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a b s t r a c t

Since the introduction of Dyson’s Brownian motion in early 1960s, there have been a lot
of developments in the investigation of stochastic processes on the space of Hermitian
matrices. Their properties, especially, the properties of their eigenvalues have been
studied in great detail. In particular, the limiting behaviours of the eigenvalues are found
when the dimension of the matrix space tends to infinity, which connects with random
matrix theory. This survey reviews a selection of results on the eigenvalues of stochastic
processes from the literature of the past three decades. For most recent variations of
such processes, such as matrix-valued processes driven by fractional Brownian motion
or Brownian sheet, the eigenvalues of them are also discussed in this survey. In the end,
some open problems in the area are also proposed.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Stochastic processes with values in the space of symmetric matrices have been attracting the attention for some years.
heir introduction is commonly attributed to the celebrated work [16] by F. J. Dyson. By that time, Gaussian matrix
nsembles were well known; the distribution of their eigenvalues has a density function of the form

G(x1, . . . , xn) = C exp{−βW }, W = W (x1, . . . , xn) = −

∑
i<j

ln |xi − xj| +

∑
i

(x2i /2a
2), (1)

here β, a > 0 are parameters, and C = C(β, a) is a normalization constant. The distribution (1) also appears in the
oulomb gas model: it is the probability distribution of the positions of n point charges which are free to move on the
eal line R under the forces derived from the potential energy W and in a state of thermodynamic equilibrium at a
temperature T = (kβ)−1 (k is the Boltzmann constant). Note that Eq. (1) is static and does not describe the evolution
of the position of the point charges before reaching the equilibrium. Dyson brought in the Brownian motion to get a
time-dependent model that describes the evolution of the positions from an initial distribution F0. The Brownian motion,
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lso called the time-dependent Coulomb gas has a simple structure, and the joint density function F (x1, . . . , xn; t) of the
ositions of the n point charges at time t > 0 is fully characterized as a solution to the Smoluchowski equation

c
∂F
∂t

=

∑
i

[
1
β

∂2F
∂x2i

−
∂

∂xi
{E(xi)F}

]
, (2)

where c is a constant and

E(xi) = −
∂W
∂xi

=

∑
j̸=i

1
xj − xi

−
xi
a2

is an external electric force. In particular, F (x1, . . . , xn; t) tends to the Coulomb gas distribution G in (1) as t → ∞.
This extension of Coulomb gas from the static equilibrium state to a dynamical version also applies to the associated

Gaussian matrix ensembles. More precisely, Dyson introduced a stochastic process with values in the space of symmetric
matrices, the eigenvalues of which coincide with the dynamical Coulomb gas model. Amazingly, this process is extremely
simple: its elements are independent Ornstein–Uhlenbeck processes on the underlying field! (The underlying field is R
for β = 1, C for β = 2, and the quaternion field for β = 4).

This deep connection between stochastic processes with values in the space of symmetric (Hermitian) matrices and
the induced dynamical system of its eigenvalues, had been however quite ignored during a while afterwards. It was
revived in the papers [6,51] where the idea of Dyson was extended to the space of positive-definite matrices (ellipsoids).
In the subsequent three decades, the study of these stochastic processes and their associated eigenvalue processes has
been developed in much depth. Particularly, the symmetric (Hermitian) matrix-valued processes have covered Brownian
motion, Ornstein–Uhlenbeck process and fractional Brownian motion.

Instead of considering the N particles (eigenvalues) with N fixed, the limits of the empirical measures of particles
when N tends to infinity (high-dimensional limits) were studied in several models. In particular, the high-dimensional
limit of the empirical measures of the Dyson’s Brownian motion is the famous Wigner’s semicircle law, which provides a
dynamical version of Wigner’s Theorem for GOE and GUE (see, e.g., [1]). In this aspect, the study of large particle systems
is closely related to the random matrix theory. Moreover, the equation satisfied by the limits of the empirical measures
of the Dyson’s Brownian motion is the so-called McKean–Vlasov equation, which appears in the study of propagation of
chaos for large systems of interacting particles (see [3,30,63]).

Another motivation for studying high-dimensional limits of the empirical measures of eigenvalues arises from free
probability theory. By [4], the free additive Brownian motion can be viewed as the high-dimensional limit of a matrix
Brownian motion with appropriate scaling. Moreover, [4,5] developed the stochastic calculus for free Brownian motion.
Besides, the non-commutative fractional Brownian motion was introduced in [52].

There is also a deep connection between matrix-valued stochastic processes and multivariate statistical analysis. Here
are a few applications of these processes in recent statistical literature:

1. Financial data analysis: multivariate volatility/co-volatility (variance/covariance) between stock returns or interest
rates from different markets have been studied recently through Wishart processes, see [13,18–20,22,23,72].

2. Machine learning: an important task in machine learning using kernel functions is the determination of a suitable
kernel matrix for a given data analysis problem [62]. Such determination is referred as the kernel matrix learning
problem. A kernel matrix is in fact a positive definite Gram-matrix of size N × N where N , the sample size of the
data, is usually large. An innovative method for kernel learning is proposed by [74] where unknown kernel matrix
is modelled by a Wishart process prior. This approach has been followed in [41,44].

3. Computer vision: real-time computer vision often involves tracking of objects of interest. At each time t , a target
is encoded into a N-dimensional vector at ∈ RN (feature vector). It is therefore clear that measuring ‘‘distance’’
between these vectors, say at and at+dt at two consecutive time spots t and t + dt , is of crucial importance for
object tracking. Because the standard Euclidean distance ∥at+dt − at∥2 is rarely optimal, it is more satisfactory to
identify a better metric of the form (at+dt − at )⊺Mt (at+dt − at ) using a suitable positive definite matrix Mt . An
innovative model where the process Mt follows a Wishart process is proposed in [45].

This survey reviews a selection of results from the last three decades. In Section 2, we provide a study of Dyson’s
Brownian motion with full details. This includes a modern derivation of the process using Itô calculus. A limit for the
processes of empirical eigenvalue measures is derived when the number of eigenvalues, or electric charges, tends to
infinity. Besides, a limiting Gaussian process is derived in order to characterize the fluctuation of the empirical eigenvalue
measures around their limit. In Section 3, we discuss two specific classes of stochastic processes with values in the space
of positive-definite matrices, that is, Brownian motions of ellipsoids and Wishart processes. In Section 4, a more general
form of stochastic processes on the space of Hermitian matrices is studied, and a link is also made with some familiar
systems of interacting particles. The following Sections 5 and 6 concern extensions of Dyson’s Brownian motion in two
different directions. The first extension replaces the Brownian motions in the matrix by fractional Brownian motions, and
the second one by Brownian sheets. Finally in Section 7, we conclude with a discussion on open problems related to the
results introduced in the preceding sections.
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. Dyson’s Brownian motion

In this section, we mainly focus on the Dyson’s Brownian motion. We discuss the system of SDEs satisfied by Dyson’s
rownian motion in Section 2.1 and the limiting behaviours of the eigenvalue empirical measure process in Section 2.2.

.1. Finite-dimensional results

Throughout the survey, we denote the complex imaginary by ι =
√

−1.

Definition 1. Let {Bi,j(t), B̃i,j(t), 1 ≤ i ≤ j ≤ N} be a family of i.i.d. real valued standard Brownian motions. Let
HN,β (t) =

(
HN,β

k,l (t)
)
1≤k≤l≤N

be a real symmetric (β = 1) or complex Hermitian (β = 2) N × N matrix-valued process
with entries

HN,β
k,l (t) =

1
√
βN

(
Bk,l(t) + ι(β − 1)B̃k,l(t)

)
1{k<l} +

√
2

√
βN

Bl,l(t)1{k=l}.

hen HN,1(t) is a real symmetric matrix Brownian motion and HN,2(t) is a complex Hermitian matrix Brownian motion.

The following results state that the eigenvalue processes of real symmetric or complex Hermitian matrix Brownian
otion never collide almost surely and are characterized by a system of stochastic differential equations (SDEs).

heorem 1 ([1], Theorem 4.3.2). Let XN,β (0) be a real symmetric (β = 1) or complex Hermitian (β = 2) N ×N deterministic
matrix and let XN,β (t) = XN,β (0) + HN,β (t). Let λN,β1 (t) ≥ λ

N,β
2 (t) ≥ · · · ≥ λ

N,β
N (t) be the ordered eigenvalue processes of

XN,β (t). Denote the first collision time of the eigenvalue processes by

τN,β = inf
{
t > 0 : ∃ i ̸= j, λN,βi (t) = λ

N,β
j (t)

}
. (3)

Then P
(
τN,β = +∞

)
= 1. Furthermore, the ordered eigenvalue processes λN,β1 (t) > · · · > λ

N,β
N (t) are the unique solution to

the following system of SDEs:

dλN,βi (t) =

√
2

√
βN

dWi(t) +
1
N

∑
j:j̸=i

dt

λ
N,β
i (t) − λ

N,β
j (t)

, i ∈ {1, . . . ,N}. (4)

Here, {W1(t), . . . ,WN (t)} is a family of independent standard Brownian motions.

Proof. The proof is motivated by [24, Theorem 3,5] and [1, Lemma 4.3.3]. We only consider the real symmetric case
β = 1. The complex Hermitian case β = 2 is similar and thus is omitted. Since the dimension N is fixed, we may omit
both N and β on subscript and superscript without ambiguity. For simplicity, we only give a proof under the condition
λ1(0) > · · · > λN (0). For the case that X(0) has collision eigenvalues, we refer the interested readers to [1, Page 257]. We
divide the proof into three steps.

Step 1: Derivation of the system of SDEs for eigenvalue processes before the first collision time by Itô calculus and
martingale theory.

We may use the Stratonovich differential notation, which can be founded in, for example, [29, Chapter III]. For two
N × N matrices X and Y , we have X ◦ dY = XdY +

1
2dXdY , where XdY is the Itô differential, X ◦ dY is the Stratonovich

differential and dXdY = d⟨X, Y ⟩. By matrix multiplication, for three N × N matrices X, Y and Z , one can verify that

dX ◦ (YZ) = (dX ◦ Y ) ◦ Z = dXYZ +
1
2
(dXdYZ + dXYdZ) ,

(X ◦ dY ) ◦ Z = X ◦ (dY ◦ Z) = XdYZ +
1
2
(dXdYZ + XdYdZ) ,

(X ◦ dY )⊺ = dY ⊺
◦ X⊺.

Moreover, by Itô formula and matrix multiplication, one can verify that

d(XYZ) = dX ◦ YZ + X ◦ dY ◦ Z + XY ◦ dZ . (5)

For a real symmetric matrix process X(t), consider its spectral decomposition X(t) = P(t)D(t)P(t)⊺, where D(t) is a
iagonal matrix of eigenvalues of X(t) ordered decreasingly, and P(t) is an orthogonal matrix of eigenvectors of X(t).
ccording to [51], the matrices D(t), P(t) can be chosen as smooth functions of X(t) for t < τN,β . Let Q (t) be the

matrix-valued processes satisfying

dQ (t) = P(t)−1
◦ dP(t) = P(t)⊺ ◦ dP(t).
3
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he process Q (t) is known as the stochastic logarithm of P(t). By the Itô formula (5), we have the following identity

0 = dIN = d(P(t)⊺P(t)) = dQ (t) + dQ (t)⊺. (6)

Applying the Itô formula (5) to the spectral decomposition of X(t) and using (6), we have

dD(t) = dP(t)⊺ ◦ X(t)P(t) + P(t)⊺ ◦ dX(t) ◦ P(t) + P(t)⊺X(t) ◦ dP(t)
= dP(t)⊺ ◦ P(t)D(t) + P(t)⊺ ◦ dX(t) ◦ P(t) + D(t)P(t)⊺ ◦ dP(t)

= −dQ (t) ◦ D(t) + P(t)⊺ ◦ dX(t) ◦ P(t) + D(t) ◦ dQ (t). (7)

By considering the non-diagonal entries of (7), we have

dQij(t) = − (P(t)⊺ ◦ dX(t) ◦ P(t))ij ◦
1

λi(t) − λj(t)
, i ̸= j. (8)

On the other hand, the diagonal entries of (7) can be written as

dλi(t) = (P(t)⊺ ◦ dX(t) ◦ P(t))ii

= (P(t)⊺dX(t)P(t))ii +
1
2

(
dP(t)⊺dX(t)P(t) + P(t)⊺dX(t)dP(t)

)
ii
. (9)

Recalling Definition 1, one can see that {(P(t)⊺ ◦ dX(t) ◦ P(t))ii}1≤i≤N is a family of local martingales with quadratic
covariation

(P(t)⊺ ◦ dX(t) ◦ P(t))ii (P(t)
⊺
◦ dX(t) ◦ P(t))jj = (P(t)⊺dX(t)P(t))ii (P(t)

⊺dX(t)P(t))jj

=

N∑
k,l=1

Pki(t)Pli(t)dXkl(t)
N∑

k′,l′=1

Pk′j(t)Pl′j(t)dXk′ l′ (t) =

N∑
k,l,k′,l′=1

Pki(t)Pli(t)Pk′j(t)Pl′j(t)
(
1[k=k′]1[l=l′] + 1[k=l′]1[l=k′]

) dt
N

=
2dt
N

(
N∑

k=1

Pki(t)Pkj(t)

)2

=
2
N
1[i=j]dt,

where we use the orthogonality of the columns of the matrix P(t). Thus, by Knight’s theorem, there exists a family of
independent standard 1-dimensional Brownian motions {W1(t), . . . ,WN (t)}, such that

(P(t)⊺ ◦ dX(t) ◦ P(t))ii =

√
2

√
N
dWi(t). (10)

ote that X(t) is symmetric, by (6) and (8), we have
1
2

(
dP(t)⊺dX(t)P(t) + P(t)⊺dX(t)dP(t)

)
ii

=

(
dP(t)⊺dX(t)P(t)

)
ii

=

(
dP(t)⊺P(t)P(t)⊺dX(t)P(t)

)
ii

=

(
dQ (t)⊺ (P(t)⊺ ◦ dX(t) ◦ P(t))

)
ii

= −

N∑
j=1

dQij(t) (P(t)⊺ ◦ dX(t) ◦ P(t))ji =

∑
j:j̸=i

(P(t)⊺dX(t)P(t))ij (P(t)⊺dX(t)P(t))ji
λi(t) − λj(t)

. (11)

or i ̸= j, we have

(P(t)⊺dX(t)P(t))ij (P(t)
⊺dX(t)P(t))ji =

N∑
k,l=1

Pki(t)Plj(t)dXkl(t)
N∑

k′,l′=1

Pk′j(t)Pl′ i(t)dXk′ l′ (t)

=

N∑
k,l,k′,l′=1

Pki(t)Plj(t)Pk′j(t)Pl′ i(t)
(
1[k=k′]1[l=l′] + 1[k=l′]1[l=k′]

) dt
N

=
dt
N

(
N∑

k=1

Pki(t)Pkj(t)

)2

+
dt
N

(
N∑

k=1

Pki(t)2
)(

N∑
l=1

Plj(t)2
)

=
dt
N
. (12)

Substituting (12) to (11), we have
1
2

(
dP(t)⊺dX(t)P(t) + P(t)⊺dX(t)dP(t)

)
ii

=
1
N

∑
j:j̸=i

dt
λi(t) − λj(t)

. (13)

herefore, (4) follows from (9), (10) and (13).

tep 2: We prove that the system of SDEs (4) has a unique strong solution before its first collision time by approximating
he singular drift with regular functions. For the existence and uniqueness of SDE, we refer to [34].
4
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For R > 0, define

ψR(x) = x−11{|x|≥R−1} + R2x1{|x|<R−1}. (14)

One can easily check that ψR(x) is continuous on R satisfying |ψR(x)| ≤ (1 + R2)(1 + |x|2). Consider the following system
of SDEs

dλRi (t) =

√
2

√
N
dWi(t) +

1
N

∑
j:j̸=i

ψR
(
λRi (t) − λRj (t)

)
dt, i ∈ {1, . . . ,N}, (15)

ith initial condition λRi (0) = λi(0) for 1 ≤ i ≤ N . Noting that for each R > 0, the coefficient functions in (15) are global
Lipschitz and of linear growth, the existence of the strong solution of (15) follows from [34, Theorem 2.9], and moreover,
by [34, Theorem 2.5], we also have the strong uniqueness.

For R > 0, let

τ (R) = inf
{
t > 0 : min

i̸=j

⏐⏐λRi (t) − λRj (t)
⏐⏐ < R−1

}
.

Then τ (R) is a stopping time which is increasing with respect to R. We denote τ (+∞) = limR→+∞ τ (R), which may
e +∞. Let R0 be a positive number such that R−1

0 = mini̸=j |λi(0) − λj(0)|. For R1 > R2 > R0, we have the following
bservation

λ
R1
i (t) = λ

R2
i (t), ∀t ≤ τ (R2), ∀1 ≤ i ≤ N.

Thus, for t < τ (+∞), we can define the processes λ∞

i (t) in a consistent way by

λ∞

i (t) = λRi (t), if t < τ (R)

for 1 ≤ i ≤ N . Then, recalling the definition (14) of ψR, (λ∞

1 (t), . . . , λ∞

N (t)) solves (4) for t < τ (+∞). Note that for any
strong solution of (4), it solves (15) before the time when the least distance of its entries reaches R−1 for R > R0. Thus,
the strong uniqueness of (4) follows from the strong uniqueness of (15) by letting R → ∞.

Step 3: We prove the almost sure non-collision of the eigenvalue processes by McKean’s argument ([47, Proposition 4.3],
see also [48]).

From Step 1 and Step 2, we can see that the eigenvalue processes of HN,β (t) is the unique strong solution to (4), and
hus τN,β given by (3) is also the collision time for the strong solution to (4). For t < τN,β , define

U(t) =

∑
i<j

ln |λi(t) − λj(t)|, (16)

hen by (4) and Itô formula, noting that d⟨λi(t), λj(t)⟩ = 0 for i ̸= j, we have

dU(t) =

∑
i̸=j

dλi(t)
λi(t) − λj(t)

−
1
2

∑
i̸=j

d⟨λi(t)⟩(
λi(t) − λj(t)

)2 (17)

=

√
2

√
N

∑
i̸=j

dWi

λi(t) − λj(t)
+

1
N

∑
i̸=j

∑
l:l̸=i

dt(
λi(t) − λj(t)

)
(λi(t) − λl(t))

−
1
N

∑
i̸=j

dt(
λi(t) − λj(t)

)2
=

√
2

√
N

∑
i̸=j

dWi

λi(t) − λj(t)
+

1
N

∑
i̸=j̸=l̸=i

dt(
λi(t) − λj(t)

)
(λi(t) − λl(t))

=

√
2

√
N

∑
i̸=j

dWi

λi(t) − λj(t)
+

1
N

∑
i̸=j̸=l̸=i

λl(t) − λj(t)(
λi(t) − λj(t)

) (
λj(t) − λl(t)

)
(λl(t) − λi(t))

dt

=

√
2

√
N

∑
i̸=j

dWi

λi(t) − λj(t)
+

1
3N

∑
i̸=j̸=l̸=i

(
λl(t) − λj(t)

)
+ (λi(t) − λl(t))+

(
λj(t) − λi(t)

)(
λi(t) − λj(t)

) (
λj(t) − λl(t)

)
(λl(t) − λi(t))

dt

=

√
2

√
N

∑
i̸=j

dWi

λi(t) − λj(t)
.

Here, we use the symmetry to change the summation index in the fifth equality. Therefore, by Lemma 1, we have
τN,β = +∞ almost surely. The proof of Theorem 1 is complete. □

The following lemma is used in the Step 3 of the proof and is known as the McKean’s argument. The argument
originates from [48] and can be found in [47].
5
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emma 1 (McKean’s argument, [47], Proposition 4.3). Let Z = {Z(t); 0 ≤ t < ∞} be an adapted R+-valued stochastic process
hat is right-continuous with finite left-hand limits (RCLL) on a stochastic interval [0, τ0) with Z0 > 0, where

τ0 = inf{s > 0 : Zs− = 0}.

Suppose that there exists a continuous function h satisfying the following:

(i) For all t ∈ [0, τ0), we have h(Z(t)) = h(Z(0)) + M(t) + P(t), where M is a continuous local martingale on [0, τ0) with
M(0) = 0, and P is an adapted RCLL process on [0, τ0) such that almost surely and for each T > 0, inft∈[0,τ0∧T ) P(t) >
−∞.

(ii) limz↓0 h(z) = −∞.

Then τ0 = ∞ almost surely.

Remark 1. The argument for non-collision in [1] is different. For M > 0, it is shown that the first time for U(t) with
λi(t) replaced by the λRi (t) to exceed M is greater than any positive number almost surely via Markov inequality and
Borel–Cantelli Lemma.

Remark 2. The unique solution to (4) is known as Dyson Brownian motion.

Remark 3. The process given in (4) with general β ∈ (0,∞) is known as β-Dyson Brownian motion. By the same
argument used in Step 2, one can show that (4) with general β ∈ (0,∞) has a unique strong solution before the first
collision time. Moreover, applying Itô formula to U(t) given in (16), we have

dU(t) =

√
2

√
βN

∑
i̸=j

dWi

λ
N,β
i (t) − λ

N,β
j (t)

+

(
1 −

1
β

)
1
N

∑
i̸=j

dt(
λ
N,β
i (t) − λj(t)N,β

)2 .
Then the non-collision of the system of particles λN,β1 (t) ≥ · · · ≥ λ

N,β
N (t) follows from McKean’s argument for the case

β ≥ 1. It is well known that the β-Dyson Brownian motion has collisions for β ∈ (0, 1) (see, e.g., [24, Remark 3]).

Real symmetric matrix whose entries are i.i.d. Ornstein–Uhlenbeck processes (real symmetric matrix OU process) was
considered in [12]. Let XN (t) be a symmetric N × N matrix-valued process that solves the following matrix SDE

dXN (t) =
1

2
√
N
(dB(t) + dB(t)⊺)−

1
2
XN (t)dt, (18)

where B(t) is a N × N matrix Brownian motion. Then the entries {XN
i,j(t)}1≤i≤j≤N are independent Ornstein–Uhlenbeck

processes with invariant distribution N(0, (1+δij)/(2N)). By Itô calculus and martingale theory, [12] derived the following
system of SDEs for the eigenvalue processes {λNi (t)}1≤i≤N of XN (t) in (18)

dλNi (t) =
1

√
N
dBi(t) +

⎛⎝−
1
2
λNi (t) +

1
2N

∑
j:j̸=i

1
λNi (t) − λNj (t)

⎞⎠ dt, 1 ≤ i ≤ N. (19)

y assuming the non-collision of the initial state λN1 (0) > · · · > λNN (0), the non-collision of the eigenvalue processes was
lso established in [12] by an argument similar to the one used in the proof of Theorem 1.

.2. High-dimensional limits

Let P(R) be the space of probability measures on R equipped with the weak topology and corresponding metric dP(R).
or T > 0, let C([0, T ],P(R)) be the space of continuous processes with values in P(R). Then the space C([0, T ],P(R))
ndowed with the metric

dC([0,T ],P(R))
(
µ(1), µ(2))

= sup
t∈[0,T ]

dP(R)
(
µ(1)(t), µ(2)(t)

)
,

s complete. For a test function f (x) and a measure µ(dx) on R, we write ⟨f , µ⟩ =
∫
R f (x)µ(dx).

Recall the definition of XN,β (t) in Theorem 1. Let LβN (t) be the empirical measure of the eigenvalue processes
λ
N,β
i (t)}1≤i≤N of XN,β (t), that is

LβN (t)(dx) =
1
N

N∑
i=1

δ
λ
N,β
i (t)(dx). (20)

n connection with the theory of randommatrices, it is of interest to investigate possible limits of these empirical measures
Lβ (t), t ∈ [0, T ]} when N grows to infinity.
N N∈N

6
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Such high-dimensional limits are known in the literature only for some simple cases. An early result for eigenvalue
empirical measure processes can be found in [12]: the exponential tightness of the sequence of corresponding eigenvalue
empirical measure processes was established, which implies the almost sure convergence of the sequence. The equation
satisfied by the limiting measure-valued process was also obtained, which is known as McKean–Vlasov equation.
Moreover, [12] proved that the semi-circle law is the only equilibrium point of the equation (with finite moments of
all orders).

The high-dimensional limit results were later generalized in [60] to the following system of symmetric matrix SDE

dXN (t) =

√
α

2N
(dB(t) + dB(t)⊺)− θXN (t)dt, (21)

where B(t) is a N × N matrix Brownian motion. Note that if we choose α = 1 and θ = 0, then the XN (t) in (21) is
he real symmetric matrix Brownian motion appeared in Theorem 1. The real symmetric matrix OU processes in (18)
orresponds to the case α = 1/2 and θ = 1/2. The eigenvalue processes {λNi (t)}1≤i≤N of XN (t) in (21) are called the
nteracting Brownian particles in [60] and satisfy the following system of SDEs

dλNi (t) =

√
2α
N

dBi(t) +

⎛⎝−θλNi (t) +
α

N

∑
j:j̸=i

1
λNi (t) − λNj (t)

⎞⎠ dt, 1 ≤ i ≤ N, t ≥ 0. (22)

n [60], the non-collision and non-explosion of the particles (22) was established assuming initial state λN1 (0) > · · · >
N
N (0). Moreover, [60, Theorem 1] proved the weak convergence in law of the sequence of eigenvalue empirical measure
rocesses by Itô calculus and a tightness argument that is similar to Theorem 3. The equation that characterizes the
imiting measure valued process was also derived.

The family of eigenvalue processes given in (22) was further generalized in [11]. More precisely, for some Lipschitz
unctions bN , σN and positive constant γN , [11] proved that the following particle system

dxNi (t) = σN (xNi (t))dBi(t) +

⎛⎝bN (xNi (t)) +

∑
j:j̸=i

γN

xNi (t) − xNj (t)

⎞⎠ dt, 1 ≤ i ≤ N, t ≥ 0, (23)

as a unique strong solution for all the time, even with collision. For the case γN = 2γ /N , [11, Theorem 4.2] established
the weak convergence in law of the sequence of eigenvalue empirical measure processes and derived the equation for all
possible limits. In [11, Theorem 5.1], the uniqueness of this equation was obtained if bN (x) is linear and σN (x) = σN > 0.
The non-collision property was also established in [11, Proposition 4.1] under the assumptions that the particles are
distinct at t = 0, bN (x) is linear, and σN (x) = σN ∈ [0,

√
2γN ]. However, it is worth pointing out that the high-dimensional

esults do not require the non-collision of the particles.
Another generalization of the real symmetric matrix Brownian motion in Theorem 1 and real symmetric matrix OU

rocess in (18) was introduced in [43] as the solution of the following matrix SDE

dXN (t) =
1

√
2N

(dB(t) + dB(t)⊺)−
1
2
V ′(XN (t))dt, (24)

hose ordered eigenvalue processes {λNi (t)}1≤i≤N satisfy

dλNi (t) =

√
2
N
dBi(t) +

⎛⎝−
1
2
V ′
(
λNi (t)

)
+

1
N

∑
j:j̸=i

1
λNi (t) − λNj (t)

⎞⎠ dt, 1 ≤ i ≤ N, t ≥ 0. (25)

ere, V is an external potential functions in C1(R) satisfying certain convexity conditions. The weak convergence in law of
he sequence of eigenvalue empirical measure processes and the equation for the limiting process were obtained in [43,
heorem 1.1].
For the real symmetric or complex Hermitian matrix Brownian motion XN,β defined in Theorem 1 with null initial value

N,β (0) = 0, the high-dimensional limits was investigated in [9] by studying large deviation bounds. The exponential
ightness of the sequence {LβN (t)}N∈N was established. In [9, Corollary 1.2], the almost sure convergence of the sequence
{LβN (t)}N∈N was obtained and the equation for the limit was derived. Moreover, the limit was proved to be the semi-circular
law. The complex case was also studied in [58, Proposition 3.1] where the convergence in probability was obtained. We
present [1, Proposition 4.3.10] below, where the high-dimensional limit of the sequence {LβN (t)}N∈N was recovered without
ssuming the null initial condition.

heorem 2. Let T > 0 be a fixed number. Suppose that there exists a positive function ϕ ∈ C2(R) with bounded first and
econd derivatives and satisfying lim|x|→∞ ϕ(x) = +∞, such that C0 := supN∈N⟨ϕ, LβN (0)⟩ < ∞. Assume that LβN (0) converges
eakly as N tends to infinity towards a probability measure µ .
0

7
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Then the sequence {LβN (t), t ∈ [0, T ]}N∈N converges almost surely in C([0, T ],P(R)). Its limit µ is characterized by the
following equation: for any f ∈ C2

b (R),

⟨f , µt⟩ = ⟨f , µ0⟩ +
1
2

∫ t

0

∫∫
R2

f ′(x) − f ′(y)
x − y

µs(dx)µs(dy)ds, ∀t ∈ [0, T ]. (26)

roof. The idea of the proof comes from [1, Proposition 4.3.10] (see also [67]). We divide the proof into four steps.

tep 1: (Computation of ⟨f , LβN (t)⟩ by Itô calculus.) By the definition (20) of LβN (t), for f ∈ C2(R),

⟨f , LβN (t)⟩ =

∫
f (x)LβN (t)(dx) =

1
N

N∑
i=1

∫
f (x)δ

λ
N,β
i (t)(dx) =

1
N

N∑
i=1

f (λN,βi (t)).

By Itô’s formula and (4),

f (λN,βi (t)) = f (λN,βi (0)) +

∫ t

0
f ′(λN,βi (s))dλN,βi (s) +

1
2

∫ t

0
f ′′(λN,βi (s))d⟨λN,βi ⟩s

= f (λN,βi (0)) +

√
2

√
βN

∫ t

0
f ′(λN,βi (s))dWi(s) +

1
βN

∫ t

0
f ′′(λN,βi (s))ds

+
1
N

∫ t

0
f ′(λN,βi (s))

∑
j:j̸=i

1

λ
N,β
i (s) − λ

N,β
j (s)

ds.

Thus, using the convention f ′(x)−f ′(y)
x−y = f ′′(x) on {x = y}, we have

⟨f , LβN (t)⟩ =
1
N

N∑
i=1

f (λN,βi (0)) +

√
2√
βN3

N∑
i=1

∫ t

0
f ′(λN,βi (s))dWi(s) +

1
βN2

N∑
i=1

∫ t

0
f ′′(λN,βi (s))ds

+
1
N2

∑
i̸=j

∫ t

0

f ′(λN,βi (s))

λ
N,β
i (s) − λ

N,β
j (s)

ds

=
1
N

N∑
i=1

f (λN,βi (0)) +

√
2√
βN3

N∑
i=1

∫ t

0
f ′(λN,βi (s))dWi(s) +

1
βN2

N∑
i=1

∫ t

0
f ′′(λN,βi (s))ds

+
1

2N2

∑
i̸=j

∫ t

0

f ′(λN,βi (s)) − f ′(λN,βj (s))

λ
N,β
i (s) − λ

N,β
j (s)

ds

=
1
N

N∑
i=1

f (λN,βi (0)) +

√
2√
βN3

N∑
i=1

∫ t

0
f ′(λN,βi (s))dWi(s)

+

(
1
β

−
1
2

)
1
N2

N∑
i=1

∫ t

0
f ′′(λN,βi (s))ds +

1
2N2

N∑
i,j=1

∫ t

0

f ′(λN,βi (s)) − f ′(λN,βj (s))

λ
N,β
i (s) − λ

N,β
j (s)

ds

=⟨f , LβN (0)⟩ +

√
2√
βN3

N∑
i=1

∫ t

0
f ′(λN,βi (s))dWi(s) +

(
1
β

−
1
2

)
1
N

∫ t

0
⟨f ′′, LβN (s)⟩ds

+
1
2

∫ t

0

∫∫
R2

f ′(x) − f ′(y)
x − y

LβN (s)(dx)L
β

N (s)(dy)ds. (27)

tep 2: We prove that the sequence {LβN (t), t ∈ [0, T ]}N∈N is almost surely relatively compact in C([0, T ],P(R)), that is,
very subsequence has a further subsequence that converges in C([0, T ],P(R)) almost surely, following the argument [1,
emma 4.3.13].
8
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Note that for f ∈ C2(R) with bounded first and second derivatives, by mean value theorem, one can show |
f ′(x)−f ′(y)

x−y | ≤

∥f ′′
∥L∞ . Hence, by (27),

|⟨f , LβN (t)⟩ − ⟨f , LβN (s)⟩| ≤

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

s
f ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐+
(
1
β

−
1
2

)
1
N

⏐⏐⏐⏐∫ t

s
⟨f ′′, LβN (r)⟩dr

⏐⏐⏐⏐
+

1
2

⏐⏐⏐⏐∫ t

s

∫∫
R2

f ′(x) − f ′(y)
x − y

LβN (r)(dx)L
β

N (r)(dy)dr
⏐⏐⏐⏐

≤

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

s
f ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐+
(
1
2

+
1
βN

−
1
2N

)
∥f ′′

∥L∞ |t − s|. (28)

ote that [0, T ] can be partitioned into small intervals of length η < ∥f ′′
∥

−8/7
L∞ and the number of the intervals is

= [Tη−1
]. Then by Markov inequality and Burkholder–Davis–Gundy inequality, we have, for M > 0,

P

(
sup

|t−s|≤η

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

s
f ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐ ≥ Mη1/8
)

≤

J−1∑
k=0

P

(
sup

kη≤t≤(k+1)η

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

kη
f ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐ ≥
Mη1/8

3

)

≤

J−1∑
k=0

81
M4η1/2

E

⎡⎣ sup
kη≤t≤(k+1)η

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

kη
f ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐
4
⎤⎦ ≤

J−1∑
k=0

324Λ2

M4η1/2β2N6 E

⎡⎣⟨ N∑
i=1

∫ kη+·

kη
f ′(λN,βi (r))dWi(r)

⟩2

η

⎤⎦
≤

J−1∑
k=0

324Λ2

M4η1/2β2N6 E

⎡⎣( N∑
i=1

∫ (k+1)η

kη

⏐⏐⏐f ′(λN,βi (r))
⏐⏐⏐2 dr)2

⎤⎦ ≤
324Λ2Jη3/2

M4β2N4 ∥f ′
∥
4
L∞ ≤

324Λ2Tη1/2

M4β2N4 ∥f ′
∥
4
L∞ . (29)

ence, noting that β ∈ {1, 2} and η1/8 > η∥f ′
∥L∞ , by (28) and (29), for M > 0, we have

P
(

sup
|t−s|≤η

|⟨f , LβN (t)⟩ − ⟨f , LβN (s)⟩| ≥ (M + 1)η1/8
)

≤ P

(
sup

|t−s|≤η

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

s
f ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐ ≥ (M + 1)η1/8 −
η∥f ′

∥L∞

2

)

≤ P

(
sup

|t−s|≤η

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

s
f ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐ ≥ Mη1/8
)

≤
324Λ2Tη1/2

M4N4 ∥f ′
∥
4
L∞ . (30)

Let {f̃k}k∈N be a family of C2
b (R) functions that is dense in C0(R). Choose εk =

(
1 + k∥f̃ ′

k∥L∞

)−1
and define

CT (f̃k, εk) =

∞⋂
n=1

{
µ ∈ C([0, T ],P(R)) : sup

|t−s|≤n−4

⏐⏐⏐⟨f̃k, µt⟩ − ⟨f̃k, µs⟩

⏐⏐⏐ ≤
1

εk
√
n

}

=

{
µ ∈ C([0, T ],P(R)) : sup

|t−s|≤n−4

⏐⏐⏐⟨f̃k, µt⟩ − ⟨f̃k, µs⟩

⏐⏐⏐ ≤
1

εk
√
n
,∀n ∈ N

}

=

{
µ ∈ C([0, T ],P(R)) : t → ⟨f̃k, µt⟩ ∈ Cf̃kL∞ ({(εk

√
n)−1

}, {n−4
})
}
,

where the set

CM ({(εk
√
n)−1

}, {n−4
}) =

∞⋂
n=1

{
g ∈ C([0, T ],R) : sup

|t−s|≤n−4
|g(t) − g(s)| ≤ (εk

√
n)−1, sup

t∈[0,T ]

|g(t)| ≤ M

}
,

s (sequentially) compact in C([0, T ],R) according to Arzela–Ascoli Lemma. By (30),
∞∑

N=1

∑
k≥1

P(LβN /∈ CT (f̃k, εk)) ≤

∞∑
N=1

∑
k≥1

∞∑
n=1

P

(
sup

|t−s|≤n−4

⏐⏐⏐⟨f̃k, LβN (t)⟩ − ⟨f̃k, L
β

N (s)⟩
⏐⏐⏐ > 1

εk
√
n

)

≤

∞∑
N=1

∑
k≥1

∞∑
n=1

324Λ2T
(ε−1

k − 1)4n2N4
∥f̃ ′

k∥
4
L∞ = 324Λ2T

∞∑
n=1

n−2
∑
k≥1

∥f̃ ′

k∥
4
L∞

(ε−1
k − 1)4

∞∑
N=1

1
N4

= 324Λ2T
∞∑

n−2
∑

k−4
∞∑ 1

N4 < ∞, (31)

n=1 k≥1 N=1

9
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ince the function ϕ is positive and tends to infinity as |x| → +∞, the set

K (ϕ) =
{
µ ∈ P(R) : ⟨ϕ,µ⟩ ≤ 1 + C0 + T

ϕ′′

L∞
}

is tight, i.e., it is (sequentially) compact in P(R). By (28) for f = ϕ and s = 0, Markov inequality and Burkholder–Davis–
Gundy inequality, we have

∞∑
N=1

P
(
∃t ∈ [0, T ], s.t. LβN (t) /∈ K (ϕ)

)
=

∞∑
N=1

P
(

sup
t∈[0,T ]

⟨ϕ, LN (t)⟩ > 1 + C0 + T
ϕ′′


L∞

)

≤

∞∑
N=1

P

(
sup

t∈[0,T ]

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

0
ϕ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐ > 1

)
≤

∞∑
N=1

E

⎡⎣ sup
t∈[0,T ]

⏐⏐⏐⏐⏐
√
2√
βN3

N∑
i=1

∫ t

0
ϕ′(λN,βi (r))dWi(r)

⏐⏐⏐⏐⏐
2
⎤⎦

≤

∞∑
N=1

Λ1E

[⟨ √
2√
βN3

N∑
i=1

∫
·

0
ϕ′(λN,βi (r))dWi(r)

⟩
T

]
=

∞∑
N=1

2Λ1

βN3E

[
N∑
i=1

∫ T

0

(
ϕ′(λN,βi (r))

)2
dr

]

≤

∞∑
N=1

2Λ1T
ϕ′
2
L∞

βN2 < ∞. (32)

By [1, Lemma 4.3.13] (see also [66, Lemma B.4]), the set

H =

{
µ ∈ C([0, T ],P(R)) : µt ∈ K (ϕ), ∀t ∈ [0, T ]

}
∩

⋂
k≥1

CT (f̃k, εk)

s compact in C([0, T ],P(R)). By (31) and (32), we have
∞∑

N=1

P(LβN /∈ H) ≤

∞∑
N=1

P(∃t ∈ [0, T ], s.t. LβN (t) /∈ K (ϕ)) +

∞∑
N=1

∑
k≥1

P(LβN /∈ CT (f̃k, εk)) < ∞.

herefore, the Borel–Cantelli Lemma implies that P
(
lim infN→∞{LβN ∈ H}

)
= 1.

Finally, the relative compactness of the family {LβN}N∈N follows from the compactness of H.

Step 3: We derive Eq. (26) for any limit point µ of the sequence {LβN (t), t ∈ [0, T ]}N∈N.
Let {Nk}k∈N be a subsequence such that LβNk

converges to µ in C([0, T ],P(R)). For any ϵ > 0, for any f ∈ C2
b (R), by

arkov inequality and Burkholder–Davis–Gundy inequality, we have

∞∑
k=1

P

⎛⎝ sup
t∈[0,T ]

⏐⏐⏐⏐⏐⏐
√
2√
βN3

k

Nk∑
i=1

∫ t

0
f ′(λNk,β

i (r))dWi(r)

⏐⏐⏐⏐⏐⏐ ≥ ϵ

⎞⎠ ≤

∞∑
k=1

ϵ−2E

⎡⎢⎣ sup
t∈[0,T ]

⏐⏐⏐⏐⏐⏐
√
2√
βN3

k

Nk∑
i=1

∫ t

0
f ′(λNk,β

i (r))dWi(r)

⏐⏐⏐⏐⏐⏐
2
⎤⎥⎦

≤

∞∑
k=1

Λ1

ϵ2
E

⎡⎢⎣⟨ √
2√
βN3

k

Nk∑
i=1

∫
·

0
f ′(λNk,β

i (r))dWi(r)

⟩
T

⎤⎥⎦ =

∞∑
k=1

2Λ1

ϵ2βN3
k
E

[ Nk∑
i=1

∫ T

0

(
f ′(λNk,β

i (r))
)2

dr

]
≤

∞∑
k=1

2Λ1T
ϵ2βN2

k

f ′
2
L∞ ,

hich is finite since Nk ≥ k. By Borel–Cantelli Lemma,
√
2√
βN3

k

Nk∑
i=1

∫ t

0
f ′(λNk,β

i (r))dWi(r) → 0, k → ∞, (33)

niformly with respect to t almost surely. Moreover, the boundedness of ∥f ′′
∥L∞ yields(

1
β

−
1
2

)
1
Nk

∫ t

0
⟨f ′′, LβNk

(s)⟩ds,→ 0, k → ∞, (34)

niformly with respect to t almost surely. Therefore, by considering the subsequence {Nk} in (27), and using (33) and
(34), we have

⟨f , µt⟩ = ⟨f , µ0⟩ +
1
2

∫ t

0

∫∫
R2

f ′(x) − f ′(y)
x − y

µs(dx)µs(dy)ds.

Step 4: We establish the uniqueness of the solution to Eq. (26). For simplicity, we only prove the uniqueness for the
self-similar solution under null initial condition XN,β (0) = 0. The idea can be found in [67] and [1, Exercise 4.3.18]. For
general case, we refer the interested readers to [1, Lemma 4.3.15]. Note that under the null initial condition, the limit
10
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oints of the sequence {LβN (t), t ∈ [0, T ]}N∈N inherit the self-similarity property from the Brownian motions on the matrix
ntries, and hence the uniqueness of the limit of {LβN (t), t ∈ [0, T ]}N∈N.
To prove the uniqueness, it is convenient to choose f (x) = (z − x)−1 for z ∈ C \ R. Denote

Gt (z) =

∫
1

z − x
µt (dx),

which is known as the Stieltjes transform of the measure µt . We refer to [69, Section 2.4.3] and [2, Section 1.3.2] for more
details about Stieltjes transform.

Recall the matrix Brownian motion HN,β (t) in Definition 1, by the self-similarity of Brownian motion, under null initial
condition, we have XN,β (t) d

=
√
tXN,β (1), where d

= is the equality in distribution. Thus, we have the scaling property of
the Stieltjes transform

Gt (z) =
1

√
t
G1

(
z

√
t

)
. (35)

ence,

Gt (z)∂zGt (z) =
1

√
t
3 G1

(
z

√
t

)
G′

1

(
z

√
t

)
= −

1
z

d
dt

(
G2
1

(
z

√
t

))
.

Letting f (X) = (z − x)−1 for z ∈ C \ R, (26) can be written as

Gt (z) = G0(z) −

∫ t

0
Gs(z)∂zGs(z)ds = G0(z) +

1
z
G2
1

(
z

√
s

) ⏐⏐⏐⏐s=t

s=0

= G0(z) +
1
z
G2
1

(
z

√
t

)
, (36)

where we use

G1

(
z

√
s

) ⏐⏐⏐⏐
s=0

=

∫
1

z/
√
s − x

µt (dx)
⏐⏐⏐⏐
s=0

=

∫ √
s

z −
√
sx
µt (dx)

⏐⏐⏐⏐
s=0

= 0.

Letting t = 1 in (36) and noting that G0(z) = 1/z, we have G2
1(z) − zG1(z) + 1 = 0, of which the solution is

G1(z) =
z −

√
z2 − 4
2

. (37)

ote that by definition,

ℑ (Gt (z)) = ℑ

(∫
1

z − x
µt (dx)

)
= ℑ

(∫
z̄ − x

|z − x|2
µt (dx)

)
= −ℑ(z)

∫
1

|z − x|2
µt (dx).

Here, we use the notation ℑ(w) for the imaginary part of w. Thus, for all t , Gt (z) maps z ∈ C+ to C−. Thus, the square
root in (37) should be the branch that maps from C+ to C+.

Lastly, (35) and (37) yield

Gt (z) =
z −

√
z2 − 4t
2t

, (38)

hich is the unique self-similar solution to (26). □

emark 4. Eq. (38) is consistent with the Stieltjes transform of the semi-circle law [1, (2.4.6)], [69, (2.103)] and [2, Lemma
.11].

emark 5. Note that under the null initial condition XN,β (0) = 0, at the time t = 1, the matrix XN,β (1) = HN,β (1) is
the Gaussian Orthogonal Ensemble (GOE) when β = 1, and the Gaussian Unitary Ensemble (GUE) when β = 2. We refer
to [69, Section 2.3] for more details about GOE and GUE. Moreover, (37) is the Stieltjes transform of the famous semi-circle
law (see [1, (2.4.6)], [69, (2.103)] and [2, Lemma 2.11]). Thus, Theorem 2 gives a dynamical proof of the semi-circle law
(see [69, Theorem 2.4.2] or [2, Theorem 2.5] for the statement of semi-circle law).

Remark 6. The differential form of (36),

∂tGt (z) + Gs(z)∂zGs(z) = 0,

is the complex version of inviscid Burgers’ equation.

In some literature (see for example [32,56,57,60,66]), some other tightness argument was used to obtain the conver-
gence in law of the eigenvalue empirical measure processes in C([0, T ],P(R)). To illustrate this argument, we present the
following weak version of Theorem 2.
11



J. Song, J. Yao and W. Yuan Journal of Multivariate Analysis 188 (2022) 104847

T
c

P
i
t

f
c
f

g
(

a

B

w

T

w

heorem 3 ([58], Proposition 3.1). Assume that all the conditions in Theorem 2 hold. Then the sequence {LβN (t), t ∈ [0, T ]}N∈N
onverges in probability in C([0, T ],P(R)). Moreover, its limit µ is characterized by Eq. (26).

roof. Eq. (26) can be derived as in Theorem 2 by using Itô calculus and martingale theory. We only prove the convergence
n law of the sequence {LβN (t), t ∈ [0, T ]}N∈N, noting that the limit is a deterministic measure. The key idea is to obtain
he following moment estimation

E
[⏐⏐⏐⟨f , LβN (t)⟩− ⟨

f , LβN (s)
⟩⏐⏐⏐1+a

]
≤ Cf ,T |t − s|1+b, ∀t, s ∈ [0, T ], ∀N ∈ N, (39)

or some positive constants a and b, and for all f ∈ C2(R) with bounded first and second derivatives. Here Cf ,T is a positive
onstant depending only on f and T . Then the tightness of the sequence {LβN (t), t ∈ [0, T ]}N∈N in C([0, T ],P(R)) follows
rom (39) and [66, Proposition B.3].

To establish (39), one may first obtain (28) by Itô calculus and then apply the Burkholder–Davis–Gundy inequality to
et an upper bound for some even moment of the martingale term. In the following, we provide another approach to get
39), where the pathwise Hölder continuity of the matrix entries is used. This idea can also be found in [32,56,57,66].

It is well known that almost all the paths of Brownian motion are (1/2 − ε)-Hölder continuous for any ε ∈ (0, 1/2),
nd so are the paths of the entries in XN,β . Consider the Hölder norm of the matrix entries XN,β

i,j (t), for 1 ≤ i ≤ j ≤ N ,

XN,β
i,j


0,T ;1/2−ε

= sup
0≤s<t≤T

⏐⏐⏐XN,β
i,j (t) − XN,β

i,j (s)
⏐⏐⏐

|t − s|1/2−ε
.

y the Fernique Theorem [17], we have the following estimation

E
[
exp

(
αN

XN,β
i,j

2
0,T ;1/2−ε

)]
< ∞, (40)

here α = α(ε, T ) is a positive constant depending on (ε, T ) and X .
By mean value theorem and Hoffman–Wielandt inequality ([1, Lemma 2.1.19]), we have⏐⏐⏐⟨f , LβN (t)⟩− ⟨

f , LβN (s)
⟩⏐⏐⏐2 =

⏐⏐⏐⏐⏐ 1N
N∑
i=1

(
f
(
λ
N,β
i (t)

)
− f

(
λ
N,β
i (s)

))⏐⏐⏐⏐⏐
2

≤
∥f ′

∥
2
L∞

N

N∑
i=1

⏐⏐⏐λN,βi (t) − λ
N,β
i (s)

⏐⏐⏐2 ≤
∥f ′

∥
2
L∞

N

N∑
i,j=1

⏐⏐XN,β (t) − XN,β (s)
⏐⏐2 . (41)

his together with Minkowski inequality, the pathwise Hölder continuity of XN,β
i,j and Cauchy–Schwarz inequality yields

E
[⏐⏐⏐⟨f , LβN (t)⟩− ⟨

f , LβN (s)
⟩⏐⏐⏐4] ≤

∥f ′
∥
4
L∞

N2 E

⎡⎢⎣
⎛⎝ N∑

i,j=1

⏐⏐XN,β (t) − XN,β (s)
⏐⏐2⎞⎠2

⎤⎥⎦ ≤
∥f ′

∥
4
L∞

N2

⎛⎝ N∑
i,j=1

(
E
[⏐⏐XN,β (t) − XN,β (s)

⏐⏐4])1/2⎞⎠2

≤
∥f ′

∥
4
L∞

N2

⎛⎝ N∑
i,j=1

(
E
[XN,β

i,j

4
0,T ;1/2−ε

|t − s|2−4ε
])1/2

⎞⎠2

=
∥f ′

∥
4
L∞ |t − s|2−4ε

N4

⎛⎝ N∑
i,j=1

(
E
[
N2
XN,β

i,j

4
0,T ;1/2−ε

])1/2
⎞⎠2

≤
∥f ′

∥
4
L∞ |t − s|2−4ε

N2

N∑
i,j=1

E
[
N2
XN,β

i,j

4
0,T ;1/2−ε

]
. (42)

Recall that the matrix XN,β is symmetric for β = 1 and Hermitian for β = 2. Also note that the upper-diagonal entries
are i.i.d., as well as the diagonal entries. Thus,

1
N2

N∑
i,j=1

E
[
N2
XN,β

i,j

4
0,T ;1/2−ε

]
≤ E

[
N2
XN,β

1,1

4
0,T ;1/2−ε

]
+ E

[
N2
XN,β

1,2

4
0,T ;1/2−ε

]
≤

2
α2E

[
exp

(
αN

XN,β
1,1

2
0,T ;1/2−ε

)]
+

2
α2E

[
exp

(
αN

XN,β
1,2

2
0,T ;1/2−ε

)]
, (43)

here we use the inequality x2/2 ≤ ex for x ≥ 0. Therefore, by (42), (43) and (40), we obtain (39) with a = 3 and
b = 1 − 4ε for ε < 1/4. □

Remark 7. The weak semi-circle law, which can be found in [1, Theorem 2.1.1], is recovered when we choose XN,β (0) = 0
and t = 1 in Theorem 3. Thus, Theorem 3 gives a dynamical proof of the weak semi-circle law.
12
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In the framework of free probability theory, [4,70,71] showed that independent N × N random matrices converge to
ree random variables as N tends to infinity. In this sense, the large N limit of Brownian motion with values in the space of
×N Hermitian matrices is known as free Brownian motion ([4, Theorem 1]). More precisely, a (one-side) free (additive)
rownian motion {S(t), t ≥ 0} is a non-commutative stochastic process that satisfies:

• S(0) = 0;
• For t2 > t1 ≥ 0, the law of S(t2) − S(t1) is the semicircular distribution with mean 0 and variance t2 − t1;
• For all n ∈ N, and tn > · · · > t1 ≥ 0, the increments S(t1), S(t2) − S(t1), . . . , S(tn) − S(tn−1) are freely independent.

e refer the interested reader to [27,50,52] and the references therein for this topic.
For the complex model (β = 2), for p ∈ N, the pth moment of the sequence of eigenvalue empirical measure processes

L2N (t), t ∈ [0, T ]}N∈N was considered in [58], the motivation of which came from the study of moments for the GUE in [49].
y using Itô calculus and martingale theory, [58] established a recursive formula for the sequence {⟨xp, L2N (t)⟩, t ≥ 0}p∈N
or N ∈ N, and proved that for p ∈ N, the sequence {⟨x2p, L2N (t)⟩, t ≥ 0}N∈N converges to ⟨x2p, µt⟩ uniformly in t ∈ [0, T ]

almost surely and in L2q with q ≥ 1. Moreover, [58] also investigated the largest and least eigenvalue processes and
showed that

max
t∈[0,T ]

λ
N,β
1 (t) → 2

√
T , min

t∈[0,T ]

λ
N,β
N (t) → −2

√
T , as N → ∞,

lmost surely.
It is natural to consider the fluctuation of the sequence {LβN (t)}N∈N around its limit µ. Consider the random fluctuations

LβN (f )(t) = N
(
⟨f , LβN (t)⟩ − ⟨f , µt⟩

)
,

or test function f belonging to some proper function space. For the complex Dyson Brownian motion (4), [8, Theorem 1.1]
stablished the central limit theorem (CLT) for Chebyshev polynomials with null initial condition. Note that for monomials
(x) = xp, L2

N (x
p)(t) is the fluctuation of the pth moment processes ⟨xp, L2N (t)⟩ around the pth moment of the corresponding

imit measure. By martingale theory, [58, Theorem 4.3] proved the convergence in distribution of L2
N (x

p)(t) to a centred
aussian process L2(xp)(t) characterized by a recursive formula. The CLT for the sequence {LβN (t)}N∈N with polynomial test
unctions was obtained in [1, Theorem 4.3.20] and is presented below.

heorem 4 ([1], Theorem 4.3.20). Let T > 0 be a fixed number. Assume supN∈N max1≤i≤N

⏐⏐⏐λN,βi (0)
⏐⏐⏐ < ∞, and for all n ∈ N,

≥ 1,

sup
N∈N

E
[⏐⏐⏐N (⟨xn, LβN (0)⟩− ⟨

xn, µ0
⟩)⏐⏐⏐p] < ∞.

urthermore, assume that for any f (x) ∈ C[x], the initial value LβN (f )(0) converges in probability to a random variable Lβ (f )(0).
ere, C[x] is the set of polynomials with complex coefficients.
Then there exists a family of processes {Lβ (f )(t), t ∈ [0, T ]}f∈C[x], such that for any n ∈ N and any polynomials

1, . . . , Pn ∈ C[x], the vector-valued process {(LβN (P1)(t), . . . ,L
β

N (Pn)(t)), t ∈ [0, T ]}N∈N converges in distribution to
(Lβ (P1)(t), . . . ,Lβ (Pn)(t)), t ∈ [0, T ]}.

The limit processes {Lβ (f )(t), t ∈ [0, T ]}f∈C[x] are characterized by the following properties:

1. For P1, P2 ∈ C[x], α1, α2 ∈ C, t ∈ [0, T ],

Lβ (α1P1 + α2P2)(t) = α1Lβ (P1)(t) + α2Lβ (P2)(t).

2. The basis {Lβ (xn)(t), t ∈ [0, T ]}n∈N of {Lβ (f )(t), t ∈ [0, T ]}f∈C[x] is characterized by

Lβ (1)(t) = 0, Lβ (x)(t) = Lβ (x)(0) + Gβt (x),

and for n ≥ 0,

Lβ (xn+2)(t) = Lβ (xn+2)(0)+
2 − β

2β
(n+2)(n+1)

∫ t

0
⟨xn, µs⟩ds+(n+2)

n∑
k=0

∫ t

0
Lβ (xn−k)(s)⟨xk, µs⟩ds+Gβt (x

n+2),

where {Gβt (xn), t ∈ [0, T ]}n∈N is a family of centred Gaussian processes with the covariance

E
[
Gβt (x

n)Gβs (x
m)
]

=
2mn
β

∫ t∧s

0
⟨xn+m−2, µu⟩du, n,m ≥ 1.

3. Positive-definite symmetric matrix valued processes

3.1. Brownian Motions of ellipsoids

The study of stochastic processes with values in the space of positive-definite symmetric matrices, or the space of
ellipsoids, can be dated back to at least [15], where a class of Markov processes were studied by using differential
13
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eometry. Later, the Brownian motions of ellipsoids were considered in [51], and some of the results in [15,55] were
ecovered without using differential geometry.

Let B(t) be a N ×N matrix whose entries are i.i.d. standard Brownian motions (matrix Brownian motion). Let GN (t) be
a process on the group of invertible N × N matrices that solves the following matrix SDE

dGN (t) = dB(t) ◦ GN (t).

Then the process {GN (t + u)GN (u)−1
: t ≥ 0} is identical in law to the process GN (t) and is independent of the

process {GN (r) : r ∈ [0, u]} for all u > 0. The process GN (t) is known as the right-invariant Brownian motion. Let
XN (t) = GN (t)GN (t)⊺ and YN (t) = GN (t)⊺GN (t), which are both Markov processes on the space of ellipsoids. The process
YN (t) is known as Dynkin’s Brownian motion.

Suppose that GN (0) is chosen such that XN (0) has distinct eigenvalues.

Theorem 5 ([51], Theorem A). The eigenvalue processes of XN (t) never collide and never hit 0 for all t > 0 almost surely. The
ordered eigenvalue processes λN1 (t) > · · · > λNN (t)(> 0) satisfy the following system of SDEs

1
2
d
(
ln λNi (t)

)
= dWi(t) +

1
2

∑
j:j̸=i

λNi (t) + λNj (t)

λNi (t) − λNj (t)
dt, (44)

here {W1(t), . . . ,WN (t)} are independent standard Brownian motions. Moreover,

lim
t→∞

ln λNi (t)
t

= N + 1 − 2i.

The system of SDEs for eigenvalue processes was derived in [51] by using Itô calculus and martingale theory as in
heorem 1. The almost sure non-collision of the eigenvalue processes was proved by the theorem of time-change for
ocal martingales (see [34, Chapter 3, Theorem 4.6]), which is of the same spirit as the McKean’s argument (Lemma 1).
he long time behaviour of the eigenvalue processes was studied by constructing auxiliary processes with a comparison
esult.

The eigenvector processes of XN (t) and YN (t) were also investigated in [51] by Itô calculus and their behaviour is very
different. The eigenvector matrix of XN (t) ultimately behaves like Brownian motion on O(N), while that of YN (t) converges
to a limiting value.

3.2. Wishart processes

Wishart process was introduced in [6] to perform principal component analysis on a set of resistance data of Escherichia
Coli to certain antibiotics. Let B(t) be a N × p matrix whose entries are i.i.d. standard real Brownian motions (matrix
Brownian motion). The N × N symmetric matrix XN (t) = (B(t) + A)(B(t) + A)⊺, where A is a N × p real deterministic
matrix, is the Wishart process. By [7], the Wishart process XN (t) solves the following matrix SDE

dXN (t) =

√
XN (t)dW (t) + dW (t)⊺

√
XN (t) + pINdt, (45)

where W (t) is a N × N matrix Brownian motion. The ordered eigenvalue processes λN1 (t) ≥ λN2 (t) ≥ · · · ≥ λNN (t) of X
N (t)

was studied first in [6].

Theorem 6 ([6], Theorem 1). Assume that XN (0) has N distinct eigenvalues λN1 (0) > λN2 (0) > · · · > λNN (0). Denote the first
collision time of the eigenvalue processes by

τN = inf
{
t > 0 : ∃ i ̸= j, λNi (t) = λNj (t)

}
.

Then

P (τN = +∞) = 1.

Furthermore, the ordered eigenvalue processes λN1 (t), . . . , λ
N
N (t) of X

N (t) satisfy the following system of SDEs

dλNi (t) = 2
√
λNi (t)dWi(t) +

⎛⎝p +

∑
j:j̸=i

λNi (t) + λNj (t)

λNi (t) − λNj (t)

⎞⎠ dt, i ∈ {1, . . . ,N}, (46)

where {W1(t), . . . ,WN (t)} are independent standard Brownian motions.

Theorem 6 can be proved following the idea of the proof of Theorem 1. Similarly, the system of SDEs for eigenvalue
processes can be derived by Itô calculus and martingale theory. The almost sure non-collision of the eigenvalue processes
can also be proved by the McKean’s argument.

The eigenvector processes were also studied in [6] by Itô calculus. Under the same assumption as in Theorem 6, with an
appropriate choice of unit eigenvalue vector processes, the system of SDEs for them were established
in [6, Theorem 2].
14



J. Song, J. Yao and W. Yuan Journal of Multivariate Analysis 188 (2022) 104847

c
N
i
o
λ

w
T
p
b

S

p

I

The assumption that the eigenvalues of XN (0) are distinct in Theorem 6 automatically implies that p ≥ N − 1. For the
ase p < N , by [7, Corollary 1], Theorem 6 is still valid for the set of non-trivial eigenvalue processes λN1 (t), . . . , λ

N
p (t).

ote that the Wishart processes XN (t) is positive semi-definite, and is degenerate when p < N for all t . In some situations,
t interesting to know whether the Wishart processes is non-degenerated, which is equivalent to know the infiniteness
f the hitting time of the least eigenvalue processes on 0. By using the McKean’s argument, [7, Proposition 1] proved that
N
N (t) > 0 for all t almost surely for the case p > N . For the critical case, p = N , the set of hitting time on 0 ({t : λNN (t) = 0})

has zero Lebesgue measure almost surely. [7] also considered the matrix model (45) whenever p > 0 is not an integer,
and proved that the conclusion of Theorem 6 holds for the unique solution to (45) for p > N − 1 ([7, Theorem 2]).

Let YN (t) be the complex analogue of XN (t), that is, YN (t) = (B̃(t)+ Ã)(B̃(t)+ Ã)⊺, where B̃(t) is a N ×p complex matrix
hose real and imaginary parts are independent matrix Brownian motions, and Ã is a N×p complex deterministic matrix.
hen YN (t) is known as Laguerre process [42]. With minor modification to the Wishart case (Theorem 6), the non-collision
roperty of the eigenvalue processes can be established and the following system of SDEs for eigenvalue processes can
e obtained

dλNi (t) = 2
√
λNi (t)dWi(t) + 2

⎛⎝p +

∑
j:j̸=i

λNi (t) + λNj (t)

λNi (t) − λNj (t)

⎞⎠ dt, i ∈ {1, . . . ,N}. (47)

ee for example [59, (2)], [38, (1.2)].
The eigenvalue processes (47) were treated as particle system in [42], and they were proved to evolve like N

independent squared Bessel processes of dimension 2(p−N +1) conditioned to no collision among each other, assuming
p ≥ N . For more properties of particle systems related to Brownian motions, we refer to [36–38].

The high-dimensional limits of the normalized eigenvalue processes {λNi (t)/N}1≤i≤N of (47) were studied in [9] by
roving large deviation bounds. Denote the empirical measure process by

LN (t)(dx) =
1
N

N∑
i=1

δλNi (t)/N (dx).

The almost sure weak convergence of the sequence {LN (t)}N∈N as well as the differential equation satisfied by the limiting
measure-valued processes was established in [9, Corollary 3.1], assuming that p/N converges to a positive number c.
Moreover, the limit µ is the well-known Marčenko–Pastur law (free Poisson distribution). The results were recovered
in [59, Theorem 3.3].

For p ∈ N, the pth moment of the sequence {LN (t), t ∈ [0, T ]} of normalized Laguerre process was considered in [59].
By using Itô calculus and martingale theory, [59] established a recursive formula for the sequence {⟨xp, LN (t)⟩ : t ≥ 0}p∈N
for N ∈ N, and proved that as N → ∞, ⟨xp, LN (t)⟩ converges to ⟨xp, µt⟩ uniformly in t ∈ [0, T ] almost surely and in Lq
with q ≥ 1 for p ∈ N. Moreover, [58] also investigated the largest eigenvalue processes λN1 (t) and the least eigenvalue
processes λNN (t), and showed that

max
t∈[0,T ]

λN1 (t) → (1 +
√
c)2

√
T , min

t∈[0,T ]

λNN (t) → (1 −
√
c)2

√
T , as N → ∞,

almost surely, where c = limN→∞ p/N .
The fluctuation of the sequence {LN (t), t ∈ [0, T ]} around its limit µ has also been studied. Denote the random

fluctuation

LN (f )(t) = N (⟨f , LN (t)⟩ − ⟨f , µt⟩)

for an appropriate test function f . [8, Theorem 2.5] established the CLT for a class of polynomial functions with null initial
condition. Note that for monomials f (x) = xp, the random fluctuation LN (xp)(t) is the fluctuation of the moment processes
⟨xp, LN (t)⟩ around the corresponding moment of the limit measure. By martingale theory, [58, Theorem 4.3] proved the
convergence in distribution of LN (xp)(t) to a centred Gaussian process L(xp)(t) whose distribution is characterized by
recursive formulas.

The Wishart process (45) was generalized in [26] to a symmetric matrix valued process that solves the following matrix
SDE

dXN (t) =

√⏐⏐XN (t)
⏐⏐dW (t) + dW (t)⊺

√⏐⏐XN (t)
⏐⏐+ pINdt. (48)

ts ordered eigenvalue processes λN1 (t) ≥ · · · ≥ λNN (t) satisfy the following system of SDEs

dλNi (t) = 2
√⏐⏐λNi (t)⏐⏐dWi(t) +

⎛⎝p +

∑
j:j̸=i

⏐⏐λNi (t)⏐⏐+ ⏐⏐λNj (t)⏐⏐
λNi (t) − λNj (t)

⎞⎠ dt, i ∈ {1, . . . ,N}, (49)

which is known as squared Bessel particle system. [26, Theorem 1] proved the existence and uniqueness of the non-
colliding strong solution for all p ∈ R. The conditions for the uniqueness of the strong solution were given in [26, Theorem
2]. Moreover, the necessary and sufficient conditions for the existence of non-negative solutions were provided in [26,
Theorem 3].
15
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. Other matrix models and related particle systems driven by Brownian motion

In [7], M.-F. Bru generalized her Wishart process to the following symmetric matrix valued process.

heorem 7 ([7], Theorem 2’). Let XN (0) be a symmetric non-negative definite deterministic N × N matrix with distinct
eigenvalues. Let W (t) be a matrix Brownian motion, then for p, β, γ ∈ R, the following matrix SDE

dXN (t) = γ

(√
XN (t)dW (t) + dW (t)⊺

√
XN (t)

)
+ 2βXN (t)dt + pγ 2INdt, (50)

has a unique weak solution in the set of symmetric N × N matrices if p ∈ (N − 1,N + 1), and has a unique strong solution
that is symmetric positive-definite if p ≥ N + 1.

The ordered eigenvalue processes λN1 (t) ≥ · · · ≥ λNN (t) of the unique solution never collide almost surely, and satisfy the
following system of SDEs

dλNi (t) = 2γ
√
λNi (t)dWi(t) +

⎛⎝pγ 2
+ 2βλNi (t) + γ 2

∑
j:j̸=i

λNi (t) + λNj (t)

λNi (t) − λNj (t)

⎞⎠ dt, i ∈ {1, . . . ,N}, (51)

where W1(t), . . . ,WN (t) are independent standard Brownian motions.
If p ≥ N + 1, λNN (t) > 0 for all t > 0 almost surely. Furthermore, if p ∈ {1, 2, . . . ,N − 1}, then the same results hold for

the largest p eigenvalue processes λN1 (t), . . . , λ
N
p (t).

Remark 8.

1. The matrix model (50) reduces to the Wishart process (45) when β = 0 and γ = 1.
2. When p ∈ Z and γ = 1, the system of SDEs for eigenvalue processes was derived in [39] in shape theory.
3. The system of SDEs (51) reduces to (47) when β = 0 and γ 2

= 2.

For β, γ ≥ 0, the singular value of XN (t) given by (50) was studied in [33]. Let sNi (t) =

√
λNi (t), i ∈ {1, . . . ,N} be the

singular value processes of XN (t). Then

dsNi (t) = γ dWi(t) +

⎛⎝ (p − 1)γ 2

2sNi (t)
− βsNi (t) +

γ 2

2sNi (t)

∑
j:j̸=i

(
sNi (t)

)2
+
(
sNj (t)

)2(
sNi (t)

)2
−
(
sNj (t)

)2
⎞⎠ dt.

t was obtained in [33, Theorem 1.1] the convergence in probability of the sequence of empirical measure processes

L̃N (t)(dx) =
1
2N

N∑
i=1

(
δsNi (t)/

√
p(dx) + δ

−sNi (t)/
√
p(dx)

)
nder general initial conditions. Moreover, the long time behaviour of the empirical measure process {λNi (t)/p, 1 ≤ i ≤ N}

as also characterized in [33, Theorem 1.2].
A more general class of real symmetric matrix valued processes was introduced in [24], which is the solution to

dXN
t = gN (XN

t )dBthN (XN
t ) + hN (XN

t )dB⊺
t gN (X

N
t ) + bN (XN

t )dt, t ≥ 0, (52)

in the space of real symmetric N × N matrices. Here, Bt is a N × N matrix Brownian motion, and the functions
gN , hN , bN : R → R act on the spectrum of XN

t . (Note. For a real-valued function f and a real symmetric (or complex
Hermitian) matrix X that has spectral decomposition X =

∑N
j=1 αjuju∗

j with eigenvalues {αj}1≤j≤N and eigenvectors
uj}1≤j≤N , f (X) =

∑N
j=1 f (αj)uju∗

j is the matrix obtained by acting f on the spectrum of X .)
The symmetric matrix valued process (52) extends the previous matrix models in the following aspects:

1. If we take gN (x) =
1

√
2N

, hN (x) = 1 and bN (x) = 0 in (52), then XN becomes the real symmetric matrix Brownian
motion XN,β considered in Theorem 1.

2. If we take gN (x) =
√

α
2N , hN (x) = 1 and bN (x) = −θx in (52), then XN becomes the real symmetric matrix given in

(21). In particular, if gN (x) =
1

2
√
N
, hN (x) = 1 and bN (x) = −

1
2x, it is the real symmetric matrix OU process given in

(18).
3. If we take gN (x) =

√
x, hN (x) = γ and bN (x) = 2βx+pγ 2 in (52), then XN becomes the real symmetric matrix given

in (50). In particular, if gN (x) =
√
x, hN (x) = 1/

√
N , and bN (x) = p/N , then the random matrix YN

= NXN is the
Wishart process B⊺B, where B is a p × N Brownian matrix.

4. If we take gN (x) =
1

√
2N

, hN (x) = 1 and bN (x) = −
1
2V

′(x) in (52), then XN becomes the real symmetric matrix given
in (24).

5. If we take gN (x) =
√
x, hN (x) =

√
1 − x and bN (x) = q− (q+ r)x in (52) with q, r > p− 1, then XN becomes matrix

Jacobi processes. See [24, (4.4)].
16
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In [24], the non-collision property of the eigenvalue processes was established and the system of SDEs for ordered
eigenvalue processes was derived. The results are presented below where C1,1(R) = {f ∈ C1(R) : |f ′(x) − f ′(y)|/|x − y| <

}.

heorem 8 ([24], Theorems 3 and 5). Let XN
t be a real symmetric matrix valued stochastic process that solves (52). Let

N
1 (t) ≥ · · · ≥ λNN (t) be the ordered eigenvalue processes of XN

t and denote the first collision time by

τN = inf{t > 0 : ∃ i ̸= j, λi(t) = λj(t)}.

uppose that the functions bN (x), g2
N (x), h

2
N (x) are Lipschitz continuous. Besides, assume that g2

N (x)h
2
N (x) is convex or in C1,1(R).

urthermore, we assume λN1 (0) > · · · > λNN (0).
Then we have P (τN = +∞) = 1. Moreover, the eigenvalue processes satisfy the following SDEs: for 1 ≤ i ≤ N,

dλNi (t) = 2gN (λNi (t))hN (λNi (t))dWi(t) +

⎛⎝bN (λNi (t)) +

∑
j:j̸=i

GN (λNi (t), λ
N
j (t))

λNi (t) − λNj (t)

⎞⎠ dt, (53)

here {Wi(t)}1≤i≤N are independent Brownian motions and

GN (x, y) = g2
N (x)h

2
N (y) + g2

N (y)h
2
N (x). (54)

Remark 9. Similar results hold for the complex version of (52). Namely, under the same conditions in Theorem 8, the
eigenvalue processes of the complex Hermitian matrix that solve the matrix SDE

dXN
t = gN (XN

t )dWthN (XN
t ) + hN (XN

t )dW ∗

t gN (X
N
t ) + bN (XN

t )dt, t ≥ 0,

where Wt is a complex N × N matrix Brownian motion, never collide almost surely and satisfy the following system of
SDEs

dλNi (t) = 2gN (λNi (t))hN (λNi (t))dWi(t) +

⎛⎝bN (λNi (t)) + 2
∑
j:j̸=i

GN (λNi (t), λ
N
j (t))

λNi (t) − λNj (t)

⎞⎠ dt, (55)

here {Wi(t)}1≤i≤N are independent Brownian motions.

Theorem 8 (and its complex analogous) can be proved following the idea used in the proof of Theorem 1: the SDEs (53)
and (55)) for eigenvalue processes can be derived by Itô calculus and martingale theory, and the almost sure non-collision
f the eigenvalue processes can be proved by the McKean’s argument.

emark 10. The system of SDEs for eigenvector processes were also derived in [24, Theorem 3]. It was also shown in [24,
orollary 3] that the system of SDEs for eigenvalue processes and eigenvector processes admits a unique strong solution
n [0,∞) if assuming that GN (x, y) is strictly positive on the set {(x, y) ∈ R2

: x ̸= y} together with all conditions in
heorem 8. Another set of conditions for the existence and uniqueness of strong solution (before colliding/exploding) can
e found in [67]. However, whether the pathwise uniqueness holds for the matrix SDE (52) is still unknown.

Let LN (t) be the empirical measure process of the eigenvalue processes {λNi (t)}1≤i≤N of the symmetric matrix-valued
rocesses XN (t) given in (52), that is

LN (t)(dx) =
1
N

N∑
i=1

δλNi (t)(dx).

The almost sure compactness of the sequence {LN (t), t ∈ [0, T ]}N∈N was obtained in [67] by using the compactness
argument presented in the proof of Theorem 2, and the equation for the limit measures was derived as well. Note that
similar problems were also investigated in [46] independently.

Theorem 9 ([67], Theorems 2.1 and 2.2). Let T > 0 be a fixed number. Suppose that (53) has a strong solution which does
not explode or collide for t ∈ [0, T ]. Assume the following conditions hold:

1. There exists a positive function ϕ(x) ∈ C2(R) such that lim|x|→+∞ ϕ(x) = +∞, ϕ′(x)bN (x) is bounded with respect to
(x,N), and ϕ′(x)gN (x)hN (x) satisfies, for some positive integer l1,

∞∑
N=1

(
∥ϕ′gNhN∥

2
L∞(dx)

N

)l1

< ∞.

2. The function NGN (x, y)
ϕ′(x) − ϕ′(y)

is bounded with respect to (x, y,N).

x − y

17



J. Song, J. Yao and W. Yuan Journal of Multivariate Analysis 188 (2022) 104847

a
s

f

R

f
(

R
e
p
w

s

3. The empirical measure LN (0) converges weakly to a measure µ0 as N goes to infinity almost surely, and

C0 = sup
N>0

⟨ϕ, LN (0)⟩ = sup
N>0

1
N

N∑
i=1

ϕ
(
λNi (0)

)
< ∞. (56)

4. There exists a sequence {f̃k}k∈N of C2(R) functions such that it is dense in the space C0(R) of continuous functions
vanishing at infinity and that f̃ ′

k (x)gN (x)hN (x) satisfies, for some positive integer l2 ≥ 2,

ψ(k) =

∞∑
N=1

(
∥f̃ ′

kgNhN∥
2
L∞(dx)

N

)l2

< ∞. (57)

5. There exist continuous functions b(x) and G(x, y), such that bN (x) converges to b(x) and NGN (x, y) converges to G(x, y)
uniformly as N tends to infinity.

Then the sequence {LN (t), t ∈ [0, T ]}N∈N is relatively compact in C([0, T ],M1(R)) almost surely, i.e., every subsequence has
further subsequence that converges in C([0, T ],M1(R)) almost surely. Furthermore, any limit measure µ in C([0, T ],M1(R))
atisfies the equation

⟨f , µt⟩ = ⟨f , µ0⟩ +

∫ t

0
⟨bf ′, µs⟩ds +

1
2

∫ t

0

[∫∫
R2

f ′(x) − f ′(y)
x − y

G(x, y)µs(dx)µs(dy)
]
ds, (58)

or all f ∈ C2
b (R) such that f ′(x)b(x) and f ′(x)−f ′(y)

x−y G(x, y) are bounded.

emark 11. Eq. (58) with the test function f = (z− x)−1 for z ∈ C+ was derived in [67]. Indeed, the computation therein
is valid for all f ∈ C2

b (R).

By using the symmetric polynomials and the tightness argument presented in the proof of Theorem 3, [46] obtained
the tightness of the sequence {LN (t), t ∈ [0, T ]}N∈N for both the real case (53) and the complex case (55) with general
test functions in C2

b (R). The equation for the limit measures in law was also derived. The results are presented below.

Theorem 10 ([46], Theorem 1). Assume that gN , hN and bN are continuous and satisfy

g2
N (x) + h2

N (x) ≤ K (1 + |x|), |bN (x)| ≤ KN(1 + |x|), ∀x ∈ R, ∀N ∈ N,

for some positive constant K . Suppose that

sup
N∈N

∫
R
x8LN (0)(dx) < ∞,

then the sequence of the measure-valued processes {LN (t), t ∈ [0, T ]}N∈N related to (53) (resp. (55)) is tight. Furthermore,
assuming that g2

N (x) → g2(x), h2
N (x) → h2(x) and bN (x)/N → b(x) locally uniformly on R as N → ∞, then any limit measure

µ of a weakly convergent subsequence in law is an element in C([0, T ],P(R)) that satisfies

⟨f , µt⟩ = ⟨f , µ0⟩ +

∫ t

0
⟨bf ′, µs⟩ds +

β

2

∫ t

0

[∫∫
R2

f ′(x) − f ′(y)
x − y

G(x, y)µs(dx)µs(dy)
]
ds,

or all t > 0, for all f ∈ C2
b (R), where β = 1 corresponds to the real case (53) while β = 2 corresponds to the complex case

55).

emark 12. It is worth pointing out that the almost sure compactness obtained in Theorem 9 is stronger than the tightness
stablished in Theorem 10. However, in comparison with Theorem 9, Theorem 10 does not require the non-colliding
roperty of the strong solution to (53). Hence, Theorem 10 is applicable to the β version of Dyson Brownian motion (4)
ith β ∈ (0,∞), while Theorem 9 is only valid for β ∈ [1,∞).

The system (53) for eigenvalues of matrix-valued process (52) was further generalized in [25] to the following particle
ystem: for 1 ≤ i ≤ N ,⎧⎪⎨⎪⎩ dxNi (t) = σN

i (xNi (t))dWi(t) +

(
bNi (x

N
i (t)) +

∑
j:j̸=i

HN
ij (x

N
i (t), x

N
j (t))

xNi (t) − xNj (t)

)
dt,

x1(t) ≤ · · · ≤ xN (t), t ≥ 0,

(59)

where {W (t)} is a family of independent Brownian motions.
i 1≤i≤N

18
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emark 13.

• If we take σN
i (x) = σN (x), bNi (x) = bN (x) and HN

ij (x, y) = γN , then the particle system (59) reduces to the system (23).
• If we take σN

i (x) = 2x, bNi (x) = (N + 1)x and HN
ij (x, y) = 2xy, then the particle system (59) reduces to the system

(44). To see this, we apply Itô’s formula to (44) to obtain

dλNi (t) = d
(
eln λ

N
i (t)
)

= eln λ
N
i (t)d

(
ln λNi (t)

)
+

1
2
eln λ

N
i (t)d⟨ln λNi (t)⟩

=2λNi (t)dWi(t) + λNi (t)
∑
j:j̸=i

λNi (t) + λNj (t)

λNi (t) − λNj (t)
dt + 2λNi (t)dt

=2λNi (t)dWi(t) +

⎛⎝(N + 1)λNi (t) +

∑
j:j̸=i

2λNi (t)λ
N
j (t)

λNi (t) − λNj (t)

⎞⎠ dt.

The following theorem guarantees the existence and uniqueness of the strong non-exploding and non-colliding solution
to (59)

Theorem 11 ([25], Theorem 2.2). Consider the system (59) with initial condition x1(0) ≤ · · · ≤ xN (0). Assume the following
onditions hold:

1. The coefficient functions σN
i (x), bNi (x) are continuous for 1 ≤ i ≤ N while HN

ij (x, y) is non-negative, continuous and
satisfies the symmetric condition HN

ij (x, y) = HN
ji (y, x) for 1 ≤ i ̸= j ≤ N.

2. There exists a function ρ : R+ → R+ satisfying
∫
0+ ρ

−1(x)dx = ∞, such that for 1 ≤ i ≤ N,⏐⏐σN
i (x) − σN

i (y)
⏐⏐2 ≤ ρ(|x − y|), ∀x, y ∈ R.

3. There exists a positive constant C that may depend on N, such that for all 1 ≤ i ̸= j ≤ N,

σN
i (x)2 + xbNi (x) ≤ C(1 + x2), ∀x ∈ R; HN

ij (x, y) ≤ C(1 + |xy|), ∀x, y ∈ R.

4. For 1 ≤ i ̸= j ≤ N,

HN
ij (w, z)

z − w
≤

HN
ij (x, y)

y − x
, ∀w < x < y < z.

5. There exists a positive constant C that may depend on N, such that for all 1 ≤ i ̸= j ≤ N,

σN
i (x)2 + σN

j (y)2 ≤ C(x − y)2 + 4HN
ij (x, y), ∀x, y ∈ R.

6. There exists a positive constant C that may depend on N, such that for all 1 ≤ i < j < k ≤ N, for all x < y < z,

(y − x)HN
ij (x, y) + (z − y)HN

jk (y, z) ≤ C(z − y)(z − x)(y − x) + (z − x)HN
ik (x, z).

7. For 1 ≤ k < l ≤ N, the set Gkl =
⋂

k<i<j<l

{
x ∈ R : σN

i (x)2 + σN
j (x)2 + HN

ij (x, x) = 0
}
consists of isolated points and for

every x ∈ Gkl,

l∑
i=k

⎛⎝bNi (x) +

N−2∑
j=1

HN
ij (x, yj)

x − yj
1R\{x}(yj)

⎞⎠ ̸= 0, ∀y1, . . . , yN−2 ∈ R.

8. The function bNi (x) is Lipschitz continuous or non-increasing for 1 ≤ i ≤ N. Moreover, for 1 ≤ i < j ≤ N, for all x ∈ R,
bNi (x) ≤ bNj (x).

Then there exists a unique strong non-exploding solution of (59), such that the first collision time

τN = inf{t > 0 : ∃ i ̸= j, xNi (t) = xNj (t)}

is infinite almost surely.

Remark 14. The initial values for the particles in Theorem 11 are allowed to collide.

Let LN (t) be the empirical measure process of the particles {xNi (t)}1≤i≤N given in (59), that is

LN (t)(dx) =
1
N

N∑
δxNi (t)(dx).
i=1
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he convergence of the sequence {LN (t), t ∈ [0, T ]}N∈N for T > 0 was studied in [67] for the case that the family
f functions {bNi (x)}1≤i≤N and {HN

ij (x, y)}1≤i̸=j≤N are identical respectively. For simplicity, we assume bNi (x) = bN (x),
N
i (x) = σN (x) for all 1 ≤ i ≤ N and HN

ij (x, y) = HN (x, y) for 1 ≤ i ̸= j ≤ N , and then the particle system (59) becomes

dxNi (t) = σN (xNi (t))dWi(t) +

⎛⎝bN (xNi (t)) +

∑
j:j̸=i

HN (xNi (t), x
N
j (t))

xNi (t) − xNj (t)

⎞⎠ dt, t ≥ 0, (60)

for 1 ≤ i ≤ N .

Theorem 12 ([67], Theorems 3.1 and 3.2). Let T > 0 be a fixed number. Suppose that (60) has a strong solution that is
non-exploding and non-colliding for t ∈ [0, T ]. Assume the following conditions hold:

1. There exists a positive function ϕ(x) ∈ C2(R) such that lim|x|→+∞ ϕ(x) = +∞, ϕ′(x)bN (x) and ϕ′′(x)σN (x)2 are bounded
with respect to (x,N), and ϕ′(x)σN (x) satisfies, for some positive integer l1.

∞∑
N=1

(
∥ϕ′σN

∥
2
L∞(dx)

N

)l1

< ∞.

2. The function NHN (x, y)
ϕ′(x) − ϕ′(y)

x − y
is bounded with respect to (x, y,N).

3. The empirical measure LN (0) converges weakly to a measure µ0 as N goes to infinity almost surely, and

C0 = sup
N>0

⟨ϕ, LN (0)⟩ = sup
N>0

1
N

N∑
i=1

ϕ
(
xNi (0)

)
< ∞.

4. There exists a sequence {f̃k}k∈N of C2(R) functions such that it is dense in the space C0(R) of continuous functions
vanishing at infinity and that f̃ ′

k (x)σ
N (x) satisfies, for some positive integer l2 ≥ 2,

ψ(k) =

∞∑
N=1

(
∥f̃ ′

kσ
N
∥
2
L∞(dx)

N

)l2

< ∞.

5. There exist continuous functions b(x), σ (x) and H(x, y), such that bN (x) converges to b(x), σN (x) converges to σ (x) and
NHN (x, y) converges to H(x, y) uniformly as N tends to infinity.

Then the sequence {LN (t), t ∈ [0, T ]}N∈N is relatively compact in C([0, T ],M1(R)), i.e., every subsequence has a further
subsequence that converges in C([0, T ],M1(R)) almost surely. Furthermore, any limit measure µ in C([0, T ],M1(R)) satisfies
the equation

⟨f , µt⟩ = ⟨f , µ0⟩ +

∫ t

0
⟨f ′b, µs⟩ds +

1
2

∫ t

0
⟨f ′′σ 2, µs⟩ds +

1
2

∫ t

0

[∫∫
R2

f ′(x) − f ′(y)
x − y

H(x, y)µs(dx)µs(dy)
]
ds, (61)

or all f ∈ C2
b (R) such that f ′(x)b(x), f ′(x)σ (x), f ′′(x)(σ (x))2 and f ′(x)−f ′(y)

x−y H(x, y) are bounded as well as ∥f ′′(·)(σN (·))2 −

′′(·)(σ (·))2∥L∞ → 0 as N → ∞.

emark 15. Eq. (61) for limit measures with the test function f = (z − x)−1 for z ∈ C+ was derived in [67]. Indeed, the
omputation there is valid for all f ∈ C2

b (R).
We would like to point out that the conditions for the uniqueness of the solution to (58) and (61) are still unknown.

he fluctuations of the sequence {LN (t), t ∈ [0, T ]}N∈N around its limits was studied in [68]. We refer the CLT in [68,
heorem 2.1] for details.
There is a huge literature on related interacting particle systems, particularly on those related to Bessel processes. For

ore details, we refer to the survey papers [21,73] and the recent book [35].

. Matrix-valued stochastic processes driven by fractional Brownian motion

A common feature of the matrix-valued stochastic processes discussed so far is that they are all driven by independent
rownian motions. In contrast, the study of matrix-valued SDEs driven by fractional Brownian motions has a shorter
istory and is relatively limited.
Recall that a centred Gaussian process B = {B(t), t ≥ 0} is called fractional Brownian motion with Hurst parameter
∈ (0, 1) if it has the covariance function

E[B(t)B(s)] =
1
2

(
s2H + t2H − |t − s|2H

)
.

We refer the reader to [53] for more details.
20
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To our best knowledge, the first paper in this area is [54], where the real symmetric matrix fractional Brownian motion
was introduced and studied.

Definition 2. Let {Bi,j(t), 1 ≤ i ≤ j ≤ N} be a family of i.i.d. fractional Brownian motions with Hurst parameter H ∈ (0, 1).
Let HN (t) =

(
HN

k,l(t)
)
1≤k≤l≤N

be a real symmetric N × N matrix-valued process whose entries are

HN
k,l(t) = Bk,l(t)1{k<l} +

√
2Bl,l(t)1{k=l}.

hen B(t) is called the real symmetric matrix fractional Brownian motion with Hurst parameter H .

It is natural to consider the eigenvalue processes as we have done for the matrix Brownian motion. For 1 ≤ i ≤ N ,
enote by Φi the function that maps a N × N real symmetric matrix to its ith largest eigenvalue. The following results
an be found in [54].

heorem 13 ([54], Theorems 4.1 and 5.2). Let XN (0) be a real symmetric N × N deterministic matrix and let XN (t) =
N (0)+HN (t), where HN (t) is defined in Definition 2 with Hurst parameter H ∈ (1/2, 1). Let λN1 (t) ≥ λN2 (t) ≥ · · · ≥ λNN (t) be
he ordered eigenvalue processes of XN (t). Denote the first collision time of the eigenvalue processes by

τN = inf
{
t > 0 : ∃ i ̸= j, λNi (t) = λNj (t)

}
.

Then P (τN = +∞) = 1. Furthermore, the ordered eigenvalue processes λN1 (t), . . . , λ
N
N (t) satisfy

λNi (t) = λNi (0) +

(∑
k≤l

∫ t

0

∂Φi(XN (s))
∂Bk,h

δBk,h(s)

)
+ 2H

∑
j:j̸=i

∫ t

0

s2H−1

λNi (s) − λNj (s)
ds. (62)

The main tool used in [54] is the fractional calculus and Malliavin calculus, for which we refer to [61] and [53]
espectively. The non-collision property was obtained in [54, Theorem 4.1] by establishing an upper bound for negative
oments of the difference of eigenvalue processes. Eq. (62) for eigenvalue processes was derived in [54, Theorem 5.2]
y employing a multidimensional version of the Itô’s formula for the Skorohod integral ([54, Theorem 3.1], see also [57,
heorem 2]).

emark 16. The complex version of Theorem 13 can be obtained by the same argument.

emark 17. Unlike the Brownian motion case (H = 1/2), the Lévy characterization theorem for fractional Brownian
otion [28, Theorem 3.1] is not applicable here, and it is conjectured that the second term in the right hand side of (62)

s even not be Gaussian, see [54, Remark 5.3].

emark 18. It is shown in [31,64] that the eigenvalue process of XN (t) collides with positive probability when H ∈

0, 1/2). The eigenvalue process of a complex Hermitian fractional Brownian motion collides when H < 1/3 and does not
ollide when H > 1/3. Indeed, the two papers [31,64] provide sharp conditions that ensure a null probability of collision
f eigenvalues for a more general matrix-valued Gaussian process.

For the sequence of eigenvalue processes {λNi (t)}1 lei≤N in Theorem 13, denote the empirical measure of the normalized
igenvalue processes by

LN (t)(dx) =
1
N

N∑
i=1

δλNi (t)/
√
N (dx).

For the case H ∈ (1/2, 1), the convergence in probability of the sequence {LN (t)}N∈N to the semi-circle law was established
n [56] under null initial condition XN (0) = 0 by using Malliavin calculus and the tightness argument used in the proof
f Theorem 3.
Similar to the free Brownian motion, the non-commutative fractional Brownian motion with Hurst parameter H ∈

0, 1) was introduced in [52, Definition 3.1] as a centred semicircular process {SH (t), t ≥ 0} with covariance function

τ
(
SH (t)SH (s)

)
=

1
2

(
t2H + s2H − |t − s|2H

)
,

where τ is the trace on the non-commutative probability space. The semi-circle law {µH
t , t ≥ 0} established in [56] is the

aw of a non-commutative fractional Brownian motion with Hurst parameter H .
The results of [56] were extended to normalized real symmetric matrix Gaussian processes with general initial

ondition in [32]. In particular, the real symmetric matrix Gaussian processes considered in [32] include the real symmetric
atrix fractional Brownian motion with H ∈ (0, 1).
The almost sure convergence of the sequence of eigenvalue empirical measure valued processes of Wigner-type

atrices, whose entries are generated from the solution of 1-dimensional Stratonovich SDE

dX = σ (X ) ◦ dBH
+ b(X )dt, t ≥ 0, (63)
t t t t

21
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o the semi-circle law was established in [66, Theorem 3.1, 3.2] for H ∈ (1/2, 1) by using fractional calculus and the
argument used in the proof of Theorem 2. [66] also studied the convergence of the sequence of eigenvalue empirical
measure-valued processes of the complex analogue and the real symmetric matrix with local dependent entries.

For any test function f ∈ C4(R) whose fourth derivative has polynomial growth, the random fluctuation

L◦

N (f )(t) = N
(
⟨f , LN (t)⟩ − E [⟨f , LN (t)⟩]

)
.

of the sequence {LN (t)}N∈N of normalized real symmetric matrix Gaussian process around its expectation was studied
in [14, Theorem 2.3].

The fractional version of Wishart process was studied in [57] for H ∈ (1/2, 1). Let B(t) be a N ×p matrix whose entries
are i.i.d. standard real fractional Brownian motion (matrix fractional Brownian motion) with Hurst parameter H ∈ (1/2, 1).
Let XN (t) = (B(t)+A)(B(t)+A)⊺, where A is a N×p real deterministic matrix, is the fractional Wishart process. The following
result provides are the non-collision property of eigenvalue processes as well as the equations satisfied by the eigenvalue
processes.

Theorem 14 ([57], Theorems 3 and 4). Let XN (t) be a fractional Wishart process with H ∈ (1/2, 1). Let λN1 (t) ≥ λN2 (t) ≥

· · · ≥ λNN (t) be the ordered eigenvalue processes of XN (t). Denote the first collision time of the eigenvalue processes by

τN = inf
{
t > 0 : ∃ i ̸= j, λNi (t) = λNj (t)

}
.

Then P (τN = +∞) = 1. Furthermore, the ordered eigenvalue processes λN1 (t), . . . , λ
N
N (t) satisfy

λNi (t) = λNi (0) +

(
N∑

k=1

p∑
l=1

∫ t

0

∂Φi(XN (s))
∂Bk,l

δBk,l(s)

)
+ 2H

∫ t

0

⎛⎝p +

∑
j:j̸=i

λNi (s) + λNj (s)

λNi (s) − λNj (s)

⎞⎠ s2H−1ds.

For the sequence of eigenvalue processes {λNi (t)}1≤i≤N in Theorem 14, denote the empirical measure of the normalized
igenvalue processes by

LN (t)(dx) =
1
N

N∑
i=1

δλNi (t)/N (dx).

For the case H ∈ (1/2, 1), the convergence in probability of the sequence {LN (t)}N∈N to the Marčenko–Pastur law was
stablished in [57] under null initial condition XN (0) = 0 by using Malliavin calculus and the tightness argument used in
he proof of Theorem 3. As an extension, the convergence in probability of the sequence of eigenvalue empirical measure
alued processes of Wishart-type matrices, whose entries are generated from the solution of (63), to the Marčenko–
astur law was established in [66, Theorems 3.1, 3.2] by using fractional calculus and the argument used in the proof of
heorem 2.

. Matrix-valued stochastic processes driven by Brownian sheet

In stochastic analysis, multi-parameter processes, which are also known as random fields, are a natural extension of
ne-parameter processes. Various interactions exist between the theory of multi-parameter processes and other disci-
lines, such as analysis, algebra, mathematical statistics and statistical mechanics. The most important multi-parameter
rocess is the Brownian sheet. Recall that the standard 1-dimensional (2-parameter) Brownian sheet {B(s, t), (s, t) ∈ R2

+
}

s a centred Gaussian random field with covariance function

E [B(s1, t1)B(s2, t2)] = (s1 ∧ s2)(t1 ∧ t2).

e refer to [40] for more details on multi-parameter processes, in particular for properties of the Brownian sheet.
As shown in the review, there is a rich literature on eigenvalue processes of matrix-valued one-parameter processes.

n contrast, the study on matrix-valued multi-parameter processes is just beginning. To our best knowledge, [65] is the
nly reference on this topic.
Let {Bi,j(s, t), s, t ∈ R+}i,j≥1 be a family of independent standard 1-dimensional Brownian sheets. The N × N real

ymmetric matrix-valued stochastic process HN (s, t) =
(
HN

i,j(s, t)
)
1≤i,j≤N

with entries

HN
i,j(s, t) =

{
Bi,j(s, t), i < j,
√
2Bi,i(s, t), i = j,

(64)

s known as the real symmetric matrix Brownian sheet. Let AN be a N × N real symmetric deterministic matrix with
istinct eigenvalues, and let

XN (s, t) = HN (s, t) + AN . (65)

In the case of symmetric matrix Brownian motion, multi-dimensional Itô’s formula for Brownian motions plays a key
ole when deriving the system of SDEs (4) for eigenvalue processes (see [1, Theorem 4.3.2]). The system of SDEs (62) for
22
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igenvalue processes of real symmetric matrix fractional Brownian motion also heavily relies on the multi-dimensional
tô’s formula for the Skorohod integral with respect to fractional Brownian motion (see [54]). For the case of Brownian
heet, though the one-dimensional Itô’s formula has been established in [10], the multi-dimensional version was not
vailable until it was obtained in [65] by using the stochastic calculus on the plane developed in [10]. Using the multi-
imensional Itô’s formula, [65] derived the system of SPDEs for the ordered eigenvalue processes of XN (s, t). Moreover,
he convergence of the sequence of the eigenvalue empirical measure processes of 1

√
d
XN (s, t) was also studied in [65].

. Open problems

For the system of eigenvalue processes (53), the conditions of the uniqueness to (58) are still unknown. The uniqueness
an be obtained under proper conditions for some special matrix-valued processes. It was established in [9] for real
ymmetric and complex Hermitian matrix Brownian motion and complex Wishart process using large deviation technique.
or real symmetric and complex Hermitian matrix Brownian motion, [1] obtained the uniqueness by analysing the
tieltjes transform of the limit measure process. For real symmetric matrix OU process, the uniqueness was established
y computing the moments of limiting measure in [12]. In [60], the uniqueness was established also by analysing the
tieltjes transform of the limit measure process. For the Dyson’s Brownian motion with general drift, the uniqueness was
stablished in [43] by the entropy technique. In [11], the uniqueness was established by transferring the equation of the
tieltjes transform of the limit measure to a PDE, which was solved via Fourier transform. It was established in [67] the
niqueness of self-similar solution for real symmetric and complex Hermitian matrix Brownian motion, Wishart process
nd Laguerre process. However, [46, Proposition 5, 6] provided an example of (58) which have at least two solutions. It is
lso of interest to know the conditions under which Eq. (58) has unique solution that is supported on [0,+∞). Similarly,

the conditions for the uniqueness of the limiting Eq. (61) are still unknown.
For the fractional Wishart process considered in Theorem 14, the fluctuation of the sequence of eigenvalue empirical

measure processes around its limiting measure process is still unknown.
For the symmetric matrix valued Brownian sheet, the fluctuation of the sequence of eigenvalue empirical measure

processes around its limiting measure process is also unknown.
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