ε,δ(t, x)dxdt.

Let FW
t be the σ-algebra generated by {W (s, x), s ∈ [0, t], x ∈ R

d}.

Definition 3.2. A random field {u(t, x), t ≥ 0, x ∈ R
d} is a mild Stratonovich solution to (1.1) if

for all t ≥ 0 and x ∈ R
d, u(t, x) is FW

t -measurable and the following integral equation holds

u(t, x) = (gα(t, ·) ∗ u0)(x) +

∫ t

0

∫

Rd
gα(t− s, x− y)u(s, y)W (ds, dy), (3.10)

where (gα(t, ·) ∗ u0)(x) =
∫

Rd gα(t, x − y)u0(y)dy and the stochastic integral is in the Stratonivich

sense of Definition (3.1).

Below is the main result for mild Stratonovich solution.
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Theorem 3.3. Assume d = 1. Then,

u(t, x) = EX

[

u0(Xx
t ) exp

(∫ t

0

∫

Rd
δ(Xx

t−r − y)W (dr, dy)

)]

(3.11)

is a mild Stratonovich solution of (1.1). Furthermore, for any positive integer p,

E [u(t, x)p] = E

[ p
∏

j=1

u0(X
(j)
t + x) exp

(

1

2

p
∑

j,k=1

∫

[0,t]2
p|s−r|

(

X(j)
s −X(k)

r

)

dsdr

)]

, (3.12)

where X(1), · · · ,X(p) are independent copies of X.

Proof. Noting Theorem 3.2, the proof of (3.11) follows exactly the same argument used in [19,
Theorem 4.6] (see also the proof of [18, Proposition 1.7]). The formula (3.12) is a direct consequence
of (3.11). �

4. Skorohod solution

In this section, we will prove the existence and uniqueness of the Skorohod solution of (1.1),
and present Feynman-Kac formulae for the solution and its moments. The method is inspired, for
instance, by [19].

4.1. The existence and uniqueness of the Skorohod solution.

Definition 4.3. A random field u = {u(t, x), t ≥ 0, x ∈ R
d} is a mild Skorohod solution of (1.1)

if for all t ≥ 0 and x ∈ R
d, u(t, x) is FW

t -measurable, square-integrable, and satisfies the following

integral equation:

u(t, x) = (gα(t, ·) ∗ u0)(x) +

∫ t

0

∫

Rd
gα(t− s, x− y)u(s, y)W (ds, dy), (4.13)

where (gα(t, ·)∗u0)(x) =
∫

Rd gα(t, x−y)u0(y)dy and the stochastic integral is in the Skorohod sense.

If (1.1) admits a solution u, then by iteration, one can formally write

u(t, x) = (gα(t, ·) ∗ u0)(x) +
∞
∑

n=1

In(f̃n), (4.14)

where the function fn is given by

fn(x1, s1, . . . , xn, sn, x, t) =
n
∏

j=1

gα(sj+1 − sj, xj+1 − xj)u0(x1)1{0<s1<...<sn<t},

with convention sn+1 = t and xn+1 = x, f̃n is the symmetrization of fn, i.e.

f̃n(x1, s1, . . . , xn, sn, x, t) =
1

n!
fn(xτ(1), sτ(1), . . . , xτ(n), sτ(n), x, t),

where τ is the permutation such that 0 < sτ(1) < . . . < sτ(n) < t and In(·) is the multiple Wiener
integral given by

In(fn) =

∫

Rn
+

∫

Rnd
fn(x1, s1, . . . , xn, sn, x, t)W (ds1, dx1) . . .W (dsn, dxn).

Noting the expansion (4.14) and the uniqueness of the Wiener chaos expansion, we have that the
existence of a unique mild Skorohod solution to (1.1) is equivalent to

E

[

∣

∣(gα(t, ·) ∗ u0)(x)
∣

∣

2
]

+
∞
∑

n=1

n!
∥

∥

∥f̃n(·, t, x)
∥

∥

∥

2

H⊗n
< ∞, (4.15)
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for all (t, x) ∈ [0, T ] × R
d. The following theorem is the main theorem of this paper.

Theorem 4.1. Assume d < 2 + α. Then the condition (4.15) is satisfied and hence equation (1.1)
admits a unique mild Skorohod solution.

Proof. Without loss of generality, we assume that u0 ≡ 1. For n ≥ 1, by (2.5), we have

n!
∥

∥

∥f̃n(·, t, x)
∥

∥

∥

2

H⊗n

=
1

n!

∫

[0,t]2n

∫

R2nd
fn(xτ(1), sτ(1), . . . , xτ(n), sτ(n), x, t)

n
∏

j=1

p|sj−rj |(xj − yj)

× fn(yσ(1), rσ(1), . . . , yσ(n), rσ(n), x, t)dxdydrds

=
1

n!

∫

[0,t]2n

∫

Rnd
Ffn(·, sτ(1), . . . , ·, sτ(n), x, t)(ξ1, . . . , ξn)

n
∏

j=1

Fp|sj−rj |(ξj) (4.16)

× Ffn(·, rσ(1), . . . , ·, rσ(n), x, t)(ξ1, . . . , ξn)dξdrds

≤
1

n!

∫

[0,t]2n

∫

Rnd

n
∏

j=1

exp
(

−cα

[

(sτ(j+1) − sτ(j)) + (rσ(j+1) − rσ(j))
]

|ξj |α
)

exp
(

−|sj − rj ||ξj |2
)

dξdrds,

with 0 < sτ(1) < . . . < sτ(n) < t and 0 < rσ(1) < . . . < rσ(n) < t. The last inequality in (4.16)
follows from (2.3), maximum principle in [19, Lemma 4.9] and the fact that

Ffn(·, sτ(1), . . . , ·, sτ(n), x, t)(ξ1, . . . , ξn) = exp



−ix ·
n
∑

j=1

ξj





n
∏

j=1

Fgα(sτ(j+1) − sτ(j), ξ1 + · · · + ξj).

Let p, q > 0 such that 2
p

+ 1
q
=1. Then by utilizing Hölder inequality and (2.4), we have that for

some constant C depending on p, q, α, d,

n!
∥

∥

∥f̃n(·, t, x)
∥

∥

∥

2

H⊗n

≤
1

n!

∫

[0,t]2n

(∫

Rnd

n
∏

j=1

exp
(

−cαp(sτ(j+1) − sτ(j))|ξj |α
)

dξ

)

1
p
(∫

Rnd

n
∏

j=1

exp
(

−q(sj − rj)|ξj |2
)

dξ

)

1
q

×

(∫

Rnd

n
∏

j=1

exp
(

−cαp(rσ(j+1) − rσ(j))|ξj |α
)

dξ

)

1
p

drds

=
1

n!
Cn

∫

[0,t]2n

n
∏

j=1

(sτ(j+1) − sτ(j))
− d

pα

n
∏

j=1

(rσ(j+1) − rσ(j))
− d

pα

n
∏

j=1

(sj − rj)− d
2q drds (4.17)

≤
1

n!
Cn

(
∫

[0,t]n

n
∏

j=1

(

sτ(j+1) − sτ(j)

)− d
pα

× 2

(2− d
2q

) ds

)2− d
2q

(4.18)

=
1

n!
Cn(n!)

2− d
2q

(∫

{0<s1<···<sn<t}

n
∏

j=1

(sj+1 − sj)
− d

pα
× 2

(2−
d

2q
) ds

)2− d
2q

(4.19)

= Cn(n!)
1− d

2q

(

Γ(1 − 2d

pα(2− d
2q

)
)

)n(2− d
2q

)

(

Γ(n− 2nd

pα(2− d
2q

)
+ 1)

)2− d
2q

. (4.20)
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In the derivation above, we assume α, d, p, q with 2
p

+ 1
q

= 1 satisfy the following three conditions:

−
d

2q
∈ (−1, 0) ⇐⇒ d < 2q,

2d

pα(2 − d
2q

)
< 1 ⇐⇒ d <

4pqα

4q + pα
,

(

1 −
2d

pα(2 − d
2q

)

)

(2 −
d

2q
) > 1 −

d

2q
⇐⇒ d <

pα

2
.

where the first condition is due to Lemma 5.1.1 in [15] by which we deduce (4.18), the second one
ensures the integral in (4.19) is finite, and the third one is used to obtain the convergence of the
series. It turns out that if we choose p = (4 + 2α)/α and q = 1 + α

2 , those three conditions are
satisfied, and we get the optimal condition d < 2 + α which is assumed in this theorem. The last
equality (4.20) follows from Lemma C.3 of [17], by which we deduce (4.15) from Stirling’s formula
and the condition d < 2 + α. The proof is complete. �

4.2. Feynman-Kac formulae. In this subsection, we present Feynman-Kac type representations
for the Skorohod solution and its moments.

Theorem 4.2. When d = 1, the process

u(t, x) = EX

[

u0(Xx
t ) exp

(

∫

[0,t]2
δ(Xx

t−r − y)W (dr, dy) −
1

2

∫

[0,t]2
p|s−r|(Xs −Xr)dsdr

)]

(4.21)

is the unique mild Skorohod solution to (1.1).

Proof. Note that when d = 1, Theorem 3.3 holds. Then the proof follows directly from the argument
used in the proof of [13, Theorem 7.2]. �

Theorem 4.1 indicates that the existence and uniqueness of the Skorohod solution hold under
the condition d < 2 + α. However, the Feynman-Kac formula (4.21) for the Skorohod solution of
equation (1.1) is valid only when d = 1, as referenced in [13, Proposition 3.2]. Nevertheless, we
can investigate the Feynman-Kac formula for the p-th order moments of the Skorohod solution in
the case d < 2 + α.

Theorem 4.3. Assume d < 2 +α and {u(t, x), t ≥ 0, x ∈ R
d} is a mild Skorohod solution of (1.1).

Then for all positive integer p, we have

E [u(t, x)p] = E

[ p
∏

j=1

u0(X
(j)
t + x) exp

(

∑

1≤j<k≤p

∫

[0,t]2
p|s−r|

(

X(j)
s −X(k)

r

)

dsdr

)]

, (4.22)

where X(1), · · · ,X(p) are independent copies of X.

Proof. When d = 1, the desired formula (4.22) follows from (4.21) directly. For d ∈ (1, 2 + α), we
consider the following approximation of (1.1):











∂

∂t
uε,δ(t, x) = − (−∆)

α
2 uε,δ(t, x) + uε,δ(t, x)Wε,δ(t, x),

uε,δ(0, x) =u0(x).
(4.23)

In accordance with Definition 4.3, the mild solution of (4.23) satisfies

uε,δ(t, x) = (gα(t, ·) ∗ u0)(x) +

∫ t

0

∫

Rd
gα(t− s, x− y)uε,δ(s, y)W ε,δ(ds, dy). (4.24)
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Using a similar argument as in the proof of [19, Theorem 5.6], we have

uε,δ(t, x) = EX

[

u0(Xx
t ) exp

(

W
(

Aε,δ
t,x

)

−
∥

∥Aε,δ
t,x

∥

∥

2

H

)

]

. (4.25)

satisfies (4.24) and hence is a mild solution of equation (4.23).

For the p-th moment of uε,δ(t, x), we have

E

[

|uε,δ(t, x)|p
]

=E

[ p
∏

j=1

u0
(

X
(j)
t + x

)

exp

( p
∑

j=1

W
(

A
ε,δ,(j)
t,x

)

−
1

2

p
∑

j=1

∥

∥A
ε,δ,(j)
t,x

∥

∥

2

H

)]

=E

[

EW

[ p
∏

j=1

u0
(

X
(j)
t + x

)

exp

(

W
(

p
∑

j=1

A
ε,δ,(j)
t,x

)

−
1

2

p
∑

j=1

∥

∥A
ε,δ,(j)
t,x

∥

∥

2

H

)]]

=E

[ p
∏

j=1

u0

(

X
(j)
t + x

)

exp

(

1

2

∥

∥

∥

p
∑

j=1

A
ε,δ,(j)
t,x

∥

∥

∥

2

H
−

1

2

p
∑

j=1

∥

∥A
ε,δ,(j)
t,x

∥

∥

2

H

)]

=E

[ p
∏

j=1

u0
(

X
(j)
t + x

)

exp

(

∑

1≤j<k≤p

〈

A
ε,δ,(j)
t,x , A

ε,δ,(k)
t,x

〉

H

)]

, (4.26)

where A
ε,δ,(j)
t,x is defined by (3.6) with X replaced by X(j).

By (3.6) and (2.5), we have
〈

A
ε,δ,(j)
t,x , A

ε,δ,(k)
t,x

〉

H
=

∫

[0,t]4

∫

R2d
ψδ(t − s− u)ψδ(t− r − v)p|u−v|(y − z) (4.27)

× pε(X(j),x
s − y)pε(X(k),x

r − z)dydzdrdsdudv,

where X
(j),x
s = X

(j)
s + x. By the semigroup property of the heat kernel, we have

∫

R2d
pε(X

(j),x
s − y)pε(X(k),x

r − z)p|u−v|(y − z)dydz = p|u−v|+2ε(X
(j)
s −X(k)

r ),

and hence
〈

A
ε,δ,(j)
t,x , A

ε,δ,(k)
t,x

〉

H
=

∫

[0,t]4
ψδ(t− s− u)ψδ(t − r − v)p|u−v|+2ε(X(j)

s −X(k)
r )drdsdudv

=

∫

[0,t]4
ψδ(u− s)ψδ(v − r)p|u−v|+2ε(X

(j)
s −X(k)

r )drdsdudv,
(4.28)

Therefore, noting

lim
ε,δ→0

〈

A
ε,δ,(j)
t,x , A

ε,δ,(k)
t,x

〉

H
=

∫

[0,t]2
p|s−r|(X

(j)
s −X(k)

r )drds,

to prove the desired result (4.22) by the dominated convergence theorem, it suffices to show, for
j 6= k,

sup
ε,δ>0

sup
t∈[0,T ]

E

[

exp

(

λ
〈

A
ε,δ,(j)
t,x , A

ε,δ,(k)
t,x

〉

H

)]

< ∞, for all λ > 0. (4.29)

By (4.28) and the independence between X(j) and X(k) for j 6= k, we have

1

n!
E

[(

〈

A
ε,δ,(j)
t,x , A

ε,δ,(k)
t,x

〉

H

)n]

=
1

n!

∫

[0,t]4n

∫

R2nd
fn(xτ(1), sτ(1), . . . , xτ(n), sτ(n), x, t)

n
∏

i=1

p|ui−vi|+2ε(xi − yi)ψδ(ui − si)ψδ(vi − ri)
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× fn(yσ(1), tσ(1), . . . , yσ(n), tσ(n), x, t)dxdydsdrdudv

=
1

n!

∫

[0,t]4n

n
∏

i=1

ψδ(ui − s)ψδ(vi − ri)

∫

Rnd
Ffn(·, rτ(1), . . . , ·, rτ(n), x, t)(ξ1, . . . , ξn)

n
∏

i=1

Fp|ui−vi|+2ε(ξi)

× Ffn(·, sσ(1), . . . , ·, sσ(n), x, t)(ξ1, . . . , ξn)dξdsdrdudv

≤
1

n!

∫

[0,t]4n

n
∏

i=1

ψδ(ui − si)ψδ(vi − ri)

×

∫

Rnd

n
∏

i=1

exp
(

−cα

[

(sτ(i+1) − sτ(i)) + (rσ(i+1) − rσ(i))
]

|ξi|
α
)

exp
(

−|ui − vi||ξi|
2)dξdsdrdudv,

with 0 < sτ(1) < . . . < sτ(n) < t and 0 < rσ(1) < . . . < rσ(n) < t. Then following the argument
leading to (4.17) in the proof of Theorem 4.1, we get

1

n!
E

[(

〈

A
ε,δ,(j)
t,x , A

ε,δ,(k)
t,x

〉

H

)n]

≤
1

n!
Cn

∫

[0,t]4n

n
∏

i=1

ψδ(ui − si)ψδ(vi − ri)

×
n
∏

i=1

(rσ(i+1) − rσ(i))
− d

pα

n
∏

i=1

(sτ(i+1) − sτ(i))
− d

pα

n
∏

i=1

(ui − vi)
− d

2q drdsdudv

≤
1

n!
Cn

∫

[0,t]2n

n
∏

i=1

(rσ(i+1) − rσ(i))
− d

pα

n
∏

i=1

(sτ(i+1) − sτ(j))
− d

pα

n
∏

j=1

(si − ri)
− d

2q drds

where the last step follows from Lemma A.3 of [13]: noting d
2q

∈ (0, 1),
∫

[0,t]2
ψδ(u− s)ψδ(v − r)|u− v|

− d
2q dudv ≤ C|s− r|

− d
2q .

Then estimate (4.29) can be proved by using the same argument as in the proof of Theorem 4.1.
The proof is concluded. �
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