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Data entry forms use completeness requirements to specify the fields that are required or optional to fill for
collecting necessary information from different types of users. However, because of the evolving nature of
software, some required fields may not be applicable for certain types of users anymore. Nevertheless, they
may still be incorrectly marked as required in the form; we call such fields obsolete required fields. Since
obsolete required fields usually have “not-null” validation checks before submitting the form, users have to
enter meaningless values in such fields in order to complete the form submission. These meaningless values
threaten the quality of the filled data, and could negatively affect stakeholders or learning-based tools that use
the data. To avoid users filling meaningless values, existing techniques usually rely on manually written rules
to identify the obsolete required fields and relax their completeness requirements. However, these techniques
are ineffective and costly.

In this paper, we propose LACQUER, a learning-based automated approach for relaxing the completeness
requirements of data entry forms. LACQUER builds Bayesian Networkmodels to automatically learn conditions
under which users had to fill meaningless values. To improve its learning ability, LACQUER identifies the
cases where a required field is only applicable for a small group of users, and uses SMOTE, an oversampling
technique, to generate more instances on such fields for effectively mining dependencies on them. During the
data entry session, LACQUER predicts the completeness requirement of a target based on the already filled
fields and their conditional dependencies in the trained model.

Our experimental results show that LACQUER can accurately relax the completeness requirements of
required fields in data entry forms with precision values ranging between 0.76 and 0.90 on different datasets.
LACQUER can prevent users from filling 20% to 64% of meaningless values, with negative predictive values
(i.e., the ability to correctly predict a field as “optional”) between 0.72 and 0.91. Furthermore, LACQUER is
efficient; it takes at most 839 ms to predict the completeness requirement of an instance.

CCS Concepts: • Computing methodologies → Bayesian network models; • Information systems →
Recommender systems; • Software and its engineering→ Software usability.
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1 INTRODUCTION
Software designers use data entry forms to collect inputs of users who interact with software
systems [27, 45]. To correctly collect the necessary information from users, designers typically define
the completeness requirements of fields in data entry forms. These completeness requirements
specify the fields that are required or optional to fill for different types of users.
However, as the software system and the application requirements change, data entry forms

change too. Such changes may result in some fields, previously marked as required, becoming
inapplicable for certain types of users. We call obsolete required fields the fields whose “required”
attribute does not remain valid with respect to the current application requirements. Although such
fields are set as “required” in the form, the correct completeness requirement should be “optional”.
When obsolete required fields are included in an input form, since the system usually has

client-side validation checks [51] to ensure that all the required fields have been filled in, users
are obliged to fill the required fields with meaningless values (e.g., “@”, “n/a”) to be able to submit
the form [3, 30]. We have observed this phenomenon both on a popular biomedical information
collection platform NCBI [4], in which more than half of the users have filled meaningless values
in required fields, and in a dataset provided by our industrial partner in the financial domain.

Obsolete required fields represent an extra burden for the users, costing additional time for filling
the input form, and might lead to users interrupting the data entry process, with potential loss of
business opportunities (e.g., a prospective client giving up during the registration phase due to
the complexity of the input form). Moreover, the meaningless values filled through these obsolete
required fields are then transferred to the software system using them and may affect the overall
data quality of the system [37]. For example, given a categorical field (which is an obsolete required
field), the user can choose the first value in a combo box just to skip filling this field. Even though
the value is chosen from the list of candidate values, this value is meaningless since the field should
not be filled at the beginning [3]. This value can be used as an input by machine learning-based
tools (for example an automated form filling tool [5]), which can then lead to more errors (e.g.,
wrongly predicting the values of some fields).

To automatically relax completeness requirements and avoid meaningless values, existing work
has proposed adaptive form tools [6, 19, 49], which enable form designers to set required fields
as optional when certain conditions hold. These tools first require form designers to define a
complete and final set of completeness requirements, capturing the conditions for which a field
should be required or optional. Then, they use intermediate representations such as XML [6] and
dynamic condition response graphs [49] to represent the completeness requirements rules and
implement adaptive behaviors. In addition, there are commercial tools (e.g., Gravity Forms [42],
Google Forms [25]) that assist designers in designing adaptive forms, where fields can be displayed
or hidden based on the value of already filled fields in the form. Similar to existing research
approaches, these commercial tools assume that designers already have a complete and final set of
completeness requirements describing the adaptive behaviour of the form during the design phase.

However, due to the complexity of the domain (with hundreds of fields) and the evolution of the
software, identifying a priori a comprehensive set of completeness requirements is not a viable
solution. Moreover, even if they could be identified, such completeness requirements could become
quickly obsolete, limiting the use of existing adaptive form tools.
To solve this problem, we propose LACQUER, a Learning-bAsed Completeness reQUirEments

Relaxation approach, to automatically learn the conditions under which completeness requirements
can be relaxed (i.e., when a required field can become optional). The basic idea of LACQUER is to
build machine learning models to learn the conditions under which users had to fill meaningless
values based on the data provided as input in past data entry sessions (hereafter called historical
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input instances). Using these models, the already-filled fields in a data entry form can then be used
as features to predict whether a required field should become optional for certain users. LACQUER
can be used during the form filling process to refactor data entry forms by dynamically removing
obsolete required fields at run time, helping designers identify completeness requirements that
should be relaxed.

LACQUER includes three phases: model building, form filling relaxation, and threshold determina-
tion. Given a set of historical input instances, the model building phase identifies the meaningless
values filled by users and builds Bayesian network (BN) models to represent the completeness
requirement dependencies among form fields (i.e., the conditions upon which users fill meaningless
values). To improve its learning ability, LACQUER identifies also the cases where a required field is
only applicable for a small group of users; it uses the synthetic minority oversampling technique
SMOTE to generate more instances on such fields for effectively mining dependencies on them.
Once the trained models are available, during the data entry session, the form filling relaxation
phase predicts the completeness requirement of a target field based on the values of the already-
filled fields and their conditional dependencies in the trained models. The predicted completeness
requirement of a field and the corresponding predicted probability (endorsed based on a “threshold”
automatically determined) are then used to implement adaptive behaviors of data entry forms.
The overall architecture of LACQUER has been inspired by LAFF [5], our previous work on

automated form filling of data entry forms. The main similarities between these approaches derive
from their shared challenges associated with the application domain (form filling). These challenges
include (1) the arbitrary filling order and (2) partially filled forms. To address the first challenge,
similar to LAFF, we use BNs in order to mine the relationships between filled fields and the target
field to avoid training a separate model for each filling order. As for the second challenge, once
again similar to LAFF, we use an endorser module to avoid providing inaccurate suggestions to the
user when the form does not contain enough information for the model. More details about the
similarities and differences between LACQUER and LAFF are provided in section 6.

We evaluated LACQUER using form filling records from both a public dataset and a proprietary
dataset extracted from a production-grade enterprise information system in the financial domain.
The experimental results show that LACQUER can accurately relax the completeness requirements
of required fields in data entry forms with a precision value between 0.76 and 0.90 when predicting
the truly required fields. In a sequential filling scenario, i.e., when users fill data entry forms in the
default order determined by the form tab sequence, LACQUER can prevent users from providing
meaningless values in 20% to 64% of the cases, with a negative predictive value (representing the
ability of LACQUER to correctly predict a field as “optional”) between 0.72 and 0.91, significantly
outperforming state-of-the-art rule-based approaches by 12 pp to 70 pp (with pp = percentage points)
on the two datasets. Furthermore, LACQUER is efficient; it takes at most 839 ms to determine the
completeness requirement of an input instance of the proprietary dataset.

To summarize, the main contributions of this paper are:
• The LACQUER approach, which addresses the problem of automated completeness require-
ments relaxation — an important challenge in designing data entry forms. To the best of our
knowledge, LACQUER is the first work to combine BNs with oversampling and a probability-
based endorser to provide accurate completeness requirement suggestions.
• An extensive evaluation assessing the effectiveness and efficiency of LACQUER and compar-
ing it with state-of-the-art baselines1.

1The implementation of LACQUER and the scripts used for evaluation are available at https://figshare.com/s/0fdeae041e
728e6d0a01; see also section 5.6.
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The rest of the paper is organized as follows. Section 2 provides a motivating example and
explains the basic definitions of automated completeness requirements relaxation and its challenges.
Section 3 introduces the basic machine learning algorithms used in this paper. Section 4 describes
the different steps and the core algorithms of LACQUER. Section 5 reports on the evaluation
of LACQUER. Section 6 surveys related work. Section 7 discusses the usefulness and practical
implication of LACQUER. Section 8 concludes the paper.

2 COMPLETENESS REQUIREMENT RELAXATION FOR DATA ENTRY FORMS
In this section, we introduce the concepts related to data entry forms, provide a motivating example,
precisely define the problem of automated completeness requirement relaxation for data entry
forms, and discuss its challenges.

2.1 Data Entry Forms
Data entry forms are composed of fields of different types, such as textual, numerical, and categorical.
Textual and numerical fields collect free text and numerical values, respectively (e.g., the name and
the age of a private customer of an energy provider); categorical fields provide a list of options
from which users have to choose (e.g., nationality). Form developers can mark form fields either
as required or optional, depending on the importance of the information to be collected. This
decision is made during the design phase of the form based on the application completeness
requirements. Such requirements capture the input data that shall be collected for certain types
of users; they are fulfilled by setting the required/optional property of the corresponding fields
in a data entry form. In other words, the required fields (also called mandatory fields [46]) of a
form collect input information considered as important to the stakeholders who plan to use the
collected information; the absence of this information could affect the application usage. On the
contrary, optional fields collect information that is nice to have but whose absence is acceptable.
For example, an energy provider cannot open a customer account when the customer name is
missing; hence, the corresponding input field in a data entry form should be marked as “required”.
At the same time, an energy provider does not need to know the education level of a new private
customer (though it could be useful for profiling), so the corresponding input field can be marked
as “optional”.
Some required fields can be further classified conditionally required, i.e., they are required only

if certain conditions hold. For example, the field “marriage date” is required only if the value of
the categorical field “civil status” is set to “married”. Data entry forms that support “conditionally
required fields” are generally called adaptive forms [6] or context-sensitive forms [3], since they
exhibit adaptive behaviors based on the values filled by users. More specifically, these types of
forms are programmed so that a field can be set from “required” to “optional” during the form-filling
session, based on the input data; a change of this property also toggles the visibility of the field
itself in the form. Such adaptive behaviours make the data entry form easier to use [3], since users
can focus on the right fields they need to fill in.

Before submitting a data entry form, the form usually conducts a client-side validation check [51]
— using some scripting language or built-in features of the environment where the form is visualized,
like HTML attributes — to ensure that all the required fields have been filled in.
In this work, we consider a simple representation of an input form, with basic input fields that

can have only a unique value that can be selected or entered, such as a text box (e.g., <input
type="text"> or <textarea> in HTML), a drop-down menu (e.g, <select> with single selection),
or a radio button (e.g., <input type="radio" in HTML). This allows us to assume that a field can
only have one completeness requirement; in other words, a field cannot be optional and required
at the same time.
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We do not support forms with more sophisticated controls or fields that can handle multiple
selections (e.g., a checkbox group for multiple-choice answers or a drop-down menu with multiple
selection), as often found in surveys and questionnaires. Note that in this case a field can be both
optional and required at the same time, depending on the number of selected values in the group2.
We plan to support this kind of complex controls as part of future work.

2.2 Motivating Example
Data entry forms are difficult to design [17] and subject to frequent changes [54]. These two
aspects of data entry form design and development negatively impact the way developers deal with
application completeness requirements in data entry forms.
For example, let us consider a data entry form in an energy provider information system, used

for opening an account for business customers. For simplicity, we assume the form has only three
required fields: “Company type” (categorical), “Field of activity” (categorical), and “Tax ID” (textual).
Sometime after the deployment of the initial version of the system, the energy provider decides to
support also the opening of customer accounts for non-profit organizations (NPOs). The developers
update the form by adding (a) a new option “NPO” to the field “Company type”, and (b) additional
fields denoting information required for NPOs. After the deployment of the new form, a data entry
operator of the energy provider (i.e., the end-user interfacing with the data entry form) notices a
blocking situation when filling in the form for an NPO. Specifically, the form flags the field “Tax
ID” as required; however, the company representative cannot provide one since the company is
exempted from paying taxes. The clerk is then obliged to fill in the required field with a meaningless
value (e.g., “@”) to pass the validation check and be able to submit the form. Several weeks later,
after noticing some issues in the generation of customers’ reports, the data quality division of the
energy provider reviews the data collected through the data entry form, detecting the presence
of meaningless values. A subsequent meeting with IT analysts and developers reveals that those
values have been introduced because the data entry form design has not been updated to take into
account the new business requirements (i.e., opening accounts for NPOs) and the corresponding
completeness requirements (i.e., some NPOs in certain fields of activity do not have a tax ID). For
example, the current (but obsolete) form design always flags “tax ID” as a required field; however,
when the “Company type” field is set to “NPO” and the “Field of activity” field is either “charity”
or “education”, the field “tax ID” should be optional.

These meaningless values filled during form filling negatively affect data quality [3], since they
are considered as data entry errors and may lead to error propagation:
• Data entry errors: Users fill obsolete required fields with incorrect data (meaningless values)
in order to proceed quickly in the workflow of the data-entry form [3].
• Error propagation: Meaningless value errors can propagate and create more errors [37],
especially when these values are used in ML-based tools.

Meaningless value errors are difficult to identify because such values can pass all validation checks
of the data entry form. A business may establish the practice of using specific values (e.g., “@” and
“-1”) when users do not need to fill some fields, as in the aforementioned example. However, even
in this case the data quality team needs to carefully check the filled fields to ensure that all the data
entry operators follow this convention, which is a time-consuming process.
Currently, there are some simple but rather impractical solutions to address the issue of filling

meaningless values, including rule-based solution and dictionary-based solution:

2An example of complex input control is the case where users need to select at least three options from a multiple choice
answer field (e.g., a checkbox group). Any option chosen before reaching the minimum number of selected values would be
considered “required”; however, the same option chosen after the first three would be considered “optional”.
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• Rule-based solution: This solution defines for each field some rules capturing the conditions
for which a required field can become optional, based on the values of the other form fields.
• Dictionary-based solution: This solution sets all fields containing meaningless values
as optional. More specifically, the data quality division could first create a dictionary of
meaningless values (e.g., “@”, “$”). Users can then use such values when a field is not
applicable in a certain form-filling scenario. Finally, the data quality division could analyze
the historical input instances and mark a field as optional when users assign a value to it
from the meaningless values dictionary. Such information could then be used to refactor the
data entry form, setting the corresponding input field as optional.

However, the two solutions are not practical. Given the evolving nature of software [22, 52], the
rule-based solution is not scalable and maintainable, especially when the number of fields (and
their possible values, for categorical fields) increases. Moreover, as is the case for our industrial
partner, it is difficult also for domain experts to formulate the completeness requirement of new
fields, since they have to decide the exact impact of different field combinations on the new fields.
Regarding the dictionary-based solution, the completeness requirement of a field usually depends
on the values of other filled fields [3] (such as the aforementioned example of Tax ID), and cannot
be detected only by looking at special/meaningless characters. This simple solution cannot help
domain experts identify these useful conditions.
Therefore, we contend it is necessary to develop automated methods to learn such conditions

directly from the data provided as input in past data entry sessions, so that completeness require-
ments of form fields can be automatically relaxed during new data entry sessions. Moreover, the
learned conditions could also help designers identify completeness requirements that should be
relaxed.

2.3 Problem Definition
In this paper, we deal with the problem of completeness requirement relaxation for data entry
forms. The problem can be informally defined as deciding whether a required field in a form can
be considered optional based on the values of the other fields and the values provided as input in
previous data entry sessions for the same form. We formally define this problem as follows.
Let us assume we have a data entry form with 𝑛 fields 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛}. Taking into account

the required/optional attribute of each field, the set of fields can be partitioned into two groups:
required fields (denoted by 𝑅) and optional fields (denoted by 𝑅), where 𝑅 ∪ 𝑅 = 𝐹 and 𝑅 ∩ 𝑅 = ∅.
Let VD represent a value domain that excludes empty values. Each field 𝑓𝑖 in 𝐹 can take a value
from a domain𝑉𝑖 , where𝑉𝑖 = VD𝑖 if the field is required and𝑉𝑖 = VD𝑖 ∪⊥ if the field is optional (⊥
is a special element representing an empty value).
Let 𝑅𝑐 ⊆ 𝑅 be the set of conditionally required fields, which are required only when a certain

condition Cond is satisfied. For a field 𝑓𝑘 ∈ 𝑅𝑐 , we define the condition Cond𝑘 as the conjunction of
predicates over the value of some other fields; more formally, Cond𝑘 =

∧
1≤𝑖≤𝑛,𝑖≠𝑘 ℎ(𝑓𝑖 , 𝑣𝑐𝑖 ), where

𝑓𝑖 ∈ 𝐹, 𝑣𝑐𝑖 ∈ 𝑉𝑖 , and ℎ is a predicate over the field 𝑓𝑖 with respect to the value 𝑣𝑐𝑖 .
During form filling, at any time 𝑡 the fields can be partitioned into two groups: fields that have

been filled completely (denoted by 𝐶𝑡 ) and unfilled fields (denoted by 𝐶𝑡 ); let 𝐺 be the operation
that extracts a field from a form during form filling 𝐺 (𝐹 ) = 𝑓 , such that (𝑓 ∈ 𝐶𝑡 ) ∨ (𝑓 ∈ 𝐶𝑡 ) and
𝐶𝑡 ∩𝐶𝑡 = ∅. By taking into account also the required/optional attribute, we have: filled required
fields (𝐶𝑡 ∩ 𝑅), filled optional fields (𝐶𝑡 ∩ 𝑅), unfilled required fields (𝐶𝑡 ∩ 𝑅), and unfilled optional
fields (𝐶𝑡 ∩ 𝑅).

When a form is about to be submitted (e.g., to be stored in a database), we define an input instance
of the form to be 𝐼 𝐹 = {⟨𝑓1, 𝑣1⟩, . . . , ⟨𝑓𝑛, 𝑣𝑛⟩} with 𝑓𝑖 ∈ 𝐹 and 𝑣𝑖 ∈ 𝑉𝑖 ; we use the subscript 𝑡 𝑗 as
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WishCompany Name

20Monthly revenue k euro

NPOCompany type

educationField of activity

Tax ID

SubmitCancel

Data entry form F

Model M𝐶𝑡

filled fields

predict

𝑓1: Company 𝑓2: Monthly
𝑓3: Company type 𝑓4: Field of
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... ... ... ... ...

UNI 39 NPO Education n/a 20180102132016
submission

Historical input instances 𝐼 𝐹 (𝑡)

train

Fig. 1. The Automated Form Filling Relaxation Problem

in 𝐼 𝐹𝑡 𝑗 to denote that the input instance 𝐼 𝐹 was submitted at time 𝑡 𝑗 . We use the notation 𝐼 𝐹 (𝑡) to
represent the set of historical input instances of the form that have been submitted up to a certain
time instant 𝑡 ; 𝐼 𝐹 (𝑡) = {𝐼 𝐹𝑡𝑖 , 𝐼

𝐹
𝑡 𝑗
, . . . , 𝐼 𝐹𝑡𝑘 }, where 𝑡𝑖 < 𝑡 𝑗 < 𝑡𝑘 < 𝑡 . Hereafter, we drop the superscript 𝐹

when it is clear from the context.
The completeness requirement relaxation problem can be defined as follows. Given a partially

filled form 𝐹 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} for which, at time 𝑡 , we know 𝐶𝑡 ≠ ∅, 𝐶𝑡 , and 𝑅𝑐 , a set of historical
input instances 𝐼 𝐹 (𝑡), and a target field 𝑓𝑝 ∈ (𝑅𝑐 ∩𝐶𝑡 ) to fill, with 𝑝 ∈ 1 . . . 𝑛, we want to build a
model𝑀 predicting whether, at time 𝑡 , 𝑓𝑝 should become optional based on 𝐶𝑡 and 𝐼 𝐹 (𝑡).

Framing the problem definition scope. In this problem definition, our goal is to relax the completeness
requirements of a form by determining which obsolete required fields should become optional to
avoid filling meaningless values. We do not consider the case in which optional fields could become
required; we leave extending LACQUER to automatically decide the completeness requirement of
all fields as part of future work.
Moreover, as mentioned in the motivating example, in this definition, we mainly focus on the

case of filling data entry forms from scratch. We do not consider the case in which an existing
instance in the database is updated (including an update of the timestamp); for example, following
our motivating example, if a company changes its “Field of activity” to “charity”, then some fields
like “tax ID” may become optional and do not need to be filled. LACQUER can be adapted to support
this scenario and check if the completeness requirement of some fields need to be changed; we also
leave this adaption as part of future work.

Application to the running example. Figure 1 is an example of a data entry form used to fill infor-
mation needed to open an account for business customers with an energy provider The form 𝐹 is
composed of five fields, including 𝑓1:“Company Name”, 𝑓2:“Monthly revenue”, 𝑓3:“Company type”,
𝑓4:“Field of activity”, and 𝑓5:“Tax ID”. All the fields are initially required (i.e., 𝑅 = {𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5}).
Values filled in these fields are then stored in a database. An example of the database is shown on the
right side of Figure 1. These values are collected during the data entry session with an automatically
recorded timestamp indicating the submission time. Each row in the database represents an input
instance (e.g., 𝐼 𝐹20180101194321 = {⟨“Company Name”,UCI⟩, . . . , ⟨“Tax ID”, T190⟩}), where the column
name corresponds to the field name in the form. The mapping can be obtained from the existing
software design documentation or software implementation [5]. Using the data collected from
different users, we can build a model𝑀 to learn possible relationships of completeness requirement
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between different fields. Let us assume a scenario where during the creation of a customer account
using 𝐹 , the energy provider clerk has entered Wish, 20, NPO, and education for fields 𝑓1 to 𝑓4,
respectively. The field 𝑓5 (“Tax ID”) is the next field to be filled. Our goal is to automatically decide
if field 𝑓5 is required or not based on the values filled in fields 𝑓1 to 𝑓4.

2.4 Towards adaptive forms: challenges
Several tools for adaptive forms have been proposed [6, 19, 49]. These approaches use intermediate
representations such as XML [6] and dynamic condition response graphs [49] to represent the
completeness requirements rules and implement adaptive behaviours. Existing tools for adaptive
forms usually assume that form designers already have, during the design phase, a complete and
final set of completeness requirements, capturing the conditions for which a field should be required
or optional.

However, this assumption is not valid in real-world applications. On one hand, data entry forms
are not easy to design [17]. Data entry forms need to reflect the data that need to be filled in an
application domain. Due to time pressure and the complexity of the domain (e.g., the number
of fields needed to be filled and their interrelation), it is difficult to identify all the completeness
requirements when designing the data entry form [2, 12]. On the other hand, data entry forms are
subject to change: a recent study [54] has shown that 49% of web applications will modify their
data constraints in a future version. The frequent changes in data constraints may also make the
existing completeness requirements obsolete.

Hence the main challenge is how to create adaptive forms when the set of completeness require-
ments representing the adaptive behaviour of a form is incomplete and evolving.

3 PRELIMINARIES
Before illustrating our approach, we first briefly introduce two basic machine-learning algorithms
we rely on.

3.1 Bayesian Networks
Bayesian networks (BNs) are probabilistic graphical models (PGM) in which a set of random vari-
ables and their conditional dependencies are encoded as a directed acyclic graph: nodes correspond
to random variables and edges correspond to conditional probabilities.

The use of BNs for supervised learning [20] typically consists of two phases: structure learning
and variable inference.
During structure learning, the graphical structure of the BN is automatically learned from a

training set. First, the conditional probability between any two random variables is computed.
Based on these probabilities, optimization-based search (e.g., hill climbing [21]) is applied to search
the graphical structure. The search algorithm initializes a random structure, and then iteratively
adds or deletes its nodes and edges to generate new structures. For each new structure, the search
algorithm calculates a fitness function (e.g., Bayesian information criterion, BIC [40]) based on the
nodes’ conditional probabilities and on Bayes’ theorem [20]. Structure learning stops when it finds
a graphical structure that minimizes the fitness function.

Figure 2 shows an example of the BN structure learned based on the data submitted by the data
entry form used in our example in section 2.2. This BN contains three nodes corresponding to
three fields in the data entry form: variable Revenue depends on variable Company type; variable
Tax ID depends on variables Company type and 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 . For simplicity, we assume that the three
variables are Boolean where 𝑎, 𝑏, and 𝑐 denote that fields Company type, Revenue, and Tax ID are
“required” respectively, and 𝑎, 𝑏, and 𝑐 denote that these fields are optional.
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Company type

RevenueTax ID

𝑃 (Revenue | Company type)

Company type
Revenue

𝑏 𝑏

𝑎 0.4 0.6
𝑎 0.1 0.9

𝑃 (Tax ID | Company type, Revenue)

Company type Revenue
Tax ID

𝑐 𝑐

𝑎 𝑏 0.9 0.1
𝑎 𝑏 0.4 0.6
𝑎 𝑏 0.4 0.6
𝑎 𝑏 0.1 0.9

𝑃 (Company type)
𝑎 𝑎

0.2 0.8

Fig. 2. An Example of BN and the Probability Functions of its Nodes

In the PGM, each node is associated with a probability function (in this case, encoded as a table),
which represents the conditional probability between the node and its parent(s). For example, in
Figure 2 each variable has two values; the probability table for Revenue reflects the conditional
probability 𝑃 (Revenue | Company type) between Company type and Revenue on these values.
Variable inference infers unobserved variables from the observed variables and the graphical

structure of the BN using Bayes’ theorem [20]. For example, we can infer the probability of Tax ID
to be required (i.e., Tax ID = 𝑐) when the completeness requirement of Company type is required
(denoted by 𝑃 (𝑐 | 𝑎)) as follows:

𝑃 (𝑐 | 𝑎) = 𝑃 (𝑎, 𝑐)
𝑃 (𝑎) =

𝑃 (𝑎, 𝑏, 𝑐) + 𝑃 (𝑎, 𝑏, 𝑐)
𝑃 (𝑎)

=
𝑃 (𝑐 | 𝑎, 𝑏)𝑃 (𝑏 | 𝑎)𝑃 (𝑎) + 𝑃 (𝑐 | 𝑎, 𝑏)𝑃 (𝑏 | 𝑎)𝑃 (𝑎)

𝑃 (𝑎)

=
0.9 ∗ 0.4 ∗ 0.2 + 0.4 ∗ 0.6 ∗ 0.2

0.2 = 0.6

BNs have been initially proposed for learning dependencies among discrete random variables.
They are also robust when dealing with missing observed variables; more specifically, variable infer-
ence can be conducted when some conditionally independent observed variables are missing [20].
Recently, they have been applied in the context of automated form filling [5].

3.2 Synthetic Minority Oversampling Technique (SMOTE)
A frequently encountered problem for training machine learning models using real-world data is
that the number of instances per class can be imbalanced [32, 48]. To address this problem, many
imbalanced learning approaches have been proposed in the literature. One of them is SMOTE [9];
it uses an oversampling method to modify the class distribution in a dataset (i.e., the ratio between
instances in different classes). It synthesizes new minority class instances to improve the learning
ability of machine learning algorithms on the minority class. SMOTE conducts the instance syn-
thesis by means of interpolation between near neighbors. Initially, each instance in the dataset is
represented as a feature vector. SMOTE starts by randomly selecting a minority class instance 𝑖
from the dataset. It determines the 𝑘 nearest neighbors of 𝑖 from the remaining instances in the
minority class by calculating their distance (e.g., the Euler distance) based on their feature vectors.
SMOTE synthesizes new instances using 𝑛 instances randomly selected from the 𝑘 neighbors. The
selection is random to increase the diversity of the generated new instances. For each selected
instance, SMOTE computes a “difference vector” that represents the difference of the feature vectors
between the selected instance and instance 𝑖 . SMOTE synthesizes new instances by adding an
offset to the feature vector of instance 𝑖 , where the offset is the product of the difference vector
with a random number between 0 and 1. SMOTE stops generating new instances until a predefined
condition is satisfied (e.g., the ratio of instances in the majority and minority classes is the same).
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𝑓2: Monthly
𝑓3: Targetrevenue

i1 39 Optional
i2 42 Optional
i3 25 Optional
i4 100 Required
i5 150 Required
i6 200 Required
i7 400 Required

𝑓2: Monthly
𝑓3: Targetrevenue

i1 39 Optional
i2 42 Optional
i3 25 Optional
i4 100 Required
i5 150 Required
i6 200 Required
i7 400 Required
i8 40 Optional

SMOTE

Fig. 3. An Example of SMOTE Interpolation

Historical
input instances

Pre-processing

Model building

Pre-processing

Prediction Endorsing

Current input Rquired 0.70
Optional 0.30

Threshold determination

BNs
Probabilistic
distribution

SuggestionsA B

C

A Model Building Phase, B Form Filling Relaxation Phase, and C Thresh-
old Determination Phase

Fig. 4. Main Steps of the LACQUER Approach

Figure 3 illustrates the application of SMOTE to create new minority class instances. As shown
in the table on the right, instances 𝑖1,𝑖2, and 𝑖3 belong to the minority class “Optional” of our target
field. As a preliminary step, SMOTE computes the Euclidean distance between all the minority
instances: 𝑑 (𝑖1, 𝑖2) =

√︁
(39 − 42)2 = 3, 𝑑 (𝑖1, 𝑖3) =

√︁
(39 − 25)2 = 14, and 𝑑 (𝑖2, 𝑖3) =

√︁
(42 − 25)2 = 17.

SMOTE starts by randomly picking one instance from the minority class (e.g., 𝑖2). Assuming that
the value of 𝑘 is equal to 1, SMOTE selects the nearest instance to 𝑖2, which in our example is the
instance 𝑖1. In order to create a new instance 𝑖8, SMOTE computes the Difference vector based on
the feature vectorsMonthly revenue𝑖2 andMonthly revenue𝑖1 , and multiplies it by a random value _
between 0 and 1. The value of the “Monthly revenue” column in the synthetically created instance
𝑖8 is equal to Monthly revenue𝑖2+ Difference vector . In our example, assuming that the value of _ is
equal to 0.7, the new value of the “Monthly revenue” field for 𝑖8 is equal to 42+ ((39−42) ∗0.7) = 40.

4 APPROACH
In this section, we present our machine learning approach for data entry form relaxation named
LACQUER (Learning-bAsed Completeness reQUirEments Relaxation).
As shown in Figure 4, LACQUER includes three phases: model building, form filling relaxation,

and threshold determination. LACQUER preprocesses the historical input instances related to a
data entry form and identifies the meaningless values in them. The historical input instances are
divided in two parts: historical input instances for training (training input instances) and historical
input instances for tuning (tuning input instances) used for threshold determination. In the first
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phase, LACQUER builds BN models on the preprocessed training input instances to represent the
completeness requirement dependencies between form fields. This phase occurs offline before
deploying LACQUER as a completeness requirement relaxation tool for data entry. The form
filling relaxation phase occurs during the data entry session and assumes that all the models have
been built. During this phase, given a target field, LACQUER selects the BN model related to the
target from all the BN models and predicts the completeness requirement of the target, taking
into account the values of the filled fields captured during the form filling process. To improve
prediction accuracy, LACQUER includes an endorser module that seeks to only provide users with
predictions whose confidence level is higher than a minimum threshold. The value of the threshold
is automatically determined in the threshold determination phase.

LACQUER is inspired by our previous work on automated form filling [5]; the main differences
between the two approaches are discussed in section 6.

4.1 Pre-processing
The first two phases of LACQUER include a preprocessing step to improve the quality of the data
in historical input instances as well as the current input instance. As mentioned in section 2.1, data
entry forms can contain fields that are not applicable to certain users; this is the main cause of the
presence ofmissing values andmeaningless values in historical input instances.Missing values occur
when users skip filling an (optional) field during form filling. A meaningless value is defined as any
value filled into a form field that can be accepted during the validation check but does not conform
with the semantics of the field. For example, given a data entry form with a textual field “Tax ID”,
if a user fills “n/a” in this field, the value can be accepted during the submission of the instance3;
however, it should be deemed meaningless since “n/a” does not represent an actual “Tax ID”.

For missing values, we replace them with a dummy value “Optional” in the corresponding field.
As for the meaningless values, we first create a dictionary containing possible meaningless values
based on domain knowledge. This dictionary is used to match possible meaningless values in
historical input instances; we replace the matched values with “Optional”. The rationale for this
strategy is that it is common practice, within an enterprise, to suggest data entry operators some
specific keywords when a field is not applicable for them. For example, our industrial partner
recommends users to fill such fields with special characters such as “@” and “$”. The overarching
intuition behind replacing missing values and meaningless values with “Optional” is that, when data
entry operators skip filling a field (resulting in a missing value in the form) or put a meaningless
value, it usually means that this field is not applicable in the current context.

After detecting missing values and meaningless values, we preprocess other filled values. For
textual fields, we replace all valid values with a dummy value “Required”, reflecting the fact that data
entry operators deemed these fields to be applicable. After preprocessing, all values in textual fields
are therefore either “Required” and “Optional” to help the model learn the completeness requirement
based on this abstract presentation. Numerical fields can be important to decide the completeness
requirement of other fields. For example, companies reaching a certain monthly revenue can have
some specific required fields. For this reason, we apply data discretization to numerical fields to
reduce the number of unique numeric values. Each numeric value is represented as an interval, which
is determined using the widely used discretization method based on information gain analysis [7].
We do not preprocess categorical fields since they have a finite number of candidate values. We
keep the original values of categorical fields since users who select the same category value may
share common required information. At last, we delete all the fields that are consistently marked as

3We assume the validation check does not check for the well-formedness of the string corresponding to the Tax ID.
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𝑓1: Company 𝑓2: Monthly
𝑓3: Company type 𝑓4: Field of

𝑓5: Tax IDname revenue activity
(Textual) (Numerical) (Categorical) (Categorical) (Textual)

UCI→ Required 20→[20,22) Large enterprise Real estate T190

KDL→ Required 21→[20,22) Large enterprise Manufacturing T201

EoP→ Required @→Optional Large enterprise Manufacturing T200

UNI→ Required 39→[39,41) NPO Education n/a→Optional

Fig. 5. Example of Pre-processed Historical Input Instances

“Required” or “Optional”, because such fields do not provide any discriminative knowledge to the
model.
During the data entry session, similar preprocessing steps are applied. We skip values filled

in fields that were removed in historical input instances. We replace values in textual fields with
“Required” and “Optional”, as described above. We also map numerical values onto intervals and
keep values in categorical fields.
The historical input instances are then divided in two parts that will be used separately for

training (training input instances) and for the threshold determination (tuning input instances).

Application to the running example. Figure 5 shows an example of historical input instances collected
from the data entry form presented in Figure 1. During the preprocessing phase, LACQUER identifies
meaningless values in different fields (e.g., “n/a” and “@”) and replaces them by the dummy value
Optional. For the remaining “meaningful” values, LACQUER replaces values in the textual field
“Company name” to the dummy value Required; values in the field “Monthly revenue” are discretized
into intervals. In addition to historical input instances, LACQUER also preprocesses the input
instance filled during the data entry session. For example, as shown in Figure 1, a user fills values
Wish, 20, NPO, and Education in fields “Company name”, “Monthly revenue”, “Company type”, and
“Field of activity”, respectively. LACQUER will replace the value filled in the field “Company name”
to “Required”, since it is a meaningful value. LACQUER also maps the value in the field “Monthly
revenue” into the interval [20, 22).

4.2 Model Building
The model building phase aims to learn the completeness requirement dependencies between
different fields from training input instances related to a data entry form.

During the data entry session, we consider the filled fields as features to predict the completeness
requirement of the target field (i.e., optional or required). However, in our previous work [5] we
have shown that in an extreme scenario, users could follow any arbitrary order to fill the form,
resulting in a large set of feature-target combinations. For example, given a data entry form with
𝑛 fields, when we consider one of the fields as the target, we can get a total number of up to
2𝑛−1 − 1 feature (i.e., filled fields) combinations. Based on the assumption of identical features
and targets [14] to train and test a machine learning model, a model needs to be trained on each
feature-target combination, which would lead to training an impractical large number of models.
To deal with this problem, we select BNs as the machine learning models to capture the com-

pleteness requirement dependencies between filled fields and the target field, without training
models on specific combinations of fields. As already discussed in our previous work [5], the reason
is that BNs can infer the value of a target field using only information in the filled fields and the
related PGM (see section 3.1); BNs automatically deal with the missing conditionally independent
variables (i.e., unfilled fields).

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article 1. Publication date: January 2023.



Learning-Based Relaxation of Completeness Requirements for Data Entry Forms 1:13

Algorithm 1:Model Building
Input: Set of preprocessed historical input instances 𝐼𝐹 (𝑡 ) ′train for training
Output: Dictionary of probabilistic graphical modelsM

1 M ←empty dictionary;
2 List of fields fields← getFields (𝐼𝐹 (𝑡 ) ′train ) ;
3 foreach field 𝑓𝑖 ∈ fields do
4 Temporary training set train𝑓𝑖 ← getDataSetForField (𝐼𝐹 (𝑡 ) ′train, 𝑓𝑖 ) ;
5 Oversampled Training set trainoversample

𝑓𝑖
← SMOTE (train𝑓𝑖 , 𝑓𝑖 ) ;

6 Model𝑀𝑖 ← trainBayesianNetwork (trainoversample
𝑓𝑖

) ;
7 M[ 𝑓𝑖 ] ← 𝑀𝑖

8 end
9 returnM;

𝑓2: Monthly
𝑓3: Company type 𝑓4: Field of

𝑓5: Tax IDrevenue activity
(Numerical) (Categorical) (Categorical) (Textual)

[20, 22) Large enterprise Real estate T190

[20, 22) Large enterprise Manufacturing T201

Optional Large enterprise Manufacturing T200

[39, 41) NPO Education Optional

Preprocessed historical input instances

𝑓2: Monthly
𝑓3: Company type 𝑓4: Field of

𝑓5: Tax IDrevenue activity
(Numerical) (Categorical) (Categorical) (Textual)

[20, 22) Large enterprise Real estate Required

[20, 22) Large enterprise Manufacturing Required

Optional Large enterprise Manufacturing Required

[39, 41) NPO Education Optional

Temporary training set for target “Tax ID”

𝑓2: Monthly
𝑓3: Company type 𝑓4: Field of

𝑓5: Tax IDrevenue activity
(Numerical) (Categorical) (Categorical) (Textual)

[20, 22) Large enterprise Real estate Required

[20, 22) Large enterprise Manufacturing Required

Optional Large enterprise Manufacturing Required

[39, 41) NPO Education Optional

[39, 41) NPO Education Optional

[39, 41) NPO Education Optional

Oversampled training set

𝑓3

𝑓4

𝑓2 𝑓5

The BN model for “Tax ID”

A

B

C

D

Fig. 6. Workflow of the Model Building Phase

In this work, LACQUER learns the BN structure representing the completeness requirement
dependencies from training input instances. Each field in the data entry form represents a node
(random variable) in the BN structure; the edges between different nodes are the dependencies
between different fields. In order to construct the optimal network structure, BN performs a search-
based optimization based on the conditional probabilities of the fields and a fitness function. As
in our previous work [5], we use hill climbing as the optimizer to learn the BN structure with a
fitness function based on BIC [40].
Algorithm 1 illustrates the main steps of this phase. LACQUER takes as input a set of prepro-

cessed historical input instances 𝐼 𝐹 (𝑡)′train for training and learning the completeness requirement
dependencies (e.g., the input instances in block A of Figure 6). Initially, for each field 𝑓𝑖 in the list
of fields extracted from 𝐼 𝐹 (𝑡)′train (line 2), we create a temporary training set where we consider the
field 𝑓𝑖 as the target (line 4). Since we aim to predict whether the target field is required or optional
during form filling, in the temporary training set, we keep the value “Optional” in the target field
𝑓𝑖 and label other values as “Required” (block B in Figure 6). These two values are the classes
according to which to predict 𝑓𝑖 .
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Filled fields
𝑓2:Monthly

revenue=[20, 22]
𝑓3:Company
type =NPO
𝑓4:Field of
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Target
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current input

Model for
target “Tax ID”

....

Model for
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B Endorsing

Fig. 7. Workflow for Form Relaxation Phase

However, we may not train effective classification models directly on this temporary training set.
This is caused by the imbalanced nature of input instances for different classes. Users commonly
enter correct and meaningful values during form filling. They only fill meaningless values in certain
cases. As a result, the number of input instances having meaningless values (i.e., in the “Optional”
class) is usually smaller than the number of input instances in the “Required” class. This can make
the learning process inaccurate [29], since machine learning models may consider the minority
class as noise [43]. The trained models could also over-classify the majority class due to its increased
prior probability [29]. For example in block B of Figure 6, considering that the column “𝑓5: Tax
ID” is the current target, the number of instances in class “Required” is three, which is higher than
the single instance in class “Optional”. If we train a model on such imbalanced dataset, it might be
difficult to learn the conditions (or dependencies) to relax this field as optional due to the small
number of “Optional” instances.

To solve this problem, we apply SMOTE (line 5) on the temporary training set train𝑓𝑖 to generate
an oversampled training set trainoversample

𝑓𝑖
(as shown in block C in Figure 6). After oversampling,

both classes have the same number of input instances. We train a BN model 𝑀𝑖 based on the
oversampled training set for the target field 𝑓𝑖 (line 6). For example, block D in Figure 6 represents
the model built for the target field “Tax ID”. Following this step, we can obtain a BN model for each
field. We save all the BN models in the dictionaryM (line 7), where the key represents the name of
the field and the value is the corresponding trained BN model. The output of Algorithm 1 is the
dictionaryM.

Application to the running example. Given the preprocessed training input instances shown in block
A in Figure 6, LACQUER creates a temporary training set for each target (e.g., the field “Tax ID”),
where LACQUER replaces the meaningful and meaningless values of the target field to Required
and Optional, respectively (in block B ). The temporary training set is oversampled using SMOTE
to create a balanced training set where the number of instances of both Required and Optional
classes is the same (block C of Figure 6). This oversampled training set is used to train a BN
model for the target field “Tax ID”. An example of the trained BN model is presented in block D
in Figure 6. After the model building phase, LACQUER outputs a model for each target. For the
example of training input instances related to Figure 1, LACQUER returns five distinct models
where each model captures the completeness requirement dependencies for a given target.
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Algorithm 2: Form Filling Relaxation
Input: Dictionary of ModelsM = { 𝑓1 : 𝑀1, . . . , 𝑓𝑘 : 𝑀𝑘 }

Set of Filled fields𝐶𝑡 = {⟨𝑓 𝑐1 , 𝑣𝑐1 ⟩, . . . , ⟨𝑓 𝑐𝑚, 𝑣𝑐𝑚 ⟩}
Target field 𝑓𝑝

Threshold \𝑝
Output: A Boolean checkOP𝑝 , representing the decision to set field 𝑓𝑝 to optional

1 Set𝐶′𝑡 ← getPreprocessedData(𝐶𝑡 ) ;
2 Model𝑀𝑝 ← M[ 𝑓𝑝 ];
3 List of pairs of completeness requirements and probability distribution ⟨cr, pr ⟩list = predictCR(𝑀p,𝐶

′
𝑡 , 𝑓𝑝 ) ;

4 Top-ranked pair ⟨crtop, prtop ⟩ = getTopRanked (⟨cr, pr ⟩list ) ;
5 Boolean checkOP𝑝 ← isOptional (crtop ) ;
6 if checkOP𝑝 then
7 Boolean checkProb← (𝑝𝑟top < \𝑝 ) ;
8 if checkProb then
9 checkOP𝑝 ← “false”;

10 end
11 end
12 return checkOP𝑝 ;

4.3 Form Filling Relaxation
The form filling relaxation phase is an online phase that occurs during the data entry session. In
this phase, LACQUER selects the model𝑀𝑝 ∈ M corresponding to the target field 𝑓𝑝 . This model is
then used to predict the completeness requirement of the target 𝑓𝑝 based on the filled fields𝐶𝑡 . The
main steps are shown in Algorithm 2.
The inputs of the algorithm are the dictionary of trained modelsM, the set 𝐶𝑡 representing

the filled fields during the entry session and their values, the target field 𝑓𝑝 , and the endorsing
threshold \𝑝 for 𝑓𝑝 . The algorithm starts by applying the preprocessing techniques outlined in § 4.1
to the set of the filled fields in𝐶𝑡 in order to obtain a new set of preprocessed filled fields𝐶′𝑡 (line 1).
LACQUER then selects the model 𝑀𝑝 fromM (line 2), since this model is trained for the target
field 𝑓𝑝 based on the oversampled data with a balanced number of instances for each class of 𝑓𝑝 .
With the selected model, LACQUER predicts the completeness requirement for 𝑓𝑝 (line 3) and gets
the top-ranked completeness requirement based on the prediction probability (line 4).

Endorsing. During the data entry session, values in filled fields do not always provide enough
knowledge for the model to accurately predict the completeness requirement of a given target
field. This happens because when training BN models, there may not be enough information in the
training input instances to learn the dependencies among some fields with specific values.

However, in the context of form filling relaxation, it is important to provide accurate completeness
requirement suggestions. On the one hand, wrongly predicting optional fields as required adds
more constraints to the data entry form; users will be obliged to fill fields with meaningless values.
On the other hand, wrongly predicting a required field as optional can result in missing information.
In order to prevent this situation, LACQUER includes a heuristic-based endorser module that
decides if the predicted completeness requirement is correct or not. Since our main goal is to relax
the completeness requirement by predicting when a required field should be optional, we mainly
use the endorser to endorse the prediction where the target field is predicted as “Optional”. If
the prediction is endorsed, we set the field to “Optional”; otherwise, we use its previous setting
(“Required”).

Specifically, LACQUER checks if the top-ranked completeness requirement is equal to “Optional”;
it saves the result in the Boolean flag checkOP𝑝 (line 5). If the value of checkOP𝑝 evaluates to
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Algorithm 3: Endorser Threshold Determination
Input: Set of pre-processed historical input instances 𝐼𝐹 (𝑡 ) ′tune for tuning

Dictionary of ModelsM = { 𝑓0 : 𝑀0, 𝑓1 : 𝑀1, . . . , 𝑓𝑘 : 𝑀𝑘 }
Output: Dictionary of thresholds \

1 \ ←empty dict;
2 List of fields fields← getFields (𝐼𝐹 (𝑡 ) ′tune ) ;
3 foreach field 𝑓𝑖 ∈ fields do
4 tempth ←empty dictionary;
5 𝐼𝐹 (𝑡 ) ′tune𝑖 = getDataSetForField (𝐼𝐹 (𝑡 ) ′tune, 𝑓𝑖 ) ;
6 Model𝑀𝑖 ← M[ 𝑓𝑖 ];
7 for n= 0 to 1 (step 0.05) do
8 predictedCRAll = predictCRAllInstances (𝑀i, 𝐼

𝐹 (𝑡 ) ′tune𝑖 , 𝑛) ;
9 score = evaluate (𝐼𝐹 (𝑡 ) ′tune𝑖 , predictedCRAll) ;

10 tempth [𝑛] = score;
11 end
12 \ [i] = getBestScore (tempth ) ;
13 end
14 return \ ;

true, LACQUER analyses the probability distribution of the predicted completeness requirement
of the target field since it reflects whether LACQUER has enough “confidence” in the prediction
based on current information. We check if the probability for the field to be “Optional” is lower
than a threshold \𝑝 for target 𝑓𝑝 (line 7), saving the result in the Boolean flag checkProb. If the
value of checkProb evaluates to true, we change the value of the Boolean flag checkOP𝑝 to false
(line 9) since it implies the model does not have enough “confidence” for variable inference and
prediction; otherwise, LACQUER keeps the prediction as “Optional”. The threshold\ is automatically
determined; its value differs for different targets (as discussed in § 4.4). We use different threshold
values because the prediction is done by models trained on different data and the variance of the
data can have a significant effect on prediction accuracy [53].

Application to the running example. Figure 7 shows the process of predicting the completeness
requirement of the field “Tax ID” based on the input values in Figure 1. LACQUER first selects the
model related to the current target for prediction (block A in Figure 7). Let us assume that, based
on the BN variable inference, LACQUER predicts that field “Tax ID” has a probability of 0.80 to
be Optional. Since the top predicted value is Optional, LACQUER activates the endorser module
(block B in Figure 7) to decide whether the level of confidence is acceptable. For example, let us
assume the automatically decided threshold value for field “Tax ID” is 0.70 (i.e., \taxID=0.70). Since
the probability value of the “Optional” class (0.80) is higher than this threshold, the Boolean flag
checkOPTaxID remains true. LACQUER decides to set the field “Tax ID” to Optional.

4.4 Endorser Threshold Determination
We automatically determine the value of the threshold in the endorser module for each target. This
step occurs offline and assumes that the models inM built during the model building phase are
available. The threshold \𝑖 for the target field 𝑖 is determined with the set of preprocessed tuning
input instances. The basic idea is that for each historical input instance in this subset, we consider
all fields except field 𝑖 to be filled and use the model trained for field 𝑖 to predict its completeness
requirement with different values of \𝑖 . We determine the value of \𝑖 based on the value that
achieves the highest prediction accuracy on tuning input instances.
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Table 1. Information about the Fields in the Datasets

Dataset # of # of # of Name of required fields
fields instances required fields (% of missing and meaningless values)

NCBI 26 235538 6 sample-name(0), tissue(0.130), isolate(0.351), sex(0.351)
biomaterial-provider(0.1), age(0.543)

PEIS 33 73082 19

legal name(0), contact name(0), first name(0.113),
place of birth(0.127), native country(0.127), status(0),
year of study(0.94), function(0), employer name(0.35),
name of school/university(0.84), type of contract(0),

contract start date(0.668), date of end of contract(0.974),
field of activity (0), code NACE(0.123), primary activity(0),

country of activity(0),percentage of activity(0)

The main steps are shown in Algorithm 3. The algorithm takes as input the set of preprocessed
historical input instances for tuning 𝐼 𝐹 (𝑡)′tune and the trained modelsM. For each field 𝑓𝑖 in the list
of fields extracted from 𝐼 𝐹 (𝑡)′tune (line 2), we generate a temporary dataset 𝐼 𝐹 (𝑡)′tune𝑖 where the value
of field 𝑓𝑖 is transformed into “Optional” and “Required” using the method presented in Figure 6(B)
(line 5). We select the model corresponding to 𝑓𝑖 fromM (line 6) and use the selected model to
predict the completeness requirement of field 𝑓𝑖 based on the values of other fields in 𝐼 𝐹 (𝑡)′tune𝑖
(line 8). While predicting, we try different thresholds, varying from 0 to 1 with a step equal to 0.05.
For each threshold value, we compare the predicted completeness requirement with the actual
completeness requirement of field 𝑓𝑖 in each input instance of 𝐼 𝐹 (𝑡)′tune𝑖 to calculate the prediction
accuracy (line 9). LACQUER selects the value of \𝑖 that achieves the highest prediction accuracy
value in 𝐼 𝐹 (𝑡)′tune𝑖 as the threshold for 𝑓𝑖 (line 12). The algorithm ends by returning a dictionary
containing the thresholds of all fields.

5 EVALUATION
In this section, we report on the evaluation of our approach for automated completeness requirement
relaxation. First, we assess the overall accuracy of LACQUER when predicting the completeness
requirement of fields in data entry forms, and compare it with state-of-the-art baselines. We then
assess the performance of LACQUER, in terms of training time and prediction time, for practical
applications. Last, we perform an ablation study to evaluate how the use of SMOTE (in the model
building phase) and the heuristic-based endorser (in the form filling relaxation phase) affects the
accuracy of LACQUER.

More specifically, we evaluated LACQUER by answering the following research questions (RQs):
RQ1 Can LACQUER provide accurate predictions for completeness requirement relaxation, and how

does it compare with baseline algorithms?
RQ2 Is the performance of LACQUER, in terms of training and prediction time, suitable for practical

applications?
RQ3 What is the impact of using SMOTE and the heuristic-based endorser on the effectiveness of

LACQUER?

5.1 Dataset and Settings
Datasets. We selected the datasets used for the evaluation of LACQUER according to the following
criteria: (1) data should be collected from a real data entry form; (2) the form fields should have
different completeness requirements (i.e., required and optional); and (3) the data entry form should
have obsolete required fields, where users could use meaningless values to pass the validation
checks.
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We identified two datasets meeting these criteria: one publicly available in the biomedical domain
(dubbed NCBI) and another proprietary dataset, extracted from a production-grade enterprise
information system, provided by our industrial partner (dubbed PEIS). Each dataset consists of data
collected from one real-world data entry form.

Other datasets used in related work on adaptive data entry forms (see also section 6) were either
not mentioned [19, 50], unavailable [6], or confidential [49]. In addition, we also analyzed datasets
from surveys conducted in countries with transparency policies (e.g., the USA “National Survey on
Drug Use and Health” [8]). However, these surveys do not contain a detailed specification defining
the completeness requirement of each field and thus the corresponding dataset does not meet our
selection criterion #2.

Both datasets are represented by a data table where each row corresponds to an input instance
filled by a user and each column represents a specific field in the data entry form; an input instance
represents all the field values as submitted by a user.

The NCBI dataset is composed of metadata for diverse types of biological samples from multiple
species [4]; it has been used in previous work on automated form filling [5, 33]. This dataset
provides the design of the corresponding data entry form in the CEDAR workbench [24] with
the list of completeness requirements for different fields. Following the evaluation methodology
described in previous work [33], we considered a specific subset from the NCBI dataset related
to the species “Homo sapiens” for evaluation. We downloaded the dataset from the official NCBI
website4.

As shown in Table 1, the NCBI dataset contains 235 538 instances5 and has 26 fields, six of which
are required. These six fields are always required and are not subject to any additional conditions.
We identify the meaningless values in the required fields using the strategy presented in section 4.1,
i.e., mapping the actual value in the data with the dictionary of meaningless values obtained from the
domain knowledge. In Table 1, next to each field we indicate the ratio of instances having missing
or meaningless values. The ratio of meaningless values6 varies from 0.1 (for biomaterial-provider)
to 0.543 (for age). The case when the ratio of meaningless values is equal to 0 (i.e., sample-name)
represents the situation where the field was correctly filled for all the instances in the dataset.
Based on the ratio of meaningless values in Table 1, we find that the number of instances

for meaningless and valid values is imbalanced for most of the fields. For example, the ratio of
meaningless values for tissue is 0.130. The field age has more meaningless values with a ratio of
0.543. The reason for this relatively high ratio could be that the completeness requirement (i.e.,
“Required”) of this field does not conform with the actual need in the real world; that is, the field
age is not required when the actual concept of “age” does not apply to a certain type of biomaterial
(e.g., for protein TM-1 [47]).

The PEIS dataset contains the data filled through the web-based data entry form during the
process of creating a new customer account. The dataset was extracted from the database of our
industrial partner. Similar to the NCBI dataset, each row in the table represents an instance and
each column represents a form field. We identified the mapping between column names in the table
and field names in the data entry form using the available software documentation.
As shown in Table 1, the PEIS dataset has 33 fields, 19 of which are required (including con-

ditionally required). In this dataset, nine of the required fields do not have missing/meaningless
values (i.e., the ratio of meaningless values is 0). For the rest of the fields, the ratio of instances
4 https://ftp.ncbi.nlm.nih.gov/biosample/
5The number of instances is different from that indicated in our previous work [5] since the preprocessing step in that work
retained only instances with at least three fields being filled. In contrast, in this work we keep fields with missing values to
analyze completeness requirements.
6Required fields in the NCBI dataset have no missing values since they are always required.
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𝑓1: Company 𝑓2: Monthly
𝑓3: Company type 𝑓4: Field of

𝑓5: Tax ID Submissionname revenue activity
(Textual) (Numerical) (Categorical) (Categorical) (Textual)

UCI 20 Large enterprise Real estate T190 20180101194321

KDL 21 Large enterprise Manufacturing T201 20180101194723

... ... ... ... ...

JBL 21 NPO Charity t211 20180101194837

LBC 21 Large enterprise Manufacturing T221 20180101204725

MBC 39 NPO Education t200 20180102132016

Dataset

Testing input
instance

Sequential: 𝑓1 → 𝑓2 → 𝑓3 → 𝑓4 → 𝑓5
>>S1: 𝑓1=MBC, 𝑓2=Required? ;
>>S2: 𝑓1=MBC, 𝑓2=39, 𝑓3=NPO, 𝑓4=Education,
𝑓5=Required?

Partial random: 𝑓1 → (𝑓3 → 𝑓4) → 𝑓2 → 𝑓5
>>PR1: 𝑓1=MBC, 𝑓3=NPO, 𝑓4=Education,
𝑓2=Required?
>>PR2: 𝑓1=MBC, 𝑓3=NPO, 𝑓4=Education,
𝑓2=39,𝑓5=Required?

Fig. 8. Example of Filling Orders

with missing or meaningless values ranges from 0.113 to 0.974. The reason behind having a high
ratio of meaningless values in some fields, is that those fields are conditionally required. They are
rarely to be required in real scenarios, which leads to many missing values.

Dataset Preparation. For the two datasets, we consider all the required fields as targets since we aim
to learn the conditions to relax them as optional (for avoiding meaningless values and improving the
overall data quality). However, we do not consider fields where the ratio of missing and meaningless
values is 0, as they have no relaxation conditions to learn. We split the dataset into three subsets
containing 80%, 10%, and 10% of input instances based on their submission time, used respectively
for training, tuning, and testing. The input instances (excluding submission time) in the training
set are used to train LACQUER. The validation set is used to decide the endorser threshold for each
field following the strategy explained in section 4.4.

As for the testing input instances, since there is no information on the actual form filling order,
we simulated two form filling orders for data entry, including “sequential filling” and “partial
random filling”.
The former corresponds to filling data entry forms in the default order, as determined by the

form tab sequence, e.g., the navigation order determined by the HTML attribute tabindex in web
UI designs [18]. It simulates the logical order many users follow to fill out forms, especially when
they use a keyboard to navigate form fields [35]. The latter represents the case when designers
group some semantics-related fields together and add controls to force users filling a group of fields
sequentially [10]; outside these groups, users can fill fields randomly.

We simulated partial random filling by randomly generating a field order for each testing input
instance while respecting the sequential order of the fields in the same group. In the case where
there is no grouping or controls in the form, the partial random filling scenario turns into to a
(complete) random filling scenario. The reason to simulate the partial random filling scenario is
that by capturing the fields’ grouping information, this scenario is more realistic compared to a
(complete) random filling scenario.

In both form filling scenarios, the filled fields considered by LACQUER are the fields that precede
each target. For each target field, we labeled as “Optional” the instances in which the target field
contains missing or meaningless values; otherwise they are labeled as “Required”. “Optional” and
“Required” are the two classes that we consider as ground truth.

Dataset Preparation - Application Example. Figure 8 illustrates an example of application of our
dataset preparation method. The table on the left-hand side of the picture represents the information
submitted during the data entry session through the data entry form introduced in our motivating
example in section 2.3. We split this dataset into a training set (80% of instances), a tuning set
(10% of instances), and a testing set (10% of instances); let us assume the last row in the table is
an instance in the testing set. The testing set is then processed to simulate the two form filling
scenarios. The sequential filling scenario uses the filling order following the tabindex value of
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the form fields. Assuming the tabindex order for the example is 𝑓1 → 𝑓2 → 𝑓3 → 𝑓4 → 𝑓5, we
can generate two test instances S1 and S2 (shown in the top right box of Figure 8) to predict the
completeness requirement of 𝑓2 and 𝑓5, respectively. As for the partial random filling scenario, this
scenario takes into account the controls or grouping of fields specified by the designer. For example,
let us assume that “𝑓3 : company type ” and “𝑓4: field of activity” belong to the same group of fields
named “Business activities”: this means that 𝑓3 and 𝑓4 should be filled sequentially. A possible filling
order, randomly generated taking into account this constraint is then 𝑓1 → (𝑓3 → 𝑓4) → 𝑓2 → 𝑓5.
The bottom right box in the figure shows the corresponding generated test instances PR1 and PR2.

Implementation and Settings. We implemented LACQUER as a Python program. We performed the
experiments on the NCBI dataset with a computer running macOS 10.15.5 with a 2.30 GHz Intel
Core i9 processor with 32 GB memory. As for the experiments on the PEIS dataset7, we performed
them on a server running CentOS 7.8 on a 2.60 GHz Intel Xeon E5-2690 processor with 125 GB
memory.

5.2 Effectiveness (RQ1)
To answer RQ1, we assessed the accuracy of LACQUER in predicting the correct completeness
requirement for each target field in the dataset. To the best of our knowledge, there are no implemen-
tations of techniques for automatically relaxing completeness requirements; therefore, we selected
as baselines two rule-based algorithms that can be used to solve the form filling completeness
requirements relaxation problem: association rule mining (ARM) [33] and repeated incremental
pruning to produce error reduction (Ripper); these rule-based algorithms can provide form filling
relaxation suggestions under different filling orders. ARM mines association rules having the
format “if antecedent then consequent” with a minimal level of support and confidence, where
the antecedent includes the values of certain fields and the consequent shows the completeness
requirement of a target field for a given antecedent. ARM matches the filled fields with the an-
tecedents of mined association rules, and suggests the consequent of the matched rules. Ripper
is a propositional rule-based classification algorithm [11]; it creates a rule set by progressively
adding rules to an empty set until all the positive instances are covered [31]. Ripper includes also a
pruning phase to remove rules leading to bad classification performance. Ripper has been used in a
variety of classification tasks in software engineering [23, 48]. Similar to ARM, Ripper suggests the
consequent of the matched rule to users.

Methodology. We used Precision (Prec), Recall (Rec), Negative Predictive Value (NPV ), and Speci-
ficity (Spec) to assess the accuracy of different algorithms. These metrics can be computed from a
confusion matrix that classifies the prediction results into true positive (TP), false positive (FP), true
negative (TN), and false negative (FN). In our context, TP means that a field is correctly predicted
as required, FP means that a field is misclassified as required, TN means that a field is correctly
predicted as optional, and FN means that a field is misclassified as optional. Based on the confusion
matrix, we have Prec = TP

TP+FP , Rec =
TP

TP+FN , NPV = TN
TN+FN , and Spec = TN

TN+FP . Precision is the ratio
of correctly predicted required fields over all the fields predicted as required. Recall is the ratio of
correctly predicted required fields over the number of actual required fields. NPV represents the
ratio of correctly predicted optional fields over all the fields predicted as optional. Finally, specificity
represents the ratio of correctly predicted optional fields over the number of actual optional fields.

We chose these metrics because they can evaluate the ability of an algorithm in predicting both
required fields (using precision and recall) and optional fields (using NPV and specificity). A high

7Due to the data protection policy of our partner, we were obliged to run the experiments on the PEIS dataset using an
on-premise, dedicated server that, however, could not be used to store external data (like the NCBI dataset).
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Table 2. Effectiveness for Form Filling Relaxation

Alg.
Sequential Partial Random Train Predict (ms)

Prec Rec NPV Spec Prec Rec NPV Spec (s) avg min–max

Ripper 0.63 0.79 0.17 0.20 0.69 0.83 0.25 0.16 349.29 0.18 0.18–0.19
NCBI ARM 0.75 0.98 0.81 0.16 0.82 0.86 0.39 0.28 11.98 5.06 3–12

LACQUER 0.76 0.98 0.91 0.20 0.84 0.98 0.76 0.37 145.98 75.83 33–144

Ripper 0.66 0.73 0.60 0.29 0.58 0.62 0.84 0.56 240.37 0.24 0.15–0.54
PEIS ARM 0.72 0.80 0.24 0.24 0.72 0.80 0.25 0.25 153.78 1.59 2–20

LACQUER 0.88 0.98 0.72 0.62 0.90 0.97 0.75 0.64 1210.70 307 179–839

value of precision and recall means that an algorithm can correctly predict most of required fields
(i.e., the positive class); hence, we can avoid business loss caused by missing information. A high
value of NPV and specificity means that an algorithm can correctly predict most of the optional
fields (i.e., the negative class); users will have fewer unnecessary constraints during form filling. In
other words, we can avoid users filling meaningless values which may affect the data quality.
In our application scenario, we aim to successfully relax a set of obsolete required fields to

“optional”, while keeping the real required fields. Therefore, LACQUER needs to get high precision
and recall values, which can preserve most of real required fields to avoid business loss. Meanwhile,
the NPV value should be high, which means LACQUER can correctly avoid users filling meaningless
values by relaxing the completeness requirements. Concerning the specificity, a relatively low value
is still useful. For instances, a specificity value of 50% means LACQUER can reduce by half the data
quality issues caused by meaningless values.
In the case of ARM, we set the minimum acceptable support and confidence to 5 and 0.3,

respectively, as done in previous work [5, 33] in which it was applied in the context of form filling.

Results. Table 2 shows the accuracy of the various algorithms for the two form filling scenarios.
LACQUER substantially outperforms Ripper in terms of precision and recall scores (i.e., columns
Prec and Rec) for both sequential filling and partial random filling scenarios in both datasets (ranging
from +13 pp to +32 pp in terms of precision score and from +15 pp to +35 pp in terms of recall
score). When we compare LACQUER with ARM, they have similar results in terms of precision
and recall scores on the NCBI dataset; however, LACQUER performs much better than ARM on the
PEIS dataset (by at least +16 pp in terms of precision score and +17 pp in terms of recall score).

When looking at the NPV and specificity scores, on the NCBI dataset LACQUER and Ripper have
the same specificity value for sequential filling; however, LACQUER can provide more accurate
suggestions since it outperforms Ripper in terms of NPV score with an improvement of +74 pp.
Concerning the partial random filling scenario on the NCBI dataset, LACQUER outperforms Ripper
by +51 pp and +21 pp in terms of NPV and specificity scores, respectively. On the same dataset,
when comparing LACQUER with ARM, the results shows that LACQUER always outperforms ARM
for both form filling scenarios from +10 pp to +37 pp in terms of NPV score and from +4 pp to +9 pp
in terms of specificity score. As for the PEIS dataset, for sequential filling LACQUER substantially
outperforms the two baselines from +12 pp to 48 pp in terms of NPV score and from +33 pp to
+38 pp in terms of specificity score. For partial random filling, Ripper achieves the highest NPV
score, outperforming LACQUER by +9 pp; however, LACQUER outperforms both baselines in terms
of specificity score by +8 pp to +39 pp.
Looking at the specificity score when applying LACQUER on PEIS and NCBI datasets, we can

notice a difference ranging from +27 pp to +42 pp. This difference means that LACQUER can find
more optional values in the PEIS dataset than in the NCBI dataset. We believe the main reason
behind this difference is the quality of the training set. We recall PEIS is a proprietary dataset from
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the banking domain. Data entry operators in the bank follow corporate guidelines for recommended
values to be used when a field is not applicable, e.g., special characters like ‘@’ or ‘$’ (see section 4.1),
resulting in higher quality data than the NCBI dataset. The latter, in fact, is a public dataset where
anyone can submit data using the corresponding data entry form. Users do not follow any rule
to insert special values when a field is not applicable. For this reason, the endorser module of
LACQUER tends to remove more likely inaccurate suggestions, predicting only optional fields with
high confidence. This explains the high value of NPV in the NCBI dataset, which is +19 pp higher
than that in the PEIS dataset for the sequential filling scenario and +1 pp higher for the random
filling scenario.
We applied Fisher’s exact test with a level of significance 𝛼 = 0.05 to assess the statistical

significance of differences between LACQUER and the baselines. The null hypothesis is that there
is no significant difference between the prediction results of LACQUER and a baseline algorithm
on the test instances. Given the output of each algorithm on the test instances we used during
our evaluation, We created contingency tables summarising the decisions of LACQUER vs ARM
and LACQUER vs Ripper for each form-filling scenario. Each contingency table represents the
relationship between LACQUER and the other baseline in terms of frequency counts of the possible
outputs (0: “Optional” and 1: “Required”). In other words, the contingency table counts the number
of times both algorithms provide the same prediction (i.e., both predict a test instance as 0 or 1),
and the number of times they have different prediction outputs (i.e., one algorithm predicts as 1 but
the other predicts 0, and vice versa). These contingency tables are then used by Fisher’s exact test
to compute the p-value in order to reject or accept the null hypothesis. The result of the statistical
test shows that LACQUER always achieves a significantly higher number of correct predictions
than the baselines for the two form-filling scenarios on both datasets (p-value < 0.05).

These results have to be interpreted with respect to the usage scenario of a form filling relaxation
tool. Incorrect suggestions can affect the use of data entry forms and the quality of input data.
The NPV and specificity values achieved by LACQUER show that its suggestions can help users
accurately relax the completeness requirement by 20 % to 64 % of the fields in data entry forms.
Meanwhile, LACQUER can correctly preserve most (≥ 97%) of the required fields required to be
filled to avoid missing information (as indicated by the high precision and recall scores).
The answer to RQ1 is that LACQUER performs significantly better than the baseline algorithms.

LACQUER can correctly relax at least 20% of required fields (with an NPV value above 0.72), while
preserving the completeness constraints on most of the truly required fields (with a recall value over
0.98 and precision over 0.76).

5.3 Performance (RQ2)
To answer RQ2, we measured the time needed to perform the training and predict the completeness
requirement of target fields. The training time evaluates the ability of LACQUER to efficiently update
its models when new input instances are added daily to the set of historical input instances. The
prediction time evaluates the ability of LACQUER to timely suggests the completeness requirement
during the data entry phase.

Methodology. We used the same baselines and form-filling scenarios used for RQ1. The training
time represents the time needed to build BN models (for LACQUER) or learn association rules (for
ARM and Ripper). The prediction time is the average time needed to provide suggestions for target
fields. We deployed LACQUER and baselines locally to avoid the impact of the data transmission
time when assessing the prediction time.

Results. The results are presented in columns Train and Predict in Table 2. Column Train represents
the training time in seconds. Column Predict contains two sub-columns representing the average
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time and the minimum/maximum time (in milliseconds) needed to make a prediction on one test
instance.

As shown in Table 2, Ripper has the highest training time for the NCBI dataset with 349.29 s. The
training time of LACQUER (145.98 s) is between that of Ripper (349.29 s) and ARM (11.98 s) on the
NCBI dataset. For the PEIS dataset, the training time of Ripper and ARM is equal to 240.37 s and
153.78 s, respectively; the training time of LACQUER is the highest: 1210.70 s (less than 20 minutes).

In terms of prediction time, LACQUER takes longer than ARM and Ripper to predict the com-
pleteness requirement of a field. On average, LACQUER takes 75.83 ms and 307 ms on the NCBI
and PEIS datasets, respectively. The prediction time of ARM and Ripper depends on the number of
rules used for matching the filled fields: the smaller the number of rules the shorter the prediction
time. For LACQUER, the prediction time depends mostly on the complexity of BNs used when
predicting. Such complexity can be defined in terms of the number of nodes and the number of
dependencies among the different nodes in the BNs.
Taking into account the usage of our approach, the results can be interpreted as follows. Since

the training phase occurs offline and periodically to train different BN models, the training time of
1210.70 s is acceptable from a practical standpoint; it allows for the daily (or even hourly) training
of LACQUER in contexts (like enterprise software) with thousands of entries every day. Since
LACQUER needs to be used during data entry, a short prediction time is important to preserve the
interactive nature of a form-filling relaxation tool. The prediction time of LACQUER is acceptable
according to human-computer interaction principles [26], which prescribe a response time lower
than 1 s for tools that provide users with a seamless interaction. In addition, this prediction time is
also comparable to the one achieved by our previous work on automated form filling [5]. Hence,
LACQUER can be suitable for deploying in real enterprise systems.
The answer to RQ2 is that the performance of LACQUER, with a training time per form below 20

minutes and a prediction time of at most 839 ms per target field, is suitable for practical application in
data-entry scenarios.

5.4 Impact of SMOTE and Endorser (RQ3)
LACQUER is based on two main modules: (1) SMOTE oversampling module, which tries to solve
the class imbalance problem by synthetically creating new minor class instances in the training set
(section 4.2), and (2) the endorsing module, which implements a heuristic that aims to keep only
the optional predicted instances with a certain level of confidence. To answer this RQ we assessed
the impact of these two modules on the effectiveness of LACQUER.

Methodology. We compared the effectiveness of LACQUER with three variants representing all the
possible configurations of LACQUER: LACQUER-S, LACQUER-E, and LACQUER-SE. LACQUER-S
represents the configuration where the SMOTE oversampling module is disabled and LACQUER
provides predictions based on the imbalanced training set. LACQUER-E denotes the configuration
where the endorser module is disabled and LACQUER directly returns the predictions to the
user without checking whether the predictions have the required confidence in predicting fields
as optional. LACQUER-SE is the configuration where both modules are disabled; this variant
corresponds to the case where we use a plain BN. The different configurations are shown in Table 3
under column Module, where the two sub-columns S and E refer to the two modules “Smote” and
“Endorser”. We used symbols ‘✓’ and ‘✗’ to specify whether a variant includes or not a certain
module. LACQUER was run in its vanilla version as well as the additional variants using the same
settings and evaluation metrics as in RQ1.

Results. As shown in Table 3, both modules have an impact on the effectiveness of LACQUER.
The SMOTE oversampling module improves the ability of BNs to identify more optional fields; it
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Table 3. Effectiveness of LACQUER with Different Modules

ID
Module

NCBI PEIS

Sequential Partial Random Sequential Partial Random

S E Prec Recall NPV Spec Prec Recall NPV Spec Prec Recall NPV Spec Prec Recall NPV Spec

LACQUER-SE ✗ ✗ 0.78 0.88 0.36 0.32 0.84 0.89 0.44 0.33 0.90 0.92 0.70 0.67 0.96 0.96 0.75 0.58
LACQUER-E ✓ ✗ 0.78 0.82 0.56 0.32 0.85 0.77 0.39 0.65 0.89 0.94 0.67 0.76 0.92 0.88 0.57 0.85
LACQUER-S ✗ ✓ 0.76 0.98 0.51 0.19 0.83 0.98 0.66 0.22 0.88 0.99 0.70 0.55 0.91 0.99 0.77 0.52
LACQUER ✓ ✓ 0.76 0.98 0.91 0.20 0.84 0.98 0.76 0.37 0.89 0.99 0.74 0.64 0.90 0.97 0.75 0.64

improves the specificity score of a plain BN by at least +9 pp on the two datasets (LACQUER-E vs
LACQUER-SE), except for the sequential filling scenario in the NCBI dataset where the specificity
score stays the same. The endorser module mainly removes inaccurate optional predictions and
keeps them as required to prevent missing information. This module leads to an increase in the
recall value compared to the plain BN (LACQUER-SE vs LACQUER-S); it increases by at least +9 pp
for the NCBI dataset in both scenarios. The improvement is smaller for the PEIS dataset where
the recall increases by +7 pp and +3 pp for sequential and random filling scenarios, respectively.
The endorser module affects also specificity, which decreases by at most 13 pp for both datasets
when the endorser is used. The reason behind such decrease is that the endorser module removes
possibly inaccurate predictions.

Comparing the results of LACQUER (with both modules enabled) with a plain BN (i.e, LACQUER-
SE) on the NCBI dataset, the former improves NPV by +55 pp (0.91 vs 0.36) for the sequential filling
scenario and by +32 pp (0.76 vs 0.44) for the random filling scenario. Since the endorser module
considers the non-endorsed instances as required, it also increases recall by+10 pp and +9 pp for
sequential and random filling scenarios, respectively. For the PEIS dataset, we find a slight increase
in NPV of +4 pp and an increase of +6 pp for recall with sequential filling. For the partial random
filling scenario, we notice that both LACQUER and LACQUER-SE have similar results, except for
a higher specificity value +6 pp and a lower precision value of −6 pp for LACQUER. This loss in
precision is expected since LACQUER keeps the default completeness requirement (i.e., required)
for an instance for which the prediction confidence is low (i.e., the probability is lower than a
threshold in endorser). These instances may include some truly optional cases with low confidence
in the prediction; hence considering them as optional may slightly reduce the precision value.
The answer to RQ3 is that the SMOTE oversampling module and the endorser module improve the

effectiveness of LACQUER.

5.5 Threats to Validity
To increase the generalizability of our results, LACQUER should be further evaluated on different
datasets from different domains. To partially mitigate this threat, we evaluated LACQUER on two
datasets with different data quality: the PEIS dataset, which is proprietary and of high quality, and
the NCBI dataset, which is public and was obtained from an environment with looser data quality
controls.
The size of the pool of training sets is a common threat to all AI-based approaches. We do

not expect this problem to be a strong limitation of LACQUER since it targets mainly enterprise
software systems that can have thousands of entries per day.

Since LACQUER needs to be run online during the data entry session, it is important to ensure
seamless interaction with users. In our experiments (section 5.3), LACQUER was deployed locally.
The response time of its prediction complies with human-computer interaction standards. However,
the prediction time depends on the deployment method (e.g., local deployment or cloud-based).
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This is not necessarily a problem since different engineering methods can help reduce prediction
time such as parallel computing and a cache for storing previous predictions.

5.6 Data Availability
The implementation of LACQUER, the NCBI dataset, and the scripts used for the evaluation
are available at https://figshare.com/articles/software/LACQUER-replication-package/21731603;
LACQUER is distributed under the MIT license. The PEIS dataset cannot be distributed due to an
NDA.

6 RELATEDWORK
In this section, we discuss the work related to our approach. First, we review the existing approaches
dealing with adaptive forms. Next, we provide a detailed comparison between LACQUER and LAFF.
We conclude the section by presenting some tangential works that use BN to solve software
engineering problems.

6.1 Adaptive Forms
The approach proposed in this paper is mainly related to approaches that implement adaptive
forms for producing context-sensitive form-based interfaces. These approaches progressively add
(remove) fields to (from) the forms depending on the values that the user enters. They use form
specification languages [19] or form definition languages [6] to allow form designers to describe
the dynamically changing behaviour of form fields. Such a behavior is then implemented through
dedicated graphical user interface programming languages (such as Tcl/Tk) [50] or through server-
side validation [6]. The dynamic behaviour of a form has also been modeled using a declarative,
business process-like notation (DCR - Dynamic Condition Response graph [49]), where nodes
in the graph represent fields and edges show the dynamic relations among fields (e.g., guarded
transitions); the process declarative description is then executed by a process execution engine that
displays the form. However, all these works assume that designers already have a complete and
final set of completeness requirements describing the adaptive behaviour of the form during the
design phase, which can be expressed through (adaptive) form specification/definition languages
or tools. In contrast, LACQUER can automatically learn the different completeness requirements
from the historical input instances filled by users, without requiring any knowledge from the form
designers.
Although some approaches [1, 16] try to automatically generate data entry forms based on the

schema of the database tables linked to a form (e.g., using column name and primary keys), they can
only generate some “static” rules for fields. For example, if a column is “not null” in the schema, they
can set the corresponding field in the form as (always) required. In contrast, LACQUER aims to learn
conditions from the data so that completeness requirements of form fields can be automatically
and dynamically relaxed during new data entry sessions.

6.2 Comparing LACQUER with LAFF
The overall architecture (including the use of the endorser module) of LACQUER has been inspired
by LAFF, a recent approach for automated form filling of data entry forms [5]. In this subsection,
we explain the similarities and differences between the two approaches.

Similarities between LAFF and LACQUER. Both LAFF and LACQUER are approaches that can be
used during the form filling process. The main similarities between these approaches derive from
the main challenges of form filling, i.e., dealing with (1) an arbitrary filling order and (2) partially
filled forms.
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The first challenge arises from the fact that users can fill a data entry form following an arbitrary
order. Therefore, the filled fields (i.e., the features in our ML models) and the target field keep
changing, leading to a large number of feature-target combinations. To avoid training a separate
machine learning model on each feature-target combination, in this work, we are inspired by LAFF
and use BNs to mine the relationships between filled fields and the target field.

As for the second challenge, LAFF addresses it using an endorser module. The main idea of the
endorser module is to avoid providing inaccurate suggestions to the user when the form does not
contain enough information for the model. Avoiding inaccurate suggestions is important for both
approaches to gain the trust of users; for example, wrongly determining to relax a required field by
making it optional may lead to missing information, thus hindering data completeness. For this
reason, the second similarity between LAFF and LACQUER is the use of an endorser module.

Differences between LAFF and LACQUER. Table 4 shows the main differences between LACQUER
and LAFF in terms of goal, challenges, preprocessing, model building, and prediction.
The main goal of LACQUER is to determine the completeness requirements of form fields. In

contrast, LAFF provides form-filling suggestions for the values to be filled in categorical fields.
Concerning the challenges, in addition to the shared ones discussed above, the relaxing completeness
requirement problem has its own challenge when the dataset is highly imbalanced. We addressed
this challenge in LACQUER by applying SMOTE.

The preprocessing step of the two approaches is completely different. Specifically, LAFF removes
all textual fields from the data. In contrast, LACQUER transforms the values in textual fields into
binary values. After the preprocessing, textual fields can only have one of two values: “Required”
and “Optional”. Moreover, the preprocessing step of LACQUER identifies meaningless values and
replaces the matched values in the data with the value “Optional” (see section 4.1).

As for the model building phase, LAFF and LACQUER create a different set of BN models. LAFF
creates 𝑘 + 1 models, including a global model and 𝑘 local models. The global model represents the
BN created on the whole training data; the 𝑘 local models are the BNs created based on the clusters
of training data that share similar characteristics. The optimal number of clusters 𝑘 is automatically
determined with the elbow method. LACQUER creates 𝑛 models where 𝑛 represents the number of
fields (targets) in the data entry form.

Finally, the differences regarding the prediction phase can be viewed from two perspectives: the
type of targets and the endorser module. Concerning the target, LAFF only predicts possible values
for categorical fields, no matter whether this field is optional or required. In contrast, LACQUER
targets all types of required fields (e.g., textual, numerical, and categorical fields) to relax their
completeness requirements. The endorser modules of LAFF and LACQUER differ as follows:
• The endorser module of LAFF endorses predictions based on two heuristics: the prediction
confidence and the dependencies between the filled fields and the target. In contrast, the
endorser of LACQUER is based only on the prediction confidence.
• LAFF uses a threshold to be determined manually, based on domain expertise, to endorse the
prediction whereas LACQUER includes a phase to automatically determine the threshold for
each target.

6.3 Using Bayesian Networks in Software Engineering Problems
Besides LAFF, BNs have been applied to different software engineering problems spanning over a
wide range of software development phases, such as project management (e.g., to estimate the overall
contribution that each new software feature to be implemented would bring to the company [34]),
requirement engineering (e.g., to predict the requirement complexity in order to assess the effort
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Table 4. Main differences between LAFF and LACQUER

LAFF LACQUER

Goal • Providing form-filling suggestions for the
values to be filled in categorical fields

• Determining the completeness requirements
of form

Challenge
• Arbitrary filling order
• Partial filling

• Arbitrary filling order
• Partial filling
• Highly imbalanced dataset

Preprocessing
• Textual fields are removed • Values in textual fields are transformed into

binary values (“Required” or “Optional”)
• Meaningless values are identified and re-

placed with the value “Optional”

Model building
• Creates𝑘+1models including a global model

and 𝑘 local models (one model for each clus-
ter of data)

• Creates 𝑛 models, one model for each field
(target)

Prediction

Target
• Categorical field
• LAFF can predict the value for both optional

and required fields

• All textual, numerical, and categorical fields
can be targets

• Required field

Endorser
• Use two heuristics based on prediction confi-

dence and dependencies between filled fields
and the target

• The value of the threshold is manually de-
cided based on domain expertise

• The endorser is based only on the prediction
confidence

• The value of the threshold is automatically
determined during the threshold determina-
tion

needed to develop and test a requirement [44]), implementation (for code auto-completion [39]),
quality assurance (e.g., for defect prediction [13, 28]), and software maintenance [41].

The main reason to use BN in software engineering (SE) problems is the ability of BN to address
the challenges of dealing with “large volume datasets” and “incomplete data entries”. First, software
systems usually generate large amounts of data [41]. For instance, to improve software maintenance,
companies need to analyze large amounts of software execution data (e.g., traces and logs) to identify
unexpected behaviors such as performance degradation. To address this challenge, Rey Juárez
et al. [41] used BN to build an analysis model on the data, since BN can deal with large datasets
and high-dimensional data while keeping the model size small and the training time low. Second,
incomplete data is a common problem in SE [15, 38]. For example, some metrics in defect prediction
datasets might be missing for some software modules. To solve this challenge, Okutan and Yıldız
[38] and Del Águila and Del Sagrado [15] used BN to train prediction models, because of its ability
to perform inference with incomplete data entries. These two challenges confirm our choice of
using BN to solve the relaxing completeness problem. Specifically, these two challenges are aligned
with the challenges of form filling. During data entry sessions, a form is usually partially filled
and LACQUER needs to provide decisions on incomplete data. Besides, in our context, we need to
deal with large datasets since we mainly target enterprise software systems that can collect a huge
number of entries every day.

7 DISCUSSION
7.1 Usefulness
The main goal of LACQUER is to prevent the entering of meaningless values by relaxing the
data entry form completeness requirements. In order to assess the capability of LACQUER, we
evaluated it with two real-world datasets, including a public dataset from the biomedical domain
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and a proprietary dataset from the banking domain. These two datasets are related to existing data
entry forms.
Experiment results show that LACQUER outperforms baselines in determining completeness

requirements with a specificity score of at least 0.20 and a NPV score higher than 0.72. In the context
of completeness requirement relaxation, these results mean that LACQUER can correctly (i.e., NPV
≥ 0.72) prevent the filling at least 20% meaningless values. In addition, LACQUER can correctly
determine (with precision above 0.76) when a field should be required with a recall value of at
least 0.97. This recall value means that LACQUER can almost determine all the required fields. The
high precision value shows that LACQUER rarely incorrectly predicts optional fields as required.
In other words, LACQUER will not add much extra burden to users by adding more restrictions
during the form filling process.

As discussed in section 5.2, LACQUER can determinemore optional fields (i.e., a higher specificity)
in the PEIS dataset than in the NCBI dataset due to the higher data quality of the former. Since
we target data entry functionalities in enterprise software, we expect to find similar conditions in
other contexts in which data entry operators follow corporate guidelines for selecting appropriate
values that should be filled when a field is not applicable. In such contexts, LACQUER is expected
to provide results that are similar to those achieved on the PEIS dataset.

7.2 Practical Implications
This subsection discusses the practical implications of LACQUER for different stakeholders: software
developers, end-users, and researchers.

7.2.1 Software Developers. LACQUER can help developers refactor data entry forms, which typi-
cally have many historical input instances and obsolete completeness requirements. LACQUER does
not require developers to define a complete set of rules regarding the completeness requirement of
form fields. Developers can integrate LACQUER into a given data entry form as an independent
tool. Deploying LACQUER into a data entry form requires providing a mapping between a data
entry form, and field names and column names in the dataset. The mapping needs only to be
provided once and can be easily identified from Object Relational Mapping (ORM) and software
design documentation. In addition to the mapping, deploying LACQUER requires a dictionary of
meaningless values, i.e., the values that should be used during the data entry process when a field is
not applicable. We expect this dictionary to be found in the user manual of the data entry software
or in corporate guidelines, as it was the case for the PEIS dataset.

7.2.2 End Users. During the form filling process, obsolete required fields in the data entry form can
affect the data accuracy since users have to enter meaningless values to skip filling these obsolete
fields. LACQUER can automatically decide when a field should be required or not based on the
filled fields and historical input instances. Our experiments show that LACQUER can correctly
determine between 20% and 64% of optional fields, which reduces the user effort and the time taken
during the form filling process.

7.2.3 Researchers. In order to avoid predicting required field as optional, LACQUER includes an
endorser module to decide if the prediction is accurate enough to be provided to the user. We
propose a novel strategy to automatically determine the threshold used in the endorser module.
Hence, our endorser module does not require any configuration from the domain expert. We believe
that such an endorser module can be adopted by other researchers in other recommender systems.
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Fig. 9. Use case to combine LACQUER and LAFF together during form filling

7.3 Combining LACQUER with LAFF
Despite the differences explained in section 6, LACQUER and LAFF are complementary in practice.
Both approaches can be combined as an AI-based assistant for form filling to help users fill forms
and ensure better data quality.
Figure 9 shows a possible scenario that uses both approaches together during a form-filling

session. In this example, we assume that the user follows the sequential filling order. First, after
filling in the company name field, LACQUER can already check whether the “monthly income” field
is required or not. Since “monthly income” is a numerical field, LAFF cannot perform a prediction
(LAFF only supports categorial fields). In this example, LACQUER determines that the field is
required, hence the user should fill it out. The “Company type” and “Field of activity” fields are
both categorical. For these two fields, based on the filled fields, first LACQUER determines the
completeness requirement for each field. Once the user clicks on a field, LAFF is enabled to provide
a ranked list of possible values that can be used for this field. If the decision of LACQUER on a field
is optional, LAFF can still be activated to provide suggestions as long as the user wants to fill in the
field. Finally, let us assume that the “Tax ID” field (a numerical one) is optional by design. In this
case, both LAFF and LACQUER are not enabled, since there is no need for LACQUER to relax a
completeness requirement and the field is numerical and thus not compatible with LAFF.
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8 CONCLUSION
In this paper we proposed LACQUER, an approach to automatically relax the completeness require-
ment of data entry forms by deciding when a field should be optional based on the filled fields and
historical input instances. LACQUER applies Bayesian Networks on an oversampled data set (using
SMOTE) to learn the completeness requirement dependencies between fields. Moreover, LACQUER
uses a heuristic-based endorser module to ensure that it only provides accurate suggestions.

We evaluated LACQUER on two datasets, one proprietary dataset from the banking domain and
one public dataset from the biomedical domain. Our results show that LACQUER can correctly
determine 20% to 64% of optional fields and determine almost all the required fields (with a recall
value of 0.97). LACQUER takes at most 839 ms to provide a suggestion, which complies with
human-computer interaction principles to ensure a seamless interaction with users.
As a part of future work, we plan to conduct a user study to analyze the effect of LACQUER in

reducing the meaningless values and the effort spent by users during the form filling process. We
plan also to add an automated module that can detect meaningless values entered by the users
during form filling, when such values have not been specified by the form designer. Furthermore,
we plan to integrate LACQUER into platforms for the design of data entry forms [25, 36, 42] to help
designers perform form refactoring. These platforms currently rely on rules defined by designers
to specify completeness requirements during the design phase. LACQUER can be used to relieve
designers from the task of defining such rules, since it only requires to indicate the required fields;
during form filling, LACQUER will automatically suggest the completeness requirement of the
required fields. LACQUER can also be extended to support sophisticated input fields that can
handle multiple selections such us drop-down menus and checkbox groups. Finally, we plan to
extend LACQUER to support updates of existing data entries as well as to determine whether fields
previously marked as optional should become required.
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