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Abstract

Apps’ pervasive role in our society motivates researchers to develop automated techniques

ensuring dependability through testing. However, although App updates are frequent and

software engineers would like to prioritize the testing of updated features, automated testing

techniques verify entire Apps and thus waste resources. Further, most testing techniques can

detect only crashing failures, necessitating visual inspection of outputs to detect functional

failures, which is a costly task. Despite efforts to automatically derive oracles for functional

failures, the effectiveness of existing approaches is limited. Therefore, instead of automating

human tasks, it seems preferable to minimize what should be visually inspected by engineers.

To address the problems above, in this dissertation, we propose approaches to maximize

testing effectiveness while containing test execution time and human effort.

First, we present ATUA (Automated Testing of Updates for Apps), a model-based approach

that synthesizes App models with static analysis, integrates a dynamically-refined state

abstraction function, and combines complementary testing strategies, thus enabling ATUA

to generate a small set of inputs that exercise only the code affected by updates. A large

empirical evaluation conducted with 72 App versions belonging to nine popular Android

Apps has shown that ATUA is more effective and less effort-intensive than state-of-the-art

approaches when testing App updates.

Second, we present CALM (Continuous Adaptation of Learned Models), an automated

App testing approach that efficiently tests App updates by adapting App models learned

when automatically testing previous App versions. CALM minimizes the number of App

v



screens to be visualized by software testers while maximizing the percentage of updated

methods and instructions exercised. Our empirical evaluation shows that CALM exercises a

significantly higher proportion of updated methods and instructions than baselines for the

same maximum number of App screens to be visually inspected. Further, in common update

scenarios, where only a small fraction of methods are updated, CALM is even quicker to

outperform all competing approaches more significantly.

Finally, we minimize test oracle cost by defining strategies for selecting, for visual

inspection, a subset of the App outputs. We assessed 26 strategies, relying on either code

coverage or action effect, on Apps affected by functional faults confirmed by their developers.

Our empirical evaluation has shown that our strategies have the potential to enable the

identification of a large proportion of faults. By combining code coverage with action effect,

it is possible to reduce oracle cost by about 41.2% while enabling engineers to detect all the

faults exercised by test automation approaches.
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Chapter 1

Introduction

1.1 Context and Motivation

Software applications for mobile devices, or Apps, play an essential role in our daily lives,

from leisure to business. Therefore, App development plays an important role in our

economy, with App developers paying much attention to marketing and user satisfaction. As

a consequence, to improve users’ experience and fulfill marketing strategies, App developers

release updates frequently [1, 2, 3].

Frequent App updates increase the effort invested by developers in App testing. Indeed,

every new App version should be carefully tested to avoid releasing new features that are

faulty or breaking existing features. Unfortunately, App testing is expensive (i.e., around

23% - 35% of the entire project expense on average [4] and frequent App releases increase

such costs even more.

Since Apps are event-driven, UI tests are preferred over unit tests, which may require

complicated scaffolding in the App context; also, they enable end-to-end validation. For UI

testing, developers rely on automation frameworks (e.g., Espresso for Android) to define

executable UI test cases, including inputs and oracles. These test cases can be rerun to ensure

the correctness of functionalities every time changes are introduced during the development.
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CHAPTER 1. INTRODUCTION

Compared to manual testing, although this approach saves manual effort when tests are

repeated, it comes with maintainability costs [5]. Indeed, in the case of updates that modify

the GUI, the executable test cases manually defined by engineers may become obsolete.

Further, engineers need to implement new test cases for every feature added to the updated

App.

To address the problems above, abundant research on the automated testing of Apps has

emerged. These approaches can be grouped according to the strategy adopted to generate test

inputs, including random, evolutionary and model-based [5, 6]. Some recent approaches also

adopt reinforcement learning and deep learning to guide the testing effectively [7, 8, 9, 10, 11,

12]. Unfortunately, state-of-the-art automated App testing techniques do not target updated

features and show limited code coverage capabilities, thus indicating they are unlikely to

exercise all the App features under test. For example, some studies report that they exercise

around half of the App methods [13, 14]. Regression test selection techniques [15, 16] are

unlikely to help engineers select test cases that exercise the updated features when coverage

is limited. Even in the most optimistic scenario, these techniques are limited to exercising

only modified functions; they do not enable test automation for features introduced by an

update. Therefore, the automated testing of updated features remains an open problem.

Furthermore, to increase testing effectiveness and efficiency when updates are frequent,

automated App testing approaches should leverage the knowledge, typically inferred App

models, acquired when testing previous App versions. In the literature, inferred models have

been reused to repair test scripts [17], execute test cases on different platforms [18, 19], and

automated regression testing [20]. However, these approaches are only suitable for regression

testing and do not allow effective exploration of the inferred model to generate test inputs for

an updated version of the App under test (hereafter, AUT).

Finally, App testing, like any form of software testing, remains affected by the oracle

problem [21], that is, the problem of automatically determining the correctness of a software

output given an arbitrary input. The lack of techniques to automate test oracles makes

the visual inspection of test outputs unavoidable. Indeed, most test automation techniques

detect only crashes [22]. Oracle automation techniques address Android-related faults like

data loss [23, 24], UI display issue [25], cross-device compatibility [26], setting-related

bugs [27, 28, 29]. Only two tools target generic functional faults [22, 30]. Nevertheless, a

2
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recent study on functional faults affecting Android Apps reports that 98% of the failures

likely require visual inspection to be detected. Among these, content-related issues account

for 21%, structure-related issues for 40%, incorrect interaction for 19%, and functionality not

taking effect (e.g., the end-user presses on a button, but the App unexpectedly does not react)

for 12% [31]. Unfortunately, the visual inspection of App outputs is practically infeasible

when automated testing tools generate a large number of test inputs, each one leading to

a new output screen to be inspected. Hence, keeping the number of test inputs to a strict

minimum is important to minimize human intervention. Further, selecting a subset of outputs

which are representative could help reduce human effort.

All the problems above motivate our work, which has been supported by Huawei Co.

LTD, a leader in mobile devices and software development, who provided constructive

feedback and assessed the developed solutions.

To cost-effectively test App updates by reusing models and minimizing oracle costs, we

propose (1) ATUA (Automated Testing of Updates for Apps), a test automation technique

that combines static and dynamic program analysis together with an incremental testing

strategy, (2) CALM (Continuous Adaptation of Learned Model), a technique that enables the

reuse of inferred models acquired when testing a previous App version to drive the testing

on an updated App version, and (3) a set of strategies for the selection of relevant outputs to

minimize the cost of visual inspection (test oracles).

1.2 Research Contributions

Over the last decade, Android has consistently been chosen by the majority of users. A recent

study shows that in July 2023, Android accounts for 70.9% of the mobile operating system

market share worldwide, while iOS accounts for 28.36%1. Since Android is open source and

provides a more flexible experiment environment for developers, it is the best candidate for

test automation technique research. Indeed, about 89% of research works were conducted on

Android, while only about 4% were designed to work on iOS [32]. To facilitate comparisons

with related work, in this dissertation, we focus on testing of Android Apps, although the

proposed approaches should be applicable to Apps developed for other operating systems

(e.g., iOS, HarmonyOS). Our research contributions are described below.

1Statcounter - GlobalStates URL:https://gs.statcounter.com/os-market-share/mobile/worldwide
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CHAPTER 1. INTRODUCTION

First, we introduce ATUA (Automated Testing of Updates for Apps), the first approach to

focus on App updates and integrating multiple test strategies to efficiently use the test budget.

ATUA generates models of the AUT by combining static and dynamic program analysis. It

introduces a dynamically refined state abstraction function that refines the states of the AUT

during testing. To deal with the complexity of Apps, ATUA implements complementary

testing strategies, including (1) coverage of the model structure, (2) coverage of the App

code, (3) random exploration, and (4) coverage of dependencies among App windows.

Second, we present CALM (Continuous Adaptation of Learned Models), an App testing

technique that efficiently tests updated Apps by relying on models learned from previous

App versions. CALM leverages ATUA to select test inputs that exercise updated methods.

However, CALM improves over ATUA by combining dynamic and static program analysis

to adapt and improve the model learned when testing a previous App version. The reuse

of an existing model enables CALM to efficiently use the test budget to exercise updated

methods rather than to determine, with random exploration, how to reach Windows already

reached in previous App versions.

Finally, we propose and assess different strategies to reduce the cost of test oracles

based on visual inspection. The proposed strategies rely on either code coverage or GUI

screenshots, which could be acquired by any testing tool, thus enabling our findings to

generalize beyond CALM. Our empirical assessment is based on functional faults confirmed

in App repositories.

1.3 Dissemination

ATUA was published in ACM Transactions on Software Engineering & Methodology [33].

The work was presented at the Journal First track of the 37th IEEE/ACM International

Conference on Automated Software Engineering (ASE 2022). The ATUA toolset has been

presented in the tool demo track of the 31st ACM SIGSOFT International Symposium on

Software Testing and Analysis (ISSTA 2022). ATUA is open source and is available online 2.

CALM has been submitted in ACM Transactions on Software Engineering & Methodol-

ogy. A preprint copy of the work has been uploaded on Arvix.

2https://github.com/SNTSVV/ATUA
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1.4 Dissertation Outline

In Chapter 2, we present background information on App design and testing, together with

related work on App testing. We introduce two common types of techniques for App Testing,

including test input generation techniques and App regression testing techniques. We explain

why these techniques are inadequate in the context of testing Apps updates.

In Chapter 3, we present ATUA (Automated Testing of Updates for Apps), which

leverages static and dynamic analysis for constructing App models to guide the testing under

complementary testing strategies targeting App updates. We address three research questions:

(1) Can ATUA reduce the human effort required for testing Apps, compared to state-of-the-art

approaches? (2) Can ATUA effectively test Apps within practical time budgets, compared

to state-of-the-art approaches? (3) Is there any difference in the functionalities that are

automatically exercised across test automation approaches?

In Chapter 4, we present CALM (Continuous Adaptation of Learned Models), an App

testing technique that efficiently tests updated Apps by relying on models learned with

previous App versions. We conducted an empirical evaluation addressing two research

questions: (1) Is CALM more effective than competing approaches in testing App updates,

for a same test budget? (2) How do CALM and competing approaches fare, for different

testing time budgets, with updates of different magnitudes?

In Chapter 5, we present different strategies that minimize the oracle cost by selecting

the App outputs to be visually inspected. Further, we conducted an empirical evaluation

addressing three research questions: (1) Do target action screenshots (i.e., screenshots

recorded after triggering updates), enable the detection of functional faults through visual

inspection? (2) How effective is CALM in exposing functional failures? (3) What is the

most cost-effective output selection strategy?
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Chapter 2

Background and Related Work

2.1 App Design and Architecture

In this dissertation, we target Android Apps since Android is the most adopted platform and

is widely investigated in research [2]. However, most of the solutions proposed here should

be easily tailorable to other platforms.

When an App is running, the end-user interacts with the active Window of the App (i.e.,

the Window being rendered on the screen). Windows consist of a hierarchy tree of widgets;

in this dissertation, we use the term GUITree to refer to such hierarchy trees [34, 35, 36, 37]1

A widget extends the class View. Figure 2.1 shows a portion of the hierarchy tree of the

class View. Figure 2.2 shows a portion of the GUITree for a window of Activity Diary, one

of our case study Apps (see Section 4.3).

Each widget has a set of properties associated to it. Widgets can be associated to

EventHandlers that are invoked by the OS when specific InputEvents are triggered by the

end-user. Typical InputEvents include click, long click, swipe, and keypress.

In Android, the application logic is typically implemented by Activity classes that are

1Other work uses the term GUITree to refer to the sequence of App windows encountered during testing [38]
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Window ViewGroup

View

TextView ImageView …

Button

* Event
Handler

Event

<use>

<handle>

Figure 2.1: Overview of the Android Apps’s GUI architectural components.

Figure 2.2: Example of a GUITree. We use different dotted boxes to match widgets in the
tree to the pixels in the screen.

instantiated by the framework and act as controllers of the Model-View-Controller design

pattern [39]. Inter-process communication, instead, is managed by the Intent resolution

mechanism [40]. More precisely, in Android, a system event (e.g., indicating a battery being

low) or a message exchanged between apps (e.g, a URL sent by the browser to a music player

App) is referred to as an Intent. To handle Intents, an App declares in its XML configuration

file, called App Manifest [41], an Activity that the OS will instantiate and execute when a

specific Intent type is received by the App.

2.2 App GUI Testing Automation

2.2.1 Overview

System-level testing of an App through its GUI (i.e., GUI testing) is performed through

sequences of test inputs that can be either Events or Intents. Functional GUI testing aims at

exercising (i.e., render active) all declared Windows, trigger all event handlers, and cover all

8
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the code of the AUT. App testing automation aims to generate input sequences to achieve

these objectives at the lowest cost possible.

App testing tools differ with respect to their input selection strategy [5, 32] and mostly

rely on random [42], model-based [43, 36, 37, 44], search-based [45], deep learning [9, 11,

10] and reinforcement learning [7, 8, 12, 46] strategies.

2.2.2 App Model as a Finite State Machine

Although App testing solutions may integrate different state-of-the-art techniques, they,

in general, rely on a finite state machine (FSM). A finite state machine can be formally

described as a tuple (S,A, T,L) [37], where

• S is a set of states.

• A is a set of actions.

• T is a set of state transitions. Each transition has a source state ssrc ∈ S and a target

state star ∈ S. It is triggered by an action α ∈ A.

• L is an abstraction function, which might be used to: (1) assign a Window to a state

and (2) match an InputEvent or an Intent to an action.

2.2.3 Test Generation Techniques

The most common test generation techniques are random, model-based, and evolutionary [32].

Representative approaches of these three categories used in empirical evaluations are Monkey,

Stoat [36], and Sapienz [45], respectively. Other recent and effective approaches either rely on

Q-Learning [47, 48], Deep Learning [9, 11, 10], execution traces [49], or state cloning [50].

• Monkey [42] is a program that runs on the Android emulator and generates pseudo-

random streams of events. It is used as baseline for App testing approaches and

surprisingly fares better in many benchmarks [14]. The reason is that the time saved

by not processing the App GUITree can be used to further explore the App state space.

• Stoat [36] performs stochastic model-based testing. It relies on dynamic analysis

based on a weighted UI exploration strategy to derive a stochastic finite state machine
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(SFSM) of the App’s GUI interactions. Stoat relies on the SFSM to generate test suites

using an objective function that aims to maximize code coverage, model coverage, and

test diversity. The test generation process relies on Gibbs sampling [51], an instance

of Markov Chain Monte Carlo sampling, to iteratively mutate and refine the SFSM,

based on the fitness of the generated test suite.

• GATOR [52] is a static analysis tool for constructing Window Transition Graphs

(WTG) for Apps. It further relies on the WTG as App model to generate test input

sequences as test scripts (i.e., Robotium [53] test scripts) by traversing the WTG.

However, due to the limitation of the static analysis (i.e., the incompleteness of the

constructed WTG), the generated test suites are likely infeasible to execute, thus

requiring manual effort to fix the scripts. Further, such static-analysis-based generation

approaches are usually capable of generating only short test input sequences due to the

explosion of the search space, which is limited to testing scenarios requiring complex

input sequences.

• Sapienz [45] is an evolutionary approach that utilizes Pareto multi-objective search to

automatically explore and optimize test sequences, minimizing length, while simulta-

neously maximizing coverage and fault detection. Sapienz combines random fuzzing,

systematic exploration and search-based exploration.

• APE [37] employs an adaptable state abstraction function to eradicate the state explo-

sion issue (due to a selection of over-fine-grained state abstraction function, which

captures every information from the GUITree) but at the same time to encourage

app exploration. In APE, each window is modeled with sets of attribute paths that

univocally identify the widgets of the window. In APE, a single L is defined for the

whole app, and L is implemented by means of a decision tree (DT), which enables

APE to not rely on a predefined set of reducers, each of which is a function allowing

extract a piece of specific information acquired from the GUITree.

• Q-testing [47] relies on Q-learning (a model-free reinforcement learning algorithm [54])

to trigger events that enable the exploration of features that are not yet tested. In Q-

testing, an event is rewarded if it leads to an App state having a layout not visited

before. A Siamese neural network [55] is used to compare states. An event is likely
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to be selected based on its value in a Q-Table which stores scores of every event, or

selected randomly according to a predefined probability.

• Humanoid [56] relies on a deep neural network model to prioritize unexplored actions

in a human-like way. Humanoid trains the DNN model with multiple Residual

LSTM [57] on a crowd-sourced dataset consisting of interaction flows from more than

10,000 apps. An action is likely to be selected if its probability of selection in the

current context (i.e., the three latest transitions) is highest among other actions.

• MuBot [10] is inspired by Humanoid, but it differs from Humanoid in the such that it

employs multi-model deep neural networks to provide more selection possibility of

actions in the current context, then to help the testing enhance the effectiveness of GUI

state abstraction and GUI action generation so that the testing would not fall into the

infinite-loop issue, particularly in industrial apps whose GUI design are sophisticated.

• DeepGUI [11] trains a DNN model to improve Monkey’s effectiveness by focusing

on areas on the App screen that could induce changes in the GUI when they receive

inputs (e.g., touch). The UNet neural network architecture is adopted to generate a

multi-channel heatmap of the current screen. Each channel corresponds to an action

type (e.g, touch, swipe). DeepGUI then relies on the heatmap to generate supported

inputs (i.e., touch or gesture) for Monkey.

• Combodroid [49] works by combining test input sequences derived from execution

traces. It can work with either traces collected by automated testing tools (e.g., APE)

or traces collected when end-users exercise the AUT. In the first case, results show

that Combodroid achieves higher code coverage than APE when using more than six

hours of test budget, which is not feasible in continuous integration contexts where

test cases are always executed after code commits.

• TimeMachine [50] implements a metaheuristic approach that relies on a pool of App

states. New App states are reached by triggering random events. An App state is

added to the pool only if it is reached after exercising code not covered yet; App states

are captured by cloning the state of the virtual machine running the AUT. When lack

of progress is detected, TimeMachine resets the execution from the state with the

highest fitness, which is computed by balancing the number of times the state has been
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visited and the number of interesting states generated from it. Similar to Combodroid,

TimeMachine overcomes Monkeys, Stoat, and Sapienz when executed for more than

five hours; however, as discussed above, this setting makes it inapplicable in some

continuous integration contexts. Most importantly, none of the existing App testing

approaches prioritize the testing of App updates.

Independent empirical evaluations performed by Choudhary et al. [13] and Wang et

al. [14] have reported that combinations of different testing strategies could improve the

result. Further, both studies show that the method and instruction coverage achieved by all

test automation approaches are relatively low, that is below 50%. Choudhary et al. [13]

note that model-based approaches complement random approaches regarding fault detection,

while for code coverage, random approaches fare better. Wang et al. [14] confirm these

results. They report that random and evolutionary approaches are complementary regarding

method coverage, while both evolutionary and model-based approaches complement random

approaches in terms of fault detection. However, the validity of these findings has been

weakened by recent advances in model-based approaches. Indeed, more recent results show

that model-based approaches that either integrate advanced exploration strategies (i.e., biased

random in DM2) or adaptable state abstraction functions (i.e., APE [37]) fare better than

random approaches or state-of-the-art model-based approaches. APE, for example, is a

recent technique that has been reported to perform better than Monkey, Sapienz, and Stoat.

2.3 App Regression Testing Techniques

Regression testing techniques for Apps concern the selection of events that may trigger

modified code [16], the selection of regression test cases [15], and the repair of existing test

suites [58].

• QADroid is a static analysis toolset [16] that identifies the events (i.e., the Inputs of

WTG) that may trigger the execution of modified methods. It relies on FlowDroid [59].

To select the Inputs that may trigger modified methods, QADroid performs a forward

traversal of the App control flow graph obtained with Soot [60] (i.e., it starts the

traversal from event handler methods) and selects all the inputs that reach modified

methods. QADroid has never been applied to automated testing and cannot identify
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the concrete input values to be used with certain Inputs (e.g., the data to write into a

TextArea).

• Redroid [61, 62] selects a regression test suite for an updated version of an App from

an existing test suite. It relies on state-of-the-art static analysis procedures [63] to

perform change impact analysis and uses code coverage information to select any test

case that cover modified blocks of code. Redroid does not support the generation of a

minimal test suite.

• DetReduce [15] creates a small regression test suite for an App from a test suite

generated by a model-based test automation tool. It identifies and removes redundant

method call traces and subtraces within the test suite and redundant loops within a

test case. Redundancy is identified based on a state abstraction function that considers

actionable widgets and their visible attribute values. Widgets are identified by their

path in the GUITree.

Since executable test suites are often unavailable and state-of-the-art App testing tools

can cover only a narrow set of modified methods, the applicability of Redroid and DetReduce

remains limited.

Another solution for the generation of reduced test suites is the one proposed by Jabbar-

vand et al. [64] in the context of energy-aware test-suite minimization. In their work, they

stop and restart the execution of Monkey every 500 events; a sequence of 500 events is a

test case. When the test budget is exhausted, a greedy algorithm identifies the minimal set

of test cases that maximize the coverage of energy-greedy parts of the App. Such solutions

might be adapted to work with the state-of-the-art test generation approaches (introduced

in 2.2.3); for example, by restarting test generation after a predefined number of events and

then by relying on the greedy algorithm to select the minimal set of test cases (e.g., up to

2000 inputs) that maximizes the code coverage. However, though such an approach might

reduce the size of the generated test suites, it might not be feasible to identify a configuration

that maximizes the benefits for a range of Apps. Indeed, for some Apps, 500 events might

not be sufficient to reach an App state that enables exercising updated methods, especially

for random approaches (e.g., if updated methods require long, specific sequences of events

to be exercised), while a much larger number of events would greatly reduce the benefits of

test suite reduction
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Automated repair techniques for the GUI test scripts of mobile Apps are still prelimi-

nary [58, 65, 66]; to repair test scripts they include strategies ranging from static program

analysis [58], to model-based [67] and computer vision techniques [65, 66]. Existing ap-

proaches either leave between 5% [66] and 8% [58] of the test scripts to be manually repaired

or do not preserve all the test actions (i.e., the test semantic [67]). Though these results show

that automated GUI script repair techniques might be adopted to support the oracle automa-

tion approach we suggested for the identification of regression failures, manual intervention

would still be required, as indicated in Section 3.4.6.

2.4 Incremental Testing Approaches

Campos et al. [68] have been the first to propose a technique to incrementally test the units

in a software project, leading to overall higher code coverage while reducing the time spent

on test generation. They apply an evolutionary approach (i.e., EvoSuite [69]) and optimize

test generation by providing more test budget to the modified portions of the code and reuse

already generated test cases for seeding (i.e., they re-run all the test cases that compile).

However, the approach does not target the GUI testing of Apps but the unit testing of Java

libraries. In our context, the reuse of existing test cases is complicated by the presence of a

GUI, which is likely updated across versions and may break existing test sequences.

2.5 Test Oracle Automation

Most state-of-the-art test generation approaches for App testing [5, 70] do not address the

oracle problem [21].

Xiong et al. [31] have recently conducted an empirical study of 399 functional faults

in Android Apps. Their results highlight that most of the functional faults require visual

inspection to be detected. Indeed, they report that only 30% of the faults lead to crashes. Of

the remaining, only 3% are related to energy consumption, the rest is probably detectable only

through visual inspection; indeed, content-related issues account for 21%, structure-related

issues for 40%, incorrect interaction for 19%, functionality not taking effect for 12%, and

unresponsive UI element for 5%.

Recently, some studies have proposed approaches for generating tests with automated
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oracle. They mainly rely on one of four testing techniques [31]: differential testing, meta-

morphic testing, deep learning, or implicit knowledge.

• Differential testing [71] detects anomalies of App features by comparing test outputs

between a test subject (e.g., an updated version) and a reference subject (e.g., a base

version) over the same input. DiffDroid [26], ITDroid [29], and FILO [72] adopt

this technique. DiffDroid identifies cross-platform inconsistency issues of an App

by generating test cases to explore the App’s UI and construct UI model of the App

on the reference device, then re-executing the test cases on test devices to check the

consistencies of UI models obtained with the reference UI model. ITDroid focuses on

detecting layout changes in the context of Apps’ internationalization by following a

similar process, except that it relies on layout graph of default language as a baseline

to detect changes in other languages. FILO collects and analyzes execution traces

including data exchanged between Android APIs and App callbacks when executing

the App on two Android versions to detect backward incompatibility issues introduced

by the upgrade of the Android framework.

• Metamorphic testing [73] focuses on verifying the correctness of a program by apply-

ing transformations to its inputs and comparing the outputs with expected behaviors,

relying on the principle that certain transformations should yield predictable, consistent

results. Approaches like SetDroid [27] and Genie [22] define metamorphic relations

and generate mutant tests whose results are supposed to satisfy the metamorphic rela-

tions. SetDroid addresses the inconsistent behaviors of Apps when there are changes

in Android Settings (i.e., Setting-related faults), while Genie focuses on apps’ generic

functional faults that violate "independent-view property" metamorphic relation.

• Deep learning is adopted to detect common UI display issues in Owl Eyes [25]. Owl

Eyes relies on a CNN (Convolutional neural network) to classify whether an App

screen has UI display issues or not. Similarly, Glib [74] adopts a CNN to detect

glitches in graphically rich applications (i.e., Games).

• Finally, some techniques rely on implicit knowledge. iFixDataloss [23] and DLD [24]

assume that a GUI state should be preserved after a sequence of neutral actions (e.g.,

after a double rotation). Otherwise, a data loss fault is present. Odin [30] targets
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functional bugs by relying on the viewpoint that considers "bugs as deviant behavior".

When there is a large number of observations, an action effect that rarely happens is

likely the presence of a fault.

Further, Xiong et al. also report that feature agnostic oracles (e.g., looking for overlap-

ping UI elements, data loss, and App freezing) discover 30% of non-crashing functional

failures; however, in their experiments, existing tools automating feature agnostic oracles

(i.e., Genie [22], Odin [30], IFixDataLoss [23], ITDroid [29], and SetDroid [27]) could,

overall, detect only 6% of such faults. In other words, 84% of non-crashing failures can be

detected only through visual inspection, which further motivates our work.

Finally, Xiong et al. propose RegDroid, which implements a form of differential testing

to detect regression faults (i.e., it executes a random sequence of actions on two App versions

and verifies if the output screens include a same randomly selected interactable widget);

unfortunately, their results show a false positive rate above 60%.

The automated detection of functional regression faults based on the identification of

unexpected changes to outputs across different software versions is not new in software

testing [75, 76, 77, 20]. However, since regression faults are a subset of all the possible

functional faults in an App, engineers still need to inspect App outputs for non-regression

faults; therefore, for engineers, it may likely be more effective to simply inspect all the

outputs generated by an App.

One last solution to visually inspect App outputs while containing costs, consists of

relying on crowdsourcing, a popular solution adopted by industry to reduce the costs of

manual GUI testing for Apps [78, 79]. Crowdsourcing consists of delegating tasks that are

only accomplished by humans and often do not require expertise in a specific domain to the

public (e.g., in the country or worldwide) through online platforms. Related work has shown

that it is feasible for crowd workers to identify errors after visualizing the inputs and outputs

of the functions under test [80]; in the App context, crowd oracles may lower testing costs

while test coverage is addressed by test automation.
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Chapter 3

ATUA: Automated Testing of Updates

for Apps

3.1 Introduction

The business-critical role played by software applications for mobile devices (Apps) in

our society [81] has led to the development of dedicated techniques for their automated

testing [5]. Since most of the code in an App concerns the handling of input values and events,

test automation approaches automatically generate sequences of events and input values

(hereafter, input sequences) that simulate the use of the AUT in its deployed environment.

These approaches mainly differ with respect to the strategy used to create input sequences,

such as random, evolutionary, and model-based approaches relying either on static or dynamic

information [5].

Unfortunately, state-of-the-art automated App testing techniques show limited code

coverage capabilities, thus indicating they are unlikely to exercise all the features of the AUT.

For example, they typically exercise about half of the methods implemented by commercial

apps [14]. As a result, all methods and instructions that are not automatically tested should

be exercised by manually implemented test cases, an expensive task that may delay the
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App release. Also, though existing techniques show a degree of complementarity [14],

state-of-the-art approaches do not attempt to integrate them to achieve better results.

Existing testing approaches do not account for the high release frequency of a typical

App’s lifecycle, which is usually driven by marketing strategies aiming at increasing visi-

bility [3, 1, 2]. As a result, existing work does not include effective means of prioritizing

the testing of modified or newly introduced features and is thus not addressing one of the

major needs of App developers. However, this is an important requirement for any testing

strategy as exercising all the features of an App in each release is enormously wasteful.

Existing work on testing App upgrades is limited to the selection of subsets of events that

may trigger modified code [16] or the selection of regression test cases [15]. This is, however,

not adequate when, to start with, available test cases do not exercise all the new and modified

features of the software.

Finally, the current body of work does not address the oracle problem [21, 5, 70]. More

precisely, testing techniques cannot discover functional failures beyond crashes and the

manual verification of the App outputs is difficult due to the large number of inputs they

exercise [15]. However, in the context of frequent App updates, with a test input generation

strategy that effectively exercises updated features, it is conceivable to address the oracle

problem by relying on dedicated strategies to minimize test inputs. Failures affecting

unchanged features (i.e., regressions) can be automatically detected by comparing the output

of different App versions for a same input [75, 76, 77, 20], whereas the output of new and

modified features can instead be verified, at reduced costs, by relying on internal or external

crowdsourcing [80]. Nevertheless, such solutions are only practical if the number of test

inputs is kept down to a reasonable number.

Keeping the number of test inputs to the strict minimum is important to minimize human

intervention since it may be required when executing the same inputs on different software

versions, e.g., to adapt input sequences to changes in the GUI [67, 65]. Further, screenshots

of the results must be visualized after every input. Unfortunately, state-of-the-art App testing

approaches generate large test suites, while test suite reduction approaches require to perform

runtime monitoring of the App, which slows down execution and diminishes test automation

effectiveness [15].

In summary, to address the limitations above, we aim to achieve the following two
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objectives: (O1) maximize the number of updated methods and their instructions that are

automatically exercised within practical test execution time, and (O2) generate a significantly

reduced set of inputs, compared to state-of-art approaches, thus decreasing human effort.

To achieve the two objectives above, it is necessary to integrate multiple analysis strate-

gies. Objective O1 can be effectively achieved by means of static analysis, to determine

updated features (e.g., through the identification of updated methods [16]) and identify

the inputs that may trigger a specific feature (e.g., the input that leads to a particular Win-

dow) [82]. Unfortunately, static analysis alone may not enable the effective testing of Apps;

indeed, they typically rely on APIs dedicated to input handling that are hardly processed

by static analysis tools, as discussed in related work [70]. Random exploration is thus

required to discover, at runtime, inputs that may trigger a potentially large subset of modified

methods. Unfortunately, random exploration might be particularly inefficient and conflict

with objective O2 (e.g., it may require thousands of inputs to exercise features that depend on

specific App states). For this reason, it is necessary to determine which inputs bring the App

into distinct program states by relying on dynamically-refined state abstraction functions [37]

and by identifying dependencies among App features (e.g., to determine that an option in the

settings page enables a specific feature).

We present ATUA1 (Automated Testing of Updates for Apps), the first approach that

integrates multiple test strategies to efficiently use the test budget and achieve the two above-

mentioned objectives. The rationale followed by ATUA is that Apps can be cost-effectively

tested by combining static and dynamic program analysis to select the inputs that exercise

updated methods, our test targets. Also, given the complexity of Apps, testing should be

performed incrementally, by focusing first on objectives that are easier to achieve. For

this reason, ATUA works in three phases: (1) it exercises all the features that may trigger

modified methods (e.g., submitting a registration form that is processed by an updated

method), (2) to maximize coverage in the presence of data-dependencies, it exercises updated

features with diverse input values (e.g., a diverse set of values in a form), (3) to maximize

coverage in the presence of state-dependencies, it exercises related features (e.g., submit

a registration form after changing language settings). ATUA implements a model-based

approach that integrates a dynamically-refined state abstraction function and complementary

testing strategies, including (1) coverage of the model structure, (2) coverage of the App

1Atua is also the name of spirits in Polynesia, https://maoridictionary.co.nz/word/494
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code, (3) random exploration, and (4) coverage of dependencies among App windows.

ATUA generates models of the AUT by combining static and dynamic program analysis.

It extends static program analysis approaches [82] to automatically generate extended window

transition graphs (EWTG), i.e., finite state machines that capture which inputs trigger window

transitions and updated methods. Also, it introduces a state abstraction function that refines

the states of the EWTGs to capture differences in the user interface that are not detected

by means of static analysis (e.g., the presence of dynamically disabled buttons). The state

abstraction function is automatically refined to eliminate or, when not possible, reduce

non-determinism while minimizing the number of abstract states.

To automatically exercise Apps, ATUA relies on the generated EWTGs to identify

the sequences of inputs that trigger the execution of updated methods. When there are

discrepancies between the EWTGs and the observed behavior, random exploration is used to

refine the former. Code coverage is used to identify the methods that require additional testing

effort. Finally, using information retrieval techniques [83], ATUA identifies dependencies

between App windows that may prevent the execution of certain methods.

We assume that, for every software version, engineers are interested in testing the updated

methods only. However, the general principles behind ATUA can easily be adapted for other

ways of characterizing change, e.g., based on impact analysis [84]. Indeed, other criteria for

selecting target methods are straightforward to integrate into ATUA.

An empirical evaluation conducted with nine popular, commercial Apps shows that,

compared to state-of-the-art approaches (i.e., DM2 [43], APE [37], and Monkey [42]),

ATUA leads to reduced test costs. Indeed, it generates less than 70%, 4%, and 2% of the

inputs generated by DM2, APE, and Monkey, respectively. By automatically exercising, on

average, 2.6 instructions belonging to updated methods for every generated test inputs, ATUA

is the most cost-effective approach. Further, on average, ATUA, for a same test execution

budget (e.g., 1 hour test execution time), improves the method and instruction coverage

achieved by the second best, state-of-the-art approach by at least 10%. The structure of this

chapter is as follows. Section 3.2 provides the technical details of the proposed approach.

Section 3.3 describes the ATUA toolset. Section 3.4 reports on the results of our empirical

evaluation. Section 3.5 concludes the chapter.
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3.2 Proposed Approach: ATUA

Within an updated App, we can distinguish among existing features (i.e, features present

in previous versions of the AUT) and new features (i.e., features introduced in the AUT).

Existing features can be unchanged (i.e, their functional requirements did not change),

modified (i.e, their functional requirements did change), or repaired (i.e., modified because

their implementation did not match its functional requirements).

In our work, we aim to automatically exercise updated features, including new, modified,

and repaired features. More precisely, we focus on features that are implemented either by

introducing new methods or by modifying existing methods 2. In this dissertation, we use the

term updated methods to refer to both new and modified methods, which are our test targets.

The testing activity performed by ATUA is driven by an App model with the objective of

exercising a set of test targets (i.e., updated methods). The App model is initially created by

static program analysis procedures and then refined during testing.

The App model metamodel is shown in Figure 3.2 and described in Section 3.2.1. It

consists of three parts: (1) an Extended Window Transition Graph (hereafter, EWTG), (2) a

Dynamic State Transition Graph (hereafter, DSTG), and (3) a GUI State Transition Graph

(hereafter, GSTG). The three graphs are FSMs capturing how input values trigger changes in

the state of the AUT. The EWTG models the sequences of windows being visualized after

specific inputs (Events or Intents). For every input, the EWTG keeps trace of the name of the

handlers associated to the input and the list of test targets that may be invoked during the

execution of the input handler. The GSTG is a fine-grained model that captures every visual

change in the GUI (e.g., the color of a button) that might be triggered by an action on the

GUI. An action is an instance of an input (e.g., click on a specific Button widget). Finally, the

DSTG models the abstract states of the visualized Windows and the state transitions triggered

by events. Abstract states are identified by a state abstraction function to eliminate possible

non-determinism. The DSTG plays a critical role to optimize the test budget and identify a

reduced set of input events; indeed, it helps determine a correct and reduced sequence of

events necessary to reach a specific Window from another one.

Figure 3.1 provides an overview of the process implemented by ATUA to test App
2Based on related work, 81% of the updates concern Java files, while only the remaining 19% concerns

manifest files (e.g. permissions) or layout declarations in XML files [16].
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App 
V1

App 
V2

Step 1. Identify updated methods

Step 2. Generate the Extended WTG
using Extended Gator

Step 3. Instrument the App
Under Test using Extended DM2

List of target methods:
modified + new methods

EWTG
Step 5. Automatically test the App

using Extended DM2 + ATUA Strategy

Sequence of
GUI actions 
and outputs

(screenshots+
GUITrees)

App model
including
EWTG,
DSTG,
and GSTG

Coverage
information

Instrumented
App V2

Emulator

Input
Configurations

Step 4. Prepare 
manual inputs

Figure 3.1: Overview of the ATUA process to test App updates.

updates. In Step 1, ATUA compares the previous (App V1 in Figure 3.1) and the updated

(App V2) version of the AUT to identify the updated methods. In Step 2, ATUA relies

on Soot [85], a static analysis framework, and an extended version of GATOR [52], a

static analysis tool for constructing App’s Window Transition Graph (see Section 3.2.5), to

generate the EWTG. In Step 3, ATUA relies on DM2 to generate a version of the App that is

instrumented to trace code coverage. In Step 4, engineers manually specify test inputs that

are unlikely to be generated automatically (e.g., the login credentials for Apps that require a

user to be registered on a remote platform). In Step 5, ATUA exercises the AUT by relying

on an extended version of DM2 that integrates the ATUA test algorithm. During testing,

ATUA refines the App model and relies on it to identify the actions to perform on the GUI.

For example, ATUA uses the App model to identify the action that, in the current window,

may lead to the execution of a test target.

The main output of Step 5 is the sequence of GUI actions performed during testing

and the outputs (i.e., the screenshot of the active Window and the corresponding GUITree)

generated by the AUT after every action. This sequence is used by engineers to verify if the

behavior of the App is as expected (test oracle). As mentioned earlier, to verify App results,

engineers can rely on two complementary state-of-the-art approaches, not addressed by

ATUA, that respectively target regression failures in unchanged features and failures in newly

implemented, repaired, and modified features. To discover regression failures, engineers

can replicate, on a previous App version, the test input sequences generated for the updated

App and automatically compare the generated outputs. Differences in the outputs generated

by the two versions should indicate the presence of a regression fault. To discover failures
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in new and repaired features, engineers can visualize the GUITrees or the screenshots of

the active Window rendered after each Action. The visual inspection of the App outputs

enables an engineer to determine the presence of functional failures, based on expected

behavior, whether specifications are implicit or documented. For example, the engineer shall

determine if the Window rendered after each Action includes the expected content and is

well positioned. Also, the engineer shall inspect GUITrees to determine if the widgets within

a Window have the expected properties. In Section 4.3, we discuss to what extent ATUA

reduces the cost associated to the manual activities entailed by the test oracle strategies above,

with respect to other state-of-the-art test automation solutions.

In addition, ATUA provides, as output of Step 5, an App model including the EWTG, the

DSTG, and the GSTG. The App model is generated and continuously refined during testing.

Further, it reports coverage information, i.e., the sets of updated methods and instructions

belonging to updated methods that have been exercised during testing.

In the following, we provide additional details about the App model metamodel (Sec-

tion 3.2.1) and describe Steps 1 to 5 (Sections 3.2.2 to 3.2.5), except for Step 3 which is

already automated by DM2.

3.2.1 App Model Metamodel

Figure 3.2 shows the ATUA metamodel as a UML class diagram. Figure 3.3 shows an

example App model built when testing Activity Diary.

The EWTG is consistent with the WTG generated by GATOR. Each WindowTransition

is triggered by an Input, either an InputEvent or an Intent. An InputEvent is associated to

the Widget that declares its EventHandler. If the EventHandler is not declared by a Widget

(e.g., for the event PressHome), the InputEvent is not associated to any target Widget. Each

Widget belongs to one Window.

In addition to the concepts captured by the WTG, the EWTG generated by ATUA also

captures the list of modified methods that can be triggered by the Input (i.e., the attribute

targetMethods of class Input), which are used to drive testing. A WindowTransition triggered

by Inputs with associated targetMethods is a target Transition. Similarly, a Window that is

the source for at least one target Transition is a target Window. TargetMethods are identified

by our GATOR extension (see Section 3.2.3). The EWTG also captures the dialogs and
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menus that can be opened by an Activity (e.g., association triggeredDialogs). Finally, it also

models the HiddenHandlers of a Window, which are introduced in Section 3.2.3.

The GSTG captures the same information provided by the models generated by DM2.

The state of a Window is captured by its GUITree, which is a composition of Widgets. For

each Widget, we record the values associated to its properties and derive the Widget hash (to

associate an ID to the current state of the Widget) according to the DM2 strategy. The hash of

the GUITree is then derived from the hash of its Widgets. In addition, the GSTG also captures

the name of the Activity running when the GUITree is visualized (see attribute activityName),

which we derive, at runtime, from logcat [86]. The transition between GUITrees is triggered

by an Action, which can be handled either by the Widget (WidgetAction) or by the visualized

Window (WindowAction). The enumerations WidgetActionType and WindowActionType list

the type of actions that can be performed to trigger GUITreeTransitions. Actions might have

additional information (i.e., actionData) associated to them; for example, the text provided to

the AUT by a TextInput action or the start and end coordinates of a Swipe action.

The DSTG provides abstract states that group together GUITrees in which a same Action

triggers a same App behaviour (e.g., leads to a same abstract state). The DSTG enables

ATUA to efficiently test the AUT by determining the shortest sequence of Actions that

reaches a target Window. Also, abstract states capture the conditions under which a specific

Action can trigger a modified method, for a certain Window. Abstract states are thus a mean

to minimize the number of Actions generated by the test automation approach.

Each AbstractState consists of a number of AttributeValuationMaps, each one abstracting

the state of the widgets belonging to the GUITree that have the same set of attribute valuations.

An AttributeValuationMap is a map of pairs ⟨attribute,value⟩. The enumeration Attribute

in Figure 3.2 provides the list of attributes appearing in the AttributeValuationMap. The

AttributeValuationMap has a cardinality attribute, which indicates how many widgets have

the same attribute valuations. For example, in Figure 3.3, the AbstractState as6 includes

many LinearLayout widgets (LL in the Figure, cardinality MANY), one for each item in the

displayed list.

Since the DSTG is used to drive testing, i.e., to select the Actions to be triggered at

runtime, the AbstractState captures only the attributes of widgets that are interactive. A

widget is interactive when it is enabled, visible, and is an instance of a class that can be the
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3.2. PROPOSED APPROACH: ATUA

Figure 3.2: ATUA Metamodel. Colors are used to identify classes belonging to a specific
metamodel component: light blue for EWTG (bottom), light green for DSTG (middle),
orange for GSTG (top).
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target of any action of type WidgetActionType (See Figure 3.2).

At runtime, during testing, ATUA identifies AbstractStates through a dedicated abstrac-

tion function (L). ATUA automatically defines a distinct L for each Window of the AUT. L

relies on a predefined set of reducers, i.e., functions that extract the value of a property of a

widget [37]. Table 3.1 shows the list of reducers implemented by ATUA. Two AbstractStates

differ when at least one value differs across their respective AttributeValuationMaps, or when

they have a different cardinality. For example, in Figure 3.3, the AbstractStates as1 and

as3 differ because as1 does not contain the AttributeValuationMaps for the LinearLayouts

belonging to the drawer menu (to save space, we do not report all the AttributeValuationMaps

for as3). The AbstractStates as1 and as4 are different because in as4 the RecyclerView

(avm4-5) becomes scrollable.

In the DSTG, state transitions are captured by AbstractTransitions. An AbstractTransi-

tion is univocally identified by the actionType, its source, its target, its destination, and its

actionData. The actionType matches one of the items belonging to the enumerations Wid-

getActionType or WindowActionType. The actionData is captured only for two actionTypes

(i.e., Swipe and Intent) that usually lead to distinct AbstractStates depending on their action

data. In the case of Swipe, the actionData indicates the direction of the Swipe action (i.e.,

Up, Down, Left, Right). For Intents, the actionData matches the Intent input text because

we expect engineers to provide one manual input for each possible Intent type (e.g., one

different URL for each of the file types supported by an App).

A DSTG may include non-deterministic AbstractTransitions, that is, transitions with the

same actionType, outgoing from the same AbstractState, but reaching different AbstractStates.

Non-deterministic AbstractTransitions may prevent us from finding the correct sequence of

Inputs necessary to reach the states in which target methods could be triggered. ATUA detects

non-determinism at runtime, during testing, when an Action does not bring the App into the

expected AbstractState. When this happens, ATUA refines L for the AbstractState in which

the action had been triggered. It does so according to five levels of granularity, which are

captured in Table 3.2. With level L1, L distinguishes states based on static information about

the widgets (i.e., resource ID and class) and information about how they can be interacted

with (i.e., reducers appearing in rows 3 to 12 of Table 3.1). With level L2, in addition to

the information accounted for in L1, L includes the text associated to the widget, which
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Table 3.1: ATUA reducers. We indicate the value of the property reported by each.

Reducer Description
1 RRID Resource ID.
2 RCN Class name.
3 RCD Value of Content description.
4 RP Value of Password.
5 RC Value of Clickable.
6 RLC Value of Long Clickable.
7 RS Value of Scrollable.
8 RCh Value of Checked.
9 RE Value of Enabled.
10 RS Value of Selected.
11 RI True if it is an input field.
12 RT Value of Text.
13 RHC True if the widget contains one

or more children.

Table 3.2: Refinement of ATUA state abstraction function. In blue we show the reducers
introduced in finer granularity level.

Level Reducers applied to interactable Widget Reducers applied to interactable Widget
Children

L1 RRID, RCN , RCD, RCh, RE ,
RP , RS , RI , RC , RLC , RS

L2 RRID, RCN , RCD, RCh, RE ,
RP , RS , RI , RC , RLC , RS , RT

L3 RRID, RCN , RCD, RCh, RE ,
RP , RS , RI , RC , RLC , RS , RT , RHC

L4 RRID, RCN , RCD, RCh, RE ,
RP , RS , RI , RC , RLC , RS , RT

RRID, RCN , RCD, RCh, RE ,
RP , RS , RI , RC , RLC , RS

L5 RRID, RCN , RCD, RCh, RE ,
RP , RS , RI , RC , RLC , RS , RT

RRID, RCN , RCD, RCh, RE ,
RP , RS , RI , RC , RLC , RS , RT

often affects the behaviour of an app (e.g., invalid characters in a textbox may prevent a state

transition). With level L3, L also reports the number of children of a widget (i.e., RHC).

L3 is useful because the interactive widgets captured by L may include non-interactive

children whose state is not captured by L but may characterize the current state (e.g, through

descriptive labels). With levels L4 and L5, L captures, for every interactive widget, the same

information as L2 and, in addition, for every child, the information captured by levels L1

and L2, respectively.

Figure 3.4 shows the result of the refinement of L for the abstractState as3. By applying

L with level L1, all the clickable elements on the Window, which are LinearLayouts with

the same properties, except for the text, resulted into a same AttributeValuationMap with

cardinality MANY. At runtime, ATUA detects non-determinism; indeed, a click on this

AttributeValuationMap may lead to two different AbstractStates: as1 and as6. The refinement

of L, which leads to level L2, allows ATUA to distinguish all the different clickable elements

since the text property is included into the AttributeValuationMap, thus eliminating non-

determinism.
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Figure 3.4: Example of refinement of L. For the notation used, see the Legend of Figure 3.3.

3.2.2 Step 1. Identify Updated Methods

In the first step, ATUA identifies methods that have been modified or introduced by the new

version of the App (i.e., V2 in Figure 3.1). This task might be accomplished through source

code comparison across versions [87]. However, to enable experiments with commercial

Apps, we developed a toolset (hereafter, AppDiff) that compares compiled Android Apps.

AppDiff is an extension of LibScout [88], a light-weight static analysis tool for Android.

It first generates a hashtree over the bytecode for each App. The hashtree is a three-layered

Merkle tree in which parent hashes are generated from their child nodes. The three layers

model the flattened package structure that is preserved in the compiled code, i.e., packages,

classes, and methods.

The tree is built bottom up starting with the method hashes. A method hash is computed

over the method signature and the opcodes in bytecode instructions. To identify code-level

changes across App versions, we additionally store package, class, and method names along

with the hashes. To efficiently check for differences, two hash trees are matched top-down

starting with the package hashes. Methods that share the same name but have a different

hash have been modified. New methods appear only in the most recent version.

3.2.3 Step 2. Generate the Extended WTG

ATUA generates the Extended WTG by means of static program analysis; more precisely,

by performing, on the updated App, the analysis implemented by an extended version of
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GATOR and Soot.

The original version of GATOR works by processing Android bytecode and XML layout

files. For the analysis of bytecode, GATOR relies on Soot. Bytecode analysis is used to

identify the types of Window (i.e., Activity, Dialog, OptionsMenu, and ContextMenu) that

are programmatically specified in the App. Bytecode analysis is also used to identify the

widgets that compose a window and the associated event handlers. GATOR identifies widgets

that extend the class android.view.View and its handlers. Event handlers’ code is processed

to determine window transitions. XML layout files are processed to identify additional event

handlers.

Our extensions to GATOR address some known limitations [89]. More precisely, we

support the identification of window transitions triggered by Fragments and RecyclerView,

which are widget containers that are not identified by GATOR as such. Our extensions

associate the contained widgets to the window that declares either the Fragment or the

RecyclerView. Also, in the EWTG, we associate each WindowTransition with the Input

triggering the transition (the information is provided by GATOR).

We rely on Soot to traverse the backward call graph of every updated method m. During

the traversal, when we encounter a method that has been identified by GATOR as an event

handler e, we update the EWTG to trace the fact that the inputs associated to the Window-

Transition triggered by the event handler e can lead to the execution of the updated method

m (i.e., we add the updated method m to the list of target methods for the Input instance).

Also, we rely on Soot to extract string literals to be used for testing (see Section 3.2.5).

Finally, we determine if GATOR does not identify some of the event handlers of the App,

which is a common problem of static analysis tools for Apps. Indeed, these static analysis

tools rely on hardcoded procedures for the identification of event handlers (e.g., they look for

specific method names [85]); since OS APIs are under continuous evolution, it is unlikely

that static analysis tools will ever be able to identify all the event handlers of an App. To

address this problem, we introduced into ATUA three solutions, one based on static analysis

(described in the next paragraph) and two based on dynamic program analysis (described in

Sections 3.2.5 and 3.2.5).

To identify missing event handlers using static analysis, we rely on the observation that

if an event handler is not detected by GATOR, the backward traversal of the call graph
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0 {
1 " B o o k I n s e r t i o n A n d S e a r c h " : { / / i n p u t p a t t e r n
2 " Windows " : [
3 "ACT[ b o o k c a t a l o g u e . E d i t A u t h o r L i s t ] 1 7 4 1 " ,
4 "ACT[ b o o k c a t a l o g u e . BookEdi t ] 1 8 0 2 ,
5 "ACT[ b o o k c a t a l o g u e . BookISBNSearch
6 ]1843" ] ,
7 " D a t a F i e l d s " : {
8 " i s b n " : {
9 " r e s o u r c e I d P a t t e r n s " : [ " i s b n _ t x t " ]

10 } ,
11 " t i t l e " : {
12 " r e s o u r c e I d P a t t e r n s " : [ " t i t l e _ t x t " ]
13 } ,
14 . . .
15 } ,
16 " I n s t a n c e s " : [
17 {
18 " i s b n " : "0387284540" ,
19 " t i t l e " : " App l i ed p r o b a b i l i t y and s t a t i s t i c s " ,
20 " p u b l i s h e r " : " S p r i n g e r " ,
21 " pages " : " 3 5 0 " ,
22 " l i s t _ p r i c e s " : " 6 9 " ,
23 " f o r m a t " : " Hard Cover " ,
24 " g e n r e " : " U n f i c t i o n " ,
25 " l a n g u a g e " : " E n g l i s h "
26 }

Figure 3.5: Manual definition of inputs

performed by ATUA will not reach any event handler but will terminate in a method that (i)

belongs to a Window class and (ii) is not invoked by any other method of the AUT. Such

methods are likely event handlers invoked at runtime by the Android APIs. We refer to them

as hidden-handlers. We keep track of all the hidden-handlers encountered during the analysis

along with the list of updated methods reachable from them. We rely on this information

during Step 5.

3.2.4 Step 4. Prepare manual inputs

Certain input values are unlikely to be automatically generated, consequently certain Apps’

features might not be automatically exercised without an appropriate solution to handle such

cases. In related work, these inputs are referred to as Unlocking GUI Input Event Sequences

(hereafter, unlocking inputs, for brevity) [90]. Examples include login credentials, files of a

specific type, and data to be received by the AUT through the Android Intent mechanism. To

handle these cases, in ATUA, engineers specify unlocking inputs in a JSON file capturing a

set of input values and the patterns identifying the Windows requiring such input values. An

example of our input definition format is provided in Figure ??.

According to our format, engineers can specify one or more input insertion patterns (e.g.,
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BookInsertionAndSearch in Figure ??, Line 2). For each pattern, they specify the Windows in

which the pattern should be used (Line 3), and the widgets which should be used to provide

the input data specified (i.e., DataFields field in Line 4). Each widget is identified by a name

(e.g., isbn in Line 5) and a regular expression that enables its selection in the GUITree, based

on its name (e.g., isbn_txt in Line 6). Finally, multiple input instances (e.g., book names in

this case) can be specified (see field Instances in line 13).

Since ATUA relies on software engineers to identify unlocking inputs, its effectiveness

might be affected by engineers’ mistakes. For example, in our experiments, we specify

manual inputs only for login operations and key features on the AUT (see Section 3.4.2),

thus potentially omitting unlocking inputs concerning other App features.

3.2.5 Step 5. Automatically test the App

ATUA automatically tests the updated App by triggering the Actions required to exercise

target Transitions. When testing starts, the App model consists of an instance of the EWTG

for the AUT. GSTG and DSTG are dynamically constructed and extended at runtime by

ATUA.

The test execution process includes three distinct phases, each one relying on a different

strategy for the generation of Actions. In Phase 1, ATUA triggers one Action for every target

Input. The goal of Phase 1 is to handle the simplest scenario, i.e., exercise instructions that

are executed every time data provided through a target Input is processed. In Phase 2, ATUA

exercises target Windows with multiple, diverse sets of Inputs. The goal of Phase 2 is to

exercise those instructions that are executed only when specific constraints on input values

provided in a Window are satisfied. In Phase 3, ATUA exercises both target Windows and

Windows they depend on. The goal of Phase 3 is to exercise those instructions that can be

executed only when certain constraints on the input values provided in related Windows (e.g.,

preferences Windows) are satisfied.

Running Example

To illustrate our approach, we describe part of the actions taken by ATUA when testing the

upgrade to version 134 of Activity Diary. Activity Diary enables end-users to record a diary

32



3.2. PROPOSED APPROACH: ATUA

Legend: The top part shows the EWTG, the DSTG is in the middle, while, to simplify reading, the GSTG is
represented by means of screenshots corresponding to each GUITree. Labels below screenshots are used to

associate GSTG states to AbstractStates. The Actions appearing in the GSTG are: A1, click on EditNote button.
A2, long click on Current activity widget. A3, click on Save button. A4, long click on Current activity widget.

A5, click on Delete activity button. A6, long click on Current activity widget. A7, click on the button to
automatically rename the deleted activity. A8, click on Save button. A9, click on EditNote button. A10, click on
Open navigation button. A11, click on Settings button. A12, click on Terminate activity by click button. A13,

click on Back button. A14, click on Current activity widget.

Figure 3.6: App Model for the Activity Diary running example

for their activities. It includes features to categorize activities, report statistics, remind users

about recurrent activities, and attach notes and pictures to activities.

We consider a subset of the features updated in version 134 of Activity Diary, which aim

to (1) visualize the details of the current activity by clicking on the activity name, (2) edit

the current activity or create a new activity with a long click on the current activity name,

(3) automatically fix a duplicated name for an activity, (4) edit an activity note. Figure 3.6

shows the App model for our running example.

In the EWTG of Figure 3.6, the transition between MainActivity (w1) and EditNote-

Dialog (w4) is a target transition since it triggers one modified method: the handler of the
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EditNote button (i.e., editNoteHandler, not shown in Figure 3.6). The EditActivity Win-

dow (w2) is a target Window since it contains three hidden-handlers: saveButtonHandler,

quickFixHandlerOne, and quickFixHandlerTwo. The hidden-handler saveButtonHandler

reaches the modified method checkConstraints while the other two hidden-handlers are

the event handlers for the quick fix buttons appearing in the UI. ATUA classifies these

three methods (i.e., saveButtonHandler, quickFixHandlerOne, and quickFixHandlerTwo) as

hidden-handlers because they are not associated by GATOR to any WindowTransition in the

EWTG (see Section 3.2.3). Indeed, GATOR cannot correctly process the control flow that

reaches function setListener, which is the function used to assign the three handlers to their

corresponding buttons3.

The GSTG in Figure 3.6 captures the sequence of Actions triggered by ATUA during

testing4. They are described in the following sections, where appropriate.

Detection of the active Window

A building block of our test automation strategy is the detection of the active Window.

More precisely, ATUA should determine if a pop-up (i.e., a Dialog, an OptionsMenu, or a

ContextMenu) is open on top of the active Window. Neither Android nor DM2 provides such

information. To determine if a pop-up is open, ATUA relies on the dimensions of the active

Window on the screen. Indeed, if an Activity is displayed, its dimensions should match the

dimensions of the screen. Otherwise, the currently displayed Window is either a Dialog,

an OptionsMenu, or a ContextMenu. To determine which Dialog or Menu is open, ATUA

identifies the Window of the EWTG with the highest portion of Widgets visualized on the

screen. ATUA computes the ratio, Rw, of Widgets belonging to Window w that appear in

the displayed GUITree. More precisely, ATUA computes Rw for all the Dialogs and Menus

that can be triggered by the current Window. The active Window is the one with the highest

values for Rw.

If, due to the limitations described in Section 3.2.3, static analysis does not detect that,

for a certain Window w, there is an event handler that will pop-up a certain Dialog or Menu p,

ATUA may not be able to find a Dialog or Menu to be matched with the displayed GUITree.

3GATOR does not correctly process control flows starting within event handlers, likely because of their
recursive nature; in our running example, the control flow starts within event handlers triggered by changes in
color selectors and text boxes.

4A demo video for the running example is available online [91]
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More precisely, ATUA may observe that (1) the current Window has no Dialogs and Menus

associated to it in the EWTG or (2) the score computed for every Dialog and Menu of the

current Window is zero. To overcome such a problem, in these scenarios, ATUA updates the

EWTG to include a new pop-up Window.

ATUA testing algorithm

At runtime, after detecting the active Window, ATUA automatically derives the current

AbstractState according to the procedure described in Section 3.2.1. The subsequent activities

depend on the current testing phase.

The activities performed in the three phases follow the same algorithm, which is presented

in Algorithm 1. What differentiates the three phases are the strategies adopted to exercise the

App and the test budget allocated . Line 1 in Algorithm 1 shows that the algorithm iterates

till the test budget for the current phase is consumed (function phaseBudgetConsumed), all

the targets for the current phase have been covered (function coverageTargetsExercised ), or

it cannot further improve coverage (function stagnation).

The iteration starts by identifying a test target (function selectTarget, Line 3). The test

target is either a Window or a WindowTransition. A new test target is identified when no

target has been selected yet or the current target has already been fully exercised (Line 2).

After identifying the test target, ATUA relies on the App model to identify the test target

path (Line 4), i.e., a sequence of Actions that makes the App render the target Window or

reach the target AbstractState.

The test target path is derived with a breadth-first traversal of the App model. The traver-

sal starts from the current AbstractState. The traversal proceeds through both AbstractTransi-

tions and WindowTransitions. A WindowTransition is taken only if an AbstractTransition is

not available. The visit of the model stops when we reach the test target or all the reachable

nodes are explored.

So long as a test target is not reached (Line 7), ATUA executes function reachTargetNode

(Line 8), which triggers the next Action in the test target path. For each Action in the test

target path, we know the Window or the AbstractState to expect. After executing an Action,

function reachTargetNode checks if the App is in the expected Window or AbstractState.

If not, function reachTargetNode flags the target as not reached, and returns to the main
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Algorithm 1 ATUA testing algorithm.
1: while ( NOT stagnation() ) AND ( NOT phaseBudgetConsumed( phaseBudget) ) AND (NOT coverageTar-

getsExercised() ) do
2: if target not selected OR target already exercised OR visitBudget exhausted then
3: selectTarget()
4: identifyPathToTarget()
5: else if target unreachable then
6: identifyPathToTarget()
7: if NOT targetReached() then
8: reachTargetNode( reachabilityBudget )
9: else

10: exerciseTarget( targetBudget )
11: if additional random exploration required then
12: performRandomExploration( randomExplorationBudget )

execution loop to look for a different path to reach the test target (Line 5). When a target is

reached (Line 9), ATUA exercises the target according to the Action generation strategy for

the current phase (function exerciseTarget).

Finally, random exploration of the active Window might be triggered by functions

reachTargetNode and identifyPathToTarget to improve the EWTG (Line 12). This is described

in Section 3.2.5.

To regulate the allocation of the phase budget (i.e., how many Actions each function

invoked by the algorithm is allowed to generate), the ATUA algorithm makes use of three

budget variables: (1) reachabilityBudget, which specifies the maximum number of Actions

to be used to reach a target node, (2) targetBudget, which specifies the number of Actions

to be used to exercise the target node, (3) randomBudget, which specifies the number of

Actions to be used for random exploration. At runtime, when counting the number of Actions

performed, we ignore Actions of type TextInput and Click on checkboxes since they generally

do not trigger WindowTransitions. The budget variables are initialized with different values

depending on the current test phase. Table 3.3 provides an overview of the criteria adopted,

which are described in details in the following paragraphs. To define budgets, a scale factor

is used to optimally distribute the test budget across phases and test targets. For example,

with a test budget of five hours, we can invest more time in Phase 2 than with a test budget

of one hour.

Random exploration

Functions reachTargetNode and identifyPathToTarget in Algorithm 1 may trigger the random

exploration of the AUT to improve the EWTG. This is done when Inputs cannot be exercised
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Table 3.3: Strategies adopted, in different ATUA phases, to define the budget allocated to
distinct test activities.

Phase Budget Strategy

Phase1
Phase Infinite, i.e., all the target windows are exercised till stagnation

is detected or all the targets are covered.
Reachability Infinite, i.e., all the paths are traversed in this phase.
Target Infinite, i.e., all the target Inputs are tried in this phase.
Random Ex-
ploration

Set to scaleFactor ·NumberOfActionsForActiveWindow .
NumberOfActionsForActiveWindow is the number of distinct
Actions that can be performed in the active window; it is based
on the interactive information associated to a widget (e.g., we
perform a Click Action if the widget is clickable, or four Swipe
Actions - one for each swipe direction - if it is scrollable). In our
experiments, we set scaleFactor to 1 for an overall test budget of
one hour, to 2 for a test budget of five hours. Random exploration
is triggered by either reachTargetNode or identifyPathToTarget.

Phase2
Phase Set to scaleFactor ·NumberOfTargetWindows .
Reachability Set to scaleFactor · actionsThreshold . The value is re-

set every time a new TargetWindow is identified. We set
actionsThreshold to 25.

Target Set to be equal to what remains of the ReachabilityBud-
get after the target window is reached. In other words,
ReachabilityBudget + TargetBudget = scaleFactor ∗
actionsThreshold

Random Ex-
ploration

Set to scaleFactor · randomThreshold . Random exploration is
triggered by either reachTargetNode or identifyPathToTarget. We
set randomThreshold equal to actionsThreshold .

Phase3
Reachability Not used in this phase.
Target Set to scaleFactor · actionsThreshold . It is reset every time a

new TargetEvent is identified.
Random Ex-
ploration

Set to scaleFactor · actionsThreshold . Random exploration is
triggered (1) to explore the related Window, (2) when the related
Window cannot be reached through the identified path, (3) when
the target Window cannot be reached through the identified path
(see Section 3.2.5). We set randomThreshold to 5.

and a test target cannot be reached.

Function reachTargetNode determines that an Input cannot be exercised when the asso-

ciated Widget is not visible or enabled in the GUITree. It happens, for example, when the

content of a NavigationDrawer varies based on the buttons pressed in the active Window.

To make the required Widget visible, function reachTargetNode randomly exercises the

active Window. This is done by iteratively and randomly selecting one widget among the

ones that have been exercised less frequently in the active Window. The selected widget is

then exercised according to the strategies listed in Table 3.4. The exploration of the active

Window terminates when the desired widget is found or when the test budget for random
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Table 3.4: ATUA Input generation procedures.

Widget type Input generation procedure
Any widget Trigger an InputEvent among the ones for which an event handler

has been declared.
Textarea Randomly apply one of the following: (1) leave it empty, (2)

reuse a string already used in the past, (3) reuse a string already
used for the same widget, (4) reuse a string literal extracted
with static analysis, (5) use a randomly generated alphabetic
string [43], (6) use a randomly generated non alphabetic char.

Radio buttons and
check boxes

Randomly select one of the possible options (e.g., checked/not
checked, for check boxes).

Widgets with man-
ual input

Randomly select one of the available InputInstances, if more than
one is available, and then assign the specified value.

Intent If the current activity declares an Intent, it triggers the Intent
specified by the engineer.

exploration is exhausted.

Function identifyPathToTarget may determine that it is not possible to find a path to a test

target. This happens when the EWTG does not include all the WindowTransitions, which

is due to the limitations of static analysis tools mentioned in Section 3.2.3. For example,

GATOR does not detect the Animation design pattern [92], which leads to a WindowTran-

sition. When a test target path is not found, ATUA performs a random exploration of the

active Window and then resumes the execution from the beginning of the main execution

loop. ATUA records of all the unreachable targets identified.

Phase 1

In Phase 1, a test target is any Window with target Inputs that have not been triggered

yet. Function selectTarget randomly selects a Window with such characteristics (Line 3 in

Algorithm 1). After selecting the target Window, ATUA follows the path to reach the test

target.

Function exerciseTarget, first produces user-like inputs (i.e., input values for text areas, radio

buttons, and check boxes), as specified in Table 3.4. Then it triggers an Action that exercises

a randomly selected target Input. Function exerciseTarget keeps triggering Actions that

exercise target Inputs until all the target Inputs have been exercised or another Window

has been visualized. ATUA then resumes the execution of the main loop (i.e., Line 1 in

Algorithm 1). When the target Window is associated to hidden-handlers that can reach target

methods, ATUA also performs a random exploration of the Window. If an Action triggers
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the execution of an hidden-handler, ATUA introduces a corresponding WindowTransition

into the EWTG.

To maximize the chances of exercising every target Input, which is the objective of

Phase 1, the phase, reachability, and target budgets are infinite. More precisely, we try to

reach every TargetWindow (infinite phaseBudget) by trying every possible path (infinite

reachabilityBudget); furthermore, we exercise every TargetWindow with all the target Inputs

(infinite targetBudget).

In Phase 1, we observe stagnation when all the remaining targets either cannot be reached

or all their target Inputs cannot be exercised.

Running Example. In Phase 1, ATUA triggers one Action for every target input. By

default, Activity Diary starts by rendering the MainActivity with a predefined set of activities

and no current activity being selected. Since MainActivity is a target Window, ATUA

exercises it. First ATUA clicks on the edit note button (Action A1 in Figure 3.6) and, since

there is no current activity selected, Action A1 partially covers the target methods (indeed,

Activity Diary does not open the EditNote Window, which will be achieved in Phase 2).

Then, ATUA triggers a long click on the current activity widget (A2), which leads to an

instance of the EditActivity Window. Since EditActivity is a target Window, ATUA aims

to exercise it. However, EditActivity contains only hidden-handlers, not target Transitions.

For this reason, ATUA performs a random exploration of the window; during the random

exploration, after filling the window with random inputs, ATUA clicks on the save button

(A3), which triggers the execution of one of the updated methods (i.e., checkConstraints) and

thus ATUA introduces into the DSTG a new AbstractTransition associated to the updated

method (i.e., the abstract transition between avm2-2 and as1 in Figure 3.6, which does not

have a corresponding WindowTransition in the EWTG). After these three actions, ATUA

has exercised both the MainActivity and the EditActivity and can thus move to Phase 2. In

Phase 1, ATUA has thus exercised all the easy-to-reach target methods in a few steps.

Phase 2

In Phase 2, we aim to maximize the coverage of those target methods that have not been

fully covered. To this end, the target Window shall be the one that can trigger the execution

of the highest number of uncovered instructions. Also, since the AbstractState of an App
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might affect the reachability of a target method, we should give higher priority to Windows

with target methods exercised in fewer AbstractTransitions.

To achieve the above-mentioned objectives, we select as target Window the one that

maximizes the score WSw,

WSw =
∑

mϵMTw

cw · um

where MTw is the set of target methods associated to the target Inputs of Window w. Term

um is the number of uncovered instructions belonging to method m. A target Window

x can thus be any Window with WSw > 0. A Window w is selected as target with a

probability proportional to WSw. In the formula above, cw is a weight introduced to focus

first on those methods that have been covered less. It is the complement of the proportion of

AbstractTransitions that exercise the method:

cm = 1− AAm

AA

where AAm is the number of AbstractTransitions that covered method m and AA is the

number of AbstractTransitions in the App model.

To select the test target path, ATUA identifies the AbstractState with the highest number

of uncovered instructions belonging to interactive widgets, which is captured by the ASasw

score:

ASasw =
∑

mϵMTasw

cw · um

where asw is an AbstractState for the Window w, and MT asw is the set of target methods

that might be covered through asw. The set MT asw consists of all target methods triggered

by either (1) an Intent or (2) an InputEvent for an interactive widget in asw .

Function exerciseTarget works in the same way as in Phase 1. However, Phase 2 differs

from Phase 1 with respect to the target, phase, and reachability budgets. Indeed, to uniformly

distribute the phase budget across the selected target Windows, in Phase 2, the budget for

reaching a test target and exercising it is set to “scaleFactor · actionsThreshold”, with

actionsThreshold representing a number of Actions that, based on preliminary experiments,

is sufficient to reach a target and exercise it (in our experiments, we set its value to 25). In

Phase 2, the phase budget is exhausted when ATUA has exercised a number of windows that

is equal to “scaleFactor · overall number of TargetWindows”. Also, a same Window can be

selected as a target multiple times. By repeatedly generating different sets of Actions for a
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same Window, ATUA covers different combinations of user-like inputs, which may include

combinations that lead to the coverage of different sets of instructions.

In Phase 2, we observe stagnation when, after exercising all the available targets, the

coverage of target methods has not increased.

Running Example. Phase 2 is necessary to maximize the coverage of updated methods

reached through the MainActivity and the EditActivity Windows. The target Window

with the highest WSw score is EditActivity because some of the instructions of method

checkConstraints and all the instructions implementing the quick fix feature have not been

exercised in Phase 1. MainActivity has a lower WSw score since only a few instructions of

the EditNote button handler are not covered.

ATUA selects the EditActivity Window as first target; at this stage, it has only one

AbstractState (i.e., as2 in in Figure 3.6). ATUA reaches the EditActivity Window with

a long click (Action A4) on the the current activity (an activity with an empty name).

EditActivity includes one target AbstractTransition, the one exercising checkConstraints.

While generating inputs to maximize the coverage of method checkConstraints, ATUA clicks

on the button that deletes the activity and brings the App back to the MainActivity (A5).

From the main Activity, ATUA performs again a long click on the currentActivity widget

(A6), which leads to an instance of EditActivity for the definition of a new activity where the

quick fix buttons are visualized. In this case, the quick fix buttons are visualized because an

activity with an empty name (the default for new activities) had ben selected and Activity

Diary already contains an activity with an empty name (i.e., the one deleted by Action A5).

Because of the presence of the two quick fix buttons, ATUA introduces a new abstract state

into the DSTG (i.e., as5).

To cover the hidden-handlers of EditActivity, ATUA exercises the quick fix button that

automatically renames the activity having a conflicting name (A7). Finally, ATUA selects

MainActivity as target and exercises the EditNote button (A9), which pops-up the EditNote

Dialog thus covering the missing lines. In Phase 2, ATUA successfully covered all the target

methods triggered within a target Window (i.e., EditActivity), by repeatedly exercising it.
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Phase 3

In Phase 3, we aim to cover those target method instructions that exhibit data dependencies

from state variables defined by Windows different than the one reaching a target method.

Examples include instructions that can be executed only after enabling specific options

in the preferences Window of the App. For this reason, in Phase 3, the test target is a

WindowTransition presenting associated targetMethods that remain to be fully covered. Also,

for each WindowTransition to be tested, we need to identify a set of related Windows that

should be exercised before executing it.

Function selectTarget returns a WindowTransition belonging to a target Window selected

according to the same criteria as for Phase 2, i.e., with a probability proportional to its

WS score. To minimize the effort spent in reaching target Windows, once a target Window

has been selected, function selectTarget iteratively returns each target WindowTransition

belonging to it.

When a test target has been selected, in function exerciseTarget, ATUA (1) identifies the

related Window that should be exercised first, (2) identifies a path to this related Window,

(3) reaches the related Window and randomly exercises it, (4) identifies a path to the closer

AbstractState for the target Window in which the target WindowTransition is enabled, and

(5) reaches the identified AbstractState and triggers a target Input. In Phase 3, function iden-

tifyPathToTarget is not invoked because testing starts from the related Window. Consistent

with Phase 2, the targetBudget is set to scaleFactor · actionsThreshold .

Function exerciseTarget relies on random exploration (1) to explore the related Window,

(2) when the related Window cannot be reached through the identified path, (3) when the

target Window cannot be reached through the identified path. The random exploration

budget is set to scaleFactor · randomThreshold . Since random exploration has been largely

used in previous phases and to limit the time spent in related windows, in Phase 3, we set

randomThreshold to a value lower than the one used in Phase 2 (e.g., we used 5 in our

experiments).

To identify related Windows, we rely on information retrieval techniques. We do not rely

on traditional data-flow analysis [59] because data dependencies might be implemented in

many different forms (e.g., setting a state variable in a shared object or saving a property in a
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key-value registry) that are not fully identified by such analysis.

Related Windows are retrieved through the computation of the term frequency (TF)

and inverse document frequency (IDF) metrics, which are standard information retrieval

metrics [93]. In the following, we discuss how we compute these metrics.

Since dependencies between Windows are due to either state variables defined in shared

objects or property values in key-value registries, the executable code of Windows presenting

such dependencies should share a subset of class attributes and literals. For this reason,

the terms used to identify dependencies are class attributes and literals appearing in the

implementation of the methods of the App (extracted with Soot).

We compute TF (t, h), the frequency of the term t for an Input handler h, as the number

of methods in which the term appears, considering the handler itself and any of the methods

invoked by the handler. To include only terms that characterize the functionality triggered by

the WindowTransition, we consider only methods declared in the same class of the handler

or in its inner or outer classes.

The frequency of the term t for a WindowTransition wt is computed as the sum of the

term frequency for all the handlers of the Input (HIwt) that triggers the transition,

TF (t,wt) =

h∈HIwt∑
TF (t, h)

The frequency of the term t for a Window w, TF (t,w), instead, is computed as the

number of methods in which the term appears, considering the methods that are either

declared in the class that implements the Window or in its parent class.

The inverse document frequency of a term is computed as

IDF (t) = log(
total number of Windows

number of Windows in which t appears
)

The related Windows for a WindowTransition wt can be identified by computing a

dependency score for every Window w of the App, as follows

DS(w ,wt) =

t∈T∑
NW (t,w) ·NW (t,wt)

where T is the set of terms for the App, and NW (t, d) is the normalized term weight,
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which captures the extent to which a term is representative for either a Window or a Win-

dowTransition. NW (t, d) is computed according to a standard formula [93]:

NW (t, d) =
TF (t, d) · IDF (t)

EL(d)

where EL(d) is the Euclidean Length of the element d (i.e., a Window or a WindowTran-

sition). It is computed as the square root of the sum of the terms’ weight squared [93].

ATUA randomly selects related Windows using the dependency score as probability

distribution.

Phase 3 terminates when the overall test budget is exhausted or all the instructions of the

target methods have been covered.

Running Example. Phase 3 enables ATUA to test the Activity Diary feature that vi-

sualize the details of the current activity after a click on the activity name. This feature

requires a specific configuration to be enabled in the settings page (by default, a click on the

activity name terminates the activity). After selecting the MainActivity as target Window

(EditActivity had been fully exercised in Phase 2), ATUA selects the SettingsActivity as

related Window to be exercised first (it is reached with Actions A10 and A11 in Figure 3.6).

While exercising the SettingsActivity, it deselects the option Terminate activity by click

(Action A12). After exercising the related Window, ATUA reaches the MainActivity (A13)

and triggers the Action that exercises the modified feature (i.e., click on current activity

widget - A14). Phase 3 thus enabled ATUA to test the updated feature (i.e., visualize the

current activity’s details after a click) in a few steps, which is unlikely with random-based,

state-of-the-art approaches (see Section 3.4.5 for additional examples).

3.3 ATUA Toolset

The ATUA Toolset includes four main components: AppDiff, which identifies the updated

methods for the AUT, Extended GATOR, which generates the EWTG part of the AppModel,

Extended DM2 Instrumenter, which instruments the AUT, and ATUA Tester, which imple-

ments the ATUA testing algorithm. The UML component diagram in Figure 3.7 shows the

ATUA Toolset.
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The features of AppDiff and Extended GATOR have already been presented in Sec-

tions 3.2.2 and 3.2.3, respectively. In this Section, we focus on the description of the

Extended DM2 Instrumenter and the ATUA Tester.

ATUA Tester has been implemented as an extension of DM2. DM2 consists of six

components (i.e., DM2 Instrumenter, DM2 Exploration Engine, DM2 Automation Engine,

Coverage Monitor Client, Coverage Feature, and Widget Counting Model Feature) that are

executed on the host environment and two components (i.e., DM2 Control Device Daemon,

and DM2 Coverage Monitor Server) that are deployed on the Android emulator running

the AUT. The DM2 components are part of ATUA Tester, which automatically deploys

and executes them transparently from the end-user. ATUA Tester integrates two additional

components that implement the ATUA algorithm (i.e., ATUA Testing Strategy and ATUA

Model Feature). The integration between ATUA Tester components and DM2 is performed

through the interfaces provided by DM2 (i.e., ModelFeature and ActionSelector). ATUA

Tester and DM2 rely on three additional components provided by the Android development

environment: the ADB Client, the ADB Daemon, and the Android Automation Framework.

The Extended DM2 Instrumenter is used before testing to create an instrumented version

of the AUT that integrates the functions required to collect code coverage. We have extended

the DM2 Instrumenter to collect method coverage information in addition to instruction

coverage. Method coverage is used by ATUA to quickly determine at runtime which methods

have been covered.

At runtime, during testing, the DM2 Exploration Engine acts as a controller that queries

the ATUA Strategy component, which implements the DM2 ActionSelector interface, used

by DM2 to select the next Action to trigger during testing. The ATUA Strategy component

implements the ATUA’s testing algorithm. The DM2 Exploration Engine relies on the

ADB Client installed on the host to set up the Android emulator and deploy the AUT.

The interaction with the AUT is managed by the DM2 Automation Engine, which sends

commands to the DM2 Device Control Daemon installed on the Android emulator. The

DM2 Device Control Daemon employs the Android Automation Framework to execute the

requested Action on the AUT and to derive the GUITree for the active Window. After

triggering an Action, the DM2 Automation Engine receives the current GUITree, a screenshot

of the Android emulator GUI, and some additional information (e.g., exception trace from
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Legend: White UML component symbols point to third-party, reused components. Blue UML component
symbols highlight components developed from scratch or extended to support ATUA’s features.

Figure 3.7: Overview of the ATUA toolset.

Logcat) from the DM2 Device Control Daemon. It then derives the GUITreeTransition

performed on the GSTG and sends this information to all the registered Model Features,

including the Widget Counting Model Feature, the DM2’s Coverage Feature, and the ATUA

App Model. The Widget Counting Model Feature calculates the frequency of Actions on

GUI widgets, used to drive ATUA’s random exploration. The DM2 Coverage Feature is

responsible for tracking code coverage during testing. It associates to each Action the set of

instructions covered when executing the Action; code coverage is provided by the Coverage

Monitor Server instrumented by DM2 within the AUT. The ATUA Model Feature updates

the App model consistently with the description provided in Section 3.2.1; for example, it

implements the ATUA state abstraction mechanism. The ATUA Model Feature is queried by

the ATUA Strategy to determine the Actions to trigger (e.g., to identify the shortest sequence

of Actions required to reach a TargetWindow). The ATUA Model Feature relies on the DM2

Coverage Feature to acquire the coverage data and associate them with the App Model. At

the end of the testing, the ATUA Model Feature generates ATUA’s outputs (i.e., coverage

report, execution traces, and the final App model).
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3.4 Empirical Evaluation

The objective of the empirical evaluation is to compare ATUA with state-of-the-art ap-

proaches in terms of cost-effectiveness. It is motivated by our need to achieve high test

coverage (effectiveness) while enabling the verification of test results within an acceptable

budget (cost) in a CI context.

When a new release is ready for testing, a test automation technique is effective when it

enables engineers to verify updated features in the AUT automatically; more precisely, when

it extensively exercises updated methods and their instructions. Measuring the effectiveness

of App testing techniques in terms of method and instruction coverage is common prac-

tice [13]. Although engineers may aim to exercise all the methods that could be impacted

by the changes (e.g., the ones identified by means of change impact analysis as mentioned

in Section 3.2), in our empirical evaluation, we focus on updated methods since exercising

them is the minimum requirement of any testing criterion targeting software updates.

What we refer to as cost comes in two forms, (1) test execution time and (2) human

effort, which we define as the time spent by a trained engineer to execute the manual tasks

required by a test automation technique. In general, test execution time does not necessarily

need to be minimized but it should be practical. For example, we expect a test budget of one

hour to be practical in a continuous integration context, while a budget of five hours might

be acceptable when testing overnight.

Human effort, in our context, is mostly driven from the absence of a solution to automate

test oracles, even in the presence of automated test input generation. More precisely, it is

not possible to define automated oracles working with any feasible test input; consequently,

the evaluation of the correctness of App outputs should, in general, be done manually.

As described in Section 3.2, to address the oracle problem in the context of App updates,

engineers can rely on two complementary state-of-the-art approaches that respectively

address regression failures and failures in newly implemented, repaired, or modified features.

To discover regression failures, engineers can replicate, on a previous App version, the test

input sequences generated for the updated App. With ATUA, input sequences correspond to

the sequences of Actions generated by ATUA to test an App. In such context they address

the oracle definition problem by verifying that the outputs generated by the two App versions
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match. To discover failures in new, repaired, and modified features engineers should visualize

the screenshots of the Windows or the GUITrees generated for the provided inputs. The

effort in doing so can potentially be reduced through crowdsourcing. In this context, the

oracle definition problem remains unaddressed; a manual oracle can be defined (i.e., a human

can decide if an output is correct based on the App specifications) but oracle evaluation

remains manual and, therefore, expensive. Regardless of the situation and context, human

effort, given the scarcity of qualified human resources, should in general be minimized.

We assume that human effort is proportional to the number of inputs generated by

test automation. Indeed, to overcome execution errors due to changes in the GUI and be

able to replicate test input sequences in a different App version, engineers may need to

manually repair the sequence of inputs (e.g., by changing the ID of a widget to be clicked).

A large number of inputs may thus lead to numerous repair operations and make test oracle

automation infeasible5. Also, the number of outputs that shall be visually inspected by an

engineer is proportional to the number of inputs; indeed, an engineer shall visualize the

GUITree or the screenshots of the active Window rendered after each Action (see Section 3.2).

The effort required to inspect a Window or a GUITree depends on the specific output

generated by the App and the specification of the App. For example, in our running example

(Figure 3.6), it is reasonable to believe that it is simpler to inspect the Window rendered after

Action A4, which contains only a text box and a color selector, rather than inspecting the

output of Action A10, which leads to a menu dialog with many textual items. However, the

specifications of the App may also impact the required human effort. For example, the color

visualized when editing an activity (i.e., A4) depends on the color previously selected for

the same activity, which requires the engineer to verify such consistency based on execution

history. The menu dialog visualized with Action 10, instead, does not depend on execution

history and thus may require less human effort for verification. For these reasons, the cost

for the visual inspection of results can be estimated only through an experiment involving

human subjects. However, since our objective is to compare the human effort required by

different test generation techniques, not to estimate the cost of failure detection approaches,

we can rely on the number of inputs. Indeed, under the assumption that the distribution of the

effort for visually inspecting an output is similar for different test automation techniques, we

can conclude that techniques leading to a larger number of inputs may lead to proportionally

5Related work reports that repairing a single test input takes 15 minutes, on average [94].
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increased costs for output verification. For our experiments, such assumption holds because

all the considered approaches exercise a common subset of target methods and we expect a

same method to lead to similar outputs across different executions. Indeed, we have observed

that more than 50% of the target methods exercised in our experiments are covered by all the

testing techniques and more than 80% of them are covered by at least two techniques (see

Section 3.4.5).

Our research questions are organised according to the two cost measures above. They

evaluate the extent to which we have achieved the objectives mentioned in the introduction;

RQ1 addresses O2, while RQ2 addresses O1. Further, beyond comparisons, RQ3 aims to

characterize how ATUA and state-of-the-art approaches complement each other.

RQ1 Can ATUA reduce the human effort required for testing Apps, compared to state-of-the-

art approaches? We aim to determine if the number of inputs generated by ATUA is

significantly lower than the number of inputs generated by state-of-the-art approaches,

for a same execution time budget. A lower number of inputs makes test automation

more widely applicable in practice since it reduces the effort related to the definition

of test oracles and repair of input sequences. Also, to determine if the effort of using

ATUA is justified by practical benefits, we aim to verify if ATUA provides higher

effectiveness per unit of effort than state-of-the-art approaches.

RQ2 Can ATUA effectively test Apps within practical time budgets, compared to state-of-

the-art approaches? This research question aims to determine if ATUA performs

significantly better than state-of-the-art approaches in terms of coverage of updated

methods and their instructions, for a same execution time budget.

RQ3 Is there any difference in the functionalities that are automatically exercised across test

automation approaches? We aim to determine if the testing approaches considered in

our empirical evaluation are complementary and to which extent. Specifically, we aim

to determine if there are differences in the inputs triggered by the different approaches

(e.g., input sequence length, widgets being exercised, or program states being reached)

that lead to a diverse and complementary set of functionalities being exercised.

A replicability package is made available online [91].
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3.4.1 Study subjects

To perform our experiments, we considered as experimental subjects a number of Apps

available on the Android Play Store that are highly popular (i.e., more than 100,000 down-

loads, on average) and that were used for validation in recent papers reporting on related

techniques, i.e., APE [37] and DM2 [43]. We considered only the Apps that can be executed

on the recent Android simulator version supported by our toolset (i.e., Android API Level

above 23). For each App, we considered the latest 10 released versions at the time of

running our experiments (hereafter referred to as V0, ..., V9), when available6. In Table 4.1,

for each version of each subject, we report the overall number of methods, the number of

updated methods, the overall number of bytecode instructions, and the number of bytecode

instructions belonging to the updated methods. In total, we downloaded and processed 83

App versions, 74 being updated versions.

For all subjects, we treat version V0 as the first released version. The number of updated

methods ranges from one (e.g., version V8 of subject App 2) to 1430 (e.g., version V6 of

subject App 1), thus being representative of a wide variety of release scenarios (i.e., from

simple bug fixes to major releases). The number of bytecode instructions, ranging from 3667

to 165747, shows that the considered Apps have varied degrees of complexity. Further, the

growing number of instructions belonging to the different versions of the Apps (e.g., from

32208 to 69856 in the case of Wikipedia) suggests that they are representative of typical

Apps where features are incrementally introduced at every release, thus further motivating

the adoption of ATUA.

3.4.2 Experimental setup

In our experiments, we compare ATUA with three state-of-the art test automation tools, i.e.,

DM2, Monkey, and APE. These tools do not specifically target updated methods, but simply

aim to maximize the coverage of the whole App.

DM2 has been selected because it is the framework on top of which we implemented

ATUA. We configured it to use the biased-random testing strategy, which matches the random

input selection strategy of ATUA. The comparison with DM2 enables us to determine if

6Preliminary experiments to setup ATUA had been conducted with Jamendo, a music streaming App [95].
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Table 3.5: Overview of subject systems.

Subject App Details:
(V0)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10

1 Wikipedia

V 110 144 146 159 190 198 10239 10263 10264 10269
AM 3767 5009 5646 6435 6943 7477 8814 8751 8759 8793
UM 3767 446 195 108 370 292 1430 535 13 94
AI 32208 38913 43753 48761 51147 54759 68207 69471 69533 69856
UI 32208 11000 4157 2441 6606 6345 24536 12724 281 2698

2
Activity
Diary

V 105 111 115 117* 118 122 125 130 131 134
AM 260 333 333 333 333 450 479 540 540 659
UM 260 18 3 7 12 117 39 28 1 49
AI 3667 4832 4831 4834 4880 6613 7052 8247 8251 10622
UI 3667 558 21 295 599 3393 2027 1535 15 2459

3
File
Manager

V 44 53 77 79 82 84
AM 2042 2132 3422 3430 3648 3648
UM 2042 306 415 11 644 2
AI 34389 34931 48241 48294 51755 51789
UI 34389 14510 13744 703 24960 143

4 Nuzzel

V 302 303 318* 323 325 328 329 330 331 333 334
AM 4223 4220 4524 4498 4527 4650 4771 4832 4833 4833 4834
UM 4223 8 717 75 33 41 21 21 1 1 1
AI 40522 40449 43309 43083 43403 44234 45331 45908 45913 45916 45940
UI 40522 151 18335 2952 1593 1990 647 1378 35 69 45

5
Yahoo
weather

V 1.16.0 1.16.1 1.16.2 1.17.3 1.18.1 1.19.1 1.20.1 1.20.3 1.20.5 1.20.7
AM 2932 2904 2904 2630 3105 3109 3178 3255 3255 3303
UM 2932 5 4 243 10 16 118 101 12 9
AI 38015 37867 37857 34220 38219 38211 39086 39439 39439 39462
UI 38015 417 272 10198 857 588 4295 3842 689 961

6 Wikihow

V 2.7.3 2.8.0 2.8.1 2.8.3 2.9.1 2.9.2 2.9.3
AM 333 333 333 333 325 322 319
UM 333 111 1 1 65 4 18
AI 3704 3992 3941 3944 3808 3761 3657
UI 3704 2279 39 42 1370 93 543

7
BBC
Mobile

V 5.1.0 5.10.0 5.11.0 5.12.0 5.13.0 5.4.0 5.5.0 5.6.0 5.8.1 5.9.0
AM 10706 8724 8792 8902 8926 9945 10380 10696 10200 8939
UM 10706 649 27 44 25 603 242 553 77 95
AI 76649 61604 62078 62937 63232 71053 73082 73950 72439 61618
UI 76649 11182 1557 2288 2101 10637 6324 9484 1638 3274

8
VLC
player

V 3.1.4 3.1.5 3.1.7 3.2.12 3.2.2 3.2.3 3.2.6 3.2.7 3.2.9
AM 6796 6843 6854 8681 8544 8551 8621 8641 8676
UM 6796 672 26 3 149 13 51 33 42
AI 86266 87560 87886 117207 115344 115412 116409 116647 117071
UI 86266 34086 1522 150 9611 1163 3527 1961 3010

9
City-
mapper

V 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
AM 9629 9499 9599 9491 9602 9761 9868 9929 9884 10050
UM 9629 51 37 55 73 119 76 73 12 69
AI 155117 154086 157036 153200 155950 161914 164267 165747 165747 163303
UI 155117 2726 2286 2075 3160 6262 2756 2340 1372 3775

Legend: V: ID of the version under test. AM: number of methods implemented in V (All Methods). UM:
number of Updated Methods in V. AI: number of instructions in V (All Instructions). UI: number of instructions
belonging to updated methods. An asterisk (*) is used to indicate not tested versions.

the additional analyses performed by ATUA (i.e., static program analysis, adaptable state

abstraction function, and inputs generation based on information retrieval) contribute to

generating better results than a simpler solution based on dynamic program analysis only.

Monkey is a program that runs on the Android emulator and generates pseudo-random

streams of events. It is used as baseline for App testing approaches and surprisingly fares
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Table 3.6: Case studies with manual inputs.

Case study Feature tested # Windows # Data fields # Instances

Wikipedia
Log-in functionality 1 2 1
Creation of a new account 1 4 14

VLC
Play a video stream using a
URL

1 1 2

Populate the library with all
the videos on the device

1 1 1

Nuzzel Request an e-mail newsletter 1 1 1

better in many benchmarks [14]. The reason is that the time saved by not processing the App

GUITree can be used to further explore the App state space.

APE is a state-of-the-art App testing toolset that overcomes existing approaches thanks

to an adaptable state abstraction function (see Section 2).

In our experiments, we considered two possible execution scenarios, with respectively

test budgets of one hour (a practical choice in a continuous integration context) and five

hours (a reasonable choice for overnight execution).

To use ATUA, for three subjects, we specified a set of manual inputs necessary to exercise

the primary features of the Apps (e.g., to login and use the App). Support for manual inputs

is a necessary feature of test automation tools because Apps often require domain-specific

information that cannot be derived automatically (e.g., login data). Table 3.6 provides a

summary of the manual inputs defined; for each, we provide a description, and the number

of windows in which the manual input might be triggered. For Wikipedia, we configured

two manual inputs, one with the information for creating a new account, another one with

information to log-in. In the case of VLC, we provide the URL of a stream to be reproduced

and the indication of a checkbox to be checked in order to populate the library with device

data (otherwise, no content can be played and testing is limited). Regarding Nuzzel, we

provide the e-mail address to receive a newsletter. The effort required to define manual

inputs is limited; indeed, for each input, we have specified a single Window where it is

applied, between one and four data fields, and a very limited number of input instances,

that is, one for every tested feature except for the creation of a new Wikipedia account and

the playback of a video stream with VLC. When creating a new account, it is necessary to

specify a larger set of inputs to exercise the feature under test multiple times; indeed, a same

e-mail address cannot be shared by distinct Wikipedia accounts. As for VLC, since one of
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its main features is to play video streams, it makes sense to test it with both a working and a

corrupted video stream. This example illustrates that the effort required to specify manual

inputs is negligible.

To account for randomness, we executed each tool against each updated version 10 times.

We report results for 72 of the 74 versions available since, for two App versions of Nuzzel

and Activity Diary (indicated with an asterisk in Table 4.1), it was not possible to execute all

the testing tools. More precisely, for version 318 of Nuzzel, the App starts but gets stuck

in the first Activity, while version 117 of ActivityDiary can be tested only with ATUA and

DM2, but not with Monkey and APE. In total, we executed 5760 test sessions (4 tools × 72

versions × 10 runs × 2 test budgets) for a total of 17280 test execution hours. To perform

our experiments, we relied on the Grid 5000 infrastructure [96, 97], which provides access

to 800 compute-nodes grouped into homogeneous clusters. We rely on nodes with 16x2.1

GHz and 18x2.2 GHz CPU cores.

In the following sections, we analyze differences in results using a non-parametric Mann

Whitney U-test (with α = 0.05). Particularly, we discuss the p-values computed by the Mann

Whitney U-test to reject null hypotheses stating that there is no difference between ATUA and

each of the state-of-the-art solutions, a common practice in software testing research [98, 99].

We discuss effect size based on Vargha and Delaney’s A12 statistics [100], a non-parametric

effect size measure. The A12 statistic, given observations (e.g., code coverage, in our

context) obtained with two treatments X and Y (testing tools, in our context), indicates the

probability that treatment X leads to higher values than treatment Y. Based on A12, effect

size is considered small when 0.56 ≤ A12 < 0.64, medium when 0.64 ≤ A12 < 0.71,

large when A12 ≥ 0.71. Otherwise the two populations are considered equivalent [100]. In

contrast, when A12 is below 0.50, it is more likely that treatment X leads to lower values than

treatment Y. Symmetrically to the case above, effect size is small when 0.36 < A12 ≤ 0.44,

medium when 0.29 < A12 ≤ 0.36, large when A12 ≤ 0.29.
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3.4.3 RQ1: Human Effort

Experimental setup

In line with the discussion concerning human effort reported above, to address RQ1, we

count the number of inputs generated by each testing tool, for each test execution run. For

DM2 and ATUA, we rely on the CSV file generated by the ActionTrace component of DM2,

which reports all the inputs triggered during testing. For Monkey and APE, we record the

number of test inputs reported by the tool at the end of execution.

Metrics For each subject App, we compare distributions of the number of inputs generated

across tools. We also analyze the target instructions/input ratio, that is, the ratio between

the number of target instructions (i.e., instructions belonging to updated methods) that are

automatically exercised and the number of inputs triggered by the test automation tool. This

ratio captures how useful it is for a software engineer, on average, to invest time in repairing

a single input of the test sequence or verifying the output produced by an input. For example,

a target instructions/input ratio of five indicates that, for every input, the test automation

approach exercises, on average, five instructions belonging to updated methods.

To answer positively this research question, ATUA, compared to other tools, should

generate fewer test inputs and have the highest target instructions/input ratio.

Results

Figures 3.8 and 3.9 show boxplots capturing the number of inputs generated by each approach

in every run, for every subject App, for the two distinct test budgets considered (i.e., one hour

and five hours). Please note that, in all the boxplots presented in this section: (1) horizontal

dashed lines show the average across the data points of the boxplot (i.e., average for the

subject App), (2) horizontal dotted lines traversing the whole chart show the average across

all the runs, (3) whiskers are used to report min and max values across runs for all versions.

Figures 3.8 and 3.9 shows that ATUA generates, on average, the lowest number of inputs:

876.53 for one hour, 4608.57 for five hours. ATUA is thus the most suitable approach

to minimize test automation effort. Monkey generates the largest number of inputs (i.e.,

57888.79 for one hour, 291614.69 for five hours) because it does not invest any of the time
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budget into analyzing execution data but simply generates purely random inputs. APE relies

on Monkey to generate inputs; however, APE generates fewer inputs than Monkey (i.e.,

27505.89 for one hour, 134640.71 for five hours) because it spends time refining the state

abstraction function (see Section 2). Finally, DM2 generates a number of inputs (i.e., 1325.71

for one hour, 6858.16 for five hours) that is closer to those generated by ATUA. This is

mostly due to the fact that both approaches are model-based and share the same dynamic

analysis infrastructure; however, on average, ATUA generates fewer inputs because it invests

more of the time budget into the analysis of run-time data.

Figures 3.10 and 3.11 present the same boxplots as Figures 3.8 and 3.9 but zoom in on

ATUA and DM2 data to highlight their differences. Table 3.7 reports the p-value and A12

statistics obtained with the Mann Whitney U-test and the Vargha and Delaney’s method,

respectively. Recall that we aim to minimize the number of inputs and are thus interested in

effect sizes below 0.46, i.e., the probability that ATUA generates a number of inputs higher

than another approach should be below 0.46, ideally close to zero.

For a budget of one hour, for all the subject Apps, ATUA generates, on average, fewer

inputs than DM2. Differences are statistically significant (i.e., we reject the null hypothesis

that there is no difference in the number of inputs generated by ATUA and the state-of-the-art

approach) and effect size is always in favor of ATUA and large for seven of the nine subjects.

Differences with Monkey and APE are always significant and effect size is always large

except for subject 5 (YahooWeather), in which APE does not interact properly with one App

version, apparently because of a bug in APE.

With a budget of five hours, ATUA also generates, on average, fewer inputs than DM2

across subjects. But in the case of Wikipedia, effect size is not in favor of ATUA (i.e., it is

likely to generate more inputs than DM2). However, this is due to a bug in DM2 rather than

a feature; indeed, in the presence of WebViews, the communication between the DM2 device

daemon and the DM2 client are delayed, thus reducing the number of inputs being generated.

In the case of ATUA, which is built on top of DM2, this problem is less evident because such

communication is triggered less frequently. The differences between the number of inputs

generated by ATUA and the ones generated by APE and Monkey are always statistically

significant with a large effect size in favor of ATUA (except for YahooWeather, as already

discussed above).
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Figure 3.8: Number of inputs generated (budget=1 hour).
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Table 3.7: Statistical significance and effect size for Figure 3.8 and 3.9.

1 hour budget 5 hours budget
p-value A12 p-value A12

C D M A D M A D M A D M A
1 <0.05 <0.05 <0.05 .018 .000 .000 <0.05 <0.05 <0.05 .630 .000 .000
2 <0.05 <0.05 <0.05 .000 .000 .000 <0.05 <0.05 <0.05 .020 .000 .000
3 <0.05 <0.05 <0.05 .039 .000 .000 <0.05 <0.05 <0.05 .093 .000 .000
4 <0.05 <0.05 <0.05 .099 .000 .000 <0.05 <0.05 <0.05 .278 .000 .000
5 <0.05 <0.05 <0.05 .074 .000 .397 <0.05 <0.05 0.81 .090 .000 .490
6 <0.05 <0.05 <0.05 .360 .000 .000 0.15 <0.05 <0.05 .425 .000 .000
7 <0.05 <0.05 <0.05 .117 .000 .000 <0.05 <0.05 <0.05 .123 .000 .000
8 <0.05 <0.05 <0.05 .405 .000 .000 <0.05 <0.05 <0.05 .075 .000 .000
9 <0.05 <0.05 <0.05 .048 .000 .000 <0.05 <0.05 <0.05 .001 .000 .000
Legend: S, subject. D, comparison with DM2, M, Monkey, A, APE. We underline the few cases in which
statistics indicate that ATUA shows no significant difference (i.e., p-value ≥ 0.05) or no higher chances of

generating less instructions (A12 > 0.44) than state-of-the-art approaches.

Figures 3.12 and 3.13 show, for each subject, the distribution of the target instruction-

s/inputs ratio. ATUA has the highest ratio: 2.26 for one hour, 0.49 for five hours. For the

one-hour budget, ATUA’s test automation effort (i.e., manual repair of a GUI input, visual

inspection of outputs) is thus more beneficial because each input enables the verification

of 2.26 additional target instructions. As a comparison, other state-of-the-art approaches

yield lower ratios: 1.34 (DM2), 0.03 (Monkey), and 0.10 (APE). These results show that,

though Monkey and APE are known for effectively triggering crashes, they are unlikely to

be applicable in a testing context where the number of generated inputs should be minimized.

For a time budget of five hours, average differences are less pronounced but the same trends

hold.

Table 3.8 provides p-values and A12 statistics. Since we aim to determine if ATUA is

likely to generate a higher target instructions/inputs ratio, we look for A12 values above

0.50. For a one-hour budget, effect size is always in favor of ATUA (i.e., is more likely to

generate a higher instructions/inputs ratio); effect size is always large with respect to Monkey

and APE. Even if in a few cases differences are not statistically significant (i.e., we cannot

reject the null hypothesis that there is no difference between ATUA and the state-of-the-art

approach concerning the ratio between instructions covered and inputs being triggered),

effect size trends provides a clear picture of the benefits: ATUA is likely to yield a higher

instructions/inputs ratio. The same conclusions can be drawn for a five-hour budget, though

for two subjects (Wikipedia and VLC) ATUA performs similarly to DM2.

To summarize, regarding the human effort required for practical execution time budgets,

ATUA performs better than the other approaches since it saves around 33.8% (1 hour budget)
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Table 3.8: Statistical significance and effect size for target instructions/inputs ratios.

1 hour budget 5 hours budget
p-value A12 p-value A12

C D M A D M A D M A D M A
1 0.10 <0.05 <0.05 .728 1.00 .975 0.69 <0.05 <0.05 .555 .963 .901
2 0.17 <0.05 <0.05 .703 .906 .875 0.14 <0.05 <0.05 .719 .938 .875
3 0.29 0.09 0.09 .700 .820 .820 0.25 0.08 0.17 .720 .840 .760
4 0.33 <0.05 0.05 .636 .895 .772 0.38 <0.05 <0.05 .623 .895 .747
5 0.17 <0.05 <0.05 .691 1.00 .901 0.17 <0.05 <0.05 .691 .950 .827
6 0.63 <0.05 <0.05 .583 1.00 1.00 0.52 <0.05 <0.05 .611 1.00 1.00
7 0.27 <0.05 <0.05 .654 1.00 1.00 0.27 <0.05 <0.05 .654 1.00 1.00
8 0.60 <0.05 <0.05 .578 1.00 .953 0.92 <0.05 <0.05 .516 .968 .906
9 0.39 <0.05 <0.05 .642 1.00 1.00 <0.05 <0.05 <0.05 .914 1.00 1.00
Legend: S, subject. D, comparison with DM2, M, Monkey, A, APE. We underline the few cases in which

statistics indicate that ATUA shows no significant difference (i.e., p-value ≥ 0.05) or no higher likelihood of
achieving a higher instructions/inputs ratio (i.e., A12 < 0.56) than state-of-the-art approaches.

and 32.8% (5 hours budget) of the effort compared with DM2, while it shows huge savings

compared to the other two approaches. As for the effectiveness per unit of effort, ATUA

provides tangible gains of 68.7% (1h) and 63.3% (5h) compared with DM2, and huge

differences with the others. ATUA therefore significantly decreases the human effort

required for repairing inputs and defining oracles when compared to state-of-the-art

approaches.

3.4.4 RQ2: Effectiveness within Time Budget

Experiment design

To address RQ2, we focus on code coverage results obtained with the updated versions of

our subject Apps, i.e., versions V1 to V9. More precisely, we keep trace of the updated

methods (hereafter, target methods) and instructions belonging to updated methods (hereafter,

target instructions) that are exercised by the test automation tools considered in our study.

To collect data for ATUA and DM2, we rely on the Soot-based code coverage extension

integrated into DM2; for Monkey and APE, we rely on MiniTracing, a toolset developed to

measure code coverage with APE [101]. Since all these code coverage tools measure the

coverage of the whole AUT, to determine the coverage of target methods and instructions,

we filter results based on the list of updated methods generated by AppDiff.

Since ATUA and state-of-the-art approaches require a different degree of human effort

(see RQ1) and human effort is measured in terms of inputs generated, we shall set an identical

limit to the number of inputs that might be generated by the test generation techniques. The
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rationale is that we try to emulate, in our experiments, realistic conditions where testers are

limited by both execution time and human resources. This is thus expected to yield unbiased

comparisons of practical value. It is also consistent with our objective, stated earlier, of

minimizing human effort while keeping execution time within acceptable bounds. More

precisely, for each software version v, we define an inputs budget equal to the maximum

number of inputs generated, over ten runs, by ATUA, which is the approach generating the

fewest test inputs for a given time budget, based on RQ1 results.

Though the fault detection rate (i.e., the proportion of faults being detected by a test

automation technique) would be a useful, complementary metric to evaluate test automation

effectiveness, it is inapplicable in our context since an important subset of our subject Apps

(BBC, YahooWeather, Wikihow, Nuzzel) are not open source, a choice made to include

representative Apps. Indeed, the unavailability of source code and bug repositories prevented

us from determining if a failure was due to a fault introduced by an App upgrade. Further,

supporting the use of coverage for our experiments, it has been recently shown that there is

moderate to high correlation between code coverage and the detection of real faults [102].

Finally, without automated functional oracles, in existing studies, effectiveness is typically

measured by looking at runtime failures (i.e., due to uncaught exceptions or crashes), which

represent only a small proportion of the failures that are typically observed in the field [103].

Metrics Since the number of target methods and instructions varies across App versions,

ATUA and state-of-the-art approaches shall be compared in terms of percentage of target

methods and percentage of target instructions covered. In addition, such coverage metrics

shall be obtained when testing a subject App for a maximum and practical execution time

budget (i.e., one hour and five hours, as discussed in Section 3.4.2), while not exceeding a

maximum input budget determining human effort.

To positively answer this research question, ATUA should, in statistical terms, exercise a

larger percentage of target methods and instructions than the other approaches.

Results

Figures 3.14 and 3.16 show the distribution of the percentage of target methods and instruc-

tions that have been covered by the selected testing tools for the subject Apps, with a test
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budget of one hour. Figures 3.15 and 3.17 report the same measurements for a budget of

five hours.

With a test execution budget of one hour, ATUA is the approach with the highest

percentage of target methods and instructions being exercised on average, with 66.34%

and 56.14%, respectively. The largest differences are observed when ATUA is compared

to Monkey; indeed, on average, ATUA exercises 33.46% and 27.42% more methods and

instructions than Monkey, respectively. Since Monkey implements a pure random exploration

strategy, our results show that a limit on the number of inputs generated by Monkey highly

affects its performance. In contrast, the APE state abstraction function enables a more

effective generation of test inputs, thus leading to, on average, higher coverage than Monkey.

However, ATUA outperforms APE; indeed, on average, ATUA exercises 21.66% and 18.41%

more target methods and instructions than APE, respectively. Though DM2 fares better

than Monkey and APE, as it relies on a model-based approach leveraging dynamic analysis,

ATUA exercises 7.50% and 6.37% more target methods and instructions. Note that, the

increase achieved by ATUA is particularly significant, +12.74% (i.e., +7.50%/58.84%) and

+12.79% (i.e., +6.37%/49.77%) for methods and instructions coverage, respectively. This is

explained by the transition-driven exploration based on static analysis (ATUA Phase 1 and 2)

and information retrieval (Phase 3), which are not part of DM2.

When executed with a test budget of one hour, for all the subject Apps, both the median

and the average obtained with ATUA are higher than those obtained with other approaches.

To discuss differences across subjects, we report in Table 3.9 the p-value and A12 statistics

obtained with the Mann Whitney U-test and Vargha and Delaney’s method, respectively.

Overall, differences are statistically significant7 but there are exceptions: when ATUA is

compared to APE for Nuzzel (subject 4), and when ATUA is compared to DM2 for Nuzzel,

File Manager (subject 3), Wikihow (subject 6), and VLC (subject 8). However, for most

of the subjects, ATUA is likely to exercise more target methods and instructions than other

approaches; this is shown by the A12 statistics being always above 0.56, except for File

Manager, Wikihow, and VLC in the case of DM28. Regarding VLC, the effectiveness of

ATUA is limited by the need for setup operations that require some human effort. Indeed,

7We can reject the null hypothesis that there is no difference in the number of target methods and instructions
exercised by ATUA and the i-th state-of-the-art approach.

8Average A12 is 0.77 for target methods and 0.76 for target instructions coverage; median is 0.80 for target
methods and 0.77 for target instructions coverage.
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Table 3.9: Statistical significance and effect size for RQ2.

1 hour budget 5 hours budget
p-value A12 p-value A12

C D M A D M A D M A D M A
Coverage of target methods

1 <0.05 <0.05 <0.05 .857 .994 .956 <0.05 <0.05 0.14 .703 .935 .564
2 <0.05 <0.05 <0.05 .733 .868 .703 <0.05 <0.05 <0.05 .774 .832 .623
3 0.41 <0.05 <0.05 .548 .795 .684 0.61 <0.05 0.99 .529 .767 .501
4 0.16 <0.05 0.07 .560 .852 .577 0.16 <0.05 0.08 .560 .760 .575
5 <0.05 <0.05 <0.05 .735 .814 .920 <0.05 <0.05 <0.05 .713 .702 .841
6 0.08 <0.05 <0.05 .587 .838 .689 0.2 <0.05 <0.05 .564 .719 .681
7 <0.05 <0.05 <0.05 .614 .836 .762 0.78 <0.05 <0.05 .488 .879 .879
8 0.23 <0.05 <0.05 .554 .997 .972 0.05 <0.05 <0.05 .588 .995 .892
9 <0.05 <0.05 <0.05 .587 .981 .878 <0.05 <0.05 <0.05 .685 .992 .918

Coverage of target instructions
1 <0.05 <0.05 <0.05 .853 .991 .936 <0.05 <0.05 0.15 .735 .884 .562
2 <0.05 <0.05 <0.05 .707 .843 .783 <0.05 <0.05 <0.05 .756 .829 .721
3 0.31 <0.05 0.14 .559 .774 .585 0.18 <0.05 0.70 .577 .705 .478
4 <0.05 <0.05 0.07 .600 .861 .579 0.05 <0.05 <0.05 .584 .764 .594
5 <0.05 <0.05 <0.05 .684 .748 .886 <0.05 <0.05 <0.05 .659 .623 .822
6 0.42 <0.05 <0.05 .542 .788 .827 0.47 <0.05 <0.05 .538 .727 .786
7 <0.05 <0.05 <0.05 .598 .735 .695 0.65 <0.05 <0.05 .480 .780 .780
8 0.06 <0.05 <0.05 .586 .999 .984 0.33 <0.05 <0.05 .633 .999 .936
9 0.05 <0.05 <0.05 .584 .980 .822 <0.05 <0.05 <0.05 .671 .988 .896

Legend: C, case study. D, comparison with DM2, M, Monkey, A, APE. We underline the few cases in which
statistics indicate that ATUA shows no significant difference (i.e., p-value ≥ 0.05 ) or no higher likelihood (i.e.,

A12 < 0.56) of covering more targets than state-of-the-art approaches.

since certain features can be tested only on specific devices (e.g., an Android TV), identifying

target methods through static analysis is of limited usefulness and ATUA performs similarly

to DM2. However, such limitations could be surmounted after investing some effort to

carefully setup ATUA. For example, by configuring ATUA to be executed on an Android TV

in addition to a mobile emulator (i.e., what we used in our experiments). Concerning File

Manager and Wikihow, ATUA is affected by some limitations of static analysis, which cannot

determine that certain WindowTransitions are associated to specific data types provided as

input. More precisely, in the case of File Manager, a number of updated features can be

exercised only through specific files (e.g., the decompress operation can be executed only

with files having ZIP or RAR filename extension). The static analysis currently implemented

in ATUA cannot determine that certain features are enabled only in the presence of specific

runtime data (e.g., file names) and thus ATUA, similar to DM2, exercises such features only

if it accidentally triggers them thanks to random exploration. A similar but more evident

problem occurs also in the case of Wikihow, where static analysis does not identify the

WindowTransitions triggered by the inputs sent to WebViews. Indeed, the input handlers

executed after sending an input to a WebView (e.g., a click on an anchor) depend on the

content of the page (e.g., the file type appearing in the URL of the anchor) and thus cannot
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be identified by static analysis, which does not process the content of the HTML pages

displayed at runtime. For this reason, ATUA cannot fully take advantage of static analysis

results in the presence of WebViews. In such cases, similar to DM2, ATUA exercises App

features thanks to random exploration. However, current ATUA results with Apps using

WebViews largely depend on the proportion of features implemented through WebViews.

For example, in the case of WikiHow, which mainly relies on WebViews (five out of eight

content types are displayed through a WebView), ATUA performs similarly to DM2; instead,

in the case of Wikipedia, which implements only one out of 35 Windows using a WebView9,

ATUA outperforms all the other approaches (A12 ≥ 0.56). To overcome the limitations of

static analysis and thus improve ATUA results, it might be necessary to develop dedicated

strategies relying on dynamic analysis; for example, by extending the state abstraction

function of ATUA to use reducers dedicated to HTML anchors or file objects.

With a test budget of five hours, all the approaches achieve better coverage results;

however, the ranking observed for a one-hour budget remains unchanged. ATUA is the

approach with the highest percentage of exercised target methods and instructions, on average,

with 70.37% and 60.18%, respectively. The largest differences are still observed when ATUA

is compared to Monkey; indeed, on average, ATUA exercises 27.24% and 22.73% more

target methods and instructions than Monkey, respectively. ATUA exercises 18.38% and

15.77% more target methods and instructions than APE. The second best approach remains

DM2, as ATUA exercises 6.45% and 6.25% more target methods and instructions than DM2,

with a gain of +10.09% (+6.45%/63.92) and +11.59% (+6.25%/53.93%) in the number of

target methods and instructions covered with respect to DM2, respectively.

A larger time budget enables ATUA to achieve higher coverage. This is set with the

scaleFactor configuration parameter (see Section 3.2.5), which we increase for a five-hour

budget, thus augmenting the time spent to perform random exploration, reach the test target,

and exercise targets.

With a test budget of five hours, the difference between ATUA and other approaches

decreases though. Unsurprisingly, with a larger test budget, random-based approaches can

more easily reach updated features than with a one-hour budget, for which leveraging static

analysis is more important. For example, in subject App 7 (BBC Mobile), in five hours, DM2

9In Wikipedia, WebViews are used to display Wikipedia pages while other Views are used for other features
such as displaying news, image galleries, or editing the content of a page.
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Figure 3.14: Percentage of updated methods covered for each version of the case studies
(budget=1 hour).
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Figure 3.15: Percentage of updated methods covered for each version of the case studies
(budget=5 hours).
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Figure 3.16: Percentage of instructions belonging to updated methods that are covered for
each version of the case studies (budget=1 hour).
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Figure 3.17: Percentage of instructions belonging to updated methods that are covered for
each version of the case studies (budget=5 hours).
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achieves the same average coverage as ATUA.

To discuss differences across subjects, we refer to the p-value and A12 statistics reported

in the rightmost columns of Table 3.9. Because of the larger test budget benefiting random

exploration, differences between ATUA and other approaches are not significant in 7 out

of 27 cases (i.e., 3× 9, which is the number of pairwise comparisons between ATUA and

the other approaches), two cases more than with a one-hour budget. However, ATUA is

still likely to exercise more target methods and instructions than other approaches. Indeed,

for both method and instruction coverage, the A12 statistics is above 0.56 for 24 out of 27

cases. In general, effect size is slightly lower than for a one-hour budget, with an average

A12 of 0.73 and 0.72 for the coverage of target methods and instructions. In particular, we

observe that the larger time budget enables random-driven approaches to achieve the same

effectiveness as ATUA when ATUA is negatively affected by static analysis limitations. This

happens for File Manager (subject 3), where APE performs similarly to ATUA, Wikihow

(subject 6), where DM2 performs similarly to ATUA, and BBC mobile (subject 7), where

the additional time budget enables DM2 to exercise the few updated features depending on

WebViews (in BBC Mobile, WebViews are used to display BBC Web pages).

To summarize, ATUA is the approach that, on average, most effectively test updated

Apps within practical time budgets and human effort. It tends to cover more target

methods and instructions than other approaches. The second best approach is DM2. For a

one-hour budget, on average, ATUA automatically exercises 7.50% and 6.37% more target

methods and instructions than DM2, with a gain of +12.74% and +12.79%, respectively. With

a five-hour budget, on average, ATUA automatically exercises 6.45% and 6.25% more target

methods and instructions than DM2, with a gain of +10.09% and +11.59%, respectively.

For seven out of nine subjects, for both time budgets, ATUA tends to exercise more target

methods and instructions than DM2. For the remaining two subjects, DM2 and ATUA are

comparable, due mostly to the current limitations of static analysis.
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3.4.5 RQ3 - Complementarity of Testing Approaches

Experiment design.

A software testing approach is complementary to other approaches if it exercises a set of

functionalities not exercised by the others. Since we measure effectiveness based on method

coverage, to determine complementarity, we look for methods that are univocally covered

by each testing approach considered in our experiments. A method is univocally covered

by approach A for version V of a subject App S if it is exercised by A in at least one of

the ten test execution runs on version V and is not exercised by any other approach in any

test execution run of that same version. We cannot compare testing approaches based on

instruction coverage because some of our subjects are commercial Apps released without

source code (e.g., to understand the semantics of the covered instructions). Since the number

of target methods varies for each App version, we compare the percentage of target methods

that are univocally covered by each approach. Finally, it shall be possible to identify common

characteristics in the inputs triggering the univocally exercised methods.

Metrics To compare testing approaches, we thus report (1) the overall number of univocally

covered methods across all the subject App versions and (2) the distribution of the percentage

of tested methods that are univocally covered by each approach, across all the subject App

versions. Furthermore, we manually inspect the list of univocally covered methods. Based

on their signatures10 and, for ATUA, the data collected in the GSTG, we (3) determine the

characteristics of the inputs and upgraded functionalities that are better targeted by each of

the testing approaches. Since the test budget affects the performance of testing approaches,

we discuss the results achieved for one-hour and five-hour budgets, separately.

For each testing approach, we analyze if (1) it covers a large number of methods

not covered by other approaches across all Apps, (2) its distribution, across Apps, of the

percentage of tested methods not covered by other approaches has a significantly larger

average than that of other approaches, and (3) we can characterize the situations in which the

approach univocally exercises some updated App methods.

10Since most of our subject Apps are commercial Apps released without source code, the functionality
implemented by a method is inferred from its signature.
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Results.

For the one-hour budget, a total of 6982 methods belonging to the different App versions have

been exercised in our experiments. Overall, 784 out of 6982 methods (11%) are exercised

only by one testing approach, 6198 methods (89%) are covered by at least two approaches,

while 3648 methods (52%) are covered by all the approaches. ATUA exercises the largest

number of methods not exercised by other approaches, 518 (66%); it is followed by APE

(156, i.e., 20%), DM2 (78, i.e., 10%), and Monkey (32, i.e., 4%).

Figure 3.18 shows the distribution of the percentage of methods exercised in our experi-

ments that are univocally covered by one testing approach, across versions, for a one-hour

budget. On average, 7% of the methods exercised in our experiments are covered only

by ATUA, while the other approaches univocally cover only 1% or less. Differences are

statistically significant. Also, we report that for 52% of the App versions, ATUA exercises

more univocally covered methods than other approaches (92% if including versions with the

same number of univocally covered methods). These results show that, across a majority of

individual versions, ATUA provides coverage capabilities that cannot be obtained with other

approaches.

The effectiveness of ATUA is primarily due to its capability of reaching target Windows

and target Widgets that are difficult to reach by solely relying on random exploration. We

identify three distinct cases. First, ATUA can trigger complex sequences of inputs that enable

the visualization of target Widgets. This is the case of SettingsActivity for Nuzzel, which

requires opening a drawer, swipe up, and then click on the settings button. Similarly, in

Yahoo Weather, it is necessary to swipe up the weather information fragment and click on the

map to trigger methods on the WeatherMapView. Other similar cases concern the renaming

of files and the opening of the preferences activity in File Manager. Such complex sequences

of events are unlikely to be triggered by approaches relying on random exploration; instead,

they are selected by ATUA thanks to the use of the App model to identify both the sequence

of events that reaches a target Window and the target events that exercise the updated methods.

The second case concerns ATUA being able to bring an App into a specific state required

for testing, which is enabled by the fact that, in Phase 2, ATUA exercises the inputs that

trigger updated methods multiple times, when the App has likely reached different App

states. For example, ATUA is the only approach exercising the method undeleteActivity of
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Figure 3.18: Proportion of methods that are univocally covered by one testing approach,
distribution across all the tested subject versions (budget=1 hour).
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Figure 3.19: Proportion of methods that are univocally covered by one testing approach,
distribution across all the tested subject versions (budget=5 hours).
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class ActivityHelper in Activity diary, which requires to first create an activity, then delete it,

and finally undelete it. The third case concerns ATUA’s capacity to select the Apps’ options

required to exercise certain Apps’ features, which is the objective of Phase 3. For example,

in BBC mobile, to exercise the methods in class MyNewsByTimeFragment, it is necessary to

reach the settings window, enable the option My News By Topic, and then open the tab My

News.

The methods not covered by ATUA but covered by other approaches, instead, are

generally the ones whose triggering Actions cannot be identified by ATUA because of the

limitations of static analysis. We have identified three different scenarios in which ATUA is

less effective than state-of-the-art approaches. First, though ATUA can trigger complex input

sequences, it cannot, in certain cases (e.g., in classes extending SettingsActivity), identify the

events that trigger specific WindowTransitions, which APE can instead trigger. By relying

on an adaptable state abstraction function, APE can direct random exploration towards App

states that contain the widgets required to test the updated methods, which Monkey and DM2

do not achieve. For example, this happens when testing the updated methods of AboutActivity

in File Manager. Second, in the case of WebViews, instead, DM2, by investing more budget

on random exploration, can reach Windows that can’t be reached by ATUA because static

analysis does not identify the required WindowTransitions in the EWTG. Also, based on the

observed results, the specific random exploration strategy implemented by DM2 appears to

be more effective than the one of APE and Monkey. Finally, Monkey performs better than

ATUA and the other approaches when the execution of updated methods depends on specific

environmental conditions; for example, the internet connection being disabled, which is the

case for testing methods onGoOffline and onPageLoadError in Wikipedia.

Similar findings can be observed for a test budget of five hours. Overall, a total of

7326 methods have been exercised in our experiments, which is expectedly higher than for

the one-hour budget. Overall, 675 out of 7326 methods (9%) are exercised only by one

testing approach, 6767 methods (92%) are covered by at least two approaches, while 4308

methods (58%) are covered by all approaches. Although the larger test budget enables all

the approaches to exercise a larger common set of methods, we still observe a high degree

of complementarity (i.e., 9% of the covered methods are univocally covered). In particular,

ATUA remains the approach that exercises the largest number of methods not exercised
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by other approaches: 478 (71%); the other approaches, instead, show similar numbers of

univocally covered methods: 71 for APE, 64 for DM2, 62 for Monkey.

Figure 3.19 depicts the distribution of the percentage of covered methods that are

univocally covered by one testing approach, across versions, for a budget of five hours. On

average, across versions, 5% of the methods exercised in our experiments are covered only

by ATUA, while the other approaches univocally cover only 1% or less, thus confirming that,

even for a test budget of five hours, ATUA complements all the other approaches. Differences

are statistically significant. Such complementarity is also stressed by the fact that for 42% of

the App versions, ATUA covers more univocally covered methods than other approaches

(81% if including versions with the same number of univocally covered methods).

Also, for a five-hour budget, ATUA confirms its capacity to trigger complex sequences

of inputs not generated by other approaches. This is the case for File Manager, where ATUA

successfully starts the FTP client by (1) clicking on the "add" button, (2) then clicking on

"Cloud connection", (3) then clicking on SCP/SFTP connection and (4) finally, within the

SCP/SFTP connection dialog, fill all the compulsory fields and (5) click on the "Create"

button. Such a complex sequence of inputs (including filling FTP connection information) is

unlikely to be generated by random approaches. ATUA, instead, once it finds the sequence

of inputs that reaches the SCP/SFTP connection dialog, can, in Phase 2, trigger multiple

sequences of inputs until it (randomly) finds the one that successfully starts the FTP client.

For APE, Monkey, and DM2, we can observe the same characteristics observed as for a

one-hour test budget.

To summarize, for both one-hour and five-hour budgets, ATUA is the approach that

exercises the largest number of univocally covered methods. Across versions, the per-

centage of exercised methods univocally covered by ATUA is significantly larger than that

of other approaches. In practice, the results above also suggest that it might be useful to

combine approaches since they may complement each other to cover a larger number of

methods. However, ATUA should always be included in the selected combination since

it exercises a larger set of upgraded functionalities that cannot be exercised using other

approaches.
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3.4.6 Discussion

Human effort RQ1 results have shown that ATUA performs better than the other ap-

proaches since it saves around 33.8% (one-hour budget) and 32.8% (five-hour budget) of the

effort compared with DM2, the second-best approach. Hereafter, we discuss practical impli-

cations concerning testing costs based on related work about the nature of App upgrades [3]

and the maintainability of GUI test cases [66].

On average, ATUA generates 450 (one hour) and 2251 (five hours) fewer inputs than

DM2 for each App version across all subject Apps. Since related work [3] has shown that

roughly 35% of the updates concern the introduction of new features, under the assumption

that inputs are uniformly distributed across updated features, we can estimate that ATUA

generates, on average for each App version and across all subjects, 158 (one hour) and

788 (five hours) fewer inputs than DM2 for testing new features. Consequently, ATUA

generates 292 (one hour) and 1463 (five hours) fewer inputs than DM2 for testing bug fixes

and improved features (i.e., changes concerning non-functional requirements).

When testing new features, the output generated by each input should be manually veri-

fied; for example, by inspecting the screenshots of the GUI trees visualized after triggering an

input (they are automatically captured by ATUA) and determining if they match the expected

results. Unfortunately, the software engineering literature lacks studies about the cost of

manual verification of GUI trees; assuming, for the sake of illustration, that visual inspection

of GUI trees takes a few minutes, say ranging from one minute to five minutes, ATUA

may lead to savings within the following intervals of [158-790] and [788-3940] minutes,

respectively the for one-hour and five-hour test budgets. In the App development context,

where Apps are frequently released (e.g., weekly or bi-weekly) and, additionally, test cases

might need to be executed every day following continuous integration practices, such effort

savings appear to be particularly beneficial, especially considering that testing should be

performed by highly-trained engineers with a deep understanding of the App’s features.

When testing updated features, engineers can re-execute the generated test input se-

quences on previous App versions in order to compare results and, ideally, eliminate oracle

costs. However, we have to expect that a number of maintenance operations are required

in order to adapt test sequences to a different App version. Pan et al. [66], for example,
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report that 26.5% of the test inputs need to be repaired. ATUA will thus save engineers

from manually repairing 77 and 388 inputs, respectively for the one-hour an five-hour test

budget. Under time pressure, which is the case when Apps are frequently released, this is a

significant advantage.

Effectiveness ATUA is the approach that, on average, most effectively tests updated

Apps within practical time budgets and human effort. For the one-hour budget, better

from competing approaches, it exercises more than 60% of target methods and 50% of

target instructions. With a five-hour budget, it exercises more than 70% of target methods

and 60% of target instructions. Higher percentages can probably be reached with longer

execution budgets, which were not possible in our context given the computational costs of

our experiments. Based on these results, we can claim that ATUA can contribute to reducing

development costs; indeed, engineers would then be able to focus their manual testing effort

on a reduced portion of the developed App.

When comparing with other approaches, we observed that for both one-hour and five-

hour budgets, on average, ATUA achieves method and instruction coverage results increased

by at least 10% with respect to the second-best approach (DM2), a practically significant

improvement. The effectiveness of ATUA is comparable to the effectiveness of DM2 and

APE only when ATUA cannot fully leverage static analysis to determine the relation between

inputs and WindowTransitions, i.e., when Apps integrate input handlers that are selected at

runtime based on the nature of input data, which happens, for example, in the presence of

WebViews. For the six subjects for which static analysis can effectively be exploited, the

percentage of improvement rises above 8%. Among our subject Apps, in the worst case (i.e.,

five-hour budget), ATUA is comparable to other approaches for one third of the subjects and

otherwise fares better; considering that (1) no single competing approach achieves similar

coverage as ATUA for these three subject Apps (e.g., DM2 achieves the same results as

ATUA for at most two), (2) competing approaches never outperform ATUA but at best reach

the same effectiveness, ATUA remains the best choice.

Finally, ATUA has shown to be complementary to other approaches. Indeed, for both

one-hour and five-hour budgets, it can exercise 518 and 478 target methods not covered by

other approaches, three and six times the number of the second best approach. Thus, when

combining testing approaches to cover higher target method coverage, ATUA should be
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included. Finally, as an explanation of the above results, we have observed that the three

testing phases integrated in ATUA enable the generation of complex input sequences, specific

App states, or diverse App settings that are required to test updated features.

3.4.7 Threats to Validity

We discuss internal, conclusion, construct and external validity according to standard prac-

tice [104, 105, 106].

Internal validity To address threats to internal validity, we should ensure that the observed

outcome (inputs and code coverage, in our case) depends on the treatment (i.e., the test

automation approaches) and not external factors (e.g., implementation errors and diverse

experimental conditions) [104].

To minimize implementation errors, we have carefully inspected and tested ATUA before

running our experiments. Also, for the state-of-the-art approaches, we relied on the software

released by their authors, which had been used in several experiments.

To ensure the same conditions for all the experiments, we executed each tool on a

clean instance of the same Android emulator with newly installed Apps. However, the same

experimental conditions may not be guaranteed for Apps that depend on external data sources

(e.g., to visualize news) [107]; indeed, in the presence of external data source, test results

may depend on the content being visualized at a specific instant (e.g., the presence of a video

in the latest news). Our case study subjects include six Apps loading external data (i.e.,

Nuzzel, Wikipedia, Yahoo weather, Wikihow, BBC Mobile, and Citymapper) because they

are highly popular and representative.

To address this threat, taking advantage of our Grid infrastructure, for each test budget

(i.e., one hour and five hours), for each subject App version, we executed all the testing tools

in parallel in five batches with two sequential executions each. In practice, for each subject

App’s version, for each tool, we ran ten executions distributed over a time frame of two hours

(for a one-hour budget) and ten hours (for a five-hour budget). Our experimental configuration

should minimize the threat for Apps (i.e., Wikipedia, Wikihow, and Citymapper) loading

remote content that unlikely changes in the time frame of our executions (i.e., ten hours max).
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In addition, we believe that our configuration also addresses the threat for the remaining

three Apps (i.e., Nuzzel, Yahoo weather, BBC Mobile) because, by running all the different

testing tools in parallel, we maximize the likelihood of processing the same remote content

(i.e., news or weather forecasts) when triggering the same Actions.

Conclusion validity Threats to conclusion validity concern the statistical power of our

results, invalid statistical test assumptions, reliability of measurements, and random irrele-

vancies [105].

Since the underlying distribution of the data (i.e., code coverage achieved with test

automation approaches) is not known in our context, for statistical significance, we rely

on the Mann Whitney U-test, which has high statistical power for different underlying

distributions, even for a small number of samples [108]. Also, to let the readers draw

conclusions in context about the proposed approach, we report both p-values and effect sizes.

To avoid violating the assumptions of parametrical statistical tests, we rely on a non-

parametric test and effect size measure (i.e., Mann Whitney U-test and the Vargha and

Delaney’s A12 statistics, respectively).

To ensure reliability, our measurements (i.e., code coverage) have been collected through

widely used, open-source tools.

In our context, the only source of random irrelevancies might be the workload of the

machines used to run the experiments, which may slow down the performance of some of

the tools. To mitigate this threat, in addition to rely on a Grid infrastructure with guarantees

for the provided service level, we manually inspected execution logs to exclude the presence

of anomalies biasing results (e.g., exceptions due to the host environment).

Construct validity According to standard practice, we discuss construct validity in terms

of face, content, convergent, and predictive validity [106]. The constructs considered in our

work are effectiveness and cost. Effectiveness is measured through two reflective indicators,

which are target method coverage and target instruction coverage. Cost is measured in terms

of the number of inputs being generated, for reasons that were carefully discussed.

76



3.4. EMPIRICAL EVALUATION

Face validity concerns the selection of appropriate reflective indicators. For effectiveness,

we rely on method and instruction coverage, which is common practice [13, 107]. For cost,

we measure the number of inputs being generated. At the beginning of Section 4.3, we

have discussed that, in our context, the number of inputs is a good surrogate to enable the

comparison of testing cost.

Content validity concerns the adequacy of reflective indicators to cover the breadth of the

construct. We rely on code coverage since it has been recently shown that there is moderate

to high correlation between code coverage and detection of real faults [102]. Also, code

coverage is a necessary condition to uncover faults and, therefore, it remains a priority for

test engineers. Concerning the breadth of the cost construct, in the introduction to this

Section we have discussed that a direct and precise cost estimate can only be obtained with

experiments involving engineers using the selected testing techniques in the field under

controlled conditions, which we leave to future work.

Concerning convergence, we have computed the non-parametric Kendall’s correlation

coefficient, for all the pairs of reflective indicators, for each subject. Unsurprisingly, target

method and target instruction coverage are highly correlated (i.e., τ ≥ 0.7, for all the

subjects), which is expected for reflective indicators used to infer the same construct. Instead,

a low correlation (i.e., τ < 0.35, for all the subjects) is observed between inputs being

triggered and target coverage, which is expected since these two reflective indicators are

used for distinct constructs.

To address predictive validity, we reported statistics for all our research questions.

External validity To address threats to external validity we have considered nine popular

Apps, downloaded thousands of times worldwide, that have been considered in the empirical

evaluation of related work. Also, for each App, we considered up to ten App versions, based

on their availability, for a total of 72 App versions tested. The considered Apps greatly vary

regarding the overall number of lines of code and updated lines between versions. Because

of their diversity, we believe our subjects to be representative of the Apps landscape.

To account for randomness, we tested each App version ten times with every testing

tool considered; more than the usual practice of three to five repetitions [37]. Despite the
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high computational cost (17280 test execution hours, in total), this enabled us to derive solid

statistical results for the comparison of different tools.

3.5 Conclusion

State-of-the-art App testing techniques are affected by two limitations: limited effective-

ness (i.e., low code coverage) and the absence of automated oracles. To address the first

limitation, given the high release frequency of Apps, we propose a solution (objective O1)

to effectively focus the test budget on updated (i.e., modified and new) methods. In other

words, within practical test execution time, we aim to maximize the coverage of updated

methods and their instructions. To address the second limitation, we aim (objective O2) to

generate a significantly reduced set of test inputs, compared to state-of-art approaches, thus

proportionally saving the corresponding human effort required to visualize test outputs or

correct test scripts.

To achieve the two objectives above, we developed ATUA, an automated App testing

technique that integrates multiple analysis strategies. To achieve O1, it combines static

analysis, to determine the inputs that execute updated features, and random exploration, to

overcome the limitations of static analysis. To achieve O2, it relies on dynamically-refined

state abstraction functions, to determine when distinct inputs lead to a same program state,

and relies on information retrieval techniques, to identify dependencies among App features.

We performed an empirical evaluation where we compared ATUA with state-of-the-art

approaches implementing testing strategies based on dynamically derived models (DM2),

random exploration (Monkey), and dynamic state abstraction (APE). For our experiments, we

considered practical execution time budgets of one and five hours, corresponding respectively

to approximate time constraints in the context of continuous integration and overnight testing.

Concerning human effort (objective O2), ATUA is the approach that generates the smallest

set of inputs with the highest coverage per input. ATUA, on average across subject Apps,

saves around 32.6% of the effort, compared to the second-best approach (DM2). Further, it

exercises 38.5% more instructions than DM2 per input. Differences with APE and Monkey

are much larger. Concerning effectiveness within time budget (objective O1), on average,

ATUA automatically exercises up to 70% of updated methods and 60% of instructions

78



3.5. CONCLUSION

belonging to updated methods, 6% more than the second best approach (i.e., DM2). These

results show that the analysis strategies integrated in ATUA can drive testing towards an

efficient use of the test budget (execution time and effort), thus providing clear benefits when

upgrading and testing an App.
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Chapter 4

CALM: Continuous Adaptation of

Learned Models

4.1 Introduction

Software applications for mobile devices (i.e., Apps) are updated frequently, mainly to

improve the user experience and fulfill marketing strategies [3, 1, 2]. Our industry partners

highlighted that in such scenario, where the time dedicated to development and testing is

limited, it is important to focus testing effort on the features that have been modified and

introduced in the new App version.

Unfortunately, automated App testing techniques do not target updated features but

exercise whole Apps and cover their implementation only partially (e.g., they exercise around

half of the App methods [14, 13]). When coverage is limited, regression test selection

techniques [16, 15] are unlikely to help engineers in selecting test cases that exercise the

updated features. Therefore, the automated testing of updated features remains an open

problem. Further, existing techniques detect only crashes or data loss [24] though a recent

study on functional faults affecting Android Apps reports that 95% of the failures likely
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require visual inspection to be detected. Among these, content related issues account for

21%, structure related issues 40%, incorrect interaction 19%, and functionality not taking

effect 12%) [31]. Unfortunately, visual inspection of App outputs is practically infeasible

when automated testing tools generate a large number of test inputs, each one leading to a

new output screen to be inspected.

In the previous chapter, we have shown that static and dynamic program analyses drive

model-based App testing towards maximizing the coverage of updated methods while using

a limited number of test inputs [33]. We named our previous approach ATUA; for a same

number of App screens to be exercised, it outperforms state-of-the-art (SOTA) approaches in

terms of code coverage.

Although ATUA demonstrated to be more effective than approaches not focused on

App updates, it does not reuse App models across versions, which makes the test process

inefficient (e.g., for every App version, it may resort to random exploration to trigger Window

transitions not identified by static analysis). In the literature, inferred models have been

reused to repair test scripts [109], execute test cases on different platforms [19, 18], and

automate regression testing [110]. Unfortunately, the only approach reusing models across

versions is Fastbot2 [46], a recent approach that reuses a probabilistic model learned in a

previous version to drive testing in a newer version. However, our empirical results (see

Section 4.3) show that, since it does not integrate static analysis, it cannot effectively target

updated features.

We present Continuous Adaptation of Learned Models (CALM), an App testing technique

that efficiently tests updated Apps by relying on models learned with previous App versions.

CALM leverages ATUA to select test inputs that exercise updated methods. However,

CALM improves over ATUA by combining dynamic and static program analysis to adapt

and improve the model learned when testing a previous App version. The reuse of an existing

model enables CALM to efficiently use the test budget to exercise updated methods rather

than to determine, with random exploration, how to reach Windows already reached in

previous App versions.

Before testing a new App version, CALM relies on static program analysis to identify

changes in the App GUI that should be reflected in the App model. This includes, for
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example, removing state transitions triggered by Widgets no longer present in the updated

App. In addition, it integrates heuristics for the runtime adaptation of App models to make

model reuse effective. Precisely, it introduces layout-guarded abstract transitions to deal

with non-determinism; it derives probabilistic Action sequences to deal with state explosion;

it detects model states that are new but compatible with previously executed Action sequences

(i.e., backward-equivalent); it relies on online and offline model refinement to identify and

remove obsolescent model states. Finally, CALM identifies and provides engineers with only

the output screens rendered by the App after an updated method had been exercised, thus

greatly minimizing test oracle costs.

Our empirical evaluation shows that, for a one-hour test budget, CALM exercises a

significantly larger percentage of updated methods and instructions than SOTA tools (ATUA,

Monkey [42], APE [37], Fastbot2, TimeMachine [111], and Humanoid [56]). For a same

maximum number of screen outputs to be visualized, CALM outperforms the second-

best SOTA approach by 6 percentage points (pp). Most importantly, this difference keeps

increasing with the test budget and is even larger (13 pp) for quick test sessions with updates

of small size, which are by far the most frequent.

4.2 Proposed Approach: CALM

CALM supports engineers in testing updated Apps by relying on App models that are

incrementally constructed and adapted, version after version. Similar to ATUA, CALM aims

to exercise all the target methods (see Section 3 ) of an App version. For the first version

of the AUT, CALM treats each method as a target method, and starts from an empty App

model. For every App version following the first, CALM relies on the App model produced

for the previous App version (base App).

CALM works in four steps, shown in Figure 4.1. In Step 1, CALM relies on an extension

of RCVDiff to compare the EWTGs generated by ATUA’s Extended GATOR for the base

and updated App.

In Step 2, CALM relies on the identified differences to generate an updated App model by

adapting the EWTG and the DSTG of the base App model. By reusing the DSTG generated
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Sets of Windows, Widgets,
and Transitions being

Added, Deleted, Modified.

Compare App Models with 

Extended GATOR and RCVDiff

Generate updated App Model 

Layout-guarded abstract transitions

Probalistic Action Sequences
Backward-equivalent abstract states

Online App model refinement

ATUA algorithm 

Phase 1

Phase 2

Phase 3
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test sequences
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after testing
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CALM extensions

Automated testing with Runtime adaptation of DSTG3

apk

2 Initial adapted 

App Model 
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Figure 4.1: CALM App testing process

for the base App, CALM aims to optimize testing efficiency by minimizing the effort spent

to generate AbstractStates and AbstractTransitions for the updated App. CALM does not

inherit the GSTG because the GUITrees in the GSTG are used to refine AbstractStates (see

Section 3.2) but inherited GUITrees might be outdated thus leading to invalid AbstractStates.

In Step 3, CALM relies on an extended version of the ATUA testing process to test the

updated App. CALM’s extensions maximize the effectiveness of model reuse by enabling

the execution of Action sequences derived from previous App models, even when the

AbstractStates observed in the two versions present differences. Further, CALM updates the

App model to reflect the actual behaviour of the AUT.

The output of Step 3 is an App model for the updated App version. CALM generates

a report with a set of triples <GUI screenshot, target action, GUI screenshot> reporting
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Figure 4.2: Example of action output provided to the end-user

for every target Action (i.e., action triggering the execution of target methods) triggered by

CALM the screenshot before and after the execution of the action. An example is shown in

Figure 4.2. To avoid wasting engineers’ time, only actions that increase code coverage are

reported; we refer to such actions as Unique Target Actions (UTAs). The generated triples

support crowdsourcing-based oracles (e.g., they can be shared among a set of App users

to determine if the output is functionally correct or not [80]). Further, engineers can also

visualize, from the GSTG, the sequence of inputs and outputs terminating with the triple

shown in the repo

In Step 4, after testing, CALM refines the App model to eliminate infeasible paths due

to AbstractStates that are unreachable. Those are either AbstractStates from the base App

model not observed when testing the updated App or AbstractStates introduced when testing

the updated App but becoming quickly obsolete. The output of Step 4 is a refined App model

to be used when testing the next App version.

In the following Sections, before detailing the CALM steps, we first discuss how model

reuse can exacerbate state abstraction’s limitations and reduce testing effectiveness.

4.2.1 Limitations of state abstraction

During testing, CALM, like ATUA, derives a sequence of Actions to be triggered to reach

a target Window (in Phase 1) or a target AbstractState (in Phases 2 and 3). Such sequence
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w1: MainActivity

w2: NoteDialog

s1: AbstractState s2: AbstractState s3: AbstractState

 :AttributeValuationMap

activity_background", RelativeLayout

 :AttributeValuationMap

"fab_edit_note", ImageButton

 :AttributeValuationMap

"action_add_activity", TextView

 :AttributeValuationMap

activity_background", RelativeLayout

 :AttributeValuationMap

"fab_edit_note", ImageButton

 :AttributeValuationMap

"action_add_activity", TextView

 :AttributeValuationMap

"picture", ImageView

a2: click on "OK"

[layout-of-s1]

a1: click on "fab_edit_note"  a3: click on "fab_edit_note" 

a4: click on "OK"

[layout-of-s3]


g1: GUITree g2: GUITree g3: GUITree

Note: The dialog window’s background is not captured by our L∗; therefore, the dialogs shown after g1 and g3

belong to the same AbstractState (i.e., s2)

Figure 4.3: Closing a dialog brings the App back to the same screen where the dialog was
opened.

also specifies the AbstractState that is expected after every action; if the expected state is not

reached after a certain Action (e.g., because of non-determinism) the rest of the sequence

is not executed. Indeed, it makes no sense to execute Actions whose preconditions (e.g., a

visible Widget) do not hold. When such state mismatch is observed, CALM derives a new

Action sequence that reaches the target Window/AbstractState from the current AbstractState.

Unfortunately, when models are reused, state abstraction mechanisms often lead to such state

mismatches. Below, we describe four scenarios that we address in CALM Steps 3 and 4.

First, state abstraction may lead to non-deterministic AbstractTransitions when the effect

of an Action depends on a previously performed Action. Usually, such non-determinism
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is observed when AbstractTransitions bring the App into an AbstractState recently visited

or into an AbstractState derived from a recently visited one. The latter often consists of an

AbstractState having the same layout but a different number of Widgets than the previous

AbstractState. In both those scenarios, the previous state may be different at every execution

of the AbstractTransition. An example based on Activity Diary is shown in Figure 4.3:

the action of clicking on the Close dialog button in state s2 brings the App to the same

screen (and same AbstractState) visualized before opening the dialog (i.e., either s1 or s3).

Non-deterministic abstract transitions are more likely with reused models because testing

is started with a populated DSTG although the App is freshly started. For example, in the

case of Figure 4.3, the App starts in s1 and test automation may try to perform the infeasible

sequence ⟨a1, a4⟩ because shorter than the feasible sequence reaching s3 (not shown in

Figure 4.3).

Second, state abstraction may lead to state explosion due to hidden Widgets. It happens,

for example, in the presence of Windows with Widgets that are dynamically added but

keeping the behaviour of unmodified Widgets unchanged. Such state explosion limits the

effectiveness of model reuse because, although the DSTG includes AbstractTransitions

capturing the effect of Actions on a Widget (e.g., a button click on a drawer item triggering a

WindowTransition), triggering such AbstractTransitions requires reaching the exact Abstract-

State in which the Widget was tested previously, which entails triggering several, potentially

unnecessary, Actions.

Third, in the presence of modified Windows, AbstractStates may not match across

versions although they are the source of AbstractTransitions that behave the same across

versions. We call such AbstractStates backward-equivalent AbstractStates; they are observed

in the presence of minimal changes in App Windows (e.g., few Widgets being added or

removed). For example, if the updated App introduces a reset button for a Window with a

form, an Action sequence exercising the submit button, which has not been modified, should

remain executable in the updated version; however, the AbstractState of the two Window

versions does not match because of the different number of Widgets in them.

Fourth, we may observe obsolete AbstractStates. Indeed, AbstractStates often depend

on a remote component (e.g., a news server) that provides data that change over time.

Consequently, such AbstractStates become obsolete quickly (e.g., after a few minutes). Other

87



CHAPTER 4. CALM: CONTINUOUS ADAPTATION OF LEARNED MODELS

AbstractStates become obsolete because the behaviour of the updated App changed (i.e., it’s

not possible to reach a certain AbstractState with the same input sequence observed in a

previous App version).

4.2.2 Step 1: Detect EWTG Differences

CALM compares two EWTGs by relying on RCVDiff. To this end, it generates an RCV-

Model instance that captures the EWTG elements. To identify differences, we extended the

RCVDiff algorithm as follows. First, our RCVDiff extension looks for elements (Window,

Widget, Transition) that present matching attributes and references. Second, to determine

what elements of the base App model had been replaced in the updated App model, our

RCVDiff extension looks for additional elements that may correspond (e.g., because of a

class renaming) by relying on the following:

• Since a Widget could be moved to another container (i.e., its parent changed), two

Widgets correspond when all their attributes, except parent, match. Also, since a

Widget could be replaced with another one implementing similar features (e.g., a

button replaced by a clickable image), they correspond when all their attributes, except

className, match.

• To correspond, two Windows should extend the same Window Type and other proper-

ties should match (e.g., class).

• To correspond, two Transitions should start from matching sources (i.e., Windows) and

trigger the same action on a matching Widget (e.g., a Button). When the destination

does not match, the updated transition simply reflects a change in the App behaviour.

• To correspond, element attributes should have high string similarity; precisely, we

rely on the Levenshtein ratio with a threshold of 40%. The chosen threshold has been

empirically demonstrated to be appropriate [112], as it enables handling cosmetic

changes (e.g., fixing typos in labels). For XPaths, which capture the position of a

Widget in the containing Window, we use a token-based distance: we split each string

into tokens (separator is ‘/’) and compute the cosine similarity distance [113] between

the two token sets.

88



4.2. PROPOSED APPROACH: CALM

RCVModel of Base Model Va

+-
+

R2

Rx- +Deleted element Added element

RCVModel of Updated Model Vb

Replacement of an element on Va 
with one on Vb

R2

R1
R1

+

Note: Our RCVDDiff extension reports that the Windows named MainActivity in Va and HomeActivity in Vb

correspond because they have the same type and their other properties match (they are not listed in the Figure); it

indicates that the Window has been renamed. CALM thus correctly records that the Window MainActivity in Va

has been replaced by Window HomeActivity in Vb. Further, our RCVDDiff extension reports that the Widget

named addNewItem in Va corresponds to the homonymous widget in Vb because all their attributes except their

class name match; since the className attribute of the widget addNewItem has been changed from Button to

ImageView, it indicates that a button Widget has been replaced by an image. CALM thus records that the Widget

addNewItem in Va has been replaced by the Widget addNewItem in Vb. Finally, RCVDDiff detects that, in the

EditActivity Window, a Widget has been deleted (i.e., the TextView named createdTime), while a Widget (i.e.,

the Button named cancel) and a transition triggered by it have been added.

Figure 4.4: An example of RCVDiff Model of EWTGs belonging to two App versions.
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CALM processes the RCVDiff output to identify Windows, Widgets, and Transitions

being added, removed, or replaced; replaced elements are elements of the base App model

with a corresponding element in the updated App model. Figure 4.4 shows an example

output.

4.2.3 Step 2: Generate an Updated App Model

CALM performs four tasks to create the updated App model to be used when testing the

updated App: (1) copies the base App model, (2) removes all the GSTG elements, (3)

replaces the base EWTG with the updated EWTG, and (4) updates the DSTG. Since the first

three activities are straightforward, below, we describe how CALM updates the DSTG.

CALM removes from the DSTG all the items associated to the elements deleted from

the EWTG, which are: all the AbstractStates associated with deleted Windows, all the

AVMs associated with deleted Widgets, all the AbstractTransitions associated with deleted

Transitions. Further, it removes all the elements that become disconnected from the rest of

the DSTG.

Window replacements are caused by Windows renaming; therefore, CALM assigns the

replaced Window’s AbstractStates to the replacing Window. Similarly, we assign replaced

Widgets’ AVMs to replacing Widgets. For Transition replacements, since they indicate a

change in the source or destination Window but there is no mean to determine the mapping

to an AbstractState for that Window, we simply remove the AbstractTransitions associated to

the replaced Transition.

Added elements do not lead to any update of the DSTG because they were not present in

the base App.

Figure 4.5 demonstrates how CALM integrates the DSTG of a base App model into an

updated App model by relying on the information provided by the RCVDiff model (i.e., the

one in Figure 4.4, in this example). In the updated App model, the AttributeValuationMap

createdTime (i.e., avm5) is removed from the AbstractState s2 because, in the base App

model, avm5 was associated with the Widget w7, which has been removed from the updated

App. In the updated App model, the AbstractState s1 is reassigned to the HomeActivity
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Figure 4.5: Illustration of how DSTG of Base App model is adapted in Updated App model accordingly to the RCVDiff model in Figure 4.4
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Window because the HomeActivity Window replaces the MainActivity Window of the base

App model. Still in the updated App model, the AttributeValuationMap addNewItem (i.e.,

avm2) is reassigned to the widget w8, which has type ImageView; such change depends on

w8 being a replacement for Widget w3, which is of type Button. Please note that preserving

AVMs enable CALM to preserve the AbstractTransitions at1, which brings the App to the

AbstractState s2 from s1 when clicking on the addNewItem widget. Finally, since Widget

w9 was added to the updated App model, it has no DSTG element assigned to it. The other

DSTG elements in the updated App model remain associated to the same elements in the

base App model; or, more precisely, they are associated to EWTG elements of the updated

App model that match the ones in the base App Model.

4.2.4 Step 3: Automated Testing with Runtime DSTG Adaptation

In this Section, we describe the solutions integrated into the testing Step to overcome the

limitations described in Section 4.2.1. We aim to avoid deriving Action sequences that expect

traversing AbstractStates that, in the updated App, are unreachable with such sequences.

Layout-guarded abstract transitions

To handle non-determinism due to AbstractTransitions bringing the App into a recently

visited AbstractState or a state derived from a recently visited one, CALM augments App

models with guard conditions specifying if the state reached by the transition is expected to

be derived from a previously visited AbstractState. We call such transitions layout-guarded

abstract transitions. During testing, before adding a state transition to the App model, CALM

verifies if the destination state has a layout similar to the layout of any previously visited

AbstractState; for that, it processes the GSTG backward till it reaches the initial state or a

GUITree with an AbstractState having a layout similar to the destination state. To determine

if two AbstractStates have a similar layout, CALM focuses on the AttributeValuations

derived using the reducers belonging to L1, which do not include text and Widget children;

indeed, text and Widget children are likely to vary when AbstractStates are derived from

previously visited ones. Two AbstractStates have a similar layout if they share 80% of

such AttributeValuations; we propose a threshold of 80% because it led to the best results
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(highest coverage of modified methods and instructions belonging to modified methods) in a

preliminary experiment conducted with the latest version of all the subject Apps included in

our empirical evaluation.

When generating Action sequences, CALM traverses layout-guarded AbstractTransition

only if the referenced layout is similar to the layout of an AbstractState previously visited.

In Figure 4.3, the transition from s2 to s3, triggered by the Action a2, is guarded by

layout_of (s1). Thanks to such guard, at runtime, CALM will not suggest the infeasible

sequence ⟨a1, a3⟩ when being in s1 after starting the App. Indeed, their AVMs derived with

L1 differ because s3 includes a picture Widget that is not present in s1.

Probabilistic Action sequences

Often, in the presence of state explosion due to hidden Widgets, a sufficient condition to

execute a whole Action sequence is the presence of all the Widgets targeted by the Actions

in the sequence. In Figure 4.6, the sequence ⟨click on w1, click on w2, click on w3⟩ derived

from the AbstractState S6 might be feasible even if S9 is observed. Therefore, an Action

sequence should be selected by identifying the Actions leading to App screens that likely

contain the Widgets targeted by the next Action in the sequence, till a Window with the

targeted Input is reached.

Because of the observation above, CALM derives probabilistic Action sequences in

addition to deterministic Action sequences (i.e., what is derived by ATUA). For every Action,

they capture the likelihood of reaching an App screen that includes the Widget required by

the next Action. When traversing the DSTG to derive an Action sequence, CALM adds a

AVM7 (w1) AVM8 (w2) AVM9 (w3)

Target Input
in MetaState

AVM2 (w1) AVM3 (w2)

p=2/3

AVM4 (w1) AVM5 (w2) AVM6 (w3)
Target Input

S9

S3 S4

a9 (i1) a10 (i2)

a2 (i1)

a5 (i2)
S6 S7 S8

AVM1 (w1)S1 S2
a1 (i1)

a4 (i1)

a3 (i2)
S5

Current state a11 (i3)

p=1/2

States of Window 1 States of Window 2 States of Window 3

p=1
S10

a7

a8 a6 (i3)

Figure 4.6: Part of a DSTG with a Probabilistic Action sequence; MetaStates and MetaTran-
sitions are dashed.
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transition for every Input i that has never been exercised in the current AbstractState. We

call such additional transitions MetaTransitions. The destination of a MetaTransition is

a MetaState; a MetaState tracks all the Widgets ever visualized in any App screen after

exercising the Input i. To derive MetaStates, CALM considers the AbstractStates reached

after exercising i and identifies all the Widgets belonging to them. Each MetaTransition

leaving a MetaState is associated with a probability of being available (i.e., it captures

the likelihood that the Widget targeted by the MetaTransition is interactable in any of the

observed AbstractStates). In Figure 4.6, Input i1, which targets Widget w1 in Window wi1,

may bring the App into three distinct AbstractStates, two of which including widget w2; the

probability of exercising w1 is 1.0 (w1 is present in the current state S9), the probability of

reaching w2 after exercising i1 is 0.67 (i.e., 2/3). Similarly, the probability of exercising the

target input on w3 is 0.5.

During testing, CALM should select the Action sequence that brings the App into the

target Window/AbstractState with a minimal cost. However, MetaTransitions may not

bring the App into a desired MetaState, and thus it may not be feasible to fully exercise

a probabilistic Action sequence. To maximize efficiency, we should estimate an Action

sequence cost by accounting for the risk of not reaching a desired MetaState.

We assume that deterministic Action sequences are likely to be fully executed because

they do not include MetaTransitions; therefore, their cost depends on the time required to

execute all their Actions. Given a probabilistic Action sequences and a deterministic Action

sequence with the same length, CALM should exercise the deterministic one because it does

not present feasibility risks. Consequently, to account for feasibility risks, when computing

the cost of a probabilistic input sequence ϕ, we heuristically sum the cost of executing the

whole sequence ϕ with the cost of executing a partial subsequence of ϕ multiplied by the

likelihood of not executing the whole sequence ϕ:

cost(ϕ) = cost_full(ϕ) + cost_partial(ϕ) ∗ likelihood_partial(ϕ)

The cost of executing a whole Action sequence ϕ (either partial or deterministic) is the

sum of the cost of executing all its n Actions:
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cost_full(ϕ) =
n∑

j=1

cost(actionj)

Since we empirically observed that all the Actions, except App reset, take almost the

same time to execute, and App reset takes around ten times the other Actions, we assign to

reset Actions a cost of 10, and 1 to other Actions.

The cost of executing only part of an Action sequence depends on the number of

Actions being triggered; since we cannot predict how many Actions will be executed, we

conservatively assume that, on average, half of the Actions of probabilistic input sequences

are executed, which leads to:

cost_partial(ϕ) =

∑n
j=1 cost(actionj)

2

Finally, the likelihood of executing an input sequence depends on the likelihood of

observing all the Widgets targeted by the Actions in the sequence. Therefore, the probability

of partially executing an input sequence ϕ is:

likelihood_partial(ϕ) = 1−
n∏

j=1

p(actionj |sj−1)

with p(actionj |sj−1) being the probability of observing the Widget required to trigger

the Action actionj in the state reached by actionj−1. If sj−1 is not a MetaState, we

expect the widget to be available; therefore, p(actionj |sj−1) = 1.0. If s is a MetaState,

p(actionj |sj−1) matches the MetaTransition probability described above. For a deterministic

input sequence ϕd, since input widgets are available in the reached AbstractStates (i.e.,

p(ij |sj−1) = 1), we have:

likelihood_partial(ϕd) = 0

During testing, when executing a partial input sequence ϕ, for each MetaState se expected

after an Action ij , CALM verifies that the Widget to be triggered next is available; otherwise

a new input sequence needs to be selected.
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Based on the above, in the example in Figure 4.6, the probabilistic Action sequence

⟨a9, a10, a11⟩will be selected instead of the deterministic Action sequence ⟨a7, a8, a4, a5, a6⟩,

thus reducing the number of Actions required to reach the test target. Indeed, since the

current state is S9 and the objective is to reach w3 and trigger i3, the cost of the probabilistic

action sequence ⟨a9, a10, a11⟩ would be computed according to the following equations:



cost(⟨a9, a10, a11⟩) = cost_full(⟨a9, a10, a11⟩)

+ cost_partial(⟨a9, a10, a11⟩) ∗ likelihood_partial(⟨a9, a10, a11⟩)

cost_full(⟨a9, a10, a11⟩) = cost(a9) + cost(a10) + cost(a11) = 1 + 1 + 1 = 3

cost_partial(⟨a9, a10, a11⟩) =
cost(a9) + cost(a10) + cost(a11)

2
= 1.5

likelihood_partial(⟨a9, a10, a11⟩) = 1−
(
p(a9) ∗ p(a10) ∗ p(a11)

)
= 1− (1 ∗ 2/3 ∗ 1/2) = 0.66

(4.1)

They lead to:

cost(⟨a9, a10, a11⟩) = 3 + (1.5 ∗ 0.66) = 3.99 (4.2)

The Action sequence ⟨a7, a8, a4, a5, a6⟩, instead, leads to:

cost(⟨a7, a8, a4, a5, a6⟩) = cost_full(⟨a7, a8, a4, a5, a6⟩)

+ cost_partial(⟨a7, a8, a4, a5, a6⟩) ∗ likelyhood_partial(⟨a7, a8, a4, a5, a6⟩)

=
(
(cost(a7) + cost(a8) + cost(a4) + cost(a5) + cost(a6)

)
+ cost_partial(⟨a7, a8, a4, a5, a6⟩) ∗ likelyhood_partial(⟨a7, a8, a4, a5, a6⟩)

= 5 + cost_partial(⟨a7, a8, a4, a5, a6⟩) ∗ 0

= 5

(4.3)

Backward-equivalent abstract states

A backward-equivalent AbstractState differs from an AbstractState expected by the input

sequence and inherited from the base App’s DSTG, but enables performing the same actions.
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Precisely, an AbstractState so observed in the updated App is backward-equivalent to a state

se derived from the base DSTG when:

• se and so are associated to the same Window; otherwise, they cannot be equivalent

because different Windows implement different features.

• Every AVM in se matches an AVM in so. Otherwise, it would not be possible to

trigger, in so, the same Actions triggerable in se.

• Every AVM in so, except the ones for the EWTG Widgets added or replaced in the

updated App, matches an AVM in se. If this condition does not hold, a Widget may

have different AVMs in the two App versions (e.g., a checkbox is no longer checked).

In such case the updated App changed its behaviour and, consequently, a same Action

may not exercise the same methods in the base and updated version.

For example, taking the AbstractState s2 in Figure 4.5, which is inherited from the base

App Mode, as an expected AbstractState, CALM observes a new AbstractState s3 similar

to s2 but including additionally an Attrib uteValuationMap representing the added EWTG

Widget w9 in the "EditActivity" Window. Since there is only a mismatch between s3 and s2,

which is related to the added EWTG Widget, s3 is backward-equivalent to s2. This implies

that any required action that needs to be performed on s2 could be done on s3 too.

Online App model refinement

Online model refinement aims at determining if expected states that are not observed when

exercising an Action sequence are obsolete. It is necessary because, otherwise, CALM may

keep selecting Action sequences that include an unreachable state, which leads to a waste of

resources.

When exercising an Action sequence, if the state expected after the ith action (sei) does

not match (or is backward-equivalent to) the observed state (soi), CALM determines if

sei is obsolete. If sei has already been observed when testing the updated App, then it is

not obsolete; therefore, soi is the result of nondeterminism and CALM applies ATUA’s

procedure to minimize nondeterminism (i.e., it refines sei−1 using L). Otherwise (i.e., if
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sei had not been observed with the updated App), CALM removes from the DSTG the

AbstractTransition connecting sei−1 with sei .

4.2.5 Step 4: Refine the App Model Offline

After testing an App version Vx, to further clean up the App model from unreachable

AbstractStates, CALM removes from the App model all those AbstractStates that were not

visualized although belonging to exercised Windows.

Further, to remove AbstractStates that become quickly obsolete, after testing an App

version Vx, CALM re-executes, offline, the sequences of test inputs captured by the GSTG.

During such re-execution, if a test input does not bring the App into the expected Abstract-

State se, then CALM annotates se as obsolete. When testing version Vx+1, to avoid wasting

the test budget, CALM does not generate input sequences that traverse obsolete states.

Finally, since we empirically observed that Windows with obsolete states often present

newer states that quickly become obsolete (e.g., Apps that display updated news every few

minutes), CALM considers obsolete any AbstractState identified when testing Vx+1 but not

reachable with Action sequences traversing their incoming transitions, while still testing

Vx+1. Our approach enables CALM to rely on obsolescent AbstractStates till they become

obsolete.

4.3 Empirical Evaluation

We performed an empirical evaluation that aims to address the following research questions

(RQs):

• RQ1. Is CALM more effective than competing approaches in testing App updates, for

a same test budget? We aim to determine if CALM performs significantly better (code

coverage) than ATUA and SOTA approaches that complement ATUA [33].

• RQ2. How do CALM and competing approaches fare, for different testing time budgets,

with updates of different magnitude? Updated Apps may need to be tested quickly (e.g.,
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Table 4.1: Selected subject systems.

App V0 V1 V2 V3 V4 V5 V6 V7 V8 V9
AD 105 111 115 118 122 125 130 131 134
BM 5.1.0 5.10.0 5.11.0 5.12.0 5.13.0 5.4.0 5.5.0 5.6.0 5.8.1 5.9.0
CM 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0
FM 44 53 77 79 82
WI 198 10239 10263 10264 10269
VP 3.1.4 3.1.5 3.1.7 3.2.12 3.2.2 3.2.3 3.2.6 3.2.7 3.2.9
YM 1.16.0 1.16.1 1.16.2 1.17.3 1.18.1 1.19.1 1.20.1 1.20.3 1.20.5 1.20.7

Apps: AD: Activity Diary, BBC: BBC Mobile, CM: Citymapper, FM: Amaze File Manager, WI: Wikipedia, VP:
VLC Player, YM: Yahooweather Mobile

Table 4.2: Number of updated methods for each App version. For V0 (assumed as the initial
version), we report all the methods of the App.

App V0 V1 V2 V3 V4 V5 V6 V7 V8 V9
AD 260 18 3 12 117 39 28 1 49
BM 10706 649 27 44 25 603 242 553 77 95
CM 9629 51 37 55 73 119 76 73 12 69
FM 2042 306 415 11 644
WI 7477 1430 535 13 94
VP 6796 672 26 3 149 13 51 33 42
YM 2932 5 4 243 10 16 118 101 12 9

Apps: AD: Activity Diary, BBC: BBC Mobile, CM: Citymapper, FM: Amaze File Manager, WI: Wikipedia, VP:
VLC Player, YM: Yahooweather Mobile

after each code commit, with a limited test budget). However, both the magnitude

of the update (e.g., number of updated methods) and the testing time budget may

affect the performance of CALM. Therefore, we study how the effectiveness of CALM

compares with competing approaches over time and for updates of different magnitude.

4.3.1 Subjects of the Study

Since CALM extends ATUA, we reuse all the subjects used for evaluating ATUA, except

those that cannot be tested anymore because relying on dismissed server-side APIs.

Table 4.1 shows the selected versions (52 subjects, in total); Table 4.2 provides the

number of updated methods for each version, they range from one (version V7 of Activity

Diary) to 1430 (Wikipedia’s V1), thus being representative of diverse release scenarios (i.e.,

from bug fixes to major releases). The number of bytecode instructions shows that our

subjects vary in complexity (from 3667 to 163303).

4.3.2 Experiment Setup

We compare CALM with ATUA and five SOTA tools: APE[37], TimeMachine [111],

Monkey[42], Fastbot2 [46], and Humanoid [56]. APE is the SOTA tool that is more likely
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to achieve the highest coverage for a one-hour test-budget [44]. Monkey, which employs a

pure random testing strategy, is the de-facto standard baseline used in the literature [14, 44].

TimeMachine improves over Monkey by leveraging emulators’ snapshots to keep a pool of

interesting App states (i.e., reached after improving coverage) to resume testing from, when

coverage improvement gets stuck. Fastbot2 is a recent approach reusing App models across

versions. Humanoid relies on deep learning to effectively exercise Apps like humans [56].

We tested our subjects with CALM and competing approaches using a test budget of one

hour, which is a common choice in several App testing papers [37, 43, 8, 114].

We executed each tool with each updated version ten times. For CALM, for each of these

ten experiments, we simulated a realistic usage scenario by first testing the initial version of

the App considering the entire code as updated, thus deriving an initial App model for V0.

We then tested the upgraded versions by reusing the App model generated for the previous

App version considered in the same experiment. In total, the experiment took 6940 hours of

computing time.

4.3.3 RQ1 - Effectiveness for a Given Test Budget

Experimental Design

Since we are interested in exercising code that is likely affected by changes (updated

methods), we compare CALM with the other approaches in terms of percentage of covered

updated methods (hereafter, target method coverage) and instructions belonging to updated

methods (hereafter, target instruction coverage).

Since the identification of functional failures can only be based on the visual inspection

of App screens rendered after every input action, it is necessary to compare the coverage

results obtained when a similar number of App screens is inspected, so that we can assume

the effort required to detect failures is similar across competing approaches.

We assume that engineers apply the strategy presented in Section 3.2: they inspect only

the App screens generated by useful target actions (UTAs), which are defined as actions

contributing to increasing the coverage of instructions belonging to updated methods. In our
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analysis, we therefore compare the coverage obtained for a same number of UTAs, which

enables comparing effectiveness for a same failure detection cost.

During testing, we identify UTAs and the target instructions they cover. Then, for each

subject version, we compute the average number N of UTAs generated by CALM, and we

select, for each execution of the other testing tools on the same subject, the first N UTAs

being triggered. We then compute the target method and instruction coverage achieved with

the selected UTAs. We extended ATUA, APE and TimeMachine to collect the instructions

covered by each UTA. For Monkey and Fastbot2, it was not possible to implement the same

extension; therefore, we report the coverage achieved by these tools with all the inputs

triggered in one hour. Additionally, for completeness, we report the target coverage achieved

by APE and ATUA with all the inputs triggered in one hour. Please note that, in practice,

it would be infeasible for engineers to visually inspect all the App screens rendered with

Monkey, APE, and Fastbot2 because of the large number of inputs they trigger [33]; however,

Monkey enables us to gain insights about the input space (i.e., how simple it is to exercise

target methods without guidance). To perform an ablation study, we implemented a version

of ATUA (ATUA-R) that reuses models across versions (i.e., implements CALM’s Steps 1

and 2 but not the heuristics of Step 3); also, we implemented a version of TimeMachine (i.e.,

TimeMachine+) that focuses on target instruction coverage to determine interesting states.

To positively answer RQ1, CALM should achieve a significantly higher target method

and instruction coverage than competing approaches, for a same number of UTAs. We

determine statistical significance of the difference using a non-parametric Mann Whitney

U-test (with α= 0.05). Further, since performance fluctuations across App versions might

be expected, we report on the number of versions in which CALM performs better. To this

end, we rely on the Vargha and Delaney’s A12 statistics [100], a non-parametric effect size

measure, applied to the ten execution results obtained for a given version. Following standard

practice, CALM is deemed to perform better than other approaches when the difference is

statistically significant and A12 > 0.56.
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(a) Target method coverage.

(b) Target instruction coverage.

Figure 4.7: Distribution of target method coverage and target instruction coverage.
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Table 4.3: Number of versions in which CALM performs significantly better than competing
approaches and vice-versa.

Tool Target method coverage Target instr. coverage
CALM better CALM worse CALM better CALM worse

ATUA-U 41 (78.85%) 0 (0%) 46 (88.46%) 0 (0%)
ATUA-R-U 37 (71.15%) 2 (3.85%) 37 (71.15%) 2 (3.85%)

APE-U 44 (84.62%) 2 (3.85%) 50 (96.15%) 0 (0%)
Monkey 35 (67.31%) 4 (7.69%) 35 (67.31%) 4 (7.69%)
Fastbot2 38 (73.08%) 1 (1.92%) 37 (71.15%) 2 (3.85%)

TimeMachine 48 (92.31%) 0 (0%) 46 (88.46%) 0 (0%)
TimeMachine+ 44 (84.62%) 1 (1.92%) 42 (80.77%) 1 (1.92%)

Humanoid 40 (76.92%) 1 (1.92%) 38 (73.08%) 1 (1.92%)

Results

Figures 4.7a and 4.7b show the distributions of the target method and instruction coverage

for CALM, for each subject App. The two Figures show similar distributions; a data

point is the coverage achieved with one test execution on one App version. CALM is the

approach yielding the best results, on average, with 70.08% and 60.67% target method

and instruction coverage, respectively; differences between CALM and other tools are

statistically significant. The second-best result is obtained by APE (66.18% and 57.64%), if

we consider all the inputs generated. However, to be realistic, we should rely exclusively

on UTAs, which make the performance of APE (i.e., APE-U) drop to 59.93% and 51.17%,

approximately a 10% and 9% decrease from CALM, respectively. APE performs better than

Fastbot2 (57.89% and 50.90%), which differs from previous results [46], likely because

Fastbot2 overfits the specific industrial scenarios for which it was developed.

ATUA-U performs better than APE-U (63.84% and 54.33%), while ATUA-R-U performs

slightly better than ATUA-U (64.25% and 55.26%) but differences are not significant, which

indicates that model reuse alone provides limited benefits without all the heuristics integrated

into CALM (CALM performs significantly better than ATUA-R-U).

CALM performs significantly better than APE-U, ATUA-U, and ATUA-R-U thus show-

ing that model reuse improves the testing of updated Apps but CALM’s heuristics are

necessary to effectively reuse models (indeed, CALM performs significantly better than

ATUA-R-U). Further, the better performance of CALM over Fastbot2 shows that model

reuse alone, without appropriate strategies to drive testing, is not sufficient to effectively

test updated methods.
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The need for appropriate testing strategies is also highlighted by the poor performance of

Monkey, TimeMachine, and Humanoid. The performance of Humanoid and TimeMachine

does not change when either considering all the inputs or UTAs only; for such reason

we do not report Humanoid-U and TimeMachine-U in Figure 4.7. TimeMachine is likely

negatively affected by the cost of taking execution snapshots. TimeMachine+ is the second-

worst approach, thus showing that focusing on target instructions is not sufficient to test

modified functionalities but a dedicated approach (i.e., CALM) is needed. Humanoid poorly

performs likely because it tends to focus on the main App features, which might not be the

modified ones, in addition to being affected by other limitations [10]. Please note that both

Fastbot2 and Monkey also lead to a much higher number of output screens to be manually

verified (i.e., 4645, for Fastbot2, and 51,500, for Monkey, on average for each version versus

a range between 1 and 186 for CALM, 35 on average).

Table 4.3 provides the number of App versions in which ATUA performs significantly

better than competing approaches and vice-versa. Table 4.3 shows that CALM performs

significantly better than competing approaches for a significantly larger number of

versions, thus showing it is the best choice to incrementally test App versions.

4.3.4 RQ2 - Effectiveness Over Time

Metrics

We study the effectiveness of CALM, for increasing testing time budgets and updates of

different magnitude. To measure such magnitude we rely on the proportion of updated

methods because it enables us to compare results achieved with Apps of different sizes.

Based on the distribution of the number of App versions per percentage of updated

methods in our subjects, we identified three distinct patterns in App development (e.g.,

from bug fixes to major releases). Tiny updates with [0%,1%) updated App methods are

very frequent (52.85% of our versions); small updates with [1%,10%) updated methods are

relatively frequent (34.62% of versions); medium updates with [10%,30%) updated methods

are much less frequent (11.54% of versions).

As for RQ1, we rely on code coverage as a proxy for effectiveness. We focus on target
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instruction coverage because method coverage is likely to show high variations between test

executions when updates have limited magnitude.

During RQ1 experiments, we traced timestamps and the target instruction coverage for

every input action. To address RQ2, we focus on the coverage achieved by each technique,

after every minute, considering UTAs only, as in RQ1.

In our analysis, we exclude Monkey and Fastbot2 since they are not practically applicable

in our context given that that they do not enable the selection of UTAs.

For each update size range, we compute the average target instruction coverage for all

the ten experiment runs of all the App versions having a number of updated methods in

that range; we discuss the significance of their difference across ranges based on the Mann

Whitney U-test (with α = 0.05).

Results

Figure 4.8 depicts the average target instruction coverage over time. Our results show that

CALM always achieves higher average target instruction coverage than ATUA, for

any test budget, which indicates that model reuse, including all the CALM’s optimizations,

is always the best choice; this would not have been the case if the reused models were

driving CALM towards exercising obsolete input sequences leading to unexpected App

states. CALM always performs significantly better than Humanoid, TimeMachine, and

TimeMachine+. APE-U, however, performs slightly better than CALM in the first minutes

of execution (e.g., model loading cost may negatively affect CALM), but then CALM

overcomes APE. Interestingly, the difference in performance between the two approaches

and the moment in which CALM takes over depends on the magnitude of the change.

With up to 1% updated methods, which is the most frequent case (more than half

of our subject versions), APE-U performs significantly better only in the first minute of

execution but with a limited improvement of 1.4 percentage points (pp). CALM starts faring

significantly better than APE-U after 2 minutes of execution with the average difference

between CALM and APE-U increasing from 5 (at 2 minutes of testing) to 13 pp (after 60

minutes).
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(a) Up to 1%

(b) Between 1% and 10%

(c) More than 10%

Figure 4.8: Average % of covered target instructions across subjects, grouped by magnitude
of changes (updated App methods).

106



4.3. EMPIRICAL EVALUATION

With 1% to 10% updated App methods, APE-U performs significantly better only in the

first minute (1.6 pp higher). Between 15 and 32 minutes the difference between the two is

not significant but CALM’s coverage increases linearly from 1.2 pp to 4.75 pp. After 32

minutes the difference is significant (5 pp higher) and then reaches 7.5 pp at 60 minutes.

CALM reaches a max average coverage of 62.1% versus 54.3% for APE-U; further, APE-U

reaches a plateau at 30 minutes (in the last 30 minutes of APE execution, its mean coverage

increases only by 0.9 pp), while CALM keeps improving its coverage.

When the proportion of updated methods is large (more than 10%), APE-U performs

slightly better than CALM in the first 26 minutes but differences are not significant and the

improvement is moderate (up to 2.4 pp); however, APE-U reaches a plateau at 23 minutes

while CALM keeps improving. After 38 minutes the difference between the two approaches

is significant, with CALM performing better by 5.6 pp after 60 minutes. When the magnitude

of changes is large, a larger test budget is required to observe a significant difference between

CALM and APE-U. Such result is expected since, with a larger proportion of updated

methods, it is easier to exercise updated methods regardless of the guidance effectiveness.

However, the difference between CALM and APE-U keeps increasing for a larger test budget.

We performed an additional experiment with CALM and APE-U executed for two hours.

Results are shown in Figure 4.91; when more than 10% of App methods are updated, after

two hours, CALM and APE-U achieve a target instruction coverage of 56.19% and 51.92%,

respectively. The difference between the two approaches is significant and increases from

2.56 pp (1-hour budget) to 4.26 pp (2-hour budget).

To summarize, CALM always performs significantly better than Humanoid, TimeMa-

chine, and TimeMachine+. Also, for tiny updates (the majority) CALM performs better

than APE-U after 2 minutes of test budget, which is reasonable. For larger updates, the

larger budget required by CALM is justified by its coverage not reaching a plateau but

steadily improving until becoming significantly higher than that of APE-U.

1Please note that the experiment for a 2-hour budget corresponds to new executions of CALM and APE on
all the subject Apps; therefore, since the datapoints are not the same as the ones collected for the 1-hour budget,
the curves in Figures 4.8 and 4.9 do not exactly match but show similar trends.
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Figure 4.9: Average % of covered target instructions across subjects up to 2 hours, grouped
by magnitude of changes (updated App methods).

4.3.5 Threats to Validity

Internal validity. To minimize implementation errors, we have carefully tested CALM

before running our experiments. For the selected competing state-of-the-art tools, we relied

on the versions released by their authors, which had been extensively used in related work.

Conclusion validity. To avoid violating the assumptions of parametric statistical tests, we

rely on a non-parametric test and effect size measure (i.e., Mann Whitney U-test and the

Vargha and Delaney’s A12 statistics, respectively). To ensure reliability, our measurements

(i.e., code coverage) have been collected through widely used, open-source tools.

Construct validity. The constructs considered in our work are effectiveness and cost.

Effectiveness is measured through two reflective indicators, which are target method coverage

and target instruction coverage. We rely on code coverage because it is a common measure

of effectiveness for functional testing [13, 107]. Cost is measured in terms of the number of

target actions whose effects (i.e., resulting App screens) should be inspected to determine

test outcome, as discussed in Section 4.3.3.

External validity. We have considered seven popular Apps, used in related work and in

the empirical assessment of ATUA, which enabled fair comparison to discuss the coverage

improvements enabled by CALM. For each App, we considered up to ten App versions,
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based on their availability, for a total of 52 App versions tested. The considered Apps are

diverse in terms of features, the overall number of instructions, and updated instructions

between versions.

To account for randomness, we tested each App version ten times with every testing tool

considered. Despite the high computational cost (6940 test execution hours, in total), this

enabled us to derive solid statistical results for the comparison of different tools.

4.4 Conclusion

We presented CALM, a technique to efficiently test App updates by relying on models

learned with previous App versions. It relies on static analysis to identify GUI components

modified across versions and adapt App models accordingly (e.g., reuse abstract states for

renamed Windows); further, it integrates four heuristics addressing the limitations of model

inference that are exacerbated in the presence of model reuse: It infers layout-guarded

abstract transitions, which deal with non-deterministic transitions; it derives probabilistic

Action sequences to deal with state explosion; it detects model states that are new but

compatible with previously executed Action sequences (i.e., backward-equivalent); it relies

on online and offline model refinement to identify and remove obsolete states.

Our empirical evaluation shows that CALM leads to a coverage of updated methods

and instructions that is higher than the second best SOTA approach by 6 percentage points

(pp) for a one-hour test budget. That difference keeps steadily widening as the test budget

increases and is larger for smallest updates (13 pp), which are the most frequent.
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Chapter 5

App Output Selection Techniques for

Test Oracles based on Visual

Inspection

5.1 Introduction

In Chapter 3 and Chapter 4, we have presented two approaches for testing updated Apps that

aim at exercising all the instructions belonging to new or modified methods while containing

testing costs. For our approaches, since test input generation is automated, the main cost

component is the test oracle, that is, the manual verification of the outputs of the AUT, as

explained below.

Unfortunately, test oracle automation remains an open research problem. In general, only

faults leading to crashes can easily be detected by test generation techniques (e.g., through

log inspection); however, they constitute a limited proportion of the faults affecting Apps

(e.g., 31% of faults affecting Android Apps, according to a recent study [31]). Although

approaches supporting engineers in detecting non-crashing failuresexist [26, 29, 27, 23, 24,
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74, 25, 22, 30, 115], a recent study [31] has reported that they can target only a limited

portion of the functional faults affecting real-world Apps1. Furthermore, less than 10% of

such faults could actually be detected by existing tools.

Because of the limitations of existing test oracle automation techniques, visual inspection

remains necessary. For example, as suggested in previous chapters, when an AUT is exercised

using a test automation tool, output verification can be conducted by visually inspecting the

screenshots recorded before and after a test action (e.g., clicking on a button). However,

since test automation tools exercise Apps with a large number of test actions, to limit testing

costs, it is necessary to define strategies to select a subset of the actions that are likely to

include erroneous outputs. For ATUA and CALM, assessments of cost-effectiveness have

been conducted by selecting all the screenshots generated by those actions that contribute

to increasing the coverage of target methods (i.e., new or modified methods). However, it

remains to be investigated if more effective action selection strategies can be defined.

A necessary condition for a target method to be correct is that the App output screen

rendered after its execution is not erroneous. Therefore, as suggested in previous chapters,

test engineers should at least verify the screenshots recorded after the execution of actions

exercising target methods (hereafter, target actions). Consequently, instead of defining

strategies that potentially select any screenshot captured during testing, in this chapter,

we propose a number of strategies that aim at selecting a minimized set of target actions

(hereafter, MTA) whose outputs should be visually inspected by engineers. Our strategies are

based on the analysis of both code coverage and action effects (i.e., how an action changes

the state of the AUT), two aspects already considered in related work (e.g., differential testing

of Apps running on different smartphones [26]).

We conducted an empirical study with real faults in Android Apps with two objectives (1)

assess the proportion of functional faults that can be detected by inspecting the screenshots

generated by target actions and (2) identify the strategy leading to the best balance between

cost (i.e., minimizing the number of actions whose screenshots should be inspected) and

effectiveness (i.e., maximizing the number of faults being detected). Since our strategies

for the selection of MTA (hereafter, MTA strategies) are effective only if the target actions

triggered by a test generation technique lead to failures, we also evaluate how effective

184 faults out of the 399 faults (21%) inspected by Xiong et al., as reported in Table 5 of their work [31].
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CALM is at exposing functional failures. We rely on CALM because it has been shown to

outperform ATUA and other approaches.

Our results show that (1) the majority (81%) of faults2 can be detected by inspecting

the screenshots associated to target actions, thus corroborating the choices we made when

defining our MTA strategies; (2) CALM generates actions that enable the detection (i.e.,

show failures) of 72% (8/11) of the faults and can achieve 91% (10/11) when it is used to test

one method at a time; (3) our MTA strategies could reduce test oracle costs by 52% to 84%

while achieving a fault detection rate from 75.2% to 100%. Precisely, engineers may choose

between (1) a strategy that minimizes costs (i.e., a cost saving strategy) and helps detecting

68.9% of the faults, on average, in our experiments and (2) a strategy that maximizes the

number of faults detected (100%, in our experiments) but comes at a higher cost (almost 7

times the other strategy). Nevertheless, there is still a cost saving of 42% if the latter strategy

is adopted.

This Chapter proceeds as follows. Section 5.2 provides definitions for the terminology

used in the Chapter. Section 5.3 describes our MTA strategies. Section 5.4 reports the results

of our empirical study. Section 5.5 provides final remarks.

5.2 Definitions

Target action A target action is an action, among the ones executed during testing,

exercising at least one target method (i.e., a method introduced in the new App version or a

method modified in the new app version). We refer to the set of all target actions triggered

during test execution as the full set of target actions. Target actions are a subset of all the

actions executed during testing; they can be identified through dynamic program analysis.

For example, ATUA and CALM identify target actions by tracing the code exercised after

triggering each test action and by selecting the actions that exercise a target method (see

Chapters 3 and 4). Precisely, they rely on an extension of the coverage instrumentation

component of Droidmate-2 (see Section 3.3) that monitors the beginning and end of an

event handler executed after a test input and reports all the executable instructions exercised

2We use the term fault because, by selecting App outputs that are likely to be erroneous, our approach
enables detecting the presence of faults in the App under test. Our approach selects outputs that are erroneous; in
other words, our approach shows failures that enable the detection of faults.

113



CHAPTER 5. APP OUTPUT SELECTION TECHNIQUES FOR TEST ORACLES BASED
ON VISUAL INSPECTION

in-between.

Minimized sets of Target Actions To reduce the human effort, it is necessary to reduce

the number of target actions whose screenshots (i.e., the screenshots recorded before and

after triggering an action) should be visually inspected. We refer to such reduced set of target

actions as "Minimized set of Target Actions" (shortly, MTA). Essentially, an MTA should

consists of target actions that enable testing all the input partitions3 for the functionalities

that have been modified or introduced in a new App version.

5.3 Strategies for the Generation of Minimized Sets of

Target Actions

In this Section, we present our strategies for the selection of MTA (hereafter, MTA strategies).

To select MTA, we rely on two types of data that can be collected during test execution: code

coverage and action effects.

Table 5.1 provides the full list of proposed strategies. They can be grouped into three cat-

egories: coverage-based strategies, action-effect-based strategies, and combined strategies;

they are described below.

5.3.1 Coverage-based Strategies

Our coverage-based strategies result from the combination of three coverage criteria with

two different approaches for action selection (chronological approach and greedy approach).

Below, we introduce some supporting notation used to define our coverage criteria, and

describe the two approaches along with the resulting strategies.

Coverage Notation

Before introducing our coverage-based strategies, we introduce some supporting notation.

3In software testing, an input partition is a region of the input domain with values that are equivalent from a
testing perspective (i.e., they all lead to failures or passing tests) [116].
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0 double area(int x1, int y1, int x2, int
y2) {

1 if (x1 > x2)
2 l_x = x1 - x2;
3 else
4 l_x = x1 - x2; // bug
5 if (y1 > y2)
6 l_y = y1 - y2;
7 else
8 l_y = y1 - y2; // bug
9 return l_x * l_y

10 }

s1

a1 a2 a3 a4

s2

s3

s4

s5

s6

s7

s8

s9

Figure 5.1: Different possibility of statement coverage for a function. On the right, four
actions a1, a2, a3, a4 cover different set of statements (i.e., s1, s2, . . . , s9 ) corresponding to
line number of the function area on the left.

• ΣF : the full set of target actions triggered during a test session (e.g., the execution of

CALM for one hour on an App version).

• ΣMTA: the MTA for the test session under analysis.

• Ca: the set of instructions covered by an action a. For example, if we consider the

function area in Figure 5.1, an action a1 may exercise the instructions corresponding

to lines 1, 2, 5, 6, and 9 while the action a2 may exercise instructions 1, 3, 4, 5, 7,

8, and 9. More formally, for all the actions in Figure 5.1, we obtain the following

instruction sets:

Ca1 = {s1, s2, s5, s6, s9}

Ca2 = {s1, s3, s4, s5, s7, s8, s9}

Ca3 = {s1, s2, s5, s7, s8, s9}

Ca4 = {s1, s3, s4, s5, s6, s9}

• CΣ: the set of instructions covered by the set of actions Σ; it is the union of instructions

covered by actions belonging to Σ.

• FΣ: the instruction footprint of a set of actions Σ. The instruction footprint of a set

of actions is a set of sets; precisely, it is a set including, for each action, the set of

instructions covered by it. Based on the example in Figure 5.1, we can define the

instruction footprint of the sets of actions {a1, a2} and {a1, a2, a3} as follows:

F{a1,a2} =
{
{s1, s2, s5, s6, s9}, {s1, s3, s4, s5, s7, s8, s9}

}
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F{a1,a2,a3} =
{
{s1, s2, s5, s6, s9}, {s1, s3, s4, s5, s7, s8, s9}, {s1, s2, s5, s7, s8, s9}

}
Although, by looking at code coverage, the two sets of instructions are equivalent (i.e.,

C{a1,a2} = C{a1,a2,a3}), their coverage footprints are not. This happens because the

coverage footprint helps determine that the paths exercised by the two sets of actions

are different. From a testing perspective, the set of actions {a1, a2, a3} is better than

the set {a1, a2} as it detects the fault. Indeed, the example in Figure 5.1 is affected

by a fault that leads to failures (i.e., a negative area) only if specific execution paths

are exercised: if both else instructions are executed, the two faulty lines lead to two

negative numbers, thus ending with a positive number (i.e., a valid result).

• Asterisk ∗: An asterisk is added to the C and F notations above to indicate that, instead

of considering all the instructions, we consider only the instructions belonging to a

target method (hereafter, target instructions). Consequently, three more notations are

defined:

– C∗
a the set of target instructions exercised by an action a;

– C∗
Σ the set of target instructions covered by the set of actions Σ;

– F ∗
Σ the target instruction footprint of the set of actions Σ.

Coverage Criteria

To derive an MTA based on code coverage, we propose three criteria: target instruction

coverage, target instruction footprint coverage, and instruction footprint coverage.

Target instruction coverage ensures that the MTA includes a number of actions that

maximize the number of instructions that belong to a target method and are exercised. An

MTA satisfies the target instruction coverage criterion if every target instruction covered by

the full set of target actions is also covered by the MTA. More formally,

s ∈ C∗
ΣF

=⇒ s ∈ C∗
ΣMTA

Target instruction footprint coverage ensures that the actions in the MTA exercise all the
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footprints belonging to the full set of target actions. More formally,

f ∈ F ∗
ΣF

=⇒ f ∈ F ∗
ΣMTA

Our rationale is that the instruction footprint exercises paths and, therefore, data depen-

dencies not exercised otherwise. This is the case of the example of Figure 5.1, as explained

above.

Instruction footprint coverage extends the identification of instruction footprints to the

whole set of App instructions, to exercise inter-class dependencies.

More formally,

f ∈ FΣF
=⇒ f ∈ FΣMTA

Coverage Approaches

The three criteria above lead to different results along with the approach adopted for the

selection of actions. We propose two approaches: the chronological approach and the greedy

approach.

Algorithm 2 Algorithm to construct an MTA with the chronological approach

Input:
T = {a0, a1, . . . , an} ▷ full set of target actions in ascending chronological order
p ▷ property that an action needs to satisfy to be included in MTA set.

Output: U = {a0, a1, . . . , am}|U ⊆ T ▷ an MTA set.
1: U ← ∅
2: for all a ∈ T do
3: if a ⊢ p then ▷ a satisfies p
4: U = U ∪ {a}

return U

Chronological approach The chronological approach follows the chronological order of

actions in the test input sequences produced by a test automation tool (e.g., the sequence of

action in CALM’s and ATUA’s GSTG) and selects an action if it satisfies a given property).

It is captured by Algorithm 2, which traverses each action in the full set of target actions T

(Line 2) and selects an action if it satisfies a given property p (Lines 3-4).

We can combine the chronological approach with the coverage criteria into three proper-

ties:
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• Increasing target instruction coverage: an action a satisfies this property if it exercises

at least one target instruction not exercised by previously selected actions.

ptic |= C∗
a ⊈ C∗

ΣMTA

• Increasing target instruction footprints: an action satisfies this property if it exercises

a set of target instructions not matching any set of target instructions exercised by

the previously selected actions; in other words, the action leads to a target instruction

footprint that differs from the target instruction footprint obtained with the already

selected actions.

ptif |= C∗
a /∈ F ∗

ΣMTA

• Increasing instruction footprints: an action satisfies this property if it exercises a set of

instructions not matching any set of instructions exercised by the previously selected

actions.

pif |= Ca /∈ FΣMTA

The first three rows of Table 5.1 describe three strategies relying on the three properties

proposed above.

Algorithm 3 Algorithm to construct an MTA using a greedy approach

Input:
T = {a0, a1, . . . , an} ▷ full set of target actions
p ▷ property that an action needs to satisfy to be included in MTA set.

Output: U = {a0, a1, . . . , am}|U ⊆ T ▷ an MTA set.
1: U ← ∅
2: while T ̸= ∅ do
3: Cd ← {a ∈ T, a ⊢ p} ▷ Cd: set of candidate actions (i.e., satisfying p)
4: if Cd ̸= ∅ then
5: sel← argmax

a∈Cd

ω(a, U) ▷ ω : fitness function for greedy prioritization

6: U = U ∪ {sel}
7: T = T \ {sel}
8: else
9: break

10: return U
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Greedy approach The greedy approach iteratively selects, from the subset of generated

actions that satisfy a given property p, the action maximizing a given fitness score. It is

captured by Algorithm 3, which differs from Algorithm 2 because, instead of selecting

the first action satisfying p, it iteratively identifies, as candidates, all the actions in the

set T satisfying P (Line 3) and selects the action maximizing a fitness score (lines 5-6).

By selecting, at each iteration, the action that maximizes a given fitness score, we aim to

minimize the number of selected actions; however, there is no guarantee that the algorithm

identifies the minimal set of actions, we leave such optimization (e.g., through meta-heuristic

search or linear programming) to future work. We rely on the same properties defined for

the chronological approach. The fitness score of each action is computed by a dedicated

fitness function ω; we provide two alternative definitions for ω that maximize two metrics of

interest:

• Number of target instructions: we maximize the number of target instructions exercised

by an action but not by other actions already selected for the MTA.

ωti(a,ΣMTA) = |C∗
a \ C∗

ΣMTA
|

• Number of instructions: we maximize the number of instructions exercised by an

action but not by other actions already selected for the MTA.

ωi(a,ΣMTA)) = |Ca \ CΣMTA
)|

In Table 5.1, the strategies CC_WTI_PTIC, CC_WI_PTIC, and CC_WI_PTIF rely on

the greedy approach. They result from combining the fitness functions ωtiand ωiwith the

properties pticand ptif . We do not combine the fitness functions ωtiand ωiwith pif because,

by considering all the instruction footprints (i.e., not only the target instruction footprints),

pif leads to selecting most of the actions and thus is very expensive and unlikely to lead

to a reduced set of actions when used with a greedy approach. Also, we avoid combining

ωtiwith ptif because it would lead to the same results as CC_WTI_PTIC; indeed, the subset

of actions exercising a target instruction footprint not already selected (property ptif ) and

increasing the coverage of target instructions (fitness ωti ) is the same as what is achieved by
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CC_WTI_PTIC, that is, the subset of actions increasing target instruction coverage (property

ptic) and increasing the coverage of target instructions (fitness ωti ).

5.3.2 Action-effect-based Strategies

We use the term action effect to indicate the effect of an action on the state of the App. For

GUI-driven Apps, an App state can often be characterized in terms of its GUI tree or a

screenshot of the App being rendered on the screen. Also, in several App testing approaches,

including ATUA and CALM, GUI states are captured by abstraction functions, and related

work has shown that action effects can be effectively measured as the difference between the

App state before and after performing an Action [22, 30]. The difference between two App

states can thus be computed as the minimal tree edit distance between GUI trees, abstract

states, or differences between two screenshots.

Recent empirical studies have shown that relying on GUI tree difference to determine

if the state of an App changes after a sequence of actions may result into a high number

of false negatives compared to screenshot distance [117]. Indeed, GUI trees are incapable

of capturing some visual properties such as color. For example, in Figure 5.2, a data loss

fault in the EditActivity Window from the Activity Diary App causes the "Activity color"

to revert to its original color after a rotation. Unfortunately, GUI trees do not capture such

visual information.

Because of the above, we rely on screenshot distances to measure action effects. Precisely,

we rely on two state-of-the-art feature-based image distance metrics, which are SIFT (Scale-

Invariant Feature Transform) [118] and SSIM (Structural Similarity Index) [119]. Hereafter,

for simplicity, we refer to such distance metrics with the generic name of Action-effect

metrics; each Action is associated to one Action-effect metric value (Action-effect value for

short), which is computed by relying on the selected metric.

Algorithm 4 details how we select an MTA with our action-effect strategy. It receives as

input the full set of target actions T , an abstraction function L1, an image distance function

d used to compute the action-effect value, and an histogram distance function hid . First, we

group actions by relying on the state of the Widget triggered by the action (Line 1); precisely,

since actions exercising different App Windows should naturally belong to different groups,
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Algorithm 4 Algorithm of constructing an MTA set with screenshot-based strategy

Input:
ΣF = {a0, a1, . . . , an}: full set of target actions
L1: abstraction function used to group target actions
d(a): image distance function, returns the distance between the source screenshot and
the destination screenshot of action a ▷ SIFT, or SSIM
hid(a1, a2): histogram distance function, returns the distance between the histogram of
the source screenshot of action a1 and one of action a2 ▷
GrayScaleHistogramCorrelation

Output: ΣMTA = {a0, a1, . . . , am}|ΣMTA ⊆ ΣF : a Minimized set of target action.
1: GΣF

← group target actions by relying on L1, it returns a group of action sets{
A0, A1, . . . , An

}
2: ΣMTA ← ∅
3: for all A ∈ G do
4: selargmax ← argmax

a∈A
d(a)

5: selargmin ← argmin
a∈A

d(a)

6: selargmedian ← argmedian
a∈A

d(a)

7: ΣMTA ← ΣMTA ∪ {selargmax, selargmin, selargmedian}
8: A← A \ ΣMTA

9: if A ̸= ∅ then
10: sel← argmax

a∈A
(average(Da = {hid(a, a′), ∀a′ ∈ A ∧ a′ ̸= a})

11: ΣMTA ← ΣMTA ∪ {sel}
12: return ΣMTA
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Figure 5.2: A functional fault from the ActivityDiary app. The recently changed color is supposed to be kept after the rotation (i.e., S5 → S6a) but it is reverted to
the one before the change (i.e., S5 → S6b)
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(1) we first identify the actions exercising a same App Window, (2) we apply ATUA’s L1

GUI abstraction function to their departing state, and, finally, (3) we group together actions

targeting a Widget having a same abstract representation (i.e., a same AVM). Then, since our

objective is to select a subset of actions, for each group of actions (Line 3), we select a subset

of actions that represents the group’s behaviour. Precisely, for each action group, we select:

• The action with the highest action-effect value in the action group (Line 4); it is the

action leading to the most noticeable state change and thus of interest from a testing

perspective (i.e., it may alter the GUI in an anomalous way).

• The action resulting in the smallest action-effect value (Line 5); it is the action leading

to the least noticeable change in the GUI (potentially, no change) and may thus indicate

an anomalous output (e.g., the GUI does not change at all, which might be due to a

fault).

• The action with a median action-effect value (Line 6); it is an action that should be

representative of a common use of the App and thus be inspected.

• If more actions are available (Line 9), an action that departs from a state that is

uncommon (Line 10). Such state is determined by applying histogram distance (i.e.,

hid(i1, i2)) to all the pairs of screenshots taken before executing any action, and

identifying the screenshot with the largest average distance from all the other screen-

shots. It should enable detecting actions that depart from rare states, which might,

therefore, not have been foreseen by App developers. To compute such distance, we

rely on Grayscale Histogram Correlation (GHC [120]), which is a common choice for

image comparison because it enables the comparison of images based on their color

profiles [121]. In a preliminary investigation with one of our case studies (Amaze File

Manager), we observed that App states could be distinguished by focusing on their

color histograms; for example, a page with a file list in which all the items are selected

would be filled mostly by gray and thus correctly present a large GHC distance from

a page with no file selected. Further, histograms are less affected by small changes

in the image, which is an ideal choice in our context because we aim at identifying

uncommon states (i.e., states with major differences from others).
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In Table 5.1, the strategies whose name starts with AF are based on action effect; two

strategies rely on SIFT as distance function, two rely on SSIM. Further, these two strategy

sets each include a strategy relying on the whole Algorithm 4 (the name of these strategies

ends with 3M), and one strategy relying on Algorithm 4 but executed without Line 6 (i.e.,

without the instructions selecting Actions with a median Action-effect value—their name

ends with 2M).

Combined Strategies

Although strategies based on action-effect account for the semantics of the App (e.g., noticing

changes concerning the App GUI although they are not captured by code coverage), since

they do not take into account code coverage, they may ignore actions that exercise potentially

faulty code. For this reason, we rely on combined strategies that complement MTA derived

using action-effect strategies with unselected actions satisfying coverage properties. Precisely,

we first employ Algorithm 4 configured for a specific action-effect-based strategy to construct

an MTA and then we complement the set by relying on Algorithm 2 configured for a specific

coverage-based strategy, but with a set U that, instead of being empty, contains the set

generated by Algorithm 4.

In Table 5.1, the strategies whose name starts with CB are combined strategies. All

of them combine the four Action-effect-based strategies with coverage-based strategies.

We identify four groups of strategies: the ones combining Action-effect strategies with

CC_WTI_PTIC and CC_WI_PTIC, the ones combining Action-effect strategies with CC_PTIF,

and the ones combining Action-effect strategies with CC_PIF. Table 5.2 provides the map-

ping between the MTA strategies considered in this work and the properties described earlier

in this Section.

5.4 Empirical Evaluation

We aim to answer the following research questions.

RQ1. Do target action screenshots enable detecting functional faults through visual inspec-
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Table 5.1: List of proposed MTA set selection strategies

UTA strategy name Description

CC_PTIC
Chronologically select target actions increasing target instruction coverage
(relies on property ptic)

CC_PTIF
Chronologically select target actions covering distinct sets of instructions
(i.e., leading to a footprint different from the one of the already selected
actions, relies on property ptif ).

CC_PIF
Chronologically select target actions covering distinct sets of instructions
(relies on property pif ).

CC_WTI_PTIC
Greedily select target actions increasing target instruction coverage (prop-
erty ptic) and maximizing the coverage of target instructions (fitness ωti);
it enables selecting the Actions that maximize target instruction coverage.

CC_WI_PTIC

Greedily select target actions increasing target instruction coverage (prop-
erty p1) and maximizing the coverage of instructions (fitness ωi); it enables
selecting, among the Actions that increase target instruction coverage, the
ones that maximize the coverage of the whole App.

CC_WI_PTIF

Greedily select target actions covering distinct target instruction footprints
(property p2 and maximizing the coverage of instructions (fitness ωi); it
enables selecting, among all the Actions that show a different coverage of
target instructions, the ones that maximize the coverage of the whole App
differently.

AF_SIFT_2M
Action-effect-based strategy adopting SIFT as image distance function but
selecting only actions yielding the largest distance and the smallest distance
(lines 4-5 in Algorithm 4).

AF_SIFT_3M
Action-effect-based strategy adopting SIFT as image distance function,
corresponding exactly to Algorithm 4.

AF_SSIM_2M
Action-effect-based strategy adopting SSIM as image distance function
but selecting only actions yielding the largest distance and the smallest
distance (lines 4-5 in Algorithm 4).

AF_SSIM_3M
Action-effect-based strategy adopting SSIM as image distance function,
corresponding exactly to Algorithm 4.

BC_SIFT_2M_WTI_PTIC These four combined strategies first employ AF_SIFT_2M, AF_SIFT_3M,
AF_SSIM_2M, and AF_SSIM_3M respectively, and then select additional
target actions increasing the target instruction coverage (property ptic) and
maximizing the coverage of target instructions (fitness ωti).

BC_SIFT_3M_WTI_PTIC
BC_SSIM_2M_WTI_PTIC
BC_SSIM_3M_WTI_PTIC

BC_SIFT_2M_WI_PTIC These four combined strategies first employ AF_SIFT_2M, AF_SIFT_3M,
AF_SSIM_2M, and AF_SSIM_3M, respectively, and then select
additional target actions increasing target instruction coverage (property
ptic) and maximizing the coverage of instructions (fitness ωi).

BC_SIFT_3M_WI_PTIC
BC_SSIM_2M_WI_PTIC
BC_SSIM_3M_WI_PTIC

BC_SIFT_2M_WI_PTIF These four combined strategies first employ AF_SIFT_2M, AF_SIFT_3M,
AF_SSIM_2M, and AF_SSIM_3M, respectively, and then select
additional target actions increasing target instruction footprints in
chronological order (property ptif ).

BC_SIFT_3M_WI_PTIF
BC_SSIM_2M_WI_PTIF
BC_SSIM_2M_WI_PTIF

BC_SIFT_2M_PIF These four combined strategies first employ AF_SIFT_2M, AF_SIFT_3M,
AF_SSIM_2M, and AF_SSIM_3M, respectively, and then select
additional target actions increasing instruction footprints in chronological
order (property pif )

BC_SIFT_3M_PIF
BC_SSIM_2M_PIF
BC_SSIM_3M_PIF
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Table 5.2: Mapping of MTA strategies with parameters used in Algorithms 2, 3 and 4.

UTA strategy name Category ptic ptif pif ωti ωi SIFT SSIM 2M 3M
CC_PTIC CC ✓ - - - -
CC_WTI_PTIC CC ✓ ✓ - - - -
CC_WI_PTIC CC ✓ ✓ - - - -
CC_PTIF CC ✓ - - - -
CC_WI_PTIF CC ✓ ✓ - - - -
CC_PIF CC ✓ - - - -
AF_SIFT_2M AF - - - - - ✓ ✓
AF_SIFT_3M AF - - - - - ✓ ✓
AF_SSIM_2M AF - - - - - ✓ ✓
AF_SSIM_3M AF - - - - - ✓ ✓
BC_SIFT_2M_WTI_PTIC CB ✓ ✓ ✓ ✓
BC_SIFT_3M_WTI_PTIC CB ✓ ✓ ✓ ✓
BC_SSIM_2M_WTI_PTIC CB ✓ ✓ ✓ ✓
BC_SSIM_3M_WTI_PTIC CB ✓ ✓ ✓ ✓
BC_SIFT_2M_WI_PTIC CB ✓ ✓ ✓ ✓
BC_SIFT_3M_WI_PTIC CB ✓ ✓ ✓ ✓
BC_SSIM_2M_WI_PTIC CB ✓ ✓ ✓ ✓
BC_SSIM_3M_WI_PTIC CB ✓ ✓ ✓ ✓
BC_SIFT_2M_WI_PTIF CB ✓ ✓ ✓ ✓
BC_SIFT_3M_WI_PTIF CB ✓ ✓ ✓ ✓
BC_SSIM_2M_WI_PTIF CB ✓ ✓ ✓ ✓
BC_SSIM_2M_WI_PTIF CB ✓ ✓ ✓ ✓
BC_SIFT_2M_PIF CB ✓ ✓ ✓ ✓
BC_SIFT_3M_PIF CB ✓ ✓ ✓ ✓
BC_SSIM_2M_PIF CB ✓ ✓ ✓ ✓
BC_SSIM_3M_PIF CB ✓ ✓ ✓ ✓

Legend: CC: Code-Coverage based, AF: Action-Effect based, CB: Combined, ✓: adopted, - : not applicable.

tion? Since the proposed MTA strategies are useful if the screenshots taken before

and after the selected actions enable determining the presence of a failure, we aim to

measure the proportion of faults that can be identified by such an approach in order to

determine the potential impact of the proposed strategies.

RQ2. How effective is CALM in exposing functional faults? We aim to report on the

proportion of faults that can be effectively exercised by CALM and lead to a failure

(i.e., lead to an erroneous output on the App screen). Although the proposed MTA

strategies can work with any App testing approach that records the code coverage

of Actions and captures screenshots before and after actions, since CALM is the

state-of-the-art tool for testing App upgrades, assessing the effectiveness of CALM is

required to compute the proportion of faults that can be semi-automatically detected

by combining CALM and the proposed strategies.

RQ3. What is the most cost-effective MTA strategy? We aim to assess the proposed MTA

selection strategies in terms of effectiveness (i.e., likelihood of exposing a fault) and

cost (i.e., reduction of the manual effort required to inspect the selected actions and
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screenshots).

5.4.1 Subjects of the study

To study functional faults in Apps and how the proposed strategies may help minimize the

set of outputs to be inspected, it is necessary to consider a set of faults affecting real Apps

and have access to all the information necessary to detect and replicate the failures caused by

such faults.

Since CALM is the state-of-the-art approach for testing App upgrades, we rely on it

to automatically derive test inputs, test outputs, and the information about App states (e.g.,

screenshots captured before and after triggering an action) required by the proposed MTA

strategies. Consequently, for our study, we select functional faults affecting Apps tested with

CALM in previous empirical assessments. Further, we focus on open-source Apps because

their code repositories come with issue trackers providing means for acquiring relevant fault

information (e.g., the location of faults, failure descriptions, information about patches). The

shortlisted Apps are ActivityDiary [122] and AmazeFileManager [123], which are the only

open-source Apps tested by CALM presenting faults described in issue trackers.

For the selected Apps, we identified all the bug reports concerning faults leading to

functional failures noticeable by inspecting the App screen. Also, we considered faults that

had been fixed, because it simplifies their understanding (e.g., we can look at the patches to

determine what are the faulty lines of code). Last, we selected faults that we could reproduce

by executing the faulty App version. We ended up with 11 faults.

To assess the selected faults with CALM, they should have been introduced when

implementing or modifying a method for a new App version. However, some of the selected

faults had been introduced in App versions that cannot be tested with CALM because they

are too old. Therefore, to enable testing all the selected faults with CALM, since each

fault consists of a set of erroneous instructions in a method (hereafter, faulty method) we

proceeded as follows:

• If the faulty method is among the target methods for an App version previously tested

with CALM, we select such version as the target for our experiments.
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• If an App version tested with CALM includes the faulty method but such method

is not among the target methods for that App version (i.e., the fault was introduced

previously), we force CALM to test such faulty method by introducing a change in it

(i.e., we introduce a new logging instruction).

• If the faulty method does not belong to any App version previously tested with CALM,

we identify an App version where it is possible to reintroduce the fault.

Table 5.3 shows the details of the 11 faults selected for our study; we also indicate if the

fault was already present in the selected App version or if it has been reintroduced. At a

high level, four faults lead to a failure that consists of a UI display issue (e.g., a display of

incorrect information), and seven faults lead to a UI interaction problem (e.g., a non-response

for an input).

5.4.2 RQ1. Do target action screenshots enable detecting functional

faults through visual inspection?

Experiment design We aim to determine what and how many screenshots need to be

inspected in order to detect functional faults that manifest on the App screen. To this end, we

manually exercised each fault affecting our subjects and kept track of how many and what

screenshots should be inspected in order to detect a failure (i.e., determine that the output

is incorrect, given previous App states). Our objective is to identify inspection patterns

characterizing what screenshots should be inspected by engineers to detect a failure. Among

all the possible inspection patterns, we aim to report on the proportion of failures detectable

with the pattern enabled by our MTA strategies (i.e., looking at the screenshots taken before

and after an action that exercises the faulty method). Other patterns may help steer future

work (e.g., defining new MTA strategies).

Results From the 11 faults selected for our study, we derived three possible inspection

patterns (i.e., ways of inspecting screenshots related to the faulty code to detect failures):

Pattern-1 Inspect the screenshots taken before and after the action that exercises the faulty
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Table 5.3: Functional bugs considered in the preliminary evaluation

FaultId App Fault description Github
issue
ID

Test
version

Is reintro-
duced

Number
of tar-
get
meth-
ods

AC01 AD When the activity edit page is filled, if
the screen is rotated then the filled con-
tent is lost.

#53 v134 ✓ 49

AC02 AD After clicking on the "Delete" button on
an activity’s edit page, the activity is still
present in other pages.

#59 v111 ✓ 18

AC03 AD When clicking on a picture of an activity,
nothing happens while it is supposed to
open the picture with an image viewer.

#162 v134 ✓ 49

AC04 AD When undoing the recent activation of
an activity, the state of the activated ac-
tivity is incorrect if there is no activated
activity before the undone one.

#286 v134 49

AM01 AM After manually selecting all file items, if
the options menu is opened, the "Dese-
lect All" menu item is not present.

#996 v3.4.1 ✓ 651

AM02 AM Triggering the "Select All" menu item
when all file items are selected causes
all items to be deselected.

#953 v3.4.1 ✓ 651

AM03 AM When entering a file/folder name start-
ing with a dot, the dialogue does not
warn the user that the file/folder will be
hidden.

#1235 v3.4.1 ✓ 651

AM04 AM The preselected configuration dialogue
for the App’s color allow multiple
choices with radio buttons instead of
single-choice.

#1044 v3.4.1 ✓ 651

AM05 AM When creating a new file, a file name
ending with ".txt" is not allowed.

#1231 v3.4.1 ✓ 651

AM06 AM When searching files, hidden files with
matching patterns are shown too.

#1467 v3.4.1 651

AM07 AM When closing the "Hidden Files" dia-
logue, the file list is not refreshed and,
therefore, the updates from the dialogue
do not appear.

#1712 v3.4.1 651

Legends. AD: Activity Diary(https://github.com/ramack/ActivityDiary), AM: Amaze File manager
(https://github.com/TeamAmaze/AmazeFileManager)
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Table 5.4: Inspection patterns for our case study subjects.

FaultId Pattern-1 Pattern-2 Pattern-3
AC01 ✓
AC02 ✓
AC03 ✓
AC04 ✓
AM01 ✓
AM02 ✓
AM03 ✓
AM04 ✓
AM05 ✓
AM06 ✓
AM07 ✓

Legends. AD: Activity Diary, AM: Amaze File manager

code in the buggy method and leads to a failure. We call such action failure-

inducing action.

Pattern-2 Inspect, in addition to the screenshots taken before and after the failure-inducing

action, also one screenshot taken before one of the actions that preceded the

failure-inducing action because such additional screenshot provides relevant

information about the state of the App. For example, in the ActivityDiary App,

consider the following test input sequence:

1⃝[Select activity "Study"]→ 2⃝[Cancel the current activity]→ 3⃝[Select activ-

ity "Dinner"]→ 4⃝[Undo]

It leads to a failure because the App, instead of visualizing the previous screen

(i.e., the result of 2⃝ [Cancel the current activity]), visualizes the content pro-

duced as a result of 1⃝[Select activity "Study"]. The failure-inducing action

is the undo button. However, to detect the failure (i.e., to determine what was

expected to be visualized), we need to inspect the screenshot taken before action

3⃝, which preceded the failure-inducing action.

Pattern-3 Inspect, in addition to the screenshots taken before and after the failure-inducing

action, one screenshot taken after one of the actions that follow the failure-

inducing action. For example, in the Amaze File Manager App, after closing

the "Hidden Files" dialog, the App should automatically perform a refresh to

update the displayed file list. However, the constructor method for the dialog

contains faulty code that does not activate screen refreshing on dialog termination.

Therefore, the displayed file list is not updated when the dialog is closed, and un-
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hidden files are not displayed. The failure-inducing action is the action that opens

the "Hidden Files" dialog (i.e., the one that executes the constructor). However,

to determine the failure, after opening the dialog (failure-inducing action), it is

necessary to (1) remove from the list of hidden files an hidden file belonging to

the current folder, and (2) close the "Hidden Files" dialog before noticing that the

un-hidden file is still not shown; in short, when testing is automated by CALM,

we have to inspect the screenshot taken after the second action performed after

the failure-inducing action.

Table 5.4 shows that nine faults among the eleven selected faults (81.82%) could be

detected by Pattern-1 (i.e., inspecting the screenshots recorded before and after the failure-

inducing action.) One fault can be detected following Pattern-2 (i.e., inspecting one screen-

shot taken after an additional action that follows the failure-inducing action). One fault can

be detected following Pattern-3 (i.e., inspecting one screenshot taken before an action that

follows the failure-inducing action). In conclusion, given the prevalence of Pattern-1, which

corresponds to what is detectable with our MTA strategies, our investigation shows that the

proposed strategies have the potential to enable the identification of a large proportion of

App faults.

5.4.3 RQ2. How effective is CALM in exposing functional faults?

Experiment design

To determine if CALM can select inputs that exercise a fault and make the software fail, we

tested the selected subject Apps with CALM and visually inspected the recorded screenshots

to determine if a failure was observed. Precisely, for Apps affected by faults that can be

detected following Pattern-1, we inspected the screenshots recorded before and after every

target action (CALM automatically traces target actions). For Apps affected by faults that

can be detected following Pattern-2 or Pattern-3, we also looked for the presence of the

additional required screenshot; please note that, as a consequence of the investigation made

for RQ1, we know what input can generate the required screenshot, which facilitated our

visual inspection (we filtered only the actions matching the required input).
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Since previous investigations (see Section 4) have shown that CALM is more effective

(code coverage) when updates have a limited magnitude (i.e., a limited number of methods

were modified), we assess CALM in two scenarios: (1) when updates have different mag-

nitudes (hereafter, Config#1), and (2) when updates have minimal magnitudes (hereafter,

Config#2). For Config#1, for each selected faulty App version, we applied CALM to test the

selected App version, following CALM’s workflow; precisely, we incrementally tested with

CALM all the versions of the App under test till the faulty version. For Config#2, for each

selected faulty App version, we simulated an update of minimal magnitude by collecting the

models derived from Config#1 (i.e., the CALM model used to test the faulty App version)

and re-executing CALM on the faulty App version after configuring it to treat the faulty

method as the only target method. Config#2 enables us to simulate an execution of CALM

where the fault has been introduced with a minimal change (i.e., a change of a method that

does not affect how to reach the AbstractStates in which the target method is triggered).

Config#2 also enables us to simulate a usage scenario where engineers decide to invest

additional test budget (i.e., time and hardware resources) to test specific methods.

For each execution of both configurations, as per previous CALM experiments, we

allocated a test budget of one hour. To deal with randomness, we tested each faulty version

10 times for each configuration. Then, for each test execution, we determined if CALM led

to an App failure, as indicated above. We use the term Fault Detection Rate (FDR) to refer

the proportion of test executions of faulty Apps in which at least a failure triggered by the

fault affecting the App has been observed. Please note that we use the term fault because

we are verifying if CALM detect at least one failure for the fault affecting the App under

test, in other words we aim to verify if CALM enables detecting the fault affecting the App.

Furthermore, to better investigate the reasons for failures not being observed, we report the

proportion of executions in which the faulty methods have been exercised (hereafter, Faulty

Method Coverage — FMC).

Results Table 5.5 shows, for each selected fault, the FDR and FMC for each of the two

configurations considered.

Please recall that Config#1 includes updates of different magnitude (from 18 to 651

target methods, see Table 5.3), including changes in the Window transitions, while Config#2
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Table 5.5: CALM’s effectiveness for fault coverage, we report faulty method coverage (FMC)
and fault detection rate (FDR), higher values are bold.

BugId
Config#1 Config#2

FMC FDR FMC FDR

AC01 10/10 (100%) 0/10 (0%) 10/10 (100%) 4/10 (40%)

AC02 9/10 (90%) 7/10 (70%) 9/10 (90%) 8/10 (80%)

AC03 6/10 (60%) 6/10 (60%) 6/10 (60%) 6/10 (60%)

AC04 10/10 (100%) 5/10 (50%) 9/10 (90%) 7/10 (70%)

AM01 10/10 (100%) 4/10 (40%) 10/10 (100%) 10/10 (100%)

AM02 10/10 (100%) 4/10 (40%) 10/10 (100%) 6/10 (60%)

AM03 10/10 (100%) 9/10 (90%) 10/10 (100%) 10/10 (100%)

AM04 0/10(0%) 0/10 (0%) 10/10 (100%) 8/10 (80%)

AM05 10/10 (100%) 9/10 (90%) 10/10 (100%) 10/10 (100%)

AM06 4/10 (40%) 0/10 (0%) 4/10 (40%) 0/10 (0%)

AM07 10/10 (100%) 1/10 (10%) 10/10 (100%) 1/10 (10%)

Average 81.8% 40.9% 89.1% 63.6%

does not present any change in the navigation across Windows and the reused model should

accurately capture how to test the App. Therefore, with Config#1, it might be more difficult

for CALM to reach the Windows that exercise a faulty method than with Config#2; conse-

quently, one may expect that Config#1 should lead to lower FMC than Config#2. However,

such situation happens only in the case of AM04, where Config#1 does not enable reaching

the faulty method but Config#2 does.

Surprisingly, for one fault (AC04), Config#1 leads to a higher FMC. This happens

because the faulty target method is executed only if the App is in a specific App state; such

App states are more likely to be selected for Config#1 where a larger number of changes may

help CALM exercise a wider set of App states. The FMC of the two configurations match for

all the other faults, which means that updates of different magnitude do not prevent CALM

from reaching the faulty methods.

Finally, we observe that there is only one faulty method (AM06) that is unlikely reached

(i.e., FMC < 50%) in both configurations. The reason for such low FMC is that such

method is reached only with inputs that belong to a narrow proportion of the input space.

Specifically, it requires some hidden files (i.e., their file name starts with a dot) on the device,

and requires CALM to trigger the function to search for a file using a search string containing
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part a hidden file’s name.

On average, the FDR is 41.91% for Config#1 and 63.64% for Config#2. Expectedly,

Config#2 leads to a higher FDR because CALM can invest the whole test budget on the

buggy function. For the same reason, two faults (i.e., AC01, AM04) are revealed only with

Config#2. Our results suggest that the fault detection capability of CALM can be largely

improved by testing, by default, every target function for one hour. If the proposed MTA

strategies minimize the number of screenshots to be inspected without compromising failure

revealing capabilities, such change in the CALM procedures might be cost-effective even for

updates of large magnitude.

5.4.4 RQ3. What is the most cost-effective MTA strategy?

Experiment setup For this research question, we focus on faults for which CALM can

trigger a failure (see RQ2) that can be detected with Pattern-1 (see RQ1) because they are

the ones targeted by our MTA strategies. It leads to a total of 8 faults.

We evaluate all the MTA strategies described in Table 5.1 in terms of FDR and cost

reduction. As per RQ2, FDR captures the proportion of executions in which an MTA strategy

selects an action with screenshots enabling fault detection. We compute the FDR obtained

for each fault—because fault detection is likely affected by the characteristics of a fault–and

we also report the average obtained from the FDR of the 8 selected faults.

Since without a dedicated strategy for the inspection of target actions an engineer should

inspect all of them, we compute cost reduction (CR) as the proportion of target actions that

are not inspected thanks the selected strategy. It is computed as follows

CR = 1− |ΣMTA|
|ΣF |

For CR, we discuss the results observed for Config#1 and Config#2 separately because

the two configurations may lead to faulty methods being exercised with different frequencies

(Config#2 focuses only on the faulty method), and, consequently, they may lead to a different

number of target actions.

The best approach is the one that achieves a high FDR with a high CR. Table 5.1 shows
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Table 5.6: Fault detection rate (%) achieved by each MTA strategy

BugId
AC01 AC02 AC03 AM01 AM02 AM03 AM04 AM05

Average

UTA strategy Cfg1 Cfg2 Overall

CC_PTIC 0.0 100 100 0.0 100 100 77.8 73.7 83.3 66.0 68.9
CC_WTI_PTIC 0.0 92.9 100 0.0 90.0 100 77.8 73.7 76.4 66.0 66.8
CC_WI_PTIC 0.0 92.9 100 0.0 90.0 100 77.8 68.4 76.4 64.7 66.1
CC_PTIF 0.0 100 100 7.1 100 100 77.8 73.7 87.5 66.0 69.8
CC_WI_PTIF 0.0 100 100 7.1 100 100 77.8 73.7 87.5 66.0 69.8
CC_PIF 50.0 100 100 100 100 100 77.8 100 100 91.0 91.0

AF_SIFT_2M 100 100 100 78.6 40.0 100 100 100 91.7 87.9 89.8
AF_SIFT_3M 100 100 100 85.7 50.0 100 100 100 91.7 91.3 92.0
AF_SSIM_2M 0.0 100 100 85.7 60.0 100 100 100 91.7 80.8 80.7
AF_SSIM_3M 0.0 100 100 85.7 60.0 100 100 100 91.7 80.8 80.7

BC_SIFT_2M_WTI_PTIC 100 100 100 78.6 100 100 100 100 100 96.3 97.3
BC_SIFT_3M_WTI_PTIC 100 100 100 85.7 100 100 100 100 100 97.5 98.2
BC_SSIM_2M_WTI_PTIC 0.0 100 100 85.7 100 100 100 100 100 85.0 85.7
BC_SSIM_3M_WTI_PTIC 0.0 100 100 85.7 100 100 100 100 100 85.0 85.7

BC_SIFT_2M_WI_PTIC 100 100 100 78.6 100 100 100 100 100 96.3 97.3
BC_SIFT_3M_WI_PTIC 100 100 100 85.7 100 100 100 100 100 97.5 98.2
BC_SSIM_2M_WI_PTIC 0.0 100 100 85.7 100 100 100 100 100 85.0 85.7
BC_SSIM_3M_WI_PTIC 0.0 100 100 85.7 100 100 100 100 100 85.0 85.7

BC_SIFT_2M_WI_PTIF 100 100 100 78.6 100 100 100 100 100 96.3 97.3
BC_SIFT_3M_WI_PTIF 100 100 100 85.7 100 100 100 100 100 97.5 98.2
BC_SSIM_2M_WI_PTIF 0.0 100 100 85.7 100 100 100 100 100 85.0 85.7
BC_SSIM_2M_WI_PTIF 0.0 100 100 85.7 100 100 100 100 100 85.0 85.7

BC_SIFT_2M_PIF 100 100 100 100 100 100 100 100 100 100 100
BC_SIFT_3M_PIF 100 100 100 100 100 100 100 100 100 100 100
BC_SSIM_2M_PIF 25.0 100 100 100 100 100 100 100 100 90.6 90.6
BC_SSIM_3M_PIF 25.0 100 100 100 100 100 100 100 100 90.6 90.6

Legend. Cfg1 : Config#1, Cfg2 : Config#2

that the selected strategies cover a large proportion of the possible combination of parameters

used to define the algorithms presented in Section 5.3.

We rely on a non-parametric Mann-Whitney U-test [108] and the Vargha and Delaney’s

A12 statistics [100], a non-parametric effect size measure, to determine what MTA strategy

performs better. Following standard practice, an MTA strategy is better than another if the

difference is statistically significant and A12 > 0.56. Regarding FDR, an observation is the

FDR computed for one fault. For CR, an observation is the CR of one execution of CALM

on an App version.

Results Table 5.6 shows FDR results. Strategies based on code coverage (CC strategies)

yield the worst results, except for CC_PIF. Excluding CC_PIF, they achieve an average

FDR between 66.1% to 69.8%; however, if we focus on Config#1 (i.e., the one supported

by CALM) they reach up to 87.5% FDR, a high value, thus suggesting that they may still
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be an acceptable option. Action-effect-based strategies (AF strategies) lead to an FDR

between 80.7% and 92.0%, which shows that, by focusing on App outputs, we can identify

a larger proportion of faults than by relying on most CC strategies. Their FDR goes up to

91% for Config#1. However, combined strategies (CB strategies) yield the best results with

an average FDR between 90.6% and 100%, thus implying that CC and AF strategies are

complementary.

CC_PIF leads to an average FDR (91%) that is within the range obtained by CB strategies;

also, its FDR is equal to 100% for Config#1. Such results are likely due to CC_PIF selecting

any action leading to a different set of covered instructions, which may lead to a large set of

actions being selected. Consequently, CC_PIF has a higher probability of selecting actions

leading to failures but with a high cost, as discussed below.

By analyzing the FDR of each individual fault we may notice that the characteristics of

faults seem to affect the performance of each strategy. First, some faults can be detected by

most MTA strategies (i.e., Fault AC02, AC03, AM03 with often 100% FDR); these are faults

leading to a failure every time the faulty method is executed. One fault (i.e., AM02) is well

detected by CC strategies (i.e., 90-100%) but hardly detected with AF strategies (40-60%),

which implies that AF strategies do not always select failing actions. It seems to be caused

by the state abstraction function of AF strategies that, when applied to menu items, group

screenshots exercising different features together, thus rendering AF strategies ineffective

when failures affect menu items. Other faults, instead, are better revealed by AF strategies

(i.e., AC01, AM01, AM04, AM05) than by CC strategies. These are faults caused by missing

code implementing some requirements (e.g., missing conditional statements to handle special

cases); CC strategies are not able to discover such cases because, by definition, it is not

possible to determine that some desired code is missing by measuring code coverage. This is

the case for Fault AC01, which is detected in all our executions (i.e., 4/4) by AF_SIFT_2M

and AF_SIFT_3M but not detected by any CC strategy. Figure 5.2 shows a failure caused by

Fault AC01, which is caused by missing code (i.e., re-set the color of a Widget to the color

selected before screen rotation).

Tables 5.7 and 5.8 provide results for effect size and statistical significance. AF and CB

strategies always show a medium or large effect size when compared to CC strategies, except

in two cases for AF_SSIM_M2 and AF_SSIM_M3 (small effect size); it indicates that AF
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Table 5.7: MannWhitney U-test’s P-value for Fault detection rate between each pair of strategy

Strategy (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)

CC_PTIC (1) - .663 .625 .910 .910 .251 .227 .227 .561 .736 .074 .074 .276 .276 .074 .074 .276 .276 .074 .074 .276 .276 <0.05 <0.05 .125 .125

CC_WTI_PTIC (2) .663 - .957 .588 .588 .082 .072 .072 .271 .387 <0.05 <0.05 .091 .091 <0.05 <0.05 .091 .091 <0.05 <0.05 .091 .091 <0.05 <0.05 <0.05 <0.05

CC_WI_PTIC (3) .625 .957 - .552 .552 .082 .072 .072 .271 .387 <0.05 <0.05 .091 .091 <0.05 <0.05 .091 .091 <0.05 <0.05 .091 .091 <0.05 <0.05 <0.05 <0.05

CC_PTIF (4) .910 .588 .552 - 1.0 .251 .228 .228 .602 .779 .074 .074 .305 .305 .074 .074 .305 .305 .074 .074 .305 .305 <0.05 <0.05 .125 .125

CC_WI_PTIF (5) .910 .588 .552 1.0 - .251 .228 .228 .602 .779 .074 .074 .305 .305 .074 .074 .305 .305 .074 .074 .305 .305 <0.05 <0.05 .125 .125

CC_PIF (6) .251 .082 .082 .251 .251 - 1.0 .945 .610 .398 .441 .441 1.0 1.0 .441 .441 1.0 1.0 .441 .441 1.0 1.0 .144 .144 .644 .644

AF_SIFT_2M (7) .227 .072 .072 .228 .228 1.0 - .890 .610 .398 .487 .441 1.0 1.0 .487 .441 1.0 1.0 .487 .441 1.0 1.0 .144 .144 .644 .644

AF_SIFT_3M (8) .227 .072 .072 .228 .228 .945 .890 - .565 .365 .538 .487 .945 .945 .538 .487 .945 .945 .538 .487 .945 .945 .144 .144 .644 .644

AF_SSIM_2M (9) .561 .271 .271 .602 .602 .610 .610 .565 - .772 .241 .214 .609 .609 .241 .214 .609 .609 .241 .214 .609 .609 .064 .064 .301 .301

AF_SSIM_3M (10) .736 .387 .387 .779 .779 .398 .398 .365 .772 - .125 .110 .397 .397 .125 .110 .397 .397 .125 .110 .397 .397 <0.05 <0.05 .160 .160

BC_SIFT_2M_WTI_PTIC (12) .074 <0.05 <0.05 .074 .074 .441 .487 .538 .241 .125 - .927 .538 .538 1.0 .927 .538 .538 1.0 .927 .538 .538 .317 .317 .927 .927

BC_SIFT_3M_WTI_PTIC (13) .074 <0.05 <0.05 .074 .074 .441 .441 .487 .214 .110 .927 - .487 .487 .927 1.0 .487 .487 .927 1.0 .487 .487 .317 .317 .927 .927

BC_SSIM_2M_WTI_PTIC (14) .276 .091 .091 .305 .305 1.0 1.0 .945 .609 .397 .538 .487 - 1.0 .538 .487 1.0 1.0 .538 .487 1.0 1.0 .144 .144 .538 .538

BC_SSIM_3M_WTI_PTIC (15) .276 .091 .091 .305 .305 1.0 1.0 .945 .609 .397 .538 .487 1.0 - .538 .487 1.0 1.0 .538 .487 1.0 1.0 .144 .144 .538 .538

BC_SIFT_2M_WI_PTIC (16) .074 <0.05 <0.05 .074 .074 .441 .487 .538 .241 .125 1.0 .927 .538 .538 - .927 .538 .538 1.0 .927 .538 .538 .317 .317 .927 .927

BC_SIFT_3M_WI_PTIC (17) .074 <0.05 <0.05 .074 .074 .441 .441 .487 .214 .110 .927 1.0 .487 .487 .927 - .487 .487 .927 1.0 .487 .487 .317 .317 .927 .927

BC_SSIM_2M_WI_PTIC (18) .276 .091 .091 .305 .305 1.0 1.0 .945 .609 .397 .538 .487 1.0 1.0 .538 .487 - 1.0 .538 .487 1.0 1.0 .144 .144 .538 .538

BC_SSIM_3M_WI_PTIC (19) .276 .091 .091 .305 .305 1.0 1.0 .945 .609 .397 .538 .487 1.0 1.0 .538 .487 1.0 - .538 .487 1.0 1.0 .144 .144 .538 .538

BC_SIFT_2M_WI_PTIF (20) .074 <0.05 <0.05 .074 .074 .441 .487 .538 .241 .125 1.0 .927 .538 .538 1.0 .927 .538 .538 - .927 .538 .538 .317 .317 .927 .927

BC_SIFT_3M_WI_PTIF (21) .074 <0.05 <0.05 .074 .074 .441 .441 .487 .214 .110 .927 1.0 .487 .487 .927 1.0 .487 .487 .927 - .487 .487 .317 .317 .927 .927

BC_SSIM_2M_WI_PTIF (22) .276 .091 .091 .305 .305 1.0 1.0 .945 .609 .397 .538 .487 1.0 1.0 .538 .487 1.0 1.0 .538 .487 - 1.0 .144 .144 .538 .538

BC_SSIM_2M_WI_PTIF (23) .276 .091 .091 .305 .305 1.0 1.0 .945 .609 .397 .538 .487 1.0 1.0 .538 .487 1.0 1.0 .538 .487 1.0 - .144 .144 .538 .538

BC_SIFT_2M_PIF (24) <0.05 <0.05 <0.05 <0.05 <0.05 .144 .144 .144 .064 <0.05 .317 .317 .144 .144 .317 .317 .144 .144 .317 .317 .144 .144 - <0.05 .317 .317

BC_SIFT_3M_PIF (25) <0.05 <0.05 <0.05 <0.05 <0.05 .144 .144 .144 .064 <0.05 .317 .317 .144 .144 .317 .317 .144 .144 .317 .317 .144 .144 <0.05 - .317 .317

BC_SSIM_2M_PIF (26) .125 <0.05 <0.05 .125 .125 .644 .644 .644 .301 .160 .927 .927 .538 .538 .927 .927 .538 .538 .927 .927 .538 .538 .317 .317 - 1.0

BC_SSIM_3M_PIF (27) .125 <0.05 <0.05 .125 .125 .644 .644 .644 .301 .160 .927 .927 .538 .538 .927 .927 .538 .538 .927 .927 .538 .538 .317 .317 1.0 -137
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Table 5.8: A12 effect size for Fault detection rate between each pair of strategy

Strategy (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)

CC_PTIC (1) - .563 .570 .484 .484 .352 .344 .344 .422 .453 .281 .281 .359 .359 .281 .281 .359 .359 .281 .281 .359 .359 .250 .250 .313 .313

CC_WTI_PTIC (2) .438 - .508 .422 .422 .258 .250 .250 .344 .375 .172 .172 .266 .266 .172 .172 .266 .266 .172 .172 .266 .266 .125 .125 .203 .203

CC_WI_PTIC (3) .430 .492 - .414 .414 .258 .250 .250 .344 .375 .172 .172 .266 .266 .172 .172 .266 .266 .172 .172 .266 .266 .125 .125 .203 .203

CC_PTIF (4) .516 .578 .586 - .500 .352 .344 .344 .430 .461 .281 .281 .367 .367 .281 .281 .367 .367 .281 .281 .367 .367 .250 .250 .313 .313

CC_WI_PTIF (5) .516 .578 .586 .500 - .352 .344 .344 .430 .461 .281 .281 .367 .367 .281 .281 .367 .367 .281 .281 .367 .367 .250 .250 .313 .313

CC_PIF (6) .648 .742 .742 .648 .648 - .500 .492 .563 .609 .422 .422 .500 .500 .422 .422 .500 .500 .422 .422 .500 .500 .375 .375 .453 .453

AF_SIFT_2M (7) .656 .750 .750 .656 .656 .500 - .484 .563 .609 .430 .422 .500 .500 .430 .422 .500 .500 .430 .422 .500 .500 .375 .375 .453 .453

AF_SIFT_3M (8) .656 .750 .750 .656 .656 .508 .516 - .570 .617 .438 .430 .508 .508 .438 .430 .508 .508 .438 .430 .508 .508 .375 .375 .453 .453

AF_SSIM_2M (9) .578 .656 .656 .570 .570 .438 .438 .430 - .539 .367 .359 .438 .438 .367 .359 .438 .438 .367 .359 .438 .438 .313 .313 .383 .383

AF_SSIM_3M (10) .547 .625 .625 .539 .539 .391 .391 .383 .461 - .313 .305 .391 .391 .313 .305 .391 .391 .313 .305 .391 .391 .250 .250 .328 .328

BC_SIFT_2M_WTI_PTIC (12) .719 .828 .828 .719 .719 .578 .570 .563 .633 .688 - .492 .563 .563 .500 .492 .563 .563 .500 .492 .563 .563 .438 .438 .508 .508

BC_SIFT_3M_WTI_PTIC (13) .719 .828 .828 .719 .719 .578 .578 .570 .641 .695 .508 - .570 .570 .508 .500 .570 .570 .508 .500 .570 .570 .438 .438 .508 .508

BC_SSIM_2M_WTI_PTIC (14) .641 .734 .734 .633 .633 .500 .500 .492 .563 .609 .438 .430 - .500 .438 .430 .500 .500 .438 .430 .500 .500 .375 .375 .438 .438

BC_SSIM_3M_WTI_PTIC (15) .641 .734 .734 .633 .633 .500 .500 .492 .563 .609 .438 .430 .500 - .438 .430 .500 .500 .438 .430 .500 .500 .375 .375 .438 .438

BC_SIFT_2M_WI_PTIC (16) .719 .828 .828 .719 .719 .578 .570 .563 .633 .688 .500 .492 .563 .563 - .492 .563 .563 .500 .492 .563 .563 .438 .438 .508 .508

BC_SIFT_3M_WI_PTIC (17) .719 .828 .828 .719 .719 .578 .578 .570 .641 .695 .508 .500 .570 .570 .508 - .570 .570 .508 .500 .570 .570 .438 .438 .508 .508

BC_SSIM_2M_WI_PTIC (18) .641 .734 .734 .633 .633 .500 .500 .492 .563 .609 .438 .430 .500 .500 .438 .430 - .500 .438 .430 .500 .500 .375 .375 .438 .438

BC_SSIM_3M_WI_PTIC (19) .641 .734 .734 .633 .633 .500 .500 .492 .563 .609 .438 .430 .500 .500 .438 .430 .500 - .438 .430 .500 .500 .375 .375 .438 .438

BC_SIFT_2M_WI_PTIF (20) .719 .828 .828 .719 .719 .578 .570 .563 .633 .688 .500 .492 .563 .563 .500 .492 .563 .563 - .492 .563 .563 .438 .438 .508 .508

BC_SIFT_3M_WI_PTIF (21) .719 .828 .828 .719 .719 .578 .578 .570 .641 .695 .508 .500 .570 .570 .508 .500 .570 .570 .508 - .570 .570 .438 .438 .508 .508

BC_SSIM_2M_WI_PTIF (22) .641 .734 .734 .633 .633 .500 .500 .492 .563 .609 .438 .430 .500 .500 .438 .430 .500 .500 .438 .430 - .500 .375 .375 .438 .438

BC_SSIM_2M_WI_PTIF (23) .641 .734 .734 .633 .633 .500 .500 .492 .563 .609 .438 .430 .500 .500 .438 .430 .500 .500 .438 .430 .500 - .375 .375 .438 .438

BC_SIFT_2M_PIF (24) .750 .875 .875 .750 .750 .625 .625 .625 .688 .750 .563 .563 .625 .625 .563 .563 .625 .625 .563 .563 .625 .625 - .500 .563 .563

BC_SIFT_3M_PIF (25) .750 .875 .875 .750 .750 .625 .625 .625 .688 .750 .563 .563 .625 .625 .563 .563 .625 .625 .563 .563 .625 .625 .500 - .563 .563

BC_SSIM_2M_PIF (26) .688 .797 .797 .688 .688 .547 .547 .547 .617 .672 .492 .492 .563 .563 .492 .492 .563 .563 .492 .492 .563 .563 .438 .438 - .500

BC_SSIM_3M_PIF (27) .688 .797 .797 .688 .688 .547 .547 .547 .617 .672 .492 .492 .563 .563 .492 .492 .563 .563 .492 .492 .563 .563 .438 .438 .500 -

138
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Table 5.9: MannWhitney U-test’s P-value for Cost reduction between each pair of strategy

Strategy (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)

CC_PTIC (1) - <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

CC_WTI_PTIC (2) <0.05 - .451 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

CC_WI_PTIC (3) <0.05 .451 - <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

CC_PTIF (4) <0.05 <0.05 <0.05 - 1.0 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

CC_WI_PTIF (5) <0.05 <0.05 <0.05 1.0 - <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

CC_PIF (6) <0.05 <0.05 <0.05 <0.05 <0.05 - <0.05 .151 <0.05 .196 <0.05 .371 <0.05 .461 <0.05 .371 <0.05 .461 .377 .134 .424 .095 <0.05 <0.05 <0.05 <0.05

AF_SIFT_2M (7) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 - <0.05 .989 <0.05 .146 <0.05 .122 <0.05 .145 <0.05 .119 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

AF_SIFT_3M (8) <0.05 <0.05 <0.05 <0.05 <0.05 .151 <0.05 - <0.05 .755 <0.05 .256 <0.05 .170 <0.05 .256 <0.05 .170 .450 <0.05 .403 <0.05 <0.05 <0.05 <0.05 <0.05

AF_SSIM_2M (9) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .989 <0.05 - <0.05 .159 <0.05 .126 <0.05 .158 <0.05 .120 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

AF_SSIM_3M (10) <0.05 <0.05 <0.05 <0.05 <0.05 .196 <0.05 .755 <0.05 - <0.05 .383 <0.05 .252 <0.05 .358 <0.05 .252 .578 <0.05 .495 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SIFT_2M_WTI_PTIC (12) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .146 <0.05 .159 <0.05 - <0.05 .997 <0.05 .946 <0.05 .994 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SIFT_3M_WTI_PTIC (13) <0.05 <0.05 <0.05 <0.05 <0.05 .371 <0.05 .256 <0.05 .383 <0.05 - <0.05 .830 <0.05 .934 <0.05 .762 .941 <0.05 .929 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SSIM_2M_WTI_PTIC (14) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .122 <0.05 .126 <0.05 .997 <0.05 - <0.05 .992 <0.05 .951 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SSIM_3M_WTI_PTIC (15) <0.05 <0.05 <0.05 <0.05 <0.05 .461 <0.05 .170 <0.05 .252 <0.05 .830 <0.05 - <0.05 .851 <0.05 .951 .881 <0.05 .874 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SIFT_2M_WI_PTIC (16) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .145 <0.05 .158 <0.05 .946 <0.05 .992 <0.05 - <0.05 .998 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SIFT_3M_WI_PTIC (17) <0.05 <0.05 <0.05 <0.05 <0.05 .371 <0.05 .256 <0.05 .358 <0.05 .934 <0.05 .851 <0.05 - <0.05 .830 .951 <0.05 .929 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SSIM_2M_WI_PTIC (18) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .119 <0.05 .120 <0.05 .994 <0.05 .951 <0.05 .998 <0.05 - <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SSIM_3M_WI_PTIC (19) <0.05 <0.05 <0.05 <0.05 <0.05 .461 <0.05 .170 <0.05 .252 <0.05 .762 <0.05 .951 <0.05 .830 <0.05 - .881 <0.05 .874 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SIFT_2M_WI_PTIF (20) <0.05 <0.05 <0.05 <0.05 <0.05 .377 <0.05 .450 <0.05 .578 <0.05 .941 <0.05 .881 <0.05 .951 <0.05 .881 - <0.05 .848 <0.05 <0.05 <0.05 <0.05 <0.05

BC_SIFT_3M_WI_PTIF (21) <0.05 <0.05 <0.05 <0.05 <0.05 .134 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 - <0.05 .843 <0.05 <0.05 <0.05 <0.05

BC_SSIM_2M_WI_PTIF (22) <0.05 <0.05 <0.05 <0.05 <0.05 .424 <0.05 .403 <0.05 .495 <0.05 .929 <0.05 .874 <0.05 .929 <0.05 .874 .848 <0.05 - <0.05 <0.05 <0.05 <0.05 <0.05

BC_SSIM_2M_WI_PTIF (23) <0.05 <0.05 <0.05 <0.05 <0.05 .095 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .843 <0.05 - <0.05 <0.05 <0.05 <0.05

BC_SIFT_2M_PIF (24) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 - .133 .910 .093

BC_SIFT_3M_PIF (25) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .133 - .154 .795

BC_SSIM_2M_PIF (26) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .910 .154 - .109

BC_SSIM_3M_PIF (27) <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 .093 .795 .109 -139
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Table 5.10: A12 effect size for Cost reduction between each pair of strategy

Strategy (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) (26)

CC_PTIC (1) - .419 .436 .641 .641 .834 .870 .895 .868 .895 .873 .896 .870 .895 .873 .896 .870 .895 .878 .899 .876 .899 .904 .911 .903 .911

CC_WTI_PTIC (2) .581 - .522 .660 .660 .857 .881 .902 .880 .903 .884 .903 .883 .904 .884 .903 .883 .904 .890 .907 .889 .908 .911 .918 .911 .918

CC_WI_PTIC (3) .564 .478 - .652 .652 .855 .879 .901 .877 .901 .882 .901 .880 .902 .882 .901 .880 .902 .888 .905 .886 .906 .909 .917 .909 .917

CC_PTIF (4) .359 .340 .348 - .500 .752 .668 .750 .670 .752 .696 .775 .697 .780 .696 .775 .697 .780 .755 .801 .757 .803 .816 .836 .816 .838

CC_WI_PTIF (5) .359 .340 .348 .500 - .752 .668 .750 .670 .752 .696 .775 .697 .780 .696 .775 .697 .780 .755 .801 .757 .803 .816 .836 .816 .838

CC_PIF (6) .166 .143 .145 .248 .248 - .389 .459 .391 .463 .402 .474 .405 .479 .402 .474 .405 .479 .475 .543 .477 .548 .616 .642 .617 .644

AF_SIFT_2M (7) .130 .119 .121 .332 .332 .611 - .619 .500 .624 .542 .637 .544 .643 .542 .637 .545 .643 .616 .677 .616 .680 .709 .739 .707 .742

AF_SIFT_3M (8) .105 .098 .099 .250 .250 .541 .381 - .382 .509 .420 .532 .422 .539 .420 .532 .422 .539 .522 .599 .524 .607 .651 .683 .651 .685

AF_SSIM_2M (9) .132 .120 .123 .330 .330 .609 .500 .618 - .623 .540 .636 .544 .642 .540 .636 .544 .642 .611 .674 .614 .679 .707 .736 .706 .739

AF_SSIM_3M (10) .105 .097 .099 .248 .248 .537 .376 .491 .377 - .413 .525 .415 .533 .413 .526 .415 .533 .516 .594 .520 .601 .646 .680 .647 .682

BC_SIFT_2M_WTI_PTIC (12) .127 .116 .118 .304 .304 .598 .458 .580 .460 .587 - .606 .500 .611 .502 .606 .500 .612 .591 .658 .591 .665 .694 .724 .693 .728

BC_SIFT_3M_WTI_PTIC (13) .104 .097 .099 .225 .225 .526 .363 .468 .364 .475 .394 - .392 .506 .394 .502 .394 .509 .502 .580 .503 .586 .639 .672 .638 .675

BC_SSIM_2M_WTI_PTIC (14) .130 .117 .120 .303 .303 .595 .456 .578 .456 .585 .500 .608 - .611 .500 .608 .502 .612 .587 .657 .590 .663 .694 .724 .693 .727

BC_SSIM_3M_WTI_PTIC (15) .105 .096 .098 .220 .220 .521 .357 .461 .358 .467 .389 .494 .389 - .389 .495 .389 .502 .496 .573 .495 .578 .634 .668 .634 .672

BC_SIFT_2M_WI_PTIC (16) .127 .116 .118 .304 .304 .598 .458 .580 .460 .587 .498 .606 .500 .611 - .606 .500 .612 .591 .657 .591 .664 .694 .724 .693 .728

BC_SIFT_3M_WI_PTIC (17) .104 .097 .099 .225 .225 .526 .363 .468 .364 .474 .394 .498 .392 .505 .394 - .393 .506 .502 .580 .503 .585 .639 .672 .638 .675

BC_SSIM_2M_WI_PTIC (18) .130 .117 .120 .303 .303 .595 .455 .578 .456 .585 .500 .606 .498 .611 .500 .607 - .612 .587 .656 .590 .663 .693 .724 .692 .727

BC_SSIM_3M_WI_PTIC (19) .105 .096 .098 .220 .220 .521 .357 .461 .358 .467 .388 .491 .388 .498 .388 .494 .388 - .496 .573 .495 .578 .634 .668 .634 .672

BC_SIFT_2M_WI_PTIF (20) .122 .110 .112 .245 .245 .525 .384 .478 .389 .484 .409 .498 .413 .504 .409 .498 .413 .504 - .571 .505 .579 .641 .677 .641 .681

BC_SIFT_3M_WI_PTIF (21) .101 .093 .095 .199 .199 .457 .323 .401 .326 .406 .342 .420 .343 .427 .343 .420 .344 .427 .429 - .432 .506 .588 .623 .590 .626

BC_SSIM_2M_WI_PTIF (22) .124 .111 .114 .243 .243 .523 .384 .476 .386 .480 .409 .497 .410 .505 .409 .497 .410 .505 .495 .568 - .577 .638 .676 .639 .679

BC_SSIM_2M_WI_PTIF (23) .101 .092 .094 .197 .197 .452 .320 .393 .321 .399 .335 .414 .337 .422 .336 .415 .337 .422 .421 .494 .423 - .583 .620 .586 .623

BC_SIFT_2M_PIF (24) .096 .089 .091 .184 .184 .384 .291 .349 .293 .354 .306 .361 .306 .366 .306 .361 .307 .366 .359 .412 .362 .417 - .543 .503 .548

BC_SIFT_3M_PIF (25) .089 .082 .083 .164 .164 .358 .261 .317 .264 .320 .276 .328 .276 .332 .276 .328 .276 .332 .323 .377 .324 .380 .457 - .459 .507

BC_SSIM_2M_PIF (26) .097 .089 .091 .184 .184 .383 .293 .349 .294 .353 .307 .362 .307 .366 .307 .362 .308 .366 .359 .410 .361 .414 .497 .541 - .546

BC_SSIM_3M_PIF (27) .089 .082 .083 .162 .162 .356 .258 .315 .261 .318 .272 .325 .273 .328 .272 .325 .273 .328 .319 .374 .321 .377 .452 .493 .454 -
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and CB strategies are more likely to lead to better results than CC strategies. Unfortunately,

most of the p-values derived using the U-test are high (i.e., >0.05), which indicates that we

cannot claim any difference between the distribution obtained by these approaches; however,

such high p-values are likely due to the limited number of datapoints considered (8 in total,

as we compute one FDR value for each fault). Finally, the best performing strategies (i.e.,

BC_SIFT_2M_PIF and BC_SIFT_3M_PIF) show the lowest p-values and highest effect size,

even when compared with other CB strategies, which highlights that they have a slightly

better performance.

Table 5.11 shows cost reduction results. First, we discuss overall results across both

Config#1 and Config#2. CC strategies focusing on target instructions are very effective,

with 84% to 85.6% cost reduction, on average. Instead, CC strategies relying on instruction

footprints (i.e., CC_PTIF, CC_WI_PTIF, and CC_PIF) yield a lower cost reduction. AF

strategies lead to a cost reduction between 53.6% and 60.4%, thus performing better than

CC_PIF but worse than other CC strategies. For combined strategies, the cost reduction

decreases, but the difference in performance varies based on the selected CC strategy. For

CB strategies combining the ptic property with greedy strategies based on either ωti of ωi ,

cost reduction ranges between 56.4 and 62.4. For CB strategies relying on target instruction

footprint properties (i.e., ptif ), cost reduction ranges between 56.4 and 62.4. For CB strategies

relying on instruction footprint properties (i.e., pif ), cost reduction is the worst, between 38.7

and 42.1.

Table 5.9 and Table 5.10 provide results for statistical significance and effect size; thanks

to the large number of collected datapoints (we have 101 datapoints, one for each fault

being tested in a distinct run), differences are always significant. In addition to that, our

results further highlight that CC strategies tend to have a higher cost reduction rate than other

strategies (large effect size).

The differences in cost between Config#1 and Config#2 are limited in terms of ranking

(i.e., rankings are the same for most of the approaches); however, CC_PIF and AF_SSIM_3M

perform better with Config#1, while CC strategies relying on ptic perform better with

Config#2. If we look at the cost of each approach (i.e., number of actions to inspect), we

can observe that the differences between the different strategies are much more tangible for

Config#1 than for Config#2. Indeed for Config#2 the best approach required the inspection
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Table 5.11: Cost and cost reduction achieved by each MTA strategy for Config-1, Config-2.
Average results are computed across data points. "CR" stands for Cost Reduction. "R"
provides the ranking of each strategy.

UTA strategy
Config#1 Config#2 Average

Cost CR R Cost CR R Cost CR R

CC_PTIC 107.4 88.0 3 2.4 79.4 3 59.0 84.0 3
CC_WTI_PTIC 86.8 90.3 1 2.3 80.1 1 47.8 85.6 1
CC_WI_PTIC 88.3 90.1 2 2.7 79.6 2 48.9 85.3 2
CC_PTIF 267.1 69.8 4 2.8 78.9 4 145.3 74.0 4
CC_WI_PTIF 267.1 69.8 4 2.8 78.9 4 145.3 74.0 4
CC_PIF 395.1 57.5 14 21.2 45.5 22 222.8 52.0 20

AF_SIFT_2M 357.3 65.0 7 12.9 55.0 6 198.6 60.4 6
AF_SIFT_3M 421.7 58.8 12 16.3 48.3 14 234.9 53.9 12
AF_SSIM_2M 357.6 65.0 6 12.9 54.8 7 198.7 60.3 7
AF_SSIM_3M 422.9 58.7 13 16.3 47.7 18 235.6 53.6 13

BC_SIFT_2M_WTI_PTIC 381.0 62.4 8 13.1 54.5 8 211.5 58.8 8
BC_SIFT_3M_WTI_PTIC 441.7 56.6 15 16.5 47.9 15 245.8 52.6 16
BC_SSIM_2M_WTI_PTIC 381.4 62.4 10 13.1 54.3 11 211.7 58.7 10
BC_SSIM_3M_WTI_PTIC 443.2 56.5 17 16.5 47.4 19 246.6 52.3 18

BC_SIFT_2M_WI_PTIC 381.3 62.4 9 13.1 54.5 8 211.6 58.8 9
BC_SIFT_3M_WI_PTIC 442.0 56.5 16 16.5 47.9 15 245.9 52.6 17
BC_SSIM_2M_WI_PTIC 381.7 62.4 11 13.1 54.3 11 211.8 58.7 11
BC_SSIM_3M_WI_PTIC 443.4 56.4 18 16.5 47.4 19 246.7 52.3 19

BC_SIFT_2M_WI_PTIF 465.4 52.8 19 13.1 54.5 10 257.0 53.6 14
BC_SIFT_3M_WI_PTIF 512.7 48.5 21 16.5 47.9 15 284.1 48.3 21
BC_SSIM_2M_WI_PTIF 466.3 52.8 20 13.1 54.3 13 257.5 53.5 15
BC_SSIM_2M_WI_PTIF 514.2 48.4 22 16.5 47.3 21 284.9 47.9 22

BC_SIFT_2M_PIF 535.2 45.9 23 24.0 37.7 23 299.6 42.1 23
BC_SIFT_3M_PIF 570.5 42.8 25 25.5 34.7 25 319.4 39.0 25
BC_SSIM_2M_PIF 536.5 45.8 24 24.0 37.5 24 300.3 42.0 24
BC_SSIM_3M_PIF 572.4 42.6 26 25.6 34.1 26 320.4 38.7 26

of an average of 2.3 actions while the worst performing approach required the inspection

of 25.6 actions; assuming one minute being required for the inspection of each action, it

is less than half an hour, which is tangible but not detrimental to the testing process. For

Config#1, instead, the difference between the best and the worst approach is 485.6 actions

(i.e., 572.4− 86.8), leading to eight hours of difference, an practically significant difference

(e.g., leading to delay the software release by one working day). Based on such costs, the

benefits provided by CC strategies focusing on target instructions are clearly tangible, even

if they do not lead to detecting all the faults.

If we consider both cost and effectiveness, our findings indicate that, except for greedy

strategies maximizing instruction footprint, CC strategies lead to sub-optimal fault detection

effectiveness (i.e., FDR between 65% and 70% across the two configurations, but between

76.4% and 87.5% for Config#1); however, they have a limited cost, with 80 to 110 actions
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to be inspected for Config#1, in our experiments. Overall, the strategy minimizing costs

is CC_WTI_PTIC, but has the lowest FDR for coverage strategies. The highest FDR is

obtained by CC_PTIF and CC_WI_PTIF but they have the highest cost, especially for

Config#1 (above 250 actions to be inspected). The best cost-effectiveness compromise for

CC strategies is obtained with CC_PTIC, which achieves the second highest FDR (83.3%

for Config1) with the third lowest cost (less than 110 actions for Config1, which may lead to

three hours and half of inspection, an acceptable effort). Since CC_PTIC matches the UTA

selection strategy implemented originally in CALM, our results show that the findings of

previous empirical assessments based on CC_PTIC remain valid, from a practical standpoint.

Action-effect-based strategies are more effective than coverage-based strategies for fault

detection; however, they reduce costs only by 50% to 60%. AF_SIFT_2M is the strategy

leading to a reasonably high fault detection rate (>85%) with an average of 357 actions

to be inspected for Config#1; given that AF_SIFT_2M requires an average of 70 actions

fewer than the most effective strategy (i.e., AF_SIFT_3M), we can conclude that it is a good

compromise for AF strategies. The highest FDRs are obtained by combined strategies; for

example, the highest FDR, with the higher CR, is obtained by BC_SIFT_2M_PIF, which

detects all the faults, but has one of the highest costs, with an average of 535 actions to be

inspected for Config#1. Concluding, if cost minimization must be prioritized, then CC_PTIC

is the best strategy; otherwise, if cost is not a major issue (e.g., assessment is provided by

crowdworkers [80]), then BC_SIFT_2M_PIF should be preferred.

5.4.5 Threats to Validity

Internal validity. We manually tested each subject to ensure that failures are reproducible.

Also, we used a stable version of CALM assessed in the empirical evaluation of Chapter 4.

Further, we carefully inspected CALM results to determine the presence of faults preventing

the observation of failures in the subject Apps. Finally, we carefully tested all our MTA

strategy implementations.

Conclusion validity. To avoid violating the assumptions of parametric statistical tests, we

rely on a non-parametric test and effect size measure (i.e., Mann Whitney U-test and the

Vargha and Delaney’s A12 statistics, respectively).
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Construct validity. The main constructs considered in this work are fault detection rate

and cost reduction. Fault detection is one of the ultimate goals of testing and can be directly

measured in the presence of Apps with known faults. Cost, in our context, depends on the

visual inspection of App outputs; therefore, assuming a similar cost for inspecting the output

of each action (see discussion about Human effort in Section 4.3), we can rely on the number

of actions to be inspected to compare the cost of different MTA strategies.

External validity. We considered 11 real functional faults from two open-source Apps

that are popular among Android users and frequently used as subject Apps in empirical

assessments of automated testing techniques [13, 22, 30, 124]. The considered faults lead

to failures that can be grouped into two categories (i.e., UI display issue and UI interaction

issue) that, according to a recent study [31], are observed in 97% of Android functional

faults. Therefore, although the number of faults selected for our study is limited, they should

be representative of a large variety of Android faults.

5.5 Conclusion

To minimize oracle cost in automated App testing, we proposed different strategies for

generating minimized sets of target actions (i.e., test actions that exercise the methods

modified by an updated App version); we refer to them as MTA strategies. The actions

selected by MTA strategies can be presented to software engineers along with the screenshots

of the App screen before and after executing a test action; visual inspection should enable

engineers to determine if the App failed or not.

Our MTA strategies either rely on code coverage (coverage-based strategies), action effect

(action-effect-based strategies), or both (combined strategies). Coverage-based strategies

can rely on three distinct coverage properties (i.e., increasing coverage of updated methods,

covering distinct sets of instructions in the whole App or in updated methods only) to select

actions. Also, to reduce the number of selected actions, we either rely on a chronological

approach (i.e., following the order in test input sequences) or a greedy approach (i.e., by

maximizing the coverage of instructions belonging to methods modified by the update, or

the overall number of instructions). The action-effect-based strategies rely on screenshot
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distances to measure action effects (i.e., SSIM, SIFT). Combined strategies first employ an

action-effect-based strategy, then a coverage-based strategy to complement the action set

acquired by the former.

Our empirical evaluation shows that, by visualizing the screenshots taken before and

after target actions, our MTA strategies may enable the identification of a large proportion

of App faults (81.82%, in our subjects). Also, CALM can successfully exercise failures

in 41% of the testing sessions and its results can be largely improved (up to 63.6%) by

testing each target function for one hour. Finally, in terms of MTA strategies, our results

show that our strategy relying on selecting the actions that contribute to coverage of updated

methods, provides the highest cost reduction, with a sufficiently high fault detection rate

(68.9%). Instead, to maximize fault detection, engineers should rely on a combined strategy

of selecting actions leading to the maximal and the minimal difference between screenshots

before and after the action, based on SIFT distance and covering distinct sets of instructions

in the whole App (100% of fault detection rate).
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Chapter 6

Conclusion & Future Prospects

6.1 Conclusion

In this PhD dissertation, we addressed the problem of automatically testing App updates

in a cost-effective way. First, we presented ATUA (Automated Testing of Updates for App),

which relies on both static and dynamic analyses, and integrates different testing strategies

to generate test inputs focusing on updated methods. Furthermore, we introduced CALM

(Continous Adaptation of Learned Models), which enables the efficient reuse of models

derived from the testing of previous App versions to identify paths to GUI components

that are more likely to exercise updated methods effectively. Finally, we address the oracle

problem by defining strategies for selecting a minimal set of test outputs (i.e., screenshots)

that potentially include faults, to be provided to engineers for visual inspection, thus saving

significant human effort.

Our empirical evaluations are conducted on popular open-source and commercial Apps,

with varied magnitudes of updates between versions. The results show that the proposed

automated testing approaches (i.e., ATUA, CALM) lead to higher coverage of updated

methods and instructions than SOTA approaches for the same human effort in terms of
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oracles. By reusing the model obtained from testing previous App versions for minor

updates, which are common in the CI context, CALM results in a quicker coverage increase

in terms of updated instructions. A preliminary assessment of CALM on a set of real faults

from open-source Apps suggests that CALM’s failure detection capability could be improved

by allocating relevant test budgets for testing each updated method, which is scalable in

practice. Moreover, the evaluation shows that, by visualizing the screenshots taken before

and after target actions, our filtering strategies lead to the identification of a large proportion

of App faults. Last, our results show that the proposed strategies could achieve a fault

detection rate of 100% with significant cost reduction (i.e., 42%).

In our experiments, we considered only Android Apps, which is standard practice in most

App testing research papers. The prevalence of Android in research papers is primarily due

to its worldwide dissemination and the availability of a more extensive set of tools to test and

analyze Android executable bytecode [2]. In our work, the choice of relying on Android Apps

enabled the comparison of ATUA and CALM with state-of-the-art tools working for Android

Apps (i.e., Monkey, APE, DM2, Fastbot2, Humandnoid, and Timemachine). However, our

approach does not rely on any assumption restricting its applicability to Android. To drive

testing, it requires code coverage, which is measurable on any platform, and GUI Trees.

CALM extracts GUI Trees by relying on the Android UIAutomator API. Similar features are

provided by Appium [125], which works with both iOS and Windows OS. Also, Harmony

OS may provide a UIAutomator-like API.

6.2 Future Prospects

In Chapter 5, we focus on Pattern-1 faults, which if present, can be identified by inspecting

the screenshots taken before and after the action exercising the faulty code since they are the

ones suggested in the rest of the thesis and are the most common inspection pattern according

to our study. Our future work may expand the set of subjects to obtain additional cases for

other inspection patterns requiring additional screenshots recorded when an action before the

failure-inducing action is triggered (Pattern-2) or after the failure-inducing action is triggered

(Pattern-3). Further, we desire to strengthen the results in Chapter 5 through a more extensive

empirical evaluation that potentially includes closed-source Apps if their developers provide
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access to bug information. Closed-source Apps usually consist of more complex UI and

functions, so they are potentially relevant for assessing the MTA strategies. Open-source

candidates for the evaluation could be retrieved from existing benchmarks [126, 31]. Further,

instead of assessing all the outputs, the strategies could be assessed by prioritizing the

inspection of screens potentially showing faults in addition to showing them, so that the

identification of faults occurs faster. Besides, we believe the potential of action-effect

strategies could be better exploited. For example, we could study the adoption of more fine-

grained GUI screenshot distance for action-effect strategies instead of relying on traditional

image distance. The distance between two GUI screenshots could be measured at the level of

GUI layout and GUI component, which is adopted in a screen matching for test script repair

study [66].

The proposed automated testing approaches are clearly beneficial since they automate

testing in an average of 60.5% of the target instructions with a test budget of 1 hour, which is

practical in the CI context. However, they do not enable testing all the instructions, which

might still be the interest of developers. The problem could be solved by enhancing the

components of the current approaches. To further improve ATUA effectiveness, part of

our future work concerns the development of an additional set of reducers that will enable

the ATUA’s state abstraction function to distinguish between widgets containing different

types of data. Another part of our future work is to integrate state-of-the-art solutions,

particularly machine-learning-based techniques, to generate meaningful inputs unlocking

"Gate States" [90] (i.e., states preventing the testing from going further without given

some specific inputs) so that App exploration is more effective. One potential direction

to improve ATUA is to study the impact of combining different solutions for dependency

detection (including the dependencies between Windows and the dependencies between

GUI components). It should be possible to deploy such solutions during static and dynamic

analyses since, during the latter, ATUA could discover new relevant information.

Part of our future work is to leverage App Models inferred by testing to enhance static

analysis. By analyzing the EWTG generated with static analysis and the EWTG derived after

testing, we can identify mismatches between the models. This knowledge can be used later

during the static analysis of the newer App version. A primary usage of it is to guide the

static analysis tool associating GUI components with their handlers, which were missing due
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to the principal drawbacks of the static analysis.

Moreover, our probabilistic action sequences in CALM could be enhanced to prevent

CALM from repeating a pattern in a context where it is not likely to succeed (e.g., when

a setting is turned off, certain features would be hidden). To achieve this, one direction

would be to deploy two probabilistic models at the same time, which is a common solution

to avoid bias decisions (e.g., Double Q-Learning [127] deploys two Q-Tables to deal with

the overestimation problems in Q-Learning).

Finally, inspired by an existing technique that translates generated test inputs into

Espresso tests [128], part of our future work is to enable exporting test scripts (e.g., Espresso)

as part of the output of our approaches. Engineers could improve test inputs by modifying

the test scripts. Further, we may extend CALM to reuse existing test cases as test input

sequences, which may enable CALM to explore App states difficult to reach otherwise (e.g.,

because specific domain knowledge is needed to select test inputs).
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