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Abstract Specifying legal requirements for software systems to ensure their
compliance with the applicable regulations is a major concern of requirements
engineering. Personal data which is collected by an organization is often shared
with other organizations to perform certain processing activities. In such cases,
the General Data Protection Regulation (GDPR) requires issuing a data pro-
cessing agreement (DPA) which regulates the processing and further ensures
that personal data remains protected. Violating GDPR can lead to huge fines
reaching to billions of Euros. Software systems involving personal data pro-
cessing must adhere to the legal obligations stipulated both at a general level
in GDPR as well as the obligations outlined in DPAs highlighting specific busi-
ness. In other words, a DPA is yet another source from which requirements
engineers can elicit legal requirements. However, the DPA must be complete
according to GDPR to ensure that the elicited requirements cover the com-
plete set of obligations. Therefore, checking the completeness of DPAs is a
prerequisite step towards developing a compliant system. Analyzing DPAs
with respect to GDPR entirely manually is time consuming and requires ad-
equate legal expertise. In this paper, we propose an automation strategy that
addresses the completeness checking of DPAs against GDPR provisions as a
text classification problem. Specifically, we pursue ten alternative solutions
which are enabled by different technologies, namely traditional machine learn-
ing, deep learning, language modeling, and few-shot learning. The goal of our
work is to empirically examine how these different technologies fare in the legal
domain. We computed F2 score on a set of 30 real DPAs. Our evaluation shows
that best-performing solutions yield F2 score of 86.7% and 89.7% are based
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on pre-trained BERT and RoBERTa language models. Our analysis further
shows that other alternative solutions based on deep learning (e.g., BiLSTM)
and few-shot learning (e.g., SetFit) can achieve comparable accuracy, yet are
more efficient to develop.

Keywords Requirements Engineering (RE) · The General Data Protection
Regulation (GDPR) · Regulatory Compliance · Data Processing Agreements
(DPAs) · Artificial Intelligence (AI) · Natural Language Processing (NLP) ·
Classification · Large Language Models (LLMs) · Few-shot Learning (FSL) ·
Data Augmentation.

1 Introduction

Legal requirements describe the behavior and functions of a software system
pursuant to applicable regulations [48]. Developing compliant software systems
requires the elicitation of legal requirements from regulations, an essential ac-
tivity in the requirements engineering (RE) field. Both manual and automated
approaches have been investigated for navigating through the regulations to
create machine-analyzable representations and extract compliance-relevant in-
formation (e.g., [17,2,67,65,31]). Despite the community efforts, software de-
velopment practices are still introducing personal data breaches, e.g., unautho-
rized sharing with third-parties [26]. The complexity of the legal language used
in regulations poses a major challenge to software engineers in understanding
as well as properly implementing legal requirements in software systems [62,1,
72]. Eliciting legal requirements is time-consuming and error-prone and often
requires adequate legal expertise. For example, the General Data Protection
Regulation (GDPR), enforced in the European Union (EU) in 2018 [24], con-
tains provisions on data privacy and security with which organizations, inside
or outside Europe, must comply as long as they collect and process personal
data of people in the EU. The obligations set out in GDPR entail legal, tech-
nological, and operational changes. Understanding the requirements for com-
plying with GDPR is a challenging task for organizations, specifically for small
and medium-sized enterprises (SMEs) [29,47]. Existing literature discusses the
significant impact GDPR has on Internet-of-Things (IoT) based applications
as well as cloud-hosted services widely used in modern technologies in various
domains like e-commerce, healthcare, and energy consumption [10,9]. Fines
are being imposed yearly due to different types of breaches, most of which
are caused by non-compliant practices in the software systems deployed by
organizations. Statistics show that most violations are related to breaching
data processing principles, leading to 418 fines of more than 1,500 billions of
euros1. Eliciting legal requirements for a specific application context by nav-
igating through the 88 pages of GDPR with its 173 recitals and 99 articles
divided into 11 chapters is a daunting task for requirements engineers.

1 https://www.enforcementtracker.com/?insights

https://www.enforcementtracker.com/?insights
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To bridge the legal knowledge gap and optimize the elicitation of legal re-
quirements, we argue in this paper that a regulated document (e.g., privacy pol-
icy) provides compliance-relevant information which can be easier to navigate
than the entire regulation. Our work focuses on data processing agreements
(DPAs), which are legal contracts between a controller who collects personal
data and a processor who processes personal data on the controller’s behalf [53,
6]. GDPR can be broken down into 1501 sentences containing generic legal re-
quirements [5,1,66], whereas a DPA contains on average 200 sentences and
provides a more specific overview tailored towards specific business needs [19].
It is not uncommon in the RE literature to use contracts as a source for
extracting legal requirements [38,60].

To be an effective source document for eliciting legal requirements, DPAs
must be GDPR-compliant, meaning that the content of a DPA must be com-
plete according to the provisions of GDPR. Otherwise, the resulting legal re-
quirements elicited from the DPA will be incomplete. Verifying the complete-
ness of DPAs against GDPR is thus a pre-requisite for leveraging the DPAs
as source knowledge for eliciting legal requirements for software systems that
process personal data.

Fig. 1 shows an example of eliciting technical requirements from the legal
statements in a given DPA. On the left side of the figure, we show the provi-
sions from an excerpt from a GDPR-compliant DPA, and on the right side we
show example requirements that can be elicited from the DPA. The DPA is be-
tween @Ur-Home Ltd, a large e-commerce company selling various products,
and Data2Info Corp, a company that provides data analytics services. The
former acts as the controller and the latter as the processor. The Data2Info
company uses an electronic management system (EMS) for managing files. To
comply with GDPR, the EMS must, among other things, incorporate security
mechanisms to protect personal data and further delete all personal data re-
ceived form the controller upon the termination date of the agreement. The
first four requirements (labeled SEC-1 – SEC-4 in the figure) correspond to ad-
ditional security mechanisms that need to be accounted for when storing files
on the server. For instance, if a file is not encrypted, the user shall be imme-
diately informed. The last three requirements (labeled DEL-1 – DEL-3 in the
figure) are about the deletion of the data. Relying on incomplete DPAs would
result in missing compliance requirements and developing a software system
whose behavior does not adhere to the applicable regulations. For example,
had the third provision not been in the DPA, the developed system would
transfer personal data without sufficient protection mechanisms, exposing the
data thereby to potential breach incidents. Failing to comply can have serious
consequences such as large fines2. Our work in this paper helps requirements
engineers verify through automated means whether a DPA misses provisions
(i.e., incomplete) according to GDPR before using the DPA as a source for
requirements elicitation. Completeness of software requirements is challenging
to verify and cannot be defined in absolute terms [74]. However, existing work

2 Meta was fined 1.3 billion due to violating GDPR. [news article]

https://www.cnbc.com/2023/05/24/irish-data-regulator-defends-1point3-billion-meta-fine.html
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The data processing agreement is between @Ur-Home Ltd, 
157 Chrisp St, London E14 6NH, United Kingdom (the 
“Controller”) and Data2Info Corp, 32 Porte de France, Esch-
sur-Alzette, Luxembourg (the “Processor”). Collectively as the 
“Parties”. 

IT IS AGREED AS FOLLOWS:

Definitions
a. “Services” means the data analytics services; 
b. “Data” means any information about the customers of 

@Ur-Home. 
c. “Processing” or “Process” means any operation or set of 

operations (collection, storage, alignment) that is 
performed in connection with the Services upon Personal 
Data.

General Terms

1. The Processor shall in relation to @Ur-Home Personal 
Data implement appropriate technical and organizational 
measures to protect Personal Data pursuant to Article 32. 

2.  If the Processor becomes aware of a confirmed security 
incident, it shall: a) inform the Controller without undue 
delay; b) assist the Controller in fulfilling any required 
data breach reporting to the supervisory authority;

3. The Processor may not transfer or authorize the transfer 
of Data to countries outside the EU and/or the European 
Economic Area (EEA) without the prior written consent of 
the Controller. 

3. If data processed under this Agreement is transferred 
from a country within the EEA to a country outside the 
EEA, the Parties shall ensure that the data are 
adequately protected. 

4. To achieve this, the Parties shall, unless agreed 
otherwise, rely on EU approved standard contractual 
clauses for the transfer of data.

5. Subject to section 9, the Processor shall promptly and in 
any event within 10 business days of the date of cessation 
of the agreed-upon Services, delete and procure the 
deletion of all Personal Data.

SECURE DATA
[SEC-1]: The EMS shall keep 
a duplicate copy of each 
file on the EMS server.  
[SEC-2]: The EMS server 
shall encrypt all stored 
files in memory  in order 
for them to be completely 
safe. 
[SEC-3]: The EMS server 
shall encrypt all files 
using Twofish and Advanced 
Encryption Standard (AES) 
algorithms.
[SEC-4]: When the EMS server 
receives an unencrypted 
file, the EMS-AlertService 
shall send a warning message 
to the EMS.

DELETE DATA
[DEL-1]: The Electronic 
Management System (EMS) 
shall provide interfaces for 
the data disposal schedules 
on demand and automatically.
[DEL-2]: The EMS shall be 
able to immediately activate 
the data deletion module 
upon request.
[DEL-3]: For each new file, 
the EMS shall set the 
retention date to no longer 
than three years.

DATA BREACH 
. . . 

Requirements Specifications 

Provisions in a Data Processing Agreement

Eliciting
 Requirements

Fig. 1 Example of eliciting technical requirements from a DPA.

in the RE literature often analyze completeness vis-à-vis external knowledge
sources [28,22,8,45]. If DPAs are complete, they can serve as such knowledge
sources.

Checking the completeness of DPAs against GDPR has been investigated
in a recent work by Amaral et al. [19]. Amaral et al. define, in collaboration
with legal experts, a set of 45 GDPR provisions that regulate the content
of a DPA. To conclude whether a DPA is complete according to GDPR, the
authors develop a rule-based automated approach that verifies the textual
content of a given DPA against the GDPR provisions. Their approach utilizes
natural language processing (NLP) technologies to analyze the semantic sim-
ilarity of the textual content in a DPA against GDPR. While their approach
has demonstrated its effectiveness on checking the completeness of real DPAs,
using rules has several drawbacks. First, regulations are subject to continuous
changes which can impact, to a large extent, the compliance checking pro-
cess [40,18]. Adjusting rules to cover such potential future changes requires
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significant effort involving both the engineers who adjust the rules and the
legal experts who confirm the changes. Second, there is a need for manually-
labeled datasets. While rule-based approaches do not typically require training,
creating datasets is still required for validating the rules and drawing conclu-
sions on their generalizability. In the regulatory compliance context, even small
datasets are expensive to create since analyzing regulated documents requires
legal background. Third, the complexity of the rules grows with the complexity
of the legal text in the regulated documents. The DPA text is typically long,
convoluted, and attempts to simultaneously address multiple GDPR provi-
sions. Thus, complex rules are necessary for checking the completeness of DPAs
against GDPR. In a follow-up work, Amaral et al. [5] attempt to address the
above limitations of rule-based techniques by utilizing machine learning (ML)
for checking the completeness of DPAs. While using ML indeed alleviates the
drawbacks of rules, their ML-based approach (i) does not exploit the potential
of recent NLP technologies such as large language models (LLMs), and (i) it
further requires large amount of training data to develop an accurate solution.

Drawing on Amaral et al.’s work, we propose in this paper ten alternative
solutions which are based on different enabling technologies, including tradi-
tional ML, deep learning (DL), as well as recent NLP technologies featured
by LLMs and few-shot learning (FSL) frameworks. In contrast with Amaral’s
work, we investigate more recent technologies and examine the performance
of the alternative solutions in particular when training data is scarce. Our
alternative solutions aim at checking whether the content of a given DPA is
complete according to the GDPR provisions. We examine the above technolo-
gies side-by-side to assess how they fare in a challenging domain such as the
legal domain, focusing on a particular use case; i.e., completeness checking of
DPAs against GDPR. Our work is a prerequisite for eliciting software require-
ments from DPAs. Our comparative analysis aims to reveal the capabilities of
the different solutions in analyzing legal text and understanding the domain
terminology. Our analysis will further shed the light on data scarcity, an im-
portant challenge to consider in general when developing Artificial Intelligence
(AI)-enabled automation [62] and in particular in the regulatory compliance
context. Our findings provide researchers and practitioners with insights about
how technologies compare against one another and help them select the most
suitable technology for a new use case.

Contributions. Concretely, our paper makes the following contributions:

(1) We formally define the completeness checking as a text classification prob-
lem. Given a set of GDPR provisions and a set of DPA sentences, completeness
checking can be achieved by classifying the sentences as relevant or not relevant
to each provision. This text classification task can be achieved via binary clas-
sification (e.g., “provision x” versus “not provision x”) as well as multi-class
classification where each provision is considered as one class. We elaborate the
problem definition in Section 3.1.
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(2) We propose ten alternative solutions for checking the completeness of
DPAs against GDPR. Our solutions design is driven by two main objectives.
The first objective is to compare the performance of different enabling tech-
nologies in checking the completeness of DPAs. We achieve this objective
through running extensive experiments in different settings to draw conclu-
sions. The second objective is to experiment with FSL solutions which require
a much smaller labeled dataset compared to conventional solutions. To this
end, we propose four solutions that utilize recent LLMs, five solutions based on
traditional ML, and one that uses FSL framework. We describe our solutions
design in Section 3.2.

(3) We empirically evaluate the alternative solutions on 169 real DPAs. To
do that, we used the 54 DPAs presented by Amaral et al. [19] and further
curated a dataset of 113 DPAs covering various sectors including cloud ser-
vices, data analytics, and accounting audits. The curatation of the dataset was
performed by three annotators who had legal background. The annotators col-
lectively analyzed 31,185 sentences, of which only 3,387 sentences were labeled
as satisfying at least one provision in GDPR. We provide more details about
the curation process in Section 4.3. On a subset of 30 DPAs that we used ex-
clusively for evaluating the alternative solutions, we observe that LLMs-based
solutions yielded the best performance with BERT and RoBERTA in the lead.
BERT outperformed the rest of the solutions in solving the binary classifica-
tion problem with a precision and recall of 75.1% and 90.1%, respectively.
RoBERTa achieved the best performance in solving the multi-class classifica-
tion problem with a precision and recall of 69.8% and 96.6%.

Our evaluation further shows that using FSL yields better precision on the
cost of a significant loss in recall. Compared to BERT on the binary task, the
FSL-based solution has an average gain in precision of ≈3 percentage points
(pp) and an average loss in recall of ≈10 pp. Compared to RoBERTa on the
multi-class classification task, the FSL-based solution achieves ≈11 pp more
precision and ≈17 pp less recall. Given that FSL is developed on a small
proportion of the dataset (30% in our case), the above results show that FSL
can be useful in some contexts particularly when training data is scarce or
when specific hardware (e.g., GPU) is not available to train more complex
solutions. We report on our empirical evaluation in Section 4.

(4) We analyze the impact of the dataset imbalance and size, two major
characteristics that can significantly affect the performance of the alternative
solutions. Specifically, we experiment with various methods, including random
sampling and data augmentation to improve the distribution of the under-
represented examples in our dataset. In brief, our experiments indicate that
random oversampling performs better than data augmentation techniques with
an average gain of about 4 pp in accuracy. We also show that the best strategy
to balance the dataset is to use a combination of techniques to increase the
minority class and simultaneously decrease the majority class. This strategy
has been already applied in the RE literature [58]. Further details are given in
Section 4.6.
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Structure. The remainder of the paper is structured as follows: Section 2
explains the necessary background for our alternative solutions and further
reviews related work. Section 3 defines the completeness checking problem
and discusses our solutions design. Section 4 presents the details of our em-
pirical evaluation and reports on the performance of the alternative solutions
against one another and further provides insights on the impact of the size
and imbalance in the dataset on their performance. Section 6 discusses threats
to validity. Finally, Section 7 concludes the paper.

2 Background and Related Work

In this section, we discuss the necessary background and further review the
existing literature relevant to DPA completeness checking.

2.1 Background

Below, we briefly present GDPR, and then explain the different enabling tech-
nologies underlying our proposed solutions.

GDPR. The GDPR [25] is the European benchmark for data protection and
privacy standards. According to GDPR, an organization can be a data con-
troller or data processor. The controller decides the purpose and mechanism
of collecting and processing personal data, whereas the processor processes
personal data on behalf of the data controller. In our work, we focus on data
processing agreements (DPAs). A DPA is a legally-binding contract between
a data controller and data processor to ensure the protection of personal data
throughout the data processing chain. A DPA sets out the rights and obli-
gations of the controller and processor. To be deemed complete, the DPA’s
content should comply with the provisions of Article 28 in GDPR.

Large Language Models (LLMs). LLMs, which have dominated the cur-
rent state-of-the-art in NLP, are deep learning models that are pre-trained
with a huge amount of (textual) data with the main objective to predict the
next word in a text sequence. The pre-trained models obtain a basis knowl-
edge about the languages to which they are exposed. These models can then be
used to solve NLP downstream tasks such as text classification and question
answering. There are two strategies for using the pre-trained LLMs, namely
fine-tuning the pre-trained models with task-specific labeled datasets, and
extracting dense representations (also called embeddings) that describe text
sequences in the downstream task and then use these embeddings as learning
features in an ML-based solution. Below, we briefly introduce the LLMs that
we apply in our work.
(1) Bidirectional Encoder Representations from Transformers (BERT) [23] is
one of the early LLMs which is still applied in the NLP literature due to its
robust performance. BERT is pre-trained using two tasks: (1) predicting a
randomly masked word in a text sequence by learning about its surrounding
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context to the left and right, and (2) predicting whether two sentences are con-
secutive. BERT is built using the Transformer architecture which is composed
of a multi-layer encoder-decoder structure, wherein the encoder maps an input
text sequence into numerical vector representations and the decoder generates
an output sequence. BERT has 110 million parameters, and is pre-trained on
16GB of text corresponding to 3.3 billion words from the BooksCorpus [73]
and the entire English Wikipedia.

(2) A Lite BERT (ALBERT) [42] is a light variant of BERT. While AL-
BERT uses the same vocabulary size as BERT, it applies, unlike BERT, re-
duction techniques to reduce the number of parameters to a total of 12 million
(instead of 110 million), increasing thereby the efficiency of the pre-training
phase. ALBERT achieves comparable performance to BERT on different NLP
benchmarks.

(3) Legal-BERT [20] is another variant of BERT that is pre-trained on 12GB
of a legal text corpus crawled from publicly available web portals. The corpus
contains the EU as well as the United Kingdom legislations, cases from the Eu-
ropean Court of Justice and the European Court of Human Rights, and court
cases and contracts from the United States (US). Legal-BERT outperforms
BERT on two NLP tasks specific to the legal domain, namely multi-label text
classification of EU laws and named entity recognition on US contracts.

(4) Robustly Optimized BERT pre-training Approach (RoBERTa) [44] is a
variant of BERT with the main difference that it is pre-trained with a much
larger dataset containing 161GB of text coming from CC-NEWS [51], open-
WebText [32], and Stories dataset [73]. Additional differences compared to
BERT include: (i) RoBERTa is trained only on one task, namely predicting
the masked words; (ii) masking the words is done dynamically where different
words are masked in different epochs; and (iii) the pre-training is performed
for longer time on longer text sequences.

(5) Sentence-BERT (SBERT) is a variant of BERT that is trained on large
datasets composed of sentences pairs from well-known NL benchmarks [59].
SBERT is trained using a Siamese network architecture which enables the
model to derive more meaningful semantic representations of entire sentences
instead of merely single tokens. SBERT is the basis for the current state-of-
the-art on LLMs for generating sentences embeddings.

In our work, we consider the above-explained strategies for utilizing LLMs.
Consequently, we fine-tune the first four LLMs to perform the completeness
checking of DPAs, whereas we use SBERT only for extracting the embeddings
which then serve as the learning features in our ML-based alternative solutions.

Few-shot Learning (FSL). With the rise of pre-trained LLMs, it became
possible to train text classifiers using few examples [57,61]. FSL leverages the
extensive knowledge that these pre-trained models have obtained being ex-
posed to a huge body of unlabeled text. The few labeled examples are then
used to teach LLMs about the specific classification task. The idea has been
investigated in the RE literature for classifying textual requirements [4]. More
recently, Tunstall et al. [69] propose SetFit, a framework for few-shot fine-



A Multi-solution Study on GDPR AI-enabled Completeness Checking of DPAs 9

tuning of sentence transformers. This framework is composed of two phases.
In the first phase, it builds on SBERT model to learn sentences represen-
tations within the scope of the specific task, and for that it uses a handful
of labeled examples. In the second phase, the sentences representations along
with their labels are fed in to a classification head, resulting in a text classifier.
This framework has shown promising results [11,34,35,3,41]. In our work, we
experiment with both ideas: fine-tuning pre-trained LLMs on a small set of
labeled data as well as using SetFit framework. Leveraging the massive knowl-
edge obtained by pre-trained LLMs for solving a more domain-specific task
is a form of transfer learning [39]. Transfer learning is often used when the
number of available training examples is not adequate for training classifiers
from scratch. In our work, we investigate the capability of automated solutions
developed based on LLMs compared to those based on ML which are trained
from scratch.

Machine Learning (ML). In our work, we use supervised ML algorithms
for performing text classification. Being exposed to manually-labeled datasets
of input examples mapped to a set of predefined output labels (or classes),
such algorithms can learn to predict the most likely output class for a new,
previously unseen input example. For checking the completeness of DPAs (the
focus of our paper), an input example represents a text sequence in a given
DPA and the output classes are one or more provisions in GDPR with which
the DPA text is complying. Positive examples are those text sequences that
satisfy the GDPR provisions, and negative examples are those that do not.
As a pre-requisite for building ML classifiers, the input text must be con-
verted to numerical representations. Current state-of-the-art represent text
using embeddings, which are dense vector representations generated by LLMs.
In our work, we represent the text using sentence embeddings from SBERT
(described above). For our comparative analysis, we selected three well-known
traditional ML algorithms, including logistic regression (LR), random forest
(RF), support vector machine (SVM), and two deep learning (DL) algorithms,
namely a multilayer perceptron (MLP) —a feedforward neural network, and
bidirectional long short-term memory (BiLSTM) —a recurrent neural network.
BiLSTM has been widely applied in the NLP literature prior to LLMs.

Dataset Handling. One of the major challenges encountered when develop-
ing automated solutions based on supervised learning, our work not being an
exception, is the imbalance of the labeled dataset. In our dataset, the positive
examples are significantly under-represented. To improve the distribution of
the positive examples, we experiment with data augmentation techniques. To
handle data imbalance, we further experiment with random sampling. Below,
we introduce the techniques applied in our work.

(1) Data Augmentation: Data augmentation is used to automatically gener-
ate more training data (positive examples in our case). Data augmentation
methods can be broadly categorized into [43]: (i) paraphrasing-based methods
where the original training examples are reproduced using semantically simi-
lar text, and (ii) noise-based methods where the original examples are altered
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without affecting the meaning. In our evaluation, we use three paraphrasing-
based methods, including back translation (BT), synonym replacement (SR),
and embeddings replacement (ER). In BT, the original text in the training
example is first translated from its language (English in our case) to other
languages (e.g., French or German) and is then translated back to the orig-
inal language, obtaining thereby a paraphrased version of the original text.
In SR, one or more words in the training example are replaced by their syn-
onyms using some external knowledge resource such as WordNet [49,27]. In
ER, randomly-selected words in the original training example are replaced
with the other words which have the most similar embeddings in the vector
space as generated by some pre-trained LLMs. In our work, we apply this
method using the embeddings of three LLMs, namely ALBERT, BERT, and
RoBERTa.

We further use a noise injection (NI) method which introduces random
noise to the text in four ways [43], including swapping which swaps two
randomly-selected words in a text sequence, deletion which deletes random
words in a text sequence, substitution which substitutes random words in a
text sequence, and cropping which cuts off a random consecutive set of words
in a text sequence.
(2) Data Imbalance Handling: To obtain a more balanced dataset, random
sampling can be used [16]. In our evaluation, we apply (i) random undersam-
pling (RU) where instances from the majority classes are randomly removed,
(ii) random oversampling (RO), where instances for the minority classes are
duplicated, and (iii) a mix of RU and RO where both the majority class is
reduced and simultaneously the minority class is increased.

2.2 Related Work

Completeness in RE has been extensively studied as part of quality assurance
of requirements. A recent mapping study shows that requirements complete-
ness is the second top most investigated quality attribute after ambiguity [50].
Most of the existing approaches rely on external knowledge resources for de-
tecting missing requirements. Ferrari et al. [28] uses NLP methods to iden-
tify missing concepts and relations in textual requirements according to avail-
able documents created during requirements elicitation phase (e.g., customer-
meeting transcript). Arora et al. [8] verifies the completeness of a set of natural-
language requirements against a domain model that is created a priori. More
recently, Luitel et al. [46] propose leveraging LLMs such as BERT as an al-
ternative external knowledge resource to identify incompleteness violations in
requirements. In the context of regulatory compliance, the external resource is
the regulation or an abstract representation thereof. Much work has been done
so far for eliciting legal requirements, creating abstract representations and fa-
cilitating the navigation through regulations mainly to enable developing com-
pliance software systems and/or checking the compliance of software against
applicable laws. Existing work relies primarily on modeling the regulation [68,
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56,72,64,36,52]. There are also attempts to retrieve compliance-relevant infor-
mation by querying the regulation [1,63]. Dealing with data scarcity is another
relevant research topic. Gebauer et al. [30] propose integrating ML into the
manual annotation process in privacy policies, focusing on data subject rights.
The authors employ LLMs to devise a classifier that predicts based on previ-
ously seen training examples whether unseen text is about data subject rights.
The predictions are leveraged to help human annotators annotate unseen pri-
vacy policies more efficiently.

Another research strand in RE focuses on the completeness of regulated
documents against applicable regulations. The intuition behind is that regu-
lated documents are often more focused on certain aspects and are thus easier
to navigate and elicit legal requirements. For example, DPAs set out the obli-
gations of the processor. Bhatia et al. [14] develop an automated approach for
detecting the incompleteness violations in privacy policies against the privacy
regulations. Their approach applies semantic frames where a sentence is ana-
lyzed according to what semantic roles certain verbs expect. For instance, the
verb “buy” expects the roles of an actor (i.e., the buyer), something bought,
and a price. This decomposition enables detecting incompleteness according
to what roles are missing in the sentence. Torre et al. [66] and Amaral et al. [7]
propose using a combination of NLP and ML technologies to detect the incom-
pleteness violations in privacy policies. Specifically, they classify the textual
content of a privacy policy according to a comprehensive conceptual model
consisting of semantic metadata manually-defined based on relevant GDPR
provisions.

The closest to our work is the one by Amaral et al. [19] who propose
using semantic frames combined with rules to check the completeness of DPAs
against GDPR. In collaboration with legal experts, they first define a set of 45
compliance criteria that are derived from GDPR provisions concerning DPAs.
These criteria are documented as “shall”-requirements to be better understood
by requirements engineers. Out of the total 45 criteria, 26 are mandatory,
meaning that the DPA’s content must satisfy these criteria, otherwise the DPA
is deemed non-compliant. The mandatory criteria are further broken down
into three categories, namely metadata, processor obligations, and controller
rights. Using rules on top of semantic frames, they develop then an automated
approach to verify the content of DPAs according to these criteria. In a follow-
up, the authors propose leveraging ML and conceptual modeling for checking
the completeness of DPAs.

Existing work in RE has two limitations. First, the research focuses on pri-
vacy notices and gives little attention to compliance checking of DPAs. DPAs
describe different requirements related to privacy and data protection [5]. Sec-
ond, the existing work on DPAs does not exploit the recent advancements of
NLP, notably LLMs, which have recently shifted the NLP landscape. In our
work, we aim to address these limitations.

Similar to the existing literature in RE, our work focuses on verifying the
completeness of a regulated document (a DPA, in our case) against the ap-
plicable regulations (the provisions of GDPR). In contrast with the existing
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literature, we (1) conduct a comparative analysis of ten alternative solutions
covering different enabling technologies, and further (2) provide insights about
the impact of the size and imbalance of the training data on these solutions.
Specifically, our work builds on the legal knowledge concerning the interpre-
tation of GDPR with regard to DPAs completeness as established by Amaral
et al. [19]. We scope our work to 19 mandatory compliance criteria concerning
processor obligation, listed in Table 1. These criteria (labeled P1 – P19) are
extracted from the GDPR provisions relevant to DPA compliance and should
be considered for creating a GDPR-compliant DPA. The motivation behind
our choice is two-fold. First, these criteria are mandatory, i.e., they must be
satisfied in the DPA, consequently in the software systems that are employed
for data processing. Second, unlike other mandatory criteria which mainly
constrain the binding agreement (e.g., its duration), criteria on processor obli-
gation can be translated to actionable points in the software systems which
process personal data. For example, the criterion P6 states that the processor
must ensure the security of personal data. This criterion is satisfied in the
first provision of our example DPA in Fig. 1. To fulfill this criterion, require-
ments engineers can use the provision in the DPA specify dedicated functional
requirements like the ones labeled SEC-1 – SEC4 in Fig. 1.

3 Automated Completeness Checking of DPAs

In this section, we first provide a generic definition of the completeness check-
ing against a regulation as a text classification problem. We then explain the
design of our proposed alternative solutions.

3.1 Problem Definition

Definition 1 (Completeness Checking) Let S = (s1, s2, . . . , sn);n ≥ 1 be
a list of text span in a given regulated document (denoted as D), where n is
the number of sentences. Let P = (p1, p2, . . . , pm);m ≥ 1 be a set of provisions
in some regulation (denoted as R) related to the completeness of the regulated
document, where m is the number of provisions. Completeness checking is typ-
ically a multi-class text classification problem involving classifying the text in
a given DPA into the different provisions. Assigning the label pi to a text span
sj indicates that sj is relevant to (or satisfies) pi. This multi-class classification
problem can be solved either (1) by building multiple binary classifiers (one
classifier for each provision) or (2) by building one multi-class classifier for all
provisions combined. Though one solution proposal would suffice to address
the completeness checking problem, our work is intended to provide a com-
prehensive overview of possible alternatives that one can pursue. We define in
the following each solution proposal:

1. Binary classification: For each provision pi; 1 ≤ i ≤ m, we build a corre-
sponding binary classifier ci; 1 ≤ i ≤ m which can predict for a given text
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Table 1 GDPR Provisions concerning Mandatory Processor’s Obligation in DPAs [19].

ID Provision

P1 The processor shall not engage a sub-processor without a prior specific or general
written authorization of the controller.

P2 In case of general written authorization, the processor shall inform the controller
of any intended changes concerning the addition or replacement of sub-processors.

P3 The processor shall process personal data only on documented instructions from
the controller.

P4 If the processor requires by Union or Member State law to process personal data
without instructions and law does not prohibit informing the controller on grounds
of public interest, the processor shall inform the controller of that legal requirement
before processing.

P5 The processor shall ensure that persons authorized to process personal data have
committed themselves to confidentiality or are under an appropriate statutory
obligation of confidentiality.

P6 The processor shall take all measures required pursuant to Article 32 or to ensure
the security of processing.

P7 The processor shall assist the controller in fulfilling its obligation to respond to
requests for exercising the data subject’s rights.

P8 The processor shall assist the controller in ensuring the security of processing.

P9 The processor shall assist the controller in notifying a personal data breach to the
supervisory authority.

P10 The processor shall assist the controller in communicating a personal data breach
to the data subject.

P11 The processor shall assist the controller in ensuring compliance with the obliga-
tions pursuant to data protection impact assessment.

P12 The processor shall assist the controller in consulting the supervisory authorities
prior to processing where the processing would result in a high risk in the absence
of measures taken by the controller to mitigate the risk.

P13 The processor shall return or delete all personal data to the controller after the
end of the provision of services relating to processing.

P14 The processor shall immediately inform the controller if an instruction infringes
the GDPR or other data protection provisions.

P15 The processor shall make available to the controller information necessary to
demonstrate compliance with the obligations Article 28 in GDPR.

P16 The processor shall allow for and contribute to audits, including inspections, con-
ducted by the controller or another auditor mandated by the controller.

P17 The processor shall impose the same obligations on the engaged sub-processors
by way of contract or other legal act under Union or Member State law.

P18 The processor shall remain fully liable to the controller for the performance of
sub-processor’s obligations.

P19 When assessing the level of security, the processor shall take into account the risk
of accidental or unlawful destruction, loss, alternation, unauthorized disclosure of
or access to the personal data transmitted, stored or processed.
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Fig. 2 Overview of our Solution Design.

span sj ; 1 ≤ j ≤ n whether sj satisfies pi or does not satisfy pi. Each ci
would predict a single label for the same span. The span that is labeled
as not satisfying by all classifiers is then deemed not relevant to P. This
definition allows multi-labeling, i.e., the same span can satisfy multiple
provisions.

2. Multi-class classification: For the set of provisions, P, we build one classifier
cp which predicts a label indicating whether a given text span sj ; 1 ≤ j ≤ n
satisfies any provision pi ∈ P. To enable predicting the cases when sj is
not relevant to P, we add to the set of previsions above the label other,
i.e., we train the multi-class classifier on m+ 1 labels including p1, . . . , pm
and other. This definition is restricted to single-labeling, i.e., a span can
satisfy exactly one provision (or none) .

Following this, D is complete according to R when there is, for each pro-
vision pi, at least one text span sj in D which satisfies pj . Otherwise, D is
considered as incomplete. A provision that is not satisfied in D leads to an
incompleteness violation. Recall that all provisions we consider in our work
are mandatory, i.e., they must be satisfied by the DPA, irrespective of the
application domain of the data controller or processor, to be deemed complete
according to GDPR. Additional domain or business relevant text spans not
obliged by GDPR can be also present in the DPA. These spans are however
not part of our GDPR compliance checking approach.

Applying this definition on our work, R represents GDPR and D repre-
sents a DPA. We consider 19 provisions from GDPR, i.e., m = 19. In our
experiments, we build both binary classifiers as well as multi-class classifiers
as we discuss later in this section. The overall goal of the alternative solutions
in our work is to reveal the incompleteness violations in a given DPA, i.e., the
GDPR provisions which the DPA does not satisfy.

3.2 Alternative Solutions Design

In this section we discuss the design of our proposed solutions for checking
the completeness of a DPA against GDPR. The solutions can be categorized
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into (A) LLM-based which also covers the FSL solution, and (B) ML-based
which spans several traditional and recent ML algorithms. The main difference
between the two categories is that LLM-based solutions are pre-trained on a
massive amount of text, i.e., they have obtained knowledge about the language.
We fine-tune the pre-trained LLMs on completeness checking utilizing thereby
transfer learning concepts. In contrast, ML-based solutions are directly trained
on the specific task at hand without having any prior knowledge. In Section 4,
we investigate the benefit of transfer learning. With the intuition to keep our
solutions design versatile, i.e., adjustable to more recent alternative algorithms
in each category, we describe below the different steps in each category without
referring to specific algorithms.

The overview of our solutions is depicted in Fig. 2. Note that the fig-
ure distinguishes between the user’s and developer’s perspectives. The user’s
perspective assumes that the classifiers used in Step 4 are readily available,
whereas the developer’s perspective needs to build these classifiers. Step 1
preprocesses the textual content of a single DPA or a training set of several
DPAs. Step 2 represents the input text as feature vectors compatible with
the intended solution. To do that, Step 2(a) encodes the text, and Step 2(b)
extracts a set of feature embeddings following the common practices in the
current ML literature. Based on the results of Step 2, Step 3(a) fine-tunes
an LLM-based and Step 3(b) trains an ML-based solution over the training
dataset. Step 4 predicts whether the DPA’s text satisfies the GDPR provi-
sions. Finally, Step 5 post-processes the predictions to conclude the violations
in the DPA producing thereby a detailed report as the final output. Below, we
elaborate these steps.

3.2.1 Step 1: Preprocess Text

The input to this step can be either a single DPA or a set of several DPAs used
for creating the solutions. In both cases, we parse each DPA and preprocess
its text using a simple NLP pipeline, composed of the three modules: The first
module is a tokenizer which splits the text into a set of tokens, e.g., words and
punctuation marks. The second module represents a sentence splitter which
splits the text into sentences according to widely-used endings of a sentence
captured in the punctuation marks. Examples of such endings include periods
and colons in the English language. We note that the sentence splitter does
not necessarily produce grammatically correct sentences. Finally, the third
module is a normalizer that replaces the specific names and references of the
processors and controllers by their generic descriptions, i.e., PROCESSOR and
CONTROLLER. While the first two modules are fully automated, the third
module is semi-automated using regular expressions and human in the loop.
The reason for semi-automating is due to the multiple ways of referring to
the processors and controllers which vary across the DPAs in our dataset. For
instance, a processor can be referred to by its name (i.e., ORGANIZATION X)
or using different alternative references including importer, service provider,
etc. The intermediary output of this step represents the list of sentences in
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the DPA, i.e., S = (s1, s2, . . . , sn);n ≥ 1 where n is the number of sentences
in the DPA. This output is passed on to Step 2.

3.2.2 Step 2: Create Feature Vectors

In this step, we loop over the sentences in the input DPA and create for each
sentence a corresponding feature vector which will be used to enable building
the solutions or classifying the text. Below, we discuss this step considering
the two enabling technologies considered in our work.

(a) Encode Text for LLM-based Solutions. LLMs require the input
text to be encoded in a specific format. BERT-like models automatically add
two special tokens, namely [CLS] and [SEP]. The [CLS] encapsulates the text
representation which is fed into an output layer for classification. The [SEP]
token, typically used to split two input text pairs, is not applicable in our
case as the input is a single sentence. Given a sentence sj ∈ S, where sj
is a sequence of tokens denoted as t1, . . . , tk; k ≥ 1, this step encodes sj as
([CLS], t1, . . . , tk[SEP ]ϕ). This encoded text is passed on to Step 3(a) and
Step 4 for fine-tuning LLM-based solution or applying readily-available ones
to classify the text according to the provisions, respectively.

(b) Extract Features for ML-based Solutions. As discussed in Sec-
tion 2.1, text classification using ML requires transforming the text into math-
ematical representations which are then used as learning features. In our work,
we use the most recent representation methods to generate sentences embed-
dings (denoted as e). A sentence sj will be represented by a sequence of num-
bers corresponding to its embeddings e1, . . . , e768. Note that the sentences
embeddings are 768-dimensional since we apply SBERT (a variant of BERT)
to generate these embeddings. Similar to Step 2(a), the intermediary output
of this step is passed on to Step 3(b) to train the ML classifiers or Step 4 to
classify text.

3.2.3 Step 3: Build Text Classifiers

This step is applied only in the developer’s perspective. The goal is to create
different classification models that can be then used for classifying the text
of a given DPA according to whether they satisfy the GDPR provisions. For
creating the classifiers, we use a training dataset (elaborated in Section 4.3)
which is subjected to the first two steps, namely preprocessing and feature ex-
traction. Referring to the problem definition described earlier, we build binary
and multi-class classifiers as follows. For a particular provision pi, a corre-
sponding binary classifier is created by being exposed to positive examples,
i.e., all sentences in the training set that satisfy pi, and negative examples,
i.e., all sentences in the training set (or a subset thereof) that do not satisfy
pi. As a result, we created a total of 19 binary classifiers corresponding to the
GDPR provisions considered in our work. We further create one multi-class
classifier that is exposed to all sentences satisfying any GDPR provision.
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3.2.4 Step 4: Classify Text

This step takes as input the provisions of GDPR, a classification model (cre-
ated in Step 3) and the representation of a sentence in the input DPA. Each
model then predicts whether the sentence satisfies a provision or not. In a
realistic scenario, the user would use only one solution and one problem def-
inition. For instance, the user will apply one multi-class classifier to predict
the provision discussed in the given sentence. To help the user decide what is
more suitable for their application context, we experiment in Section 4 with
multiple alternative solutions and report on their performance.

3.2.5 Step 5: Check Completeness

Finally, Step 5 takes the predictions made for all the sentences in the input
DPA and process them to predict GDPR-related completeness violations as
follows: A provision pi is violated in a given DPA if there are no sentences
that are predicted to be on pi in the DPA. Otherwise, if there is at least one
sentence on pi in the DPA, then pi is satisfied. Any missing pi leads to an
incomplete DPA according to GDPR. The final output of this step is then a
detailed report describing the missing provisions as well as the satisfied ones
alongside the sentences that actually satisfy them.

4 Empirical Evaluation

In this section, we evaluate our proposed solutions.

4.1 Research Questions

Our empirical evaluation addresses the following research questions (RQs):

RQ1: Which alternative solution is the most accurate for checking
the completeness of DPAs against GDPR?
RQ1 thoroughly compares our proposed solutions aiming at determining the
most accurate one for completeness checking of DPAs. We analyze the perfor-
mance of the solutions in solving the completeness checking both as a binary
and multi-class classification problem. The best-performing solution is then
used to address the subsequent RQs.

RQ2: Which data imbalance handling method yields the best accu-
racy for DPA completeness checking against GDPR?
As we discuss in Section 4.3, our dataset is highly skewed towards the negative
examples (i.e., sentences that do not satisfy any provision) being significantly
more than with the positive examples (i.e., DPA sentences that satisfy any
GDPR provision). RQ2 investigates several methods that handle data imbal-
ance, and further analyzes the impact of applying these methods on the results
of the alternative solutions.
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RQ3: How accurate are FSL solutions in checking the completeness
of DPAs against GDPR? Scarcity of labeled datasets is a problem that
has been often discussed in the RE literature. In the context of regulatory
compliance, building labeled datasets often requires the involvement of legal
experts which is expensive and not always possible. To address this concern, we
apply an FSL framework which utilizes LLMs, yet requires much less training
data. In RQ4, we assess using FSL in several scenarios and discuss its perfor-
mance compared with the other alternative solutions developed over the entire
training dataset.

RQ4: What is the execution time of our proposed solutions?
Our solutions are intended to assist requirements engineers in identifying in-
completeness violations in DPAs which can significantly impact the compliance
requirements specified for data processing activities in software. Our solutions
can also assist legal experts in their compliance checking activities. To run any
solution in a realistic scenario, it must have practical time. RQ4 investigates
the execution time of our proposed solutions.

4.2 Implementation Details and Data Availability

We implemented all alternatives solutions using Python 3.8 [33], in PyCharm
IDE [37]. For operationalizing the NLP pipeline applied in Step 1, we use
the NLTK 3.7 library [15]. In Step 2(b), we extract the feature embeddings
from SBERT (concretely, ‘all-MiniLM-L6-v2’) which is available in the Trans-
former 4.18.0 library [71]. We use the same Transformer library and PyTorch
1.12.1 [54] for implementing MLP and BiLSTM in addition to all details
concerning the LLM-based solutions, including the pre-trained models, the
fine-tuning process, and the text encoding. All LLMs used in our study are
the pre-trained BASE variants, including ‘bert-base-uncased’, ‘nlpaueb/legal-
bert-base-uncased’, ‘roberta-base’, and ‘albert-base-v2’. We implement the
FSL framework using the SetFit 0.6.0 library [69] and sentence transform-
ers 2.2.2 library [59]. Finally, we use the Scikit-learn 1.0.2 library [55] which
provides the basic functions for ML, e.g., training ML classifier, dataset im-
balance handling and splitting the dataset. We make all our non-proprietary
material used in our empirical evaluation publicly available at this link3.

4.3 Data Collection Procedure

The purpose of our data collection is to collect a large set of DPAs that are
manually analyzed and checked for completeness against GDPR. To do so,
we extended the original dataset (consisting of 54 DPAs) that is presented
by Amaral et al. [19] with another 113 DPAs, of which 17 are from diverse
public resources. The DPAs in our dataset are contracts between controllers
and processors coming from different sectors, such as tax and cloud services,

3 https://zenodo.org/records/11047441

https://zenodo.org/records/11047441
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services related to human resources, data analytics, accounting, audits, and
pension services.

To build the ground truth in our work, the DPAs were manually ana-
lyzed by three third-party annotators (non-authors). All annotators were in
the graduate program at law department. Thus, they had the necessary legal
background for our task. The annotators further attended a half-day training
about compliance and completeness against GDPR. In this training, we intro-
duced the GDPR provisions (in Table 1) concerning processor’s obligations.
We prepared the annotation process as follows: We first take out 10% of the
DPAs to be used as a shared subset on which the interrater agreement is mea-
sured. We then split the DPAs into three subsets maintaining to the possible
extent nearly equal number of sentences in each subset to balance the load.
We provided clear instructions for analyzing the DPAs, including to examine
each sentence in the DPA and decide whether the sentence satisfies one or
more GDPR provisions. Each annotator was assigned a subset of DPAs to
analyze. To ensure that the annotators obtained mutual understanding of the
task, we had few feedback sessions where annotators discussed border cases.
On a subset of 10% of overlapping DPAs, where each DPA is independently
analyzed by at least two annotators, we computed Cohen’s Kappa interrater
agreement metric (κ) [21]. The average κ was 0.82, implying “almost perfect
agreement” [70]. To solve the disagreements, we presented to each annotator
the sentences which are disagreed upon by the other annotator on the same
set, and asked them to provide feedback on whether they agree to change
their annotation accordingly. All remaining disagreements were discussed in
an online session.

To mitigate fatigue, the annotators were recommended to work two hours
at a time. They declared a total of ≈57 hours each over a span of three months.

Our data collection procedure resulted in analyzing a total of 169 DPAs
consisting of 31,185 sentences. Of these sentences, only a small fraction of
≈12% (about 3,387 sentences) was labeled as satisfying any provision from
GDPR. The remaining fraction (≈88%) was labeled as other as it contained
information not directly relevant to the provisions we consider in this work
(see Table 1). Example of other sentences include the contact details of the
controller and processor or the definitions of certain terms in the agreement.
These sentences together with their labels are then used as our ground truth.
We split the DPAs in our ground truth into two proportions as follows: 70%
of the DPAs is used for developing the alternative solutions and the remaining
30% is used for assessing the performance of the solutions. The training and
evaluation sets are thereafter referred to as τ and ϵ, respectively. Table 2
provides the statistics about the total number of sentences as well as the total
number of DPAs in each set that satisfy each GDPR provision.
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Table 2 Results of our Data Collection Procedure.

Provisions
No. of DPAs No. of Sentences

τ ϵ
∑

τ ϵ
∑

P1 120 19 139 234 40 274
P2 68 17 85 83 21 104
P3 113 28 141 168 50 218
P4 58 12 70 73 20 93
P5 110 24 134 155 34 189
P6 76 17 93 627 100 727
P7 115 24 139 244 41 281
P8 28 1 29 30 1 31
P9 46 6 52 57 7 64
P10 16 1 17 18 1 19
P11 68 19 87 88 20 108
P12 28 2 30 30 2 32
P13 127 25 152 202 38 240
P14 79 15 94 89 16 105
P15 86 13 99 165 22 187
P16 98 20 118 192 33 225
P17 113 22 135 205 31 236
P18 97 17 114 127 26 153
P19 64 12 76 84 13 97

4.4 Solutions Tuning

We describe below the details of tuning our solutions. The resulting tuned
solutions are used to answer our RQs in Section 4.6.

Tuning LLMs. We fine-tune LLM-based solutions to maximize the F2 score
for completeness checking. All LLMs are fine-tuned on the training dataset τ .
Each training example is a sentence in the training set alongside the label(s)
assigned to it. The sentence is pre-processed and encoded as explained in
Section 3.2. For building the binary classifiers, we fine-tune the LLMs on τ
for each provision pi, where the sentences that satisfy pi are considered as
positive examples and all sentences that do not satisfy pi are considered as
negative examples. Following this, we fine-tune ALBERT for 10 epochs with
2e-5 learning rate and 64 batch size, BERT for 20 epochs with 3e-5 learning
rate and 64 batch size, Legal-BERT for 20 epochs with 2e-5 learning rate and
32 batch size, and RoBERTa for 20 epochs with 2e-5 learning rate and 64
batch size.

For building the multi-class classifiers, we use the sentences that satisfy
any provision as well as the sentences that are labeled as other to properly
predict when none of the provisions is satisfied in any sentence. Following this,
we fine-tune ALBERT for 10 epochs with 2e-5 learning rate and 32 batch size,
BERT for 20 epochs with 3e-5 learning rate and 64 batch size, Legal-BERT
for 20 epochs with 2e-5 learning rate and 32 batch size, and RoBERTa for 10
epochs with 2e-5 learning rate and 64 batch size.

Tuning ML. We train and optimize our ML-based solutions on τ . All train-
ing examples are represented using embeddings extracted from SBERT as
explained in Section 3.2. In total, we apply five algorithms including LR, RF,
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SVM, MLP and BiLSTM (see Section 2.1 for more details). All algorithms are
tuned with optimal hyper-parameters that maximize the F2 score. For tuning,
we apply grid search [12].

4.5 Evaluation Procedure

To answer the RQs, we conduct the following experiments (EXPI – EXPIV),
explained below.

EXPI. EXPI answers RQ1. Specifically, we assess the performance of our
proposed solutions both for performing binary and multi-class text classifica-
tion to check the completeness of a given DPA against GDPR. The solutions
are evaluated exclusively on ϵ (our evaluation set). To evaluate the results, we
define for a given provision pj , true positives (TPs) as the cases for which pj is
correctly found as satisfied in the DPA, false positives (FPs) as the cases when
pj is wrongly found to be satisfied, false negatives (FNs) as the cases when a
satisfied pj is missed by the solution (i.e., found as violated), and true negatives
(TNs) as the cases when pj is correctly found as not satisfied (i.e., violated)
in the DPA. Following this, we apply the traditional metrics accuracy (A),
precision (P) and recall (R), computed as A=(TP+TN)/(TP+TN+FP+FN),
P=TP/(TP+FP), and R=TP/(TP+FN).

Precision reflects the errors of falsely predicting a satisfied provision (i.e.,
FPs). FPs entail that the solution presents actual sentences found in the DPAs
(which falsely indicate a given provision). Such sentences, if not too many,
can be examined and filtered out by the analyst. Recall, on the other hand,
reflects the errors of missing satisfied provisions (i.e., FNs). FNs entail that the
solution fails to predict actual sentences. Consequently, the analyst would need
to review the entire DPA to identify the missing provisions. Reviewing the DPA
is a daunting task for the analyst who is typically a requirements engineer often
with a limited budget. The objective of our work is to contribute to eliciting
more complete legal requirements. In line with this objective (and also with
the RE literature [13]), we favor recall over precision. In practice, the solution
should have high recall (with reasonable precision) to provide useful assistance
and minimize the manual effort required for reviewing DPAs. In light of the
above, we compute in EXPI Fβ score for β = 2, indicating that recall is favored
over precision. F2 is computed as F2 = ((22 + 1) ∗ P ∗R)/(22 ∗ P +R).

EXPII. EXPII answers RQ2. Specifically, we investigate which data imbal-
ance handling strategy yields the most accurate solutions. Recall from Sec-
tion 3.1 that we train 19 binary classifiers, one classifier for each provision
pj ∈ P. In the training dataset τ , the positive examples include all sentences
that satisfy pj in all DPAs in τ . Conversely, the negative examples include
the sentences that do not satisfy pj , i.e., the sentences that satisfy any pro-
vision but pj in addition to the sentences that do not satisfy any provision.
In this case, the positive examples represent the minority classes, whereas the
negative examples represent the majority. Table 2 reports the total number of
sentences in τ satisfying each pj , i.e., positive examples. We further train one
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multi-class classifier over the positive examples that satisfy the 19 provisions.
In this case, we treat all sentences in τ that do not satisfy any provision as
another class referred to as other. The rationale behind including other is that
the overall accuracy of the multi-class classifier in distinguishing provisions
improves due its the exposure to the text segments that do not satisfy any
provision. The multiple classes in our work include the 19 provisions (minority
classes) and other (majority class). In EXPII, we apply several data handling
strategies aiming to balance τ through (1) increasing the minority classes,
(2) decreasing the majority classes, and (3) a combination of both increasing
and decreasing. We create 13 variants of τ using random sampling in combi-
nation with data augmentation (see Section 2.1 for more details about these
methods). Considering the best performing solutions resulted from EXPI, we
redevelop these solutions by exposing the classifier each time to a different
variant of τ . We then apply the same metrics A, P, R, and F2 as defined in
EXPI to assess the performance of the resulting solutions over ϵ.

EXPIII. This experiment addresses RQ3. Specifically, we test the perfor-
mance of the alternative solutions when they are developed on a much smaller
proportions of the dataset equivalent to 10%, 20%, and 30%. In EXPIII, we
also use SetFit framework (explained in Section 2.1) to perform FSL with the
same 30% of the training dataset. All the different solutions are again tested
exclusively on ϵ. The purpose of EXPIII is to provide insights about how well
the solutions fare when there are only few training examples available. To
assess the performance we report on A, P, R, and F2 as defined in EXPI.

EXPIV. This experiment addresses RQ4. We measure the running time of
the different solutions taking into account the two perspectives described in
Section 3.2. In our work, we use a work station with AMD 12-Core processor
(3.70GHz), INVIDIA GeForce RTX 3090 GPU, and 64GB of RAM for training
and developing the classifiers, whereas we apply the developed classifiers to
test the alternative solutions on ϵ using a normal laptop with 8-Core Intel
processor (2.4GHz), and 32GB of RAM.

4.6 Answers to the RQs

RQ1: Which alternative solution is the most accurate for checking
the completeness of DPAs against GDPR?

Table 3 shows the accuracy, precision, recall, and F2 of our proposed alter-
native solutions. The metrics are computed exclusively over ϵ to measure the
capability of the solutions in identifying the satisfied provisions in the DPAs
in ϵ. The table shows the results considering the DPA completeness checking
both as a binary classification and multi-class classification problem.

With regard to binary classification, BERT achieves the best overall results
in terms of accuracy, recall, and F2. Compared to other LLMs, BERT achieves
an average gain in accuracy of 10.5 percentage points (pp). BERT further
achieves an average gain in accuracy of 11.6 pp over all ML-based solutions
except BiLSTM which yields the same accuracy as BERT. BERT achieves the
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Table 3 Accuracy Results for DPA Completeness Checking Solutions (RQ1).

Binary Classification Multi-class Classification

A(%) P(%) R(%) F2(%) A(%) P(%) R(%) F2(%)

① ALBERT 69.1 82.4 51.0 55.2 78.1 79.6 77.2 77.7

② BERT 80.9 81.4 81.6 81.6 83.0 82.7 84.7 84.3
③ Legal-BERT 67.5 76.8 53.1 56.6 81.8 79.7 86.7 85.2

④ RoBERTa 74.7 83.7 63.1 66.4 83.5 80.5 89.8 87.8

⑤ BiLSTM 80.9 82.5 80.3 80.7 79.3 79.3 81.0 80.6
⑥ LR 59.6 93.2 23.5 27.6 66.3 94.0 37.1 42.2
⑦ MLP 77.5 85.8 67.7 70.7 78.8 86.5 69.7 72.5
⑧ RF 65.6 87.1 39.1 44.0 63.9 83.0 39.8 44.4
⑨ SVM 74.4 89.4 57.1 61.6 76.0 91.5 58.8 63.4

† The best values of A, P, R, and F2 are highlighted in bold.

best recall with a significant gain of 25.9 pp and 34.7 pp over LLM and ML-
based solutions, respectively. Again, BiLSTM is an exception which performs
on par with BERT and has a loss in recall of 1.3 pp. In contrast, we observe
that ML-based solutions are performing better or on par with LLM-based
solutions (in particular, BERT) in terms of precision. As shown in the table,
LR yields the best precision value of 93.2%, indicating a gain of 11.8 pp over
BERT. This is followed by the second best performing SVM with a precision of
89.4%, RF with 87.1%, and MLP with 85.8%. BiLSTM achieves a comparable
precision to the one achieved by LLM-based solutions. ML-based solutions
(except BiLSTM) have very low recall ranging from 23.5% for LR to 67.7%
for MLP which introduces a particularly notable degradation in the respective
F2 scores. Having a low recall indicates that many provisions were missed by
these solutions. For instance, LR compared to BERT has an average loss in
recall of ≈58 pp, entailing the risk of missing a large proportion of the satisfied
provisions in ϵ. On the one hand, the 11.8 pp in precision (the advantage of
LR over BERT) entails a fraction of falsely satisfied provisions introduced by
BERT which can be filtered out by an expert with relative ease. The low
recall of LR, on the other hand, entails the risk of missing a lot of satisfied
provisions, compromising thereby the completeness of the DPA. Therefore, for
binary classification, we select BERT as the best performing solution.

With regard to multi-class classification, RoBERTa yields the best results
in terms of accuracy, recall, and F2. Compared to RoBERTa, legal-BERT
and BERT achieve comparable performance in terms of F2 with a loss of
2.6 pp and 3.5 pp, respectively. As shown in the table, ML-based solutions
demonstrate similar behavior to the one observed for binary classification.
That is, they achieve high precision values at the cost of low recall. BiLSTM
is still an exception that achieves comparable results to LLMs. For multi-class
classification, we select RoBERTa as the best performing solution.

The remarkably lower recall in the case of traditional ML-based solutions
confirms the complexity of the text classification problem in the context of
completeness checking of DPA. Not having any ground knowledge about the
language (in contrast with LLM-based solutions) makes the prediction task for
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Table 4 Breakdown of F2 Score per Provision for LLM-based Solutions.

Binary Classification Multi-class Classification

P |ϵ| ① ② ③ ④ ① ② ③ ④

P1 19 89.5 94.7 95.7 90.4 86.0 88.5 88.5 85.1
P2 17 39.5 77.4 0.0 0.0 67.1 68.8 76.5 78.3
P3 28 0.0 93.5 0.0 88.2 88.2 97.1 88.2 94.2
P4 12 82.0 88.7 89.6 89.6 78.1 85.9 88.7 95.2
P5 24 96.6 98.4 98.4 88.2 95.8 95.0 95.0 95.0
P6 17 0.0 61.8 0.0 0.0 46.0 59.5 73.0 71.4
P7 24 84.0 87.5 90.9 87.5 80.5 84.0 97.6 94.3
P8 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 55.6
P9 6 0.0 46.9 0.0 32.3 57.1 62.5 27.8 46.9
P10 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P11 19 63.2 85.1 0.0 81.5 79.8 76.1 85.1 85.1
P12 2 26.3 55.6 50.0 0.0 50.0 45.5 55.6 41.7
P13 25 96.0 96.0 92.7 99.2 92.7 99.2 99.2 99.2
P14 15 82.3 90.9 94.9 0.0 80.0 74.3 90.9 90.9
P15 13 0.0 0.0 0.0 68.5 32.8 76.9 68.2 83.3
P16 20 49.5 63.2 90.0 87.6 68.4 94.1 89.1 91.3
P17 22 0.0 95.5 0.0 95.5 91.7 95.5 91.7 99.1
P18 17 79.3 93.0 0.0 0.0 84.3 89.3 94.1 94.1
P19 12 28.3 67.2 69.2 0.0 75.8 74.6 68.2 68.2

† P: Provision, |ϵ|: The number of DPAs satisfying P in ϵ.
‡ ① ALBERT, ② BERT, ③ Legal-BERT, ④ RoBERTa.

ML-based solutions more challenging. The reason could be due to the common-
alities and textual overlaps between the different text segments in a given DPA
which satisfy different provisions. BiLSTM, which was widely applied in the
NLP literature prior to LLMs, performs exceptionally well. In addition to the
fact that BiLSTM is built using recurrent neural networks, it is also effective
since it learns the text in a bidirectional manner (similar to BERT). Bidi-
rectional is essential in learning about the context and words co-occurrences
in any language. LLM-based solutions obtained language capabilities during
the pre-training phase and hence have an advantage over ML-based solutions
(including BiLSTM) to better distinguish the DPA text.

Overall we observe different behavior from the same LLM in binary versus
multi-class classification. Recall that binary classifiers are created separately
for each provision, e.g., the BERT-based model fine-tuned for predicting P1 is
different from the one fine-tuned for P2. We believe that this can be the rea-
son why the same model behaves differently. For instance, RoBERTa learned
better in our context when it was exposed to all provisions at the same time
(i.e., multi-class classification) whereas it learned poorly when presented with
separate provisions against their negative examples.

To better understand the behavior of LLMs on predicting the satisfied pro-
visions in a DPA, we provide a breakdown of the F2 scores per provision in
Table 4. The table also shows the number of DPAs that contain the provi-
sion in the evaluation set (|ϵ|). For binary classification, the table shows that
BERT outperforms the other LLM-based solutions in nine provisions, namely
P2, P3, P5, P6, P9, P11, P12, P17, and P18. However, BERT has zero F2
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scores for identifying P8, P10, and P15. The reason for such low performance
for P8 and P10 is two-fold. First, our training set has few positive examples
of these provisions (see Table 2). Second, they are satisfied in only one DPA
(and in one sentence). Missing those instances can easily lead to zero recall
which significantly impact the F2 scores. P15 is about providing to the con-
troller information necessary to demonstrate compliance with Article 28 in
GDPR. The sentences satisfying this provision in our dataset are typically
convoluted and refer implicitly to P15. Examples of the text satisfying P15
include “The Processor will make that policy available to controller, along with
other information reasonably requested by controller regarding processor’s se-
curity practices and policies.”, “to provide Controller upon request and within
reasonable time the information necessary to demonstrate compliance with the
obligations laid down in this clause 5;”, “and allow the Controller to audit that
compliance,” . We see that the text does not always explicitly refer to compli-
ance with Article 28 or demonstrating compliance. This implicit reference to
P15 explains the low performance for identifying P15 by BERT.

The table further shows that Legal-BERT achieves good performance, and
outperforms the other solutions in six provisions, namely P1, P4, P7, P14,
P16, and P19. Given that we build different classifiers for identifying each
provision, it is possible to create a hybrid classifier that combines the best
performing classifiers based on BERT and Legal-BERT. The hybrid classifier
will use BERT for identifying P2, P3, P5, P6, P9, P11, P12, P17, and P18, and
Legal-BERT for identifying the remaining provisions. This hybrid classifier can
slightly improve F2 to 84.1%, a gain of 2.5 pp over BERT.

Unlike binary classifiers, the multi-class classifiers are developed on the
entire set of provisions, i.e., we have one classifier per LLM-based solution. We
observe more variation in the behavior of the best performing solutions than for
binary classification. RoBERTa still performs the best in 11 out 19 provisions.
RoBERTa scores zero F2 for identifying P10 for the same reasons highlighted
above. Legal-BERT outperforms RoBERTA in three provisions (P1, P6, and
P7) and scores equally good for five provisions (P11-P14 and P18). BERT
outperforms the rest in two provisions (P3 and P9) and scores equally good in
another two provisions (P1 and P13). Despite the overall worse performance,
ALBERT still outperforms the rest in two provisions, namely P5 and P19.
However, the average gain is not significant compared to the performance of
the other models for P5 and BERT for P19. The consistent good performance
of RoBERTa confirms our decision to select it as the most accurate solution
for multi-class classification.

The answer to RQ1 is LLM-based solutions outperform ML-based so-
lutions in checking the completeness of DPAs against GDPR. When the
completeness checking is formulated as a binary text classification problem,
the most accurate solution is based on BERT with an average F2 of 81.6%.
Alternatively, RoBERTa is the most accurate solution, yielding an F2 of
87.8%, when formulating the problem as a multi-class classification.
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Table 5 Accuracy Results for Data Handling Strategies (RQ2).

Dataset† Binary Classification ( ② ) Multi-class Classification ( ④ )

A(%) P(%) R(%) F2(%) A(%) P(%) R(%) F2(%)

τ (RQ1) 80.9 81.4 81.6 81.6 83.5 80.5 89.8 87.8

Increasing minority classes

τ+RO 79.5 75.1 90.1 86.7 79.1 74.2 91.2 87.2
τ+BT 79.8 81.0 79.6 79.9 81.4 79.7 85.7 84.5
τ+ER 79.6 77.1 86.1 84.1 79.8 79.2 82.7 81.9
τ+NI 78.6 74.7 88.4 85.3 80.9 80.9 82.3 82.0
τ+SR 80.4 79.7 83.0 82.3 79.1 80.7 78.2 78.7
τ+All 79.1 76.8 85.4 83.5 79.6 76.3 87.8 85.2

Decreasing majority classes

τ+RU 54.7 53.3 99.7 84.9 76.7 69.8 96.6 89.7

Increasing minority classes and decreasing majority classes

τ+RO+RU 63.0 58.4 98.3 86.5 82.5 85.0 81.7 82.3
τ+BT+RU 58.1 55.2 99.3 85.6 77.5 71.3 94.6 88.8
τ+ER+RU 60.7 56.9 98.3 85.8 79.3 79.7 80.3 80.2
τ+NI+RU 60.7 56.9 98.3 85.8 78.4 75.7 85.7 83.5
τ+SR+RU 59.3 56.0 99.0 85.8 80.4 75.4 91.8 88.0
τ+All+RU 61.6 57.4 99.0 86.5 78.4 74.9 87.4 84.6

† τ : Original training dataset, RO : Random oversampling, RU : Random undersampling,
BT : Back translation, NI : Noise injection, ER: Embeddings replacement, SR: Synonym
replacement, All : All data augmentation methods, namely BT, NI, ER, SR.

RQ2: Which data imbalance handling method yields the best accu-
racy for DPA completeness checking against GDPR?

Table 5 compares the accuracy results of the best performing solutions
from RQ1, i.e., ② BERT for binary classification and ④ RoBERTA for multi-
class classification, when fine-tuned on 13 variants of our original training
dataset. As explained in Section 4.5, these variants are generated through
a combination of random sampling (RO and RU ) and data augmentation
methods (BT, ER, NI, SR).

For binary classification, increasing the minority classes through random
oversampling significantly improves the recall with a gain of 8.5 pp, conse-
quently F2 with an gain of 5.1 pp. All data augmentation methods also yield
a better recall and F2 than those achieved on the original dataset. The ex-
ception to this is BT which applies back translation techniques to triple the
minority examples (in this case, the sentences that satisfy any provision). We
believe that the low performance of BT is because it (unlike other data aug-
mentation methods) adds completely new sentences which might have lost the
legal domain specificity due to translation. For instance, sentences that are
written using “shall” modal verb to express a processor’s obligation might be
translated back to sentences without any modal verb, in which case the legal
context concerning an obligation is no longer present. While increasing the
minority classes did not improve accuracy and precision, the achieved values
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compared to the ones on the original dataset come with a loss ranging from
-1.4 pp to -0.5 pp in accuracy and -6.3 pp to -0.4 pp in precision.

Decreasing the majority classes alone or in combination with increasing the
minority classes yields a nearly perfect recall for binarcy classification with a
notable improvement of ≈18 pp over fine-tuning on the original dataset. How-
ever, this comes at the cost of huge decrease in precision of about ≈28 pp. One
reason is that minority classes for some provisions are very few and thus reduc-
ing the majority class would result in an overall smaller training dataset that
is not informative enough to the binary classifiers. Combining the undersam-
pling with increasing the minority classes does not help much in improving the
precision. We conclude that the negative examples are particularly important
to teach the classifier more distinguishable patterns to correctly predict the
provisions in the DPA. This can be justified through our observation that the
DPA text that satisfies any provision is highly similar to the text that does not
satisfy any provision. Exposing both texts to the classifier is therefore helpful.

Unlike binary classification, decreasing the majority class for multi-class
classification significantly improves recall and F2 with a gain of ≈7 pp and ≈2
pp, respectively. Compared to binary classifiers which are fine-tuned for each
provision, the multi-class classifier is exposed to all provisions as well as the
other sentences that do not satisfy any provision. For this reason, reducing the
majority class (other, in this case) would have a positive effect. Nonetheless,
precision has a loss of ≈12 pp. We believe that this loss is still acceptable
compared to the benefit of achieving a higher recall. Increasing the minority
classes also improves the recall and F2. In contrary to their behavior for binary
classification, data augmentation methods that work at the word level (e.g.,
SR and ER) performed much worse than BT for the multi-class classification.

We note that in our context data augmentation did not perform excep-
tionally well compared with random sampling techniques which can be imple-
mented more efficiently. Therefore, we conclude that augmenting textual data
is not very well suited for the legal domain due to the complexity of the legal
language and the sensitivity of the concepts, terms, and words co-occurrences
that can be disrupted through data augmentation methods.

In view of the above analysis, the answer to RQ2 is that handling the
imbalance of the training dataset using RO yields the best performing binary
classifiers with an average F2 of 86.7% and applying RU yields the best
performing multi-class classifier with an F2 of 89.7%.

RQ3: How accurate are FSL solutions in checking the completeness
of DPAs against GDPR? To show the advantage of FSL in our context,
we examine the performance of our proposed solutions when fine-tuned (or
trained) on a small proportion of our training set (τ). Specifically, we con-
sider the proportions 10%, 20%, and 30% of τ , corresponding to a total of
≈2413 sentences, ≈4828 sentences, and ≈7200 sentences, respectively. We do
not experiment with proportions larger than 30% as these would correspond
to relatively large datasets (>7200 sentences) and would therefore defeat the
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Table 6 Accuracy Results for FSL-based Solutions fine-tuned on a proportion of the train-
ing data (%τ) and tested on ϵ (RQ3).

Binary Classification Multi-class Classification

%τ A(%) P(%) R(%) F2(%) A(%) P(%) R(%) F2(%)

RQ1 100 80.9 81.4 81.6 81.6 83.5 80.5 89.8 87.8

FSL scenario 1: Fine-tuning LLMs on %τ , testing on ϵ

① ALBERT
30 54.4 68.9 21.1 24.5 75.3 82.3 66.3 69.0
20 61.9 88.9 29.9 34.5 66.5 86.0 41.8 46.6
10 54.3 91.9 15.3 18.4 62.9 86.0 33.6 38.3

② BERT
30 78.8 78.2 81.6 80.9 77.5 77.9 78.9 78.7
20 77.7 82.5 72.1 74.0 77.9 80.7 75.2 76.2
10 73.4 78.8 68.5 70.3 75.4 82.1 67.0 69.6

③ Legal-BERT
30 67.5 82.6 46.9 51.4 78.6 82.3 74.5 75.9
20 62.5 74.7 41.2 45.2 79.3 81.2 77.9 78.5
10 59.1 79.3 31.1 35.4 63.0 77.9 39.5 43.8

④ RoBERTa
30 67.0 79.8 48.3 52.4 79.8 82.5 77.2 78.2
20 63.7 72.8 47.3 50.8 59.3 77.2 29.9 34.1
10 55.5 87.5 18.9 22.4 55.6 78.1 19.4 22.8

FSL scenario 2: training ML on %τ , testing on ϵ

⑤ BiLSTM
30 78.8 80.1 78.2 78.6 78.2 78.7 68.0 69.9
20 73.9 74.6 74.8 74.8 73.3 79.3 65.3 67.7
10 72.5 89.1 53.1 57.7 70.9 79.1 59.2 62.3

⑥ LR
30 48.4 0.0 0.0 0.0 51.8 95.2 6.8 8.4
20 48.4 0.0 0.0 0.0 49.1 83.3 1.7 2.1
10 48.4 0.0 0.0 0.0 48.4 0.0 0.0 0.0

⑦ MLP
30 69.1 86.6 52.9 57.4 71.5 89.3 45.6 50.5
20 67.2 86.9 42.9 47.7 67.9 91.1 41.8 46.9
10 63.2 92.0 31.3 36.1 52.1 81.8 9.2 11.2

⑧ RF
30 58.2 82.4 28.6 32.9 60.0 80.4 25.2 29.2
20 59.3 86.0 25.2 29.3 58.8 83.1 25.2 29.2
10 57.7 88.2 20.7 24.5 57.2 85.7 20.4 24.1

⑨ SVM
30 61.9 91.0 27.6 32.0 61.2 89.7 29.6 34.2
20 57.0 94.5 17.7 21.1 58.9 91.7 22.4 26.4
10 53.2 93.5 9.9 12.0 54.0 92.1 11.9 14.4

FSL scenario 2: Using FSL framework on %τ , testing on ϵ

⑩ SetFit
30 77.7 77.6 79.9 79.4 79.6 80.5 79.9 80.0

20 77.7 77.9 79.3 79.0 78.8 81.0 76.9 77.7
10 76.3 80.9 70.7 72.6 78.1 81.9 73.8 75.3

purpose of using FSL. Considering the different proportions (%τ), we then
introduce three FSL scenarios for DPA completeness checking. In the first sce-
nario, we simply fine-tune the LLMs on %τ , in the second scenario, we train
the ML classifiers on %τ , and finally in the last scenario, we apply SetFit
framework designed specifically for FSL. Table 6 shows the results of the dif-
ferent solutions. For comparison, we provide in the table the results of the
best-performing solutions from RQ1, i.e., BERT for binary classification and
RoBERTa for multi-class classification.
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In the first scenario, the table shows that fine-tuning the LLM-based solu-
tions on on smaller proportions of τ for solving the DPA completeness checking
as a binary classification yield much worse performance than fine-tuning them
on the entire τ . With 30% of τ , BERT binary classifier manages to achieve an
average F2 of 80.9% (0.7 pp less than the F2 on the entire τ). Compared with
binary classification, the table shows that LLM-based multi-class classifiers
perform on smaller proportions of τ generally worse than the entire τ . We ob-
serve that RoBERTa (the best solution in RQ1) has a loss in F2 score of ≈9.6
pp when fine-tuned only on 30% of τ . This general observation indicate that
the multi-class classification task requires considerably larger training sets for
the LLMs to effectively learn to distinguish between the classes. BERT per-
forms the best with less data also for multi-class classification, outperforming
RoBERTa with 0.5 pp on 30% of τ . We conclude from the above results that
BERT has robust performance and generally requires less training data for
effective learning compared to other LLMs.

In the second scenario, we notice that, as expected, ML-based classifiers
perform bad on smaller proportions of τ . This result is expected since the
ML classifiers start learning from scratch compared with the LLMs which
are readily pre-trained. BiLSTM is still an exception achieving a comparable
results to LLM-based solutions.

In the last scenario, we apply SetFit. As explained in Section 2.1, SetFit
leverages LLMs (concretely, sentence transformer) for text classification. The
framework attempts first to understand the representations of the training
examples (typically, sentences). This is done by fine-tuning the LLM on a
few examples from the training data. The fine-tuned model is then used to
generate the sentences embeddings that are the main elements for training a
classifier tailored to the specific task. Table 6 shows that SetFit provides the
best trade-off between the manual effort needed to create labeled examples
versus accuracy. Using only 20% of τ , SetFit achieves comparable F2 values
both in binary and multi-class classification compared with fine-tuning BERT
on 20% of τ . SetFit achieves an average F2 of 79% for binary classification (1.9
pp less than that achieved by BERT), and 77.7% for multi-class classification
(1 pp less than BERT).

The answer to RQ3 is that BERT demonstrates a robust performance
when fine-tuned on a small proportion of the training set, with 30% yielding
acceptable F2. With even less amount of training data, using a dedicated
framework like SetFit yields comparable results to BERT.

RQ4: What is the execution time of our proposed solutions? We an-
alyze the running time considering both perspectives highlighted in Fig. 2,
namely user’s and developer’s perspectives. To simply use our proposed alter-
native solutions, one can apply the readily-developed classifiers and run all the
steps depicted in Fig. 2 except Step 3. Following the discussion in the previous
RQs, we report below the time required for running four alternative solutions,
namely BERT, RoBERTa, SetFit, and BiLSTM. The first two are the best
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performing solutions, whereas the latter two demonstrated a comparable per-
formance in terms of accuracy as well as other advantages: SetFit is a perfect
alternative when labeled data is scarce while BiLSTM is computationally ef-
ficient to develop compared to LLM-based solutions.

Considering the largest DPA in our our evaluation set with about 580
sentences, the first two steps to preprocess text and transform it into an inter-
mediate representation required negligible time for all solutions. Steps 4 and 5
classify the text and check the completeness of the DPA. To do so, BERT and
RoBERTa required ≈ 5.5 minutes and ≈ 19 seconds, respectively. Note that in
the case of BERT, we run 19 different classifiers compared to one multi-class
classifier in the case of RoBERTa. SetFit required ≈ 6 minutes and ≈ 19 sec-
onds for respectively solving the binary and multi-class classification problems.
Finally, BiLSTM required ≈ 34 seconds for solving the binary classification
and ≈ 1 second for solving the multi-class classification.

The developer must account for the time needed by step 3 to further de-
velop the classifiers. Fine-tuning 19 BERT-based classifiers took about four
weeks, whereas fine-tuning RoBERTa required about three days. Note that
the fine-tuning time includes the hyper-parameter optimization. SetFit, which
is designed to run on a CPU (instead of a GPU), took about 16 hours for devel-
oping the 19 binary classifiers and ≈ 51 minutes for the multi-class classifiers.
In comparison, BiLSTM took about two weeks to train and optimize the the
hyper-parameter for binary classification and nearly one day for multi-class
classification.

The answer to RQ4 is that the estimated time for analyzing the com-
pleteness of a given DPA with 100 sentences ranges between 3 seconds and
1 minute when applying RoBERTa and BERT, respectively. This time is,
on the one hand, practical from a user’s perspective. Developing similar
Solutions, on the other, largely depends on the availability of appropriate
hardware (i.e., GPU) and sufficient number of labeled examples. Alterna-
tively, one can develop SetFit, an FSL-based solution, or rely on BiLSTM,
compromising thereby the overall accuracy.

5 Discussion

DERECHA is the existing solution proposed by Amaral et al. [19] for DPA
completeness checking. DERECHA applies manually-crafted rules over the
semantic analysis between the text in the DPAs and the provisions in the
GDPR. The authors report an overall average precision of 89.1% and recall of
82.4% for detecting the violations of GDPR provisions in DPAs (i.e., detecting
missing provisions in DPAs). DERECHA allows for binary and multi-label
classification and is thus more comparable to our proposed solution using
LLMs as binary classifiers. As mentioned in Section 1, we scope our work to
mandatory requirements related to processor’s obligations.
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For finding the violations of these provisions (P1 – P19, listed in Table 1),
DERECHA has an average precision and recall of 81.2% and 70%, respectively.
This precision measures the ratio of violations that are falsely introduced by
DERECHA due to missing sentences that actually satisfy the provision. The
recall measures the ratio of missing violations due to falsely identifying sen-
tences that satisfy the provisions. In our work, we focus on identifying the
sentences that satisfy the provisions (i.e., the present provisions in the DPAs).
The best performing model in our results, i.e., BERT, has an average preci-
sion and recall of 81.4% and 81.6%, respectively. The precision, in this case,
measures ratio of falsely introducing sentences that satisfy a given provision,
where as the recall measures the ratio of missing sentences that satisfy a pro-
vision. While not directly comparable, we see that BERT has an advantage in
identifying sentences that satisfy the provisions.

6 Threats to Validity

This section discusses the validity concerns pertinent to our work.

Internal Validity. The main threat to internal validity concerns bias. To
mitigate this threat, we constructed our labeled dataset with the help of three
third-party annotators (non-authors). The annotators were not provided any
details regarding the development of the different alternative solutions.

External Validity. The main concern in respect of external validity is the
generalizability of our proposed solutions. To this end, we note that we con-
ducted our empirical evaluation on a large dataset of real DPAs covering differ-
ent sectors. We believe that the obtained results reflect real-world conditions
since the evaluation set was not exposed during the training or fine-tuning
phases. More experimentation and user studies can be however beneficial for
improving this validity concern.

7 Conclusion

In this paper, we developed and evaluated ten alternative solutions for check-
ing the completeness of data processing agreements (DPAs) against General
Data Protection Regulation (GDPR). The alternative solutions utilize various
enabling technologies, including traditional machine learning (ML), deep learn-
ing (DL), large-scale language models (LLMs) and few-shot learning (FSL). To
evaluate our proposed solutions, we used a dataset of 169 real DPAs curated by
three third-party (non-author) annotators. Our results indicate that the LLM-
based solutions performed significantly better than ML-based solutions. The
best performing solution is BERT with an F2 score of 86.7%, while enabling
multi-label classification, considering that the text in DPAs can fulfill multiple
provisions. Our results further highlight the benefit of two alternative solu-
tions, including BiLSTM (a DL algorithm) and SetFit (an FSL framework).
BiLSTM performs on par with LLM-based solutions but requires much less
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time to develop. SetFit yields less accurate results than LLMs, but it can be
developed with much less training data. Overall, the results show that fine-
tuning LLMs should be the most immediate option for addressing problems
in the legal domain. However, selecting which LLM to choose plays a major
role. For instance, though Legal-BERT was pre-trained on legal text, it was
out-performed by other LLMS like RoBERTa which was exposed to general
yet much larger text body. In the future, we would like to conduct user studies
to assess the practical usefulness of these solutions that achieved promising
results.
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