Chemical Stripes – Visualizing Chemical Trends of the Past Influencing Today

Dagny Aurich¹, Hans Peter Arp^{2,3}, Sarah Hale², Kerry Sims⁴, Emma L. Schymanski¹

1 Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg

- 2 Norwegian Geotechnical Institute (NGI), P.O. Box 3930, Ullevål Stadion, 0806 Oslo, Norway
- 3 Department of Chemistry, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
- 4 Environment Agency, Horizon House, Deanery Road, Bristol, BS1 5AH

E-mail contact: <u>dagny.aurich@uni.lu</u> Slides @ DOI:<u>10.5281/zenodo.7885032</u>

Platform presentation at the SETAC Europe 33rd Annual Meeting, Dublin

Session: 3.20 - PMT/vPvM substances: Assessment, Management and Regulation, 04 May 2023

Introduction – Today I will talk about...

- The importance of investigating chemical history
- Why quick action is needed
- How patent data is a useful resource for this investigation
- How visualization can help to raise awareness (Chemical Stripes)

Introduction – Reconstructing Chemical History

- Investigating chemical history for
 - Health Risks (long-term)
 - o Environmental Risks
 - Legal Action

Analysing historical records / data

Introduction – Reconstructing Chemical History

Can inform policy decisions related to environmental regulations & public health protection

* Arp HPH, Aurich D, Schymanski EL, Sims K, Hale SE. Avoiding the Next Silent Spring: Our Chemical Past, Present, and Future. 2023. doi:<u>10.1021/acs.est.3c01735</u>

Introduction – The Why and How

• Quick action is necessary:

- Delay makes information less accurate
- Health impacts may not (yet) manifest (for) decades after exposure
- May help prevent further exposure & minimize the risk of future health impacts

Introduction – The Why and How

• Patent data as a valuable resource:

• Detailed record of the development / use of chemicals over time

+ Information on production methods, uses & safety concerns

Perfluorooctanesulfonic acid

CID 74483

Depositor-Supplied Patent Identifiers										
33,291 items										
					SORT	BY 🌩 Pric	ority Date	~		
#	Publication Number	Title	Inventor(s) ⑦	Assignee(s) 🕐	Classification ⑦	Abstract	Priority Date	Grant Date		
1	CN-114035405-A	Composition for preparing top anti- reflection film for photoresist, top anti- reflection film for photoresist and fluorine-containing composition					2022-01-07			
2	CN-114146355-A	Fluorine-free environment-friendly foam extinguishing agent and preparation method thereof					2021-12-27			

Identify potential sources of exposure & inform risk assessments

Introduction – The Use of Data Visualisation

• Warming or climate stripes

Communicate complex environmental data in a simple, intuitive way
See long-term trends and changes
Use of colour for quick interpretation (broad audience)

Introduction – The Use of Data Visualisation

- Extension to other types of environmental data
- Sea level rise

Introduction – The Use of Data Visualisation

- Extension to other types of environmental data
- Biodiversity decrease

Introducing Chemical Stripes

- Use of the climate stripes concept
- Use of patent data from Pub Chem:
- Show trends and changes (estimated) chemical use that may have impacted public health & environment

R package

- R package chemicalStripes available on GitLab:
 - > Input: **Pub** Chemical Identifier (opt.: date range)
 - Retrieving compound information using webchem
 - > Automated extraction of patent data from **Pub**Chem
 - Processing patent data (big data files)
 - Creating and saving 'stripes plot'

chemical_stripes(pc_id, date_range = c(1960, 2021), colorblind = FALSE)

Patent Download

R package: Example

> chemical_stripes(74483)		
Getting compound information		
A total of 32461 patents were found for CID 74483		
[======================================	40%	2s
Downloading patent data		
[======>]	60%	7s
Processing patent data		
32460 patents were processed for CID 74483		
[======================================	80%	_3s
Plotting chemical stripes for the years between 1960 and 2021		

Your stripes have been saved as png_74483_1960_2021.png in your folder C:/Users/dagny.aurich/Documents/R_stripes/png_74483_1960_2021.png

Chemical Stripes for Perfluorooctanesulfonic acid

PubChem CID: 74483 IUPACName: 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonic acid Molecular Formula: C8HF17O3S Exact Mass: 499.9374938

https://gitlab.uni.lu/eci/chemicalstripes

R package: Example

> chemical_stripes(744(3, colorblind=TRUE) Getting compound information		
A total of 32461 patents were found for CID 74483	7 10	
[=====================================	-] 40	% 2s
Downloading patent data	1 600	
	-1 00	% 44S
32460 patents were processed for CTD 74483		
	-1 80	% 175
Plotting chemical stripes for the years between 1960 and 2021	1 00.	

Your stripes have been saved as png_74483_1960_2021cb.png in your folder C:/Users/dagny.aurich/Documents/R_stripes/png_74483_1960_2021cb.png

Chemical Stripes for Perfluorooctanesulfonic acid

PubChem CID: 74483 IUPACName: 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluorooctane-1-sulfonic acid Molecular Formula: C8HF17O3S Exact Mass: 499.9374938

https://gitlab.uni.lu/eci/chemicalstripes

Chemical Stripes Visualization - Extended

• Summarized chemical stripes for PFAS with accompanying regulation dates and cumulative Chemical Abstract Service registry numbers:

Chemical Stripes Visualization - Extended

- Many compounds detected in the environment classified as being persistent and mobile (often even toxic)
- Can be used for different sets of chemicals

EU ban

Chemical Stripes Visualization - Extended

• Overall trend in rising patent and chemical numbers (databases)

≻Alarming:

- > Increase of specific chemical classes relevant to planetary boundary threats
- > Long time frame between suspecting a chemical to be a threat and regulatory action taking place

Arp HPH, Aurich D, Schymanski EL, Sims K, Hale SE. Avoiding the Next Silent Spring: Our Chemical Past, 17 Present, and Future. 2023. doi:<u>10.1021/acs.est.3c01735</u>

Use of Chemical Stripes Visualization

- Looking at specific substance classes can raise awareness:
 - What went wrong in the past?
 - > What actions could have been taken earlier for better regulation in the future?

• Need for Action:

Identify specific hazards and risks not fully understood/addressed in the past
Highlight regulatory gaps
Promote effective risk assessment and management

• Build public awareness and support for safer / more sustainable chemical use

Use of Chemical Stripes Visualization

- Can support the interpretation of (chemical) data
 - Stripes illustrate the trend of increasing numbers of potentially threatening chemicals in the environment
- Can help identify possible changes due to regulatory measures
 - PFOA listed in 2019 in the Stockholm Convention (Elimination)

Depositor-supplied patent numbers

Conclusion

- Investigating chemical history can help with environmental regulations & public health protection
- Quick action is needed especially regarding PMT chemicals
- Visualizations are an effective tool to raise awareness
- Chemical Stripes visualizations (R package) show
 - Trend of increasing chemical numbers
 - Possible regulatory effects
 - ➢ Even for your favourite chemicals....

Laffeine 1967 1973 1979 1985 1991 1997 20 2003 2009 2015

Acknowledgements

SETAC EUROPE 33RD ANNUAL MEETING

30 APRIL - 4 MAY 2023 | DUBLIN, IRELAND + ONLINE

https://orcid.org/0000-0001-8823-0596

dagny.aurich@uni.lu

THANK YOU!

References

- WIPO World Intellectual Property Organization. Accessed October 24, 2022. <u>https://www.wipo.int/</u>
- CAS REGISTRY. CAS. Accessed August 2, 2021. <u>https://www.cas.org/cas-data/cas-registry</u>
- Kim S, Chen J, Cheng T, et al. PubChem 2023 update. Nucleic Acids Research. 2023;51(D1):D1373-D1380. doi:10.1093/nar/gkac956
- 2018 visualisation update | Climate Lab Book. Accessed October 25, 2022. https://www.climate-lab-book.ac.uk/2018/2018-visualisation-update/
- Miles. Biodiversity Stripes A Journey from Green to Grey. Finding Nature. Published August 10, 2022. Accessed October 24, 2022. https://findingnature.org.uk/2022/08/10/biodiversity-stripes/
- Persson L, Carney Almroth BM, Collins CD, et al. Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. *Environ Sci Technol*. 2022;56(3):1510-1521. doi:10.1021/acs.est.1c04158www.dou
- Stockholm Convention Home page. Accessed October 25, 2022. http://www.pops.int/
- Schymanski, Emma, Wang, Zhanyun, Wolf, Raoul, Arp, Hans Peter. S90 | ZEROPMBOX1 | ZeroPM Box 1 Substances. Published online January 15, 2022. doi:10.5281/ZENODO.5854251
- Mohammed Taha H, Aalizadeh R, Alygizakis N, et al. The NORMAN Suspect List Exchange (NORMAN-SLE): facilitating European and worldwide collaboration on suspect screening in high resolution mass spectrometry. *Environmental Sciences Europe*. 2022;34(1):104. doi:10.1186/s12302-022-00680-6
- 'Dark Waters' and PFOA FAQ. CHEM Trust. Published February 26, 2020. Accessed November 14, 2022. https://chemtrust.org/dark-waters-and-pfoa-faq/
- Arp HPH, Aurich D, Schymanski EL, Sims K, Hale SE. Avoiding the Next Silent Spring: Our Chemical Past, Present, and Future. Environ Sci Technol. Published online April 13, 2023:acs.est.3c01735. doi:10.1021/acs.est.3c01735

