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Abstract
In this work, we propose a new hybrid modeling approach for the scores of international soccer matches which
combines random forests with Poisson ranking methods. While the random forest is based on the competing
teams’ covariate information, the latter method estimates ability parameters on historical match data that
adequately reflect the current strength of the teams. We compare the new hybrid random forest model to its
separate building blocks as well as to conventional Poisson regression models with regard to their predictive
performance on all matches from the four FIFA World Cups 2002–2014. It turns out that by combining the random
forest with the team ability parameters from the ranking methods as an additional covariate the predictive power
can be improved substantially. Finally, the hybrid random forest is used (in advance of the tournament) to predict
the FIFA World Cup 2018. To complete our analysis on the previous World Cup data, the corresponding 64 matches
serve as an independent validation data set and we are able to confirm the compelling predictive potential of the
hybrid random forest which clearly outperforms all other methods including the betting odds.
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Appendix

A Some notations and definitions
Kronecker’s delta, which is used in Section 4 in the formula of the multinomial likelihood and the RPS, is defined
as follows:

The Skellam distribution, which is also used in Section 4, is the discrete probability distribution of the integer
random variable that is defined as the di�erence  of two independent Poisson distributed random
variables Y , Y  with respective event rates λ , λ . The corresponding probability mass function is given by
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δij = { 1, if i = j,
0, otherwise.

K := Y1 − Y2
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where I (⋅) is the modified Bessel function of the first kind (for more details, see Skellam 1946). Now let Y  and Y
denote the (conditionally independent) Poisson-distributed numbers of goals of two soccer teams competing in a
match. Then, the three probabilities P(Y  > Y ), P(Y  = Y ) and P(Y  < Y ) can be easily obtained by computing P(K >
0), P(K = 0) and P(K < 0) via the Skellam distribution.

B Lasso regression for soccer data
An alternative, more traditional approach which is often applied for modeling soccer results is based on regression.
In the most popular case the scores of the competing teams are treated as (conditionally) independent variables
following a Poisson distribution (conditioned on certain covariates), as introduced in the seminal works of Maher
(1982) and Dixon and Coles (1997). Similar to the random forests, the methods described here can also be directly
applied to data in the format of Table 2 from Section 2.1. Hence, each score is treated as a single observation and
one obtains two observations per match. Accordingly, for n teams the respective model has the form

(2)

where Y  denotes the score of team i against team j in tournament k with . The metric
characteristics of both competing teams are captured in the p-dimensional vectors , while  and 
capture dummy variables for the categorical covariates Host, Continent, Confed and Nation.Coach (built, for
example, by reference encoding), separately for the considered teams and their respective opponents.
Furthermore, 𝜷 is a parameter vector which captures the linear e�ects of all metric covariate di�erences and 𝜸 and
𝜹 collect the e�ects of the dummy variables corresponding to the teams and their opponents, respectively. For
notational convenience, we collect all covariate e�ects in the -dimensional real-valued vector

.

Due to a rather large number of potential covariates in our data, we use regularization techniques when estimating
the models to allow for variable selection and to avoid overfitting. In the following, we will introduce such a basic
regularization approach, namely the conventional Lasso (Tibshirani 1996). For estimation, instead of the regular
likelihood  the penalized likelihood

(3)

is maximized, where  denotes the ordinary Lasso penalty with tuning parameter λ. The optimal
value for the tuning parameter λ will be determined by (standard) 10-fold cross-validation (CV) simply as the
parameter that minimizes the CV error. The model will be fitted using the function cv.glmnet from the R-package
glmnet (Friedman, Hastie, and Tibshirani 2010). In contrast to the similar ridge penalty (Hoerl and Kennard 1970),
which penalizes squared parameters instead of absolute values, Lasso does not only shrink parameters towards
zero, but is able to set them to exactly zero. Therefore, depending on the chosen value of the tuning parameter,
Lasso also enforces variable selection.

Possible extensions
While the Lasso method described above was chosen as the reference method to compare the predictive power of
the hybrid model, in the literature also several alternatives and extensions are discussed. In the following, we
shortly sketch some possible modifications. As a first possible extension of the model (2), the linear predictor can
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be augmented by team-specific attack and defense e�ects for all competing teams. This extension was used in
Groll et al. (2015) to predict the FIFA World Cup 2014. There, each couple of attack and defense parameters
corresponding to a team has been treated as a group and, hence, the Group Lasso penalty proposed by Yuan and Lin
(2006) has been applied on those parameter groups.

Alternatively, if the model (2) shall be extended from linear to smooth covariate e�ects  for metric covariates,
boosting techniques designed for generalized additive models could be used, such as the gamboost algorithm from
the mboost package (Hothorn et al. 2017). Instead of the Poisson distribution the negative binomial distribution
could be used as the response distribution when considering distributions for count data, which is less restrictive
as it overcomes the rather strict assumption of the expectation equating the variance. Schauberger and Groll (2018)
investigated two di�erent boosting approaches for this model class. However, no overdispersion compared to the
Poisson assumption was detected and the models reduced back to the Poisson case.

Altogether, in Schauberger and Groll (2018) the simple Lasso from (3) with predictor structure (2) turned out to be
the best-performing regression approach, though slightly outperformed by the random forests from Section 3.1.

C Comparison of FIFA ranking, Elo rating and estimated abilities
Table 8 compares the ranking of the 32 participating teams in the FIFA World Cup 2018 according to estimated
abilities (left column), Elo rating (center column) and FIFA ranking (right column). The ranking according to the
estimated abilities and the Elo ratings are very similar (Spearman correlation of 0.94), while both have a smaller
correlation with the FIFA ranking (Spearman correlation of 0.86 and 0.90, respectively).

All three methods rank Germany and Brazil as the two top teams. Notable di�erences between the rankings can be
seen, for example, for Spain and Belgium. Both the estimated abilities and the Elo rating rank Spain third while it is
ranked ninth by FIFA. Belgium is ranked rather inhomogenously in positions 6, 8 and 3 by the di�erent methods.
More details on the comparison of estimated team abilities and the FIFA rank can be found in Ley et al. (2019).

Table 8:

Ranking of the participants of the FIFA World Cup 2018 according to estimated abilities (left), Elo rating (center)
and FIFA ranking (right).

Table 9:

Estimated probabilities (in %) for reaching the different stages in the FIFA World Cup 2018 for all 32 teams based
on 100,000 simulation runs of the FIFA World Cup together with winning probabilities based on the ODDSET
odds.

D Probabilities for FIFA World Cup 2018 Winner
In this section, the hybrid random forest is applied to (new) data for the World Cup 2018 in Russia (in advance of
the tournament) to predict winning probabilities for all teams and to predict the tournament course.

The abilities were estimated by the bivariate Poisson model with a half period of 3 years. All matches of the 228
national teams played since 2010-06-13 up to 2018-06-06 are used for the estimation, what results in a total of
more than 7000 matches. All further predictor variables are taken as the latest values shortly before the World Cup
(and using the finally announced squads of 23 players for all nations).

For each match in the World Cup 2018, the hybrid random forest can be used to predict an expected number of
goals for both teams. Given the expected number of goals, a real result is drawn by assuming two (conditionally)
independent Poisson distributions for both scores. Based on these results, all 48 matches from the group stage can
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be simulated and final group standings can be calculated. Due to the fact that real results are simulated, we can
precisely follow the o�cial FIFA rules when determining the final group standings . This enables us to determine
the matches in the round-of-sixteen and we can continue by simulating the knockout stage. In the case of draws in
the knockout stage, we simulate extra-time by a second simulated result. However, here we multiply the expected
number of goals by the factor 0.33 to account for the shorter time to score (30 min instead of 90 min). In the case of
a further draw in extra-time we simulate the penalty shootout by a (virtual) coin flip.

Following this strategy, a whole tournament run can be simulated, which we repeat 100,000 times. Based on these
simulations, for each of the 32 participating teams probabilities to reach the single knockout stages and, finally, to
win the tournament are obtained. These are summarized in Table 9 together with the winning probabilities based
on the ODDSET odds for comparison.

We can see that, according to our hybrid random forest model, Spain was the favored team with a predicted
winning probability of 13.7% followed by Germany, France, Brazil and Belgium. Overall, this result seems in line
with the probabilities from the bookmakers, as we can see in the last column. While Oddset favors Germany and
Brazil, the hybrid random forest model predicts a slight advantage for Spain. However, we can see no clear favorite,
as several teams seem to have good chances. In retrospect, the early drop-outs of Germany and Spain seem rather
surprising. While Spain at least played a successful group stage finishing in first place, Germany performed
unexpectedly bad with two defeats during the group stage. The probability for such an early drop-out of Germany
was predicted to be only around 22% and, therefore, could be seen as the biggest surprise of the tournament. Spain
failed in the round-of-16 against host Russia in a penalty shoot-out and, hence, did not reach the quarter finals
(the probability for this event had been predicted to be about 39%). Beside the probabilities of becoming world
champion, Table 9 provides some further interesting insights also for the single stages within the tournament. For
example, it is interesting to see that the two favored teams Spain and Germany had almost equal chances to at least
reach the round-of-sixteen (80.5% and 78.0%, respectively), while the probabilities to at least reach the quarter
finals di�er significantly. While Spain had a probability of 61.2% to reach at least the quarter finals, Germany only
achieved a probability of 49.0%. Obviously, in contrast to Spain, Germany had a rather high chance to meet a
strong opponent in the round-of-sixteen. In case they would have reached the round-of-sixteen, Germany would
have faced either Brazil, Switzerland, Serbia or Costa Rica, while Spain would have faced Uruguay, Russia, Saudi
Arabia or Egypt. In the following rounds, Germany catches up to Spain finally ending up with almost equal winning
probabilities.

Most probable tournament course
Finally, based on the 100,000 simulations, we also provide the most probable tournament course. For each of the
eight groups we selected the most probable final group standing, while also considering the order of the first two
places, but not the irrelevant order of the teams on places three and four. The results together with the
corresponding probabilities are presented in Table 10.

Obviously, there are large di�erences with respect to the groups’ balances. While in Group B and Group G the
model forecasts Spain followed by Portugal as well as Belgium followed by England with rather high probabilities
of 27.7% and 26.7%, respectively, other groups such as Group D, Group E, Group F and Group H seem to be more
volatile. Now that we know the true tournament outcome, it is worth a note that indeed in Group B and G the first
two places were exactly taken by the two forecasted teams, while in Group F and H there were some surprises.

Table 10:

Most probable final group standings together with the corresponding probabilities for the FIFA World Cup 2018
based on 100,000 simulation runs.

Moreover, we provide the most probable course of the knockout stage in Figure 4. The most likely round-of-
sixteen directly results from those teams qualifying for the knockout stage in Table 10. For all following matches
we compute the probabilities for the respective two teams (say team A and team B) to go to the next stage. This is
done by applying the Skellam distribution to first get the probabilities for A wins, draw and B wins after 90
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minutes. Second, the probability for draw is distributed between teams A and B again following the principles of
extra-time and penalty shootouts we already applied for draws in the knockout stage in the previous section. This
way the probabilities for A wins and B wins add up to 1, as is necessary for the knockout stage. In Figure 4, the
probabilities accompanying the edges of the tournament tree represent the probability of the favored team to
proceed to the next stage.

Figure 4: Most probable course of the knockout stage together with corresponding probabilities
for the FIFA World Cup 2018 based on 100,000 simulation runs.
Figure 4:

Most probable course of the knockout stage together with corresponding probabilities for the FIFA World Cup
2018 based on 100,000 simulation runs.

In the most probable tournament course Germany wins the World Cup. However, again it becomes obvious that
with (in that case) Switzerland the German team would have had to face a much stronger opponent than Spain in
the round-of-sixteen. Even though they still were the favorite in this match, they would have succeeded to move
on to the quarter finals only with a probability of 58%. While in the most probable course of the knock-out stage,
though having tough times in all single stages, Germany would have made its way into the final and defended the
title, the previous section showed that generally still Spain was the most likely winner.

We wish to attract the reader’s attention to the fact that, despite being the most probable tournament course, due
to the myriad of possible constellations this exact tournament course still was extremely unlikely: if we take the
product of all single probabilities of Table 10 and Figure 4, its overall probability yields 7.63 ⋅ 10 %. Hence,
deviations of the true tournament course from the model’s most probable one were not only possible, but very
likely.
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